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RATIONAL BOUNDS FOR RATIOS OF MODIFIED BESSEL
FUNCTIONS*

INGEMAR NASELLY

Abstract. Double sequences of rational upper and lower bounds for the ratio I, . 1(x)/L,(x), x >0,
v > —3or v >—1, are established. The bounds are shown to converge, in certain cases monotonically,
to the ratio I, (x)/I,(x). A comparison with other approximations is made.

1. Introduction. The modified Bessel function of the first kind I, is con-
sidered on the domain x > 0. It is real for » real and it is positive if » =—1. It was
proved in 1965 by Soni [12] that

Iv+l(x)/1y(x)< 1, x>0’ V>—%,

The aim of this paper is to extend Soni’s result. Specifically, we define in § 3 a
double sequence of nonnegative rational functions L, . (x) (x>0, v>—1,
k,m=0,1,2,---)and adouble sequence of positive rational functions U, ,» (x)
(x>0,k,m=0,1,2,--+,v>—3if m =0, v>—1 otherwise), and we prove that
the functions L, s . (x) are lower bounds and the functions U, x (x) are upper
bounds of the ratio I,+1(x)/L,(x).

These results and some properties of the bounds are derived in §§ 2 and 3
below. The ideas used in our derivation are indicated by the following remarks.

The relation

Lia(x) [20+1)  Lox)]!
L(x) _[ x +Iy+1(x)]

shows that if F(v,x) is a positive upper (nonnegative lower) bound for
L1(x)/L(x) (x>0, v>—3), then

[&V;——l-)"l‘F(V"'l,X)]_l

(1)

is a nonnegative lower (positive upper) bound for the same ratio (x >0, » > —1).
By using this result one can generate the double sequence of bounds

Uv,k,O(x), Lu,k,o(x), Uu,k,l(x), Lu,k,l(x), T,
k=0,1,2,- -,

from the sequence of upper bounds U, xo(x), k =0,1,2,---.
The sequence of upper bounds U, x o(x) is found as follows. It is shown in § 2
that the function
g (x)=x""e "L (x),

is completely monotonic. By repeated application of the recurrence relations for
I,(x) one can express the kth derivative of g, (x) in a form that contains modified
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2 INGEMAR NASELL

Bessel functions of the orders » and » +1 only. The following explicit form is
found from (3) and (7):
(V + 1/2)k
Qr+1)
'[av,k (x )Iv (x) _Bv,k (x )Iv+1(x )]7
x>0, v>-3 k=0,1,2,

Here, @, x(x) and B, x(x) are nonnegative polynomials in 1/x defined in (8) and
(9), respectively. The sequence of upper bounds U, x o(x) of the ratio I, +1(x)/I, (x)
follows from the above expression; indeed

0<( l)kg(k)(x)=2kx—ve-—x

Iv+l(x) av,k(x)_

Iv(x) Bu,k(x)—

Uu,k,O(x ) s

x>0, v>-3% k=0,1,2,--

Our work has been motivated by the need for bounds of modified Bessel
functions in certain recent epidemiological models. The tropical parasitic infec-
tion schistosomiasis is transmitted by helminthic parasites. Males and females of
the sexually mature forms of the parasite form pairs in blood vessels of human
beings. Mathematical models have been formulated for the transmission of
schistosomiasis in a community; see Nasell [8] and Nasell and Hirsch [9]. Modified
Bessel functions appear in these models to account for monogamous mating
between the parasites. Bounds for modified Bessel functions are needed in the
analysis of the qualitative behaviors of the solutions of certain systems of
nonlinear differential equations that appear in the models.

2. Some preparatory results. From Watson [13] we quote Schlafli’s integral
representation of Poisson’s type for the modified Bessel function I,:

x/2)"
I'(1/2T(r+1/2)

By defining a function g, through the relation

L(x)= I 11— e ™ ds, v>—3.

g x)=x""e "L (x), x>0, v>—3

we find from the integral representation of I, that g, (x)is the Laplace transform of
a function which is positive on the interval 0 <t <2 and equal to 0 for r=2. It
follows that g, is completely monotonic on (0, c0) and that the strict inequalities

© (-1gWx)>0, 1
x>0, v>-3 k=0,1,2,--
hold.
The recurrence relations for the modified Bessel function I, can be used to
prove that

kv g* w+1/2)

g () =(-2)" 21

oo Bx)=Gu(x)],

3
@) x>0, v>—-3% k=0,1,2,-
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where the function G, x is defined as a linear combinationof I, .1, - + -, I, .« by the

relation

2(2V + l)j_l(ll +])
Qv +k+1),

x>0, v>-3 k=0,1,2,---.
The function G, satisfies the recurrence relation

(21/ + 1)2
(21/ +k + 1)2

Gut= 3 (7 L),

“4)

Gv,k+1(x)—Gv,k(x)= [Iv+1(x)_Gv+1,k(x)]7

©)

x>0, v>-% k=0,1,2,---.
It follows from (2), (3) and (5) that
Gv,k(x)< Gv,k+1(x)<Iv(x)a

6
© x>0, v>-3 k=0,1,2,---.

Thus the sequence of functions {G, x} is a monotonically increasing sequence of
lower bounds of the function I,. This result was proved in.Nasell [7] by using an
expansion, given by Luke [6], of the confluent hypergeometric function in terms of
modified Bessel functions.

We proceed to derive relations that express I, ., (x), where n is a nonnegative
integer, in terms of L, (x) and I,.;(x). The relations take different forms, depend-
ing on whether n is even or odd. The relations contain certain polynomials in 1/x
that are defined as follows:

am()="3 ('" J'le‘c_l) W+m—k+ 1) <)%)2k+6(m),

x#0, m=0,1,2,---,
and
2k+1

)(V+m—k)2k+l (%) ;

x#0, m=0,1,2,---.

ml m+k
bum ()= 2 (2k+1

k=0

Here, §(0) =1 while §(m) =0 for m #0.
The polynomials a, ., and b,,,, are closely related. Specifically, the following
relations hold:
Aym+1(X) = @y (X) = (v +2m + 1)(2/x)by +1,m (%),
x#0, m=0,1,2,---,
bv,m+1(x) —bv,m (x) = (V + 2m + 1)(2/x)av—1,m+1(x)’
x#0, m=0,1,2,---.

Relations between I, I,+1, I, are given in Theorem 1.
THEOREM 1. Let x #0 and m=0,1,2,- -+ . Then
(a) Iv+2m (x) =0y,m (JC)I,, (x) —bu,m (X)I,,+1(X),
®) Li2m+1(x)= a1 mr1(x) L, 1(x)— by +1,m (X)L, (x).
The proof of this theorem follows by induction.
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It is seen from (4) that the function G, is a linear combination of the
functions I, +1, L+, * * *, L +x. By applying Theorem 1 to (4) we are led to an
expression for I, (x) — G, x (x) that involves polynomials in 1/x and I, (x), I, +1(x).
The expression has the form

Iv(x) - Gv,k(x) =k (x)Iv(x) —ﬁv,k (X)I,,+1(X),
x>0, v>-3, k=0,1,2,--

Here, the polynomials a, x(x) and B, x(x) are found from the relations

™)

K2 kN 22y +1)2 1 (v +2m)
a,,k(x)—1+mf;l(2 ) Qv +k +1)2m o (%)
[k—1)/2] k 2Qv+1Dom(v +2m +1)
®) * w1 (2m+1) Qv +k +1ames brs1m(x),
x>0, v>-3 k=0,1,2,---,
and
W2k N\ 2Qv+1)0m (v +2m +1)
Bui(x)= =0 (2m+1) Qv +k+1)ome1 Gt mr1(¥)
k/21 1 kN 2020 + 1)om—1(v +2m)
+ i
©) ,,,Z=1(2m) Qv+k+1),, by (x),

x>0, v>-3 k=0,1,2,---

3. Rational bounds for the ratio I, .:(x)/I, (x). We proceed to apply the
results of the preceding section in the derivation of rational upper and lower
bounds of the ratio I,.:(x)/I,(x). As a preparation we define two double
sequences of polynomials in 1/x as follows:

Av,k,m (x) = Ay +2m,k (x)av,m (x) +Bv+2m,k (x)bv+1,m (x),

(10) 1
x>0, km=0,1,2,---, v>—-3—2m,

Bv,k,m (x) = Ay +2m,k (x )bv,m (X) +Bv+2m,k (x )aV‘l,m+1(x),

(11 x>0, k,m=0,1,2,-+, v>—i-2m.

Some elementary properties of these polynomials are summarized in Lem-
mas 1 and 2 below.
LEMMA 1. Letx>0,k,m=0,1,2,---,

-3 ifm=0,
v >{
—2  otherwise.

Then
(a) Av,k,m (x) = 1,
(b) Av,k,m (x) ->00 as k -> ma
(©) Ay (x)—>00 as m—>co,
(d) Av,k +1,m (x) -Av,k,m (x) > 0, k +m >0,
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(e) Av,k,m+1(x) —Av,k,m (X) > O’ k +m> O’
® {A,,,k,m(x) =0 "N asx >0, k+2m =2,

A,10(x)=0(x"") asx~0,
(@ Avgm(x)=0(1) as x>0,
LEmMMA 2. Letx >0,k,m=0,1,2,-- -,

" >{
—1 otherwise.
Then

(@) Bugm(x)>0,k+m=>0,
(b) Bv,k,m(x)_) oo as k >0,
(€) By gm(x)—>00 as m->0,
(d) Bv,k+1,m (x) -Bv,k,m (X) > 0,
(e) Bv,k,m+1(x) —Bv,k,m (x) > 07
() Boam®x)=0x*>"* Y asx >0,k +m >0,
® {B,,,O,m(x) =0(x"") as x>0, m>0,
g

B, im(x)=0() as x >0, k>0,

We use the polynomials A, ., (x) and B,k m.(x) to define two double se-
quences of rational functions as follows:

A kmx
Uv,k,m (x) = _'T’:,_((x_;’
(12) e )
-5 ifm=0,
x>0, km=0,1,2,--, »>|
—1 otherwise,
B, m(x
Lv,k,m(x)=A -le;k, (l(i),
v—1,k,m+
(13)

x>0, km=0,1,2,---, v>-—1.

The explicit forms of these functions for k +m =3 are given in the Appendix.
Note that k =m =0 gives U, 0,0(x) =00 and L,,0,0(x) =0, which are trivial upper
and lower bounds, respectively, of L,.1(x)/L.(x). With kK +m >0 we prove in
Theorems 2 and 3 below that each of the functions U, k. (x) is an upper bound
of the ratio I,+1(x)/I,(x), and that each of the functions L, (x) is a lower
bound of the same ratio. The theorems also give monotonicity properties of the
bounds, exhibit their asymptotic behaviors, and establish their convergence to
the ratio I,+1(x)/L,x)-
THEOREM 2. Letx >0, k,m=0,1,2,- -+, k+m >0,

-1 ifm=0,
> {
—1 otherwise.
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Then

(a) VI+Z(3;)

(b) Uv,k +1,m (x) < Uv,k,m (x )’
(C) Uv,O,m +1(x) < Uv,O,m (X),

< kam(x)

Iv+1(x)

(@) Ubsom(6) == 57= O, x>0,
Usam3) =225 - O(0), x>,

X U e (x) — ;*E(’;) o(x™), x>0, k>0,

(®) lim Uy (x)= 1+E$)

© lim Unem(m) =25

Proof. Replacement of v by v +2m in relation (7) gives

Iv+2m (x) - Gv+2m,k (x) = Q&y+2m,k (x )Iv+2m (x) _ﬁu+2m,k (x )Iv+2m+1(x)-

Here we apply relations (a) and (b) of Theorem 1 to express I,+2.(x) and
L2, +1(x) in I, (x) and I, 1(x). By also introducing A, x . (x) and B, x,m(x) from
(10) and (11), respectively, we find that

(14) Iv+2m (x) - Gu+2m,k (x) = Av,k,m (x)Iv (x) _Bv,k,m (x)Iv+1(x)-

Now I,(x) >0 and B, x ,»(x) >0 by Lemma 2(a). Division of both sides of relation
(14) by B, xm(x)1,(x) gives, with the use of (12),

Iv+1(x) _ Iu+2m(x) - Gv+2m,k (X)
a3 #m L@ T Bum@L®)

The denominator of the right hand side of (15) is positive by the argument above,
and the numerator is positive by inequality (6). Thus U, x . (x) is an upper bound
of I,+1(x)/I,(x), and statement (a) holds.

The numerator of the right hand side of (15) decreases as k increases by 1, as
seen from (6). The denominator of the right hand side of (15) increases as k
increases by 1; see Lemma 2(d). Thus the upper bound U, . (x) decreases as k
increases by 1, as claimed in (b).

With k =0 we find from (4) that G, o(x) =0 and that the numerator of the
right hand side of (15) equals 1,12, (x). As m increases by 1 we find from the
recurrence relation for I, that the numerator of the right hand side of (15)
decreases. Lemma 2(e) shows that the denominator of the right hand side of (15)
increases as m is increased by 1. Thus the upper bound U, ¢, (x) decreases as m is
increased by 1, as claimed in (c).
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The following asymptotic relations follow from results in [7]:

L., (x) - Gv+n,k (x) -
I (x)

ox"), x-»0, n=0,1,2,---,

and

Iv+n (x) - Gu+n,k (x)

_ —k
Ip (x) - O(x ),

x>0, n=0,1,2,--

By using these results and the asymptotic behavior of B, . (x) (Lemma 2(f), (g)),
we find from (15) that (d) and (e) hold.

We note that U, ; o(x) = 1. It follows therefore from (a) that I, ., (x) <L, (x),
n=1,2,---.From this inequality and (6) we find that

Iv+n(x)— Gu+n,k (x)

(16) o< o)

=1, n=0,1,2,---.

By applying this result and Lemma 2(b) to the right hand side of (15) we conclude
that (f) holds. An application of (16) and Lemma 2(c) to the right hand side of (15)
shows that (g) holds.

Some of the properties of the rational functions L, ., (x) are summarized in
the following theorem.

THEOREM 3. Let x >0, k,m=0,1,2,- -, k+m>0,v>~1. Then

Iu+1(x)
(@ Lyxm(x)< o)

(b) Lv,k,m (x) < Lu,k+1,m (x )7
(C) Lu,O,m (x) < Lv,O,m +1 (X),

Iu+1(x)
@

1;+1Cx)__
L(x)

_vak,m(x)=0(xk+4m+1)’ x_)()’

(e

Lyjm(x)=0x"%), X - 00
L1(x)
L(x)’

L(x)
L(x) "

® Jim Lyom(x)=

(g) "1'1_1;130 Lv,k,m (x) =

This theorem follows in a manner similar to the proof of Theorem 2.

4. A comparison with other approximations. By writing each of the bounds
L, m(x) and U, &, (x) as a ratio of polynomials in x we find the degrees of the
polynomials in numerator and denominator to be those given by Table 1.
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TABLE 1

Degree of Degree of

numerator denominator
Function Condition 14 q
U,om mz=1 2m—1 2m—2
U, sem k=1,m=0 k+2m—1 k+2m—-1
L,om m=1 2m—1 2m
L,km k=z1,m=0 k+2m k+2m

Thus, our bounds are of the form

Sp(x)
T, (x)

where S, (x) is a polynomial in x of degree at most p and T, (x) is a polynomial in x
of degree at most q. Following Baker [2], such a function is called a Padé
approximant of a function F if its power series expansion agrees with that of F(x) in
its first p +q + 1 terms, i.e. if

Rpq(x)=-F

F(x)=Rpq(x)=0(x""""), x>0.

From Table 1 and Theorems 2(d) and 3(d) we find that the bounds L, x ., (x) and
U, x.m(x), k +m >0, are Padé approximants of I, +1(x)/I,(x) for k = 0 but not for
k >0. The Padé approximarnts L, o, (x) and U, om.(x), m >0, are the approxi-
mants of the continued fraction expansion of I,.:(x)/I,(x), which can be
developed from relation (1). It has previously been observed by Amos [1] that
rational bounds of I,.;(x)/I,(x) can be derived from its continued fraction
expansion.

Irrational bounds for I,.1(x)/IL,(x) have recently been given by Amos [1].
Putting

X X
GO = ey ™ D= o
Amos shows that
0=C,(x)= }*;(’;)fm ) £>0, =0,

We note that Amos’ method can be used to give the more generally valid
inequalities

v+1(x)
0<C,(x)<———= L) x>0, v>-1
and
v+1(x)<D( )’ x>0’ > —

L,(x)
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Asymptotically we find that
_ I v+1 (x ) -

D, (x) T o(x™?, X =00,
Dv(x)—%zi—’;LO(x), x>0,
I}%)(Cx))—c,,(x)=0(x_2), x > 00,
%ﬁ’;)~c,(x)=0(x3), x>0,

A comparison with Theorem 2 shows that D,(x) is a sharper bound than
U, 1,0(x) asymptotically both as x >0 and as x - 0o, but that U, 4, (x) is sharper
than D, (x) asymptotically as x >0 and as x >0 if k =3, m =0. In a similar
manner we find from a comparison with Theorem 3 that C, (x) is a sharper bound
than L, 1,0(x) asymptotically as x >0 and as x — co, but that L, 4 ,,(x) is sharper
than C,(x) asymptotically as x -0 and as x > if k =3, m =0. The following
lower bound for the ratio I,(x)/I,(x) has been given by Ross in [11]:

L(x) _ (2" T +1/2)
I,‘(x)>(2) Te+1/2)

By taking 4 =v +1 in this inequality, one finds that

u>v>0, x>0.

I,1(x) x

_ >0, »>0.
L&x) 20+1 x v

Now
x

2w+1)
It follows therefore from Theorem 2(c) that each of the inequalities

Iv+1(x)
L(x)

Uo,1(x)=

<Uv,0,m(x),
x>0, v>-1, m=1,2,---,

is sharper and more general than that of Ross in the case u =v +1.
Soni’s inequality is

I,
ﬂ< U,,,l,o(X)=1, x>0, V>"‘%,
L (x)
see [12].
It follows from Theorem 2(b) that each of the inequalities
IV+1(x)
<
I,x) U, v,k,O(x )

x>0, v>—% k=2,3,---,

is sharper than Soni’s inequality.
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Other results that are stronger than Soni’s inequality have been given by
Jones [4], Lorch [5], Cochran [3], and Reudink [10]. Thus, Jones proved that if
£>0, »=0, and x >0, then the inequalities

Lyve(x)
L(x)
hold, and furthermore the ratio I,..(x)/I, (x) has a positive derivative for x >0,
and it approaches the value 0 as x -0 and the value 1 as x - 0. Lorch used a
comparison theorem to establish inequalities for Whittaker functions. As a special
case of these results, he draws the same conclusions as Jones concerning the ratio
I..(x)/I,(x) in the slightly more general situation when £ >0, »> —3¢, x >0.

Cochran established the inequality

oL, (x) <
v

and Reudink used a different method to prove Cochran’s inequality for v >0,
x>0,

o< <1

0, v=0, x>0,

Appendix. Explicit expressions for some of the rational bounds.

U, 0,0(x) =00,

U,10(x)=1,

Uioa(x)= 2(Vx+ 1y

Us20(x) = ;Tr(l_)/cz)Jr—x
R
U,o2(x)= 8(V4ﬁ;i)z: : ;)xz’
Uzo(x)= e

2w +1/2)w+1)+3(w+1/2)x +2x
2 +2)(w +5/2)x +2(w +2)x>+x>

Uraa®) = o 0 45/2) + 40 + Dox 2300 £3/ 00+ 2>
Unralx) = 8(v+2)3x+4(w+2),x° +4(w +3)x> +x*
»1.200 16(v +1)s+8w +1)sx +12(v +2)2x* +4(w +2)x> +x*
16(v +2)sx +12(v +3)2x> +x°
Uv,0,3(x) = 2 4
32(w+1)s+32(v +2):x“+6(v +3)x
Lv,O,O(x) = O,
X
L,10(x)= 20+ )+
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. 2(w+2)x
Luoa(x)= A +1)+x?
(w+3/2)x +x*

L, = ,

20(%) 2+ D@ +3/2)+2(v + x + x>

4 +2),x+2(w +2)x>+x>
Lu,l,l(x)= ) 3
8(w+1)3+4(w+1),x+4(w+2)x"+x

Loa(r) = 8(v+2)sx+4w +3)x>
02 e+ D)at 12(0 + 202 257
Lo o()= 2(v +3/2)(w +2)x +3(v +3/2)x*+2x>

WOV T A+ 1) (v +3/2)(w +2) +6(v + 1)@ +3/2)x + 5 +11/10)x>+2x %
Loyi(e)= 4w +2),(v +7/2)x +4(w +2),x° +3(w +5/2)x> +x*

w21 8(w+1)s(v +7/2)+8(w +1)3x+8(r +2)(v +9/4)x>+4(v +2)x> +x*
L 1a() = 16(r +2)sx+8(w +2)3x* +12(r +3)2 x> +4(w +3)x* +x°

w12 32+ 1)s+ 16w+ 1)ax+32(v +2)3 52+ 12(r +2), > +6(v + 3)x* +x~
Loos(x) = 32(r +2)sx+32(r +3)3x° +6(v +4)x°

64(v + 1) +80(r +2)4x*+24(w +3),x* +x*

Acknowledgments. I thank Harold S. Shapiro for suggesting the com-
parison with Padé approximants and the referees for constructive comments on
the presentation of these results.
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LIE THEORY AND THE WAVE EQUATION IN SPACE-TIME.
2. THE GROUP SO (4, C)*

E. G. KALNINSt AND WILLARD MILLER, JR$

Abstract. Homogeneous solutions of the Laplace or wave equation in four complex variables
correspond to eigenfunctions of the Laplace-Beltrami operator on the complex sphere S, : Z:; 1 %=
1. It is shown explicitly that variables separate in this eigenvalue equation for exactly 21 orthogonal
coordinate systems, each system characterized by a pair of commuting symmetry operators in the
enveloping algebra of so(4, C). Standard group-theoretic methods are applied to derive generating
functions and integral representations for the separated solutions. Henrici’s theory of expansions in
products of Legendre functions is incorporated into this more general scheme.

1. Introduction. In [1] we studied the relation between symmetry and
separation of variables for the differential equation in 3 real variables satisfied by
solutions of the wave equation 9, ® — A;® = 0 which are homogeneous of degree o
inx, y, z, t. The appropriate symmetry group was SO(3, 1). Here we examine this
relationship in the case where all variables are complex. Instead of the Hilbert
space theory for expansions of solutions of the differential equation in terms of
separable solutions as developed in [1] we here construct a theory of analytic
expansions in terms of separable solutions.

We begin with the complex Laplace equation

4
A4®(}’ )=0, A= .Zl a)’iYi’
i=

(1.1)
y=0U1,y2y3Yys), y€C.

Clearly (1.1) is equivalent to the complex wave equation, (sety; =x,y2=y,y3 =2,
ya4=it). We are interested in the solutions of (1.1) which are homogeneous of fixed
degree o €C: ®(ry) =r?®(y). Introducing coordinates r, z; such that y; =rz;,
Z] L 2z} =1 we see that these homogeneous functlons are unlquely determined by
their values on the complex unit sphere S;.: z3+z3+2z34+2z5=1. Indeed d(y)=

r’ ®(z). The group SO(4, C)=S0O(4) has a natural action on S;. which is deter-
mined by the Lie derivatives

Ijk'__zjazrc_zkaz;, I_S_]’kéél., ]7ék

(Since this paper deals with local Lie theory we are concerned only with the
behavior of analytic functions in small neighborhoods of a given point. Thus
f(r)=r? can be defined precisely in a neighborhood of ry,# 0 by choosing any
branch of the global analytic function, e.g., if 7o = R e, Ro>0, —7 <@o<m we
can define f(r) for r=Re' in a small neighborhood of r, by f(r)=
exp (o In R) e*®. The branch chosen makes no difference in the computations to
follow. However, in § 4 it is necessary to be more careful about domains of
definition in order to determine precisely the regions of validity of our identities.
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LIE THEORY AND THE WAVE EQUATION 13

In that section we use the above definition of r” for r = R >0 and extend by
analytic continuation.)

It is straightforward to show from (1.1) that the restriction ¢ of the
homogeneous function ® to S, satisfies the eigenvalue equation for the Laplace
operator on S3.:

(1.2) I+ 5+ s+ s+ a+ L)y (z) = —o (o +2)§(z).

Moreover, the symmetry algebra of (1.2) is so(4), the Lie algebra of SO(4). In
other publications we have developed a method which relates the symmetry group
of a linear partial differential equation to the possible coordinate systems in which
the equation admits solutions via separation of variables, e.g., [2], [3]. Here the
method is applied to (1.2).

In § 2 we apply results of Eisenhart [4] to construct all complex orthogonal
coordinate systems in which (1.2) admits separation. We show that there are
exactly twenty-one such systems. In § 3 we show that each system is characterized
by a pair of commuting second-order operators £;, £, in the enveloping algebra
of s0(4) in the sense that the corresponding separable solutions are common
eigenfunctions of these operators with the separation constants as eigenvalues.
We also discuss the relationship between the subalgebras so(3), so(3) X so(3) and
&(2) of so(4) and some of the simpler coordinate systems.

In § 4 it is shown how the Lie algebraic characterization of the separable
solutions of (1.2) can be used to derive generating functions and addition
theorems for these special functions. Since the basic theory of such expansions has
been discussed elsewhere, [5], [6], we merely present a few of the most interesting
cases.

Among the results is a new group theoretic proof of the addition theorem for
Gegenbauer polynomials C,(x). The standard group-theoretic proofs of this
result,[7, Chap. 11], use global representations of the family of groups SO(m) and
are valid only for half-integer values of A. The proof given here is much simpler,
uses local representations of SO(4) and is valid for general complex A. In [8],
Henrici gave simple, elegant proofs of this addition theorem and many other
generating functions for products of Gegenbauer functions by employing complex
variable techniques on the partial differential equation (4.17) below, an equation
which is distinct from (1.2). We will show, that (4.17) is actually equivalent to (1.2)
under the action of the conformal symmetry group SO(6) of (1.1) and point out
the underlying group structure of Henrici’s technique. A related proof of the
addition theorem which implicitly employs separation of variables can be found in
a recent note by Koornwinder [9].

Finally, in § 5 we show how to construct integral representations for each of
the twenty-one classes of separated solutions of (1.2) by transferring the action of
SO(4) from S3; to Ss..

We are ultimately concerned with the classification of all separable and
R-separable complex coordinate systems for (1.1) and the study of all special
functions which arise from the equation via separation of variables. The determi-
nation of all homogeneous orthogonal separable systems given here is a first step
toward realization of this program.
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Note that by characterizing each separable system in terms of Lie algebra
generators we have to a considerable extent reduced problems concerning the
expansion of one set of separable solutions in other sets to a problem in the
representation theory of the symmetry algebra. In [1] we studied unitary rep-
resentations and obtained Hilbert space expansions whereas here we study local
representations and obtain analytic expansions.

2. Separation of variables for the Laplace operator on S;.. Here we consider
the problem of separation of variables for the equation Ay = g (o +2)i where A is
the Laplace operator on the complex sphere Ss.. This is not equivalent to the
corresponding problem on the real sphere S; studied by Olevskii [10] and
Eisenhart [4] since we allow the coordinates to be complex quantities and ignore
the ranges of variations of the coordinates. We do, however, restrict ourselves to
orthogonal coordinate systems. The method we use for evaluating the systems is
an adaption of that used by Eisenhart for a space of constant curvature. Here we
look for all complex solutions for the metric coefficients rather than for all real
solutions as did Eisenhart.

Let {x1, x2, x3} be a complex analytic coordinate system on Sj,. If the system
is orthogonal then the metric takes the form

(2.1) ds*=H? dx?+H? dx3+ H3 dx3

and the equation Ay = o (o +2)¢ in these coordinates reads

1 H2H3 ) (H1H3 ) (HIHZ )]
. X1 X1 X2 X2 + X3 X3
2.2) HleHa[(a ( o ) 0 (T ) 0

=—c(c+2.

Eisenhart has shown that if (2.2) separates in the variables {xi, x5, x} then the
metric coefficients must have one of the forms

1. H;=1, Hz=¢(XI), H3=0(x1)

2. Hi=1, Hy=¢(x1), Hi=¢(x1)0(x>),

3. Hi=1, H§=(x2-x3)X2(x2)a'1(x1), H3=(x2~x3)X3(x3)af(x1),
4

Hi=01(x1)+eos(xs), Hs=01(x1)o3(x3),

H§=0'1(X1)+60"3(X3), e==+1
5. HP=(0—x)6—x)Xa(x;), i#j#k#i

In addition to having one of these forms the metric coefficients H; must
satisfy the requirement that the space have constant unit curvature. This condition
is

1 o ) 5 H2>
J— +.___. 1
i (2 o 5 log H; logH g2
(2.3)
lo j)
ax; gH2
1 2 2
—s —l H; -——1 H;=-4,
THion 8 °8

6
H2 (2 zlogH +-—10ng
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where i, j, k are distinct. We now compute the differential forms associated with
the four types of metric and subject to constraints (2.3).

1. For metrics of type 1 we find from (2.3) fori =1,j=2andi =1, =3 that
¢ and 0 satisfy the equation d*y/dx?+¢ =0, and for i =2, j =3 in (2.3) we have
the constraint (d¢/dx1)(d6/dx1)+¢6 = 0. There are two distinct solutions:

(i) ¢=sinx;, 6=cosxy,
(i) ¢=e™, @g=e™.
The corresponding metrics are
(1) ds*=dx?+sin®x; dx3+cos® x; dx3,
(2) ds*=dxi+e* 1 (dx3+dx3),

2. For metrics of type 2 we find from (2.3) withi =1,j =2 andi = 1,j = 3 that
¢"+¢=0.Fori=2,j=3 wefind 0"+ (¢*+¢">)0 =0. The possible solutions to
these equations are

(i) ¢ =sinx;, 6=sinx,,
(i) ¢=sinx,, @=e™,
(i) ¢p=e™, 6=x,.
The corresponding metrics are
(3) ds*=dx?+sin’ x1(dx3+sin” x, dx3),
(4) ds*=dx?+sin® x,(dx2+e** dx3),
(5) ds®=dxi+e* ™ (dx3+x3dx)).

3. For metrics of type 3 we find from (2.3) withi = 1,j =2 andi = 1,j = 3 that
ol+01=0. If o;=sinx; then H3=1, H%=(x,—x3)X,sin’x; and H3=
(x2—x3)X3 sin’ x1. For i =2, j =3 in (2.3) we obtain

2 () e[ (3) - () ] - 4=

Differentiation of this equation twice with respect to x, implies (1/X3)"” = —24 so
. 1/Xo=—4x3+bx5>+cx,+d = f(x2).

Similarly X5 = —1/f(x3). There are only three distinct systems of this type:
(6) ds*=dx?+sin® x,(sn® (x,, k) —sn® (x3, k))(dx3—dx3),

1 )sinle(dxi—dxg),

2 __ 2 =
(7) ds —dXI+(ChZX2 Ch2X3

8) ds*= dxf+<%-——1—2) sin® x1(dx3—dx3).

3 X2

Here, sn (x, k) is a Jacobi elliptic function and we adopt the notation sh x, ch x, th x
for hyperbolic functions.
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In these equations we have introduced new variables X; = %;(x;), j =2, 3. In
general, we do not distinguish between coordinate systems {xi, x», x3} and
{fl, .fz, £3} Where ij'= .fj(x,‘), ] = 1, 2, 3.

Ifo,=e™ and i =2, j =3, then (2.3) reduces to

1 1 1\’ 1\’
—+—)+ -\ ) [=0.
2 (X2 X3> (x2=x3) [(X3> (Xz) ] 0
Differentiating this equation twice with respect to x, we find (1/X,)”=0 or

1/X,=ax3+bx,+c =h(x,). Similarly 1/X;=—h(x;). There are four distinct
systems of this type:

(9) ds®>=dxi+e* 1 (ch® x,—ch® x3)(dx3—dx3),
(10) ds®>=dxi+e* 1 (e**>+e*)(dx5—dx3),
(11) ds®=dx}+e™ (x3+x3)(dx3+dx3),
(12) ds*=dx?i+e*™ (4x,—4x3)(dx5~dx3).
4. For metrics of type 4, equation (2.3) with i = 1,j = 2 yields the constraint

12

o1 ol o
2 (0"1'—-——) +o; (2 ——1-——!-) +—= —4(o1+03)°.
o1 o1 01 03
Differentiating with respect to x; we obtain
ool (o1
———2+(——) — =—8(c1+03).
g1 01 g3/ O3

We can separate variables in this equation according to the scheme
2

0' g
Ti_ T 8y = de,
g1 g1
112, 7
o 1
(—?—) — 4803 = —4c
g3/ 03

where ¢ is a separation constant. First integrals of these equations are
o’ =40:(f +co1—a?),
0"32=40'3(f_C0'3—0'§),
f is a constant. Choosing new variables X, = 01, £3= —03 we obtain the metric
1 dii di3
d52="(551—£3)[,\ ~ PR — Py ]+£1£3dx§,
4 Xi(a—%)(b—%1) Ez(a—%x3)(b—%5)

where ab = —f, a +b = c. There are four distinct cases:
If a #b, |a|, |b| >0, the metric can be reduced to

(13) ds*=—k*(sn® (xq, k) —sn® (x3, k))(dx]—dx3)
2

+oaen % (x1, k) en® (x3, k)) dx3, k'=vV1-k?

b
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If a=b#0 we find

(14) ds*= (th® x; —th® x3)(dx ] —dx3) +th® x; th® x5 dx>,
while if a =0, b # 0, we obtain

(15) ds*= (chzlxl_chzlx) (dxf—dx§)+ch2 xllch2 X3 d.
Finally, if a = b =0 the metric becomes
(16) ds*=(Zx+=3) (@i +dd)+ i
X1 X3 X1X3

5. For metrics of type 5, equation (2.3) with i =1, j =2 becomes

% ey o [ () () &)

#s=x0? [ ()

2(x3— 1

- ((x3—x2)'+ 1) “"‘] } +4(X3 —xl)z(JC3 —X2)2 =(.
X1—X2 X5

Differentiating this equation twice with respect to x, we obtain a polynomial of

order three in x3. The coefficient g(x1, x,) of x3 must be identically zero. Thus

o’g ( 1)“‘)
Z8_(=) +96=0
6x§ X2

and 1/X, = —4x}+ax3+bx5+cx,+d = f(x,). Similarly 1/X; = f(x,) and 1/X; =
f(x3). Five coordinate systems of this type can be distinguished. In each case the
metric assumes the form

gs?= F1TX)E=X3) o (0= X5) o= x1) o (83— X1)(K3 = Xo) dx2

f(x1) f(x2) f(x3)

and the systems are distinguished by the multiplicities of the zeros of f(x). The
distinct possibilities are

(17) fx)=—4kx—-a)x—b)x—1x, a#b,
(18) f(x)=—-4(x—2)(x —1)x?,

19) f(x)=—4(x~-1)x"

(20) f(x)=—4(x—1)x>,

21 fx)= —4x*.

This completes the list of orthogonal coordinate systems on the complex
sphere Ss. which permit separation of variables for the equation Ay = o (o +2)¢.
There are exactly 21 such systems.
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3. Liealgebra characteristics of the separable systems. The three-dimensional
complex sphere S;. consists of those points (z1, z2, 23, z4) in complex four-
dimensional Euclidean space such that z3+z3+23+25=1. The connected Lie
subgroup of the complex Euclidean group which leaves this manifold invariant is
SO(4, C), the complex rotation group. A basis for the six-dimensional Lie algebra
so(4,C) of SO4,C) is

(31) Ikl = zka, —~z,6k, k, = 1, 2, 3, 4, k # l, Ikl = -Ilk-
These basis elements satisfy the commutation relations
(3.2) (s, Iee] = Bislice — Bicslie — Suelics + Srcells.

Further, if we put
Ji=3Is—Ts), J2=313+124), J3=3T12—Isa),
Li=3I;s+1s), La=3Ii3—I2a), L3=3(I12+1Is4),
it becomes evident that so(4, C) =s0(3, C)®so (3, C). Indeed
(3.4) i, Ji1= e, [Li, Lj]= €L, [Ji, L;]1=0.

It can be verified by tedious computations that each of the 21 separable
coordinate systems constructed in § 2 is characterized by a pair of commuting
symmetric second-order operations £;, %, in the enveloping algebra of so (4, C).
That is, the separable solutions ¢ = ¢;(x1)¥2(x2)¥s(x3) corresponding to such a
system are characterized by the equations

(3.5) Ay =o(c+2)y, L=, Lo = A2

The eigenvalues A, A, are the separation constants. Expressed in terms of the
generators of so(4, C) the Laplace operator is

(3.6) —A=Th+15+ i+ s+ g+ 154

(3.3)

i.e., A is the Casimir operator for so(4, C).
We now present the explicit coordinates and the corresponding operators £,
£, for each of the 21 separable coordinate systems on Si..

(1) z;=sinx;coS X2, 2z=COSX;COSX3,
Z3=CO0S X1 Sin X3, Zz4=sinx,; sin x,,
3’1:1%3, «552:1%4;

(2) zi=Ye ™ +A+x5+x3)e™], z,=ix,e™,
z3=ix;e™, z4=%[e""“+(—1+x§+x§)ei"‘],
L1=Tp+il2)?, Fo=La+il13)%

(3) zy=sinx;cCoSXx,, 2z,=sinx;sinx; CoS X3,

Z3=SINn X1 Sin X, Sin X3, Z4=COS X1,

Ly =T+ 3+ 15, £,=15;
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z1=3sinxfe ™2+ (1-x3) e™], z,=x3e™*sinx,,
“i . . )
zy=sinxile™™—(1+x3) "], zi=cosxy,

F=Th+1+15, $o=In+iln);

zi=3e ™ +(1+x3)e™], z,=ie™x,cosx3,

z3=ie™xysinxs, z4=(i/2)[e ™ —(1-x3)e™],
xl=(I42+i121)2+(134+i113)2, $2=I§3;
ik
k’
zz=k sinx;sn (xy, k) sn (x3,k), z4=cosx1,

L =I%+15+15, L=I15+k"1;

zl=%sinx1dn(xz,k)dn(x3,k) Z,=-—sinx; cn (x5, k) cn (x3, k),

1 (chx3 ChX2) .
z{y==sinx +——=), z,=sinx;thx,thxs,
) ! chx, chxs 2 ! 2 3
1 1 (chx3 chxz)]
=isinx —= + , Z4=COSXq,
Zs 1[chxzchx3 2\chx, chxs N !

L =1+11+15, F=—I1,— I3+ 155 +i{ls1, I}

—i sin x, _sinx;

zi=————[(x3-x2)°+4], z,= [x3+x3],
8x2x5 2Xx5X3
sin x .
Z3 =.8—x._x1 [—(x3—x3)°+4], z4=cosx;—{l12, Iis}+i{l12, >3},
2X3

L=11+13+15, Lo=—~{I, Lis}+i{l, La};

zi=3(e ™ +[1+ch®x,+sh®x3]e™"), z,=ichx,chx;e™,
zs=shx,shxs;e™, 2z, =-;— (e ™ +[—1+ch®x,+sh®x5]e™),
L= Lp+iloy) +(Lsa+ils)’, Lr=I53+ Isa+il13)%;

—ix X i i :
z1=3(e " +[1+e*2—e™]e™), 22=7-i(sh (x2—x3)+e*23) e™,

1 )
Z3 =7—_2. (sh (x;—x3)—e*2™3) e™1,

i . .
za=7 (e +[-1+e*2—e*3]e™,

L= Lp+il2)* +(Laa+il13), Lo=Ds— Lo+ 15 +i(l1+134))%;
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(1

(12)

(13)

(14)

(15)

(16)

17)
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zi=3(e" +[1+3(x3+x3)°T €™, z2=(i/2)(x3—x3)e™,
z3=ixaxs ™, zy=(i/2)(e M +[~1+i(x3+x3)’ ™),

L= +iL)* +(Latilo)’, L2={ls, Io+iln};

z1=5e ™ +[1+2(x2—x3)*(x2+ x3)] €™,
Z2,=i[3(x2—x3) "+ (x2+x3)] €™, z3=[3(x2—x3)°— (x2+x3)] ™,
za=3e M [~ 1+2(x2—x3)2(x2 +x35)] €™),

F1= Lz +il1)* + (34 +il13)°,

Er=Aly3, Lip+ I3y +ilyy +ilsa} —i(La — Is1 +i(Io1 — I34)%;

zi=ksn(xy,k)sn(x3, k), z,= —i%cn (x1, k) cn (x3, k) cos x»,
1

23= —iicn (x1, k) cn (x3, k) sin x5, Z4=P

kl
Fi=13, Lr=I+13+k’I1;
1 (chx1 chx;

dn (xla k) dn (x37 k),

ChJC3 ch X1

Z1==

> ), z,=thxithxschx,,

; —i i (chx; chx
zz=—ithx;thxzshx,, z4 —( L 3),

=chxlchx3 2\chxs chx;
$1=1223, o(fz=1224+1324—1122"1123—1124—i{112,142}”i{113,143};
_“_1<ChX3+ChX1>_ x% 2, = ixz

2 \chx; chxs/ 2chx;chxs “? chx;chxs

Z1=

I 2-x3 1(chx1 chxs)]
_ — _ + >
z3=thxithxs, z4 I[ZChXIChx:; 2\chx; chx,

L= +iln)°, Ly=20+ 13+ 14— s+ i({Li2, Lo} +{113, L3});
[(x%+x§)2+4 x3 ] —ix,
Z1= + y 227 s
8X1X3 2x1x3 X1X3

. . 2 2 . 2
_—i(x1 X3 ix3+x3)%—4i  ix3
Z3=\———) 4= ’

X3 X1 8x1x3 2x1X3

Fr=La+il)°, Lr={ls, Loy +ils1}—{I1a, il34— I3},

2 _ TX1X2X3 22___(x1—1)(x2—1)(x3—1)
! ab ’ 77 (a-DB-1) ~°

2 Z0n=b)a=b)(s=b) o _(n—a)a—a)xs—a)
3 (a-b)b-1p * °* (a-b)a-1a

1= abI%2+aI%3+bI%4,
Fr=(a+b)r+(a+ DI+ b+ 15, +al3+bl5,+133;

z

V4
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18) (mm%%,

1
z1+23 == [(@+ Dxix2x3—a(x1x2+x1x3+x2x3)],

_(x1—a)x2—a)(x3—a)

2~ —=1Dx2— Dxs—1) 2
3= y 247 aZ(a_l) >

a—1
L= —il14)* — a5, +il13)* —al3,
Lr=(a+ DI+ 1+ 15—a(Iis+15)+ U +il1a)> + (s +il15)%;
(19) (z1+iz2)*=—(x;— D(x2— D(x3—1),

2 2 . 2
Z1+25=2x1X2x3— (X1 X3+ Xox3+x1x2) +1, (23+iz4)" = —x1X2X3,

z

25+ 25 =X1X3+ XoX3+X1X4— 2X1X X3,
L1 = 2I31 +il32)* {1 +ils, Lo +ily} + 115,
Lo =2(I31 +il32)? +{l31 +ils, Lya+ Las}— D545
(20) (z2—iz1)*=+X1X2%3, —223(Zo—iz1) =X1X2+X1X3+X2X3—X1X2X3,
21425 +23=+X1X2X3—X1X2 — X1X3—X2X3+ X, +x,+x3,
zi=—(x1— D(x2— (x5~ 1),
L= +il)* H{Is2—il 13, Iio},
Lo =151+ 02— 134~ (L1 +ily)* +{I41 +ilas, I}
(1) (z1+iz2)" =2x1X2x3, (21+iz2)(z3+iz4)=—(X1X2+X2X3+X1X3),
—(z1+iz2)(z3—iz4) +3(z3+iz4)> =X, + X2+ X3,
L1 =1, I+ Ds +i(Is1 + L)} =313+ Da+i(Is + 1),
L=+ L3, Lo+ g +i(I13+ La)}
+3{La+Los+i(I31 + Do), Lish+3(Lax+il3)° —3(Iis + il 1)

Here, {A, B}=AB +BA.

To understand the significance of these systems it is useful to examine some of
the subalgebras of so(4, C). As shown in (3.3) and (3.4) this algebra can be
decomposed into so (3, C)@so(3, C), and it is easy to see that system (1) corre-
sponds to this decomposition. Another so(3, C) subalgebra of so(4, C) has basis
{I15, I3, I3} with commutation relations

(12, I13] = —L23, [112, I23] = 13,
(13, 23] = —I12
and Casimir operator
I+ 135 +15.

It is easily seen that the systems (3), (4), (6), (7), and (8) correspond to this Lie
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algebra reduction so(4, C) ©so(3, C) and to coordinates on the sphere S,.: z7+
z5+2z5=const. Indeed as indicated in [11] there are exactly five such systems
corresponding to the so(3, C) subalgebra.

The operators

3.7 E\=1p+ily, E;=Iu+ils, Es;=1Ip;

with commutation relations

(3.8) [Ei, E;]=0, [Ei, Es]=E,, [E,, Es]=—E;

form a basis for the Euclidean subalgebra & (2, C) with invariant operator
(3.9) E3i+Ej.

The systems (2), (5), (9), (10), (11) and (12) correspond to the reduction so (4, C) >
&(2, C). Indeed, as shown in [12, Chap. 1], the complex Helmholtz equation with
symmetry algebra &(2,C) separates in exactly six coordinate systems. The
remaining nine of our twenty-one systems are not obviously related to subalgebra
reductions. (However, systems (13), (14) involve the diagonalization of I,; and
systems (15), (16) involve the diagonalization of E;.)

Our separable systems can be understood from another viewpoint. In[13] we
presented a group-theoretic analysis of the six separable systems for the Laplace
operator on the real sphere S;: y7+y3+y3+y3 = 1. Here the symmetry algebra is
so(4, R). Itis evident that each such real system can be analytically continued to a
separable system on S;.. Indeed the complexifications of these six systems
correspond to our five complex systems (1), (3), (6), (13) and (17). (Elliptic
cylindrical coordinates of types I and II complexify to the same system (13).) In[1]
we analyzed the thirty-four separable systems for the Laplace operator on the
hyperboloid y;—y3 —y3—yi=1 (symmetry algebra so(3, 1)). Complexification
of the thirty-four systems yields all complex systems classified here with the
exception of the systems (10), (12), (16) and the nonsubgroup systems (19),
(21). However, it is evident by inspection that these five remaining cases arise by
complexification of separable coordinates for the Laplace operator on the real
hyperboloid y;—y3+y3—y3= 1, symmetry algebraso(2, 2) =sl(2, R)®sl(2, R).
Thus all our complex separable coordinates are complexifications of real separ-
able coordinates on the sphere Ss and the hyperboloids yi—ys—y3—yi=1,
yi—y3+y3—yi=1. Similarly the separated solutions are analytic continuations
of the separated solutions for the real forms.

To be more specific, note that the coordinates corresponding to the sub-
algebra reduction so(4, C) ©2so(3, C) all have the form

(3.10) z;=w;sinx,, Zo =W, sinx, Z3=wssinxy, Z4=COS X1,

where wi+w3+w3=1 and w; =w;(x2, x3). The separated solutions are of the
form

(3.11) f(x1, x2, x3) = sin’ xlfgff_l,(cos x1)h(x2, x3)
where €5(s) is a solution of the Gegenbauer equation
(3.12) (1-52)%a"+ (21 —3)s€5 + (@ +20)6,=0
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and
(3.13) (I3 + 133+ 133)h = =1+ 1)h.

Similarly the coordinates corresponding to the reduction so(4, C) > (2, C)
all have the form

1, —ix 2 2 ix . ix
z1=3(e " +[1+wi+ws]e™), Zo=Iiwy e,
(3.14)

z3=iwse™, z4=%(e_i"2+[—1+w§+w§]ei"‘)
where w; = w;(x», x3), j =2, 3. The separated solutions are of the form
(3.15) (1, X2, x3) =€ ™ Zo(grry(iw e (W, w3),
where the cylindrical function Z,(s) is a solution of Bessel’s equation
$*ZL+sZ,+(s*—v))Z,=0
and h is a solution of the complex Helmholtz equation
(3.16) (Dwawa + Dwaws T @ )R (W2, w3) = 0.

It follows from the above remarks that, except for the rather intractable
systems (19) and (21), the separated solutions for all coordinate systerus can be
easily obtained by analytic continuation of results found in [1], [12] and [13].

4. Generating functions for the separated solutions. Here we are concerned
with the analytic expansion of a particular separated solution of (2.2) in terms of a
set of separated solutions. For the most part we shall confine our attention to
expansions in terms of separated solutions corresponding to systems (1) and (3).

For system (1) with

(4.1) r=sinx;e™, ¢=cosx;e™,  w=cos2xy,

one can easily verify that the functions

m+u—o mtuto
2 ’ 2
1+

+
1 1-w

2

4.2) FO(r, & w) = F,

THE™

are solutions of (2.2) with

114F=I[LF, 123F=lmF

(For (0—p—-m)/2=n=0,1,2,--- this solution is proportional to
P#™(w)r™E™ where

+ - +n+1]1-
4.3) Pff"B)(x)=<nna)2F1( na+B+n+1|1 x)

a+1 2
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is a Jacobi polynomial.) An independent solution is
+ —_—
m+pu a" m+u +0+ 1
2 2 1+w

1+m 2

(4.4) G, & w)=1F, ThE™

if (m +u +0)/2, m, u are all noninteger.
For system (3) with
4.5) n =—e"sin x,, p = —COS X5, q =Cos x1,
it follows that the functions
4.6) Fim(m,p,q)=71"(1-q")"Ci""*(p)C5"a)
satisfy (2.2) and
IsF=imF,  (I+I;+15:)F=-1(1+1)F.

Here

Clz) = e +2v) <a+2v,—-a'1—-z)

T Ta+DIRY) Y\ v+1/2 12
ia a Gegenbauer function, a polynomial if @ =0, 1, 2, - - - . An independent set of
solutions is
4.7) Gimm, p,q)=n"(1-¢°)"*C)*(p)D5"(q),
where
. i Lla+2v) I (V+a/2,v+a/2+1/2 _2
D.(z)= _— < .
(z)=e T(v)[ (e +1/+1)(2z) 2 v+a+1 ,Z )

The functions C,(z), Dx(z) are analytic in the complex plane cut from —1 to —co
and from +1 to —o0, respectively, along the real axis.

Now suppose H(r, & w), variables (4.1), is a solution of (2.2) which can be
expanded in a convergent Laurent series in 7, £ and is analytic in 1+w in a
neighborhood of w = —1. Then it follows by Wiesner’s principle, [5], [14] that

H(1,£&w)= ¥ CumGiom(T, & w).
m,m

This is a generating function for the {G,..}. We can evaluate the constants C, ,, by
choosing special values for the variables. Similarly, if H is analyticin 1—w in a
neighborhood of w =1 we can expand in terms of the basis {FO.3. Also, by
making use of known expansion theorems for Gegenbauer polynomials, e.g., [15,
p. 238], we can expand solutions of (2.2) in series of functions {F5.} or {Gi}
where [=0—n,n=0,1,2,---.

A convenient way of constructing these generating functions H is to choose
them to be separated solutions of (2.2) corresponding to one of our twenty-one
coordinate systems. In this manner one can derive a wide variety of generating
functions. However, the generating functions will usually lead to double sums.
Here we limit ourselves to single-sum generating functions for the bases (1) and
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(3) by restricting the generating functions to be eigenfunctions of I,; with
eigenvalue im. Thus the sum over m can be omitted.

For example, expressing the solution (4.6) in terms of the variables (4.1) in
the case c—1=n=0,1,2,---,l-m=k=0,1,2,---,0€C and expanding in
terms of the basis {G{.),} we find

w—1-27°
Tn[167_2+(27_2+w_1)2]k/2ca—k—n+1/2( )
“s) ‘ 1672+ 2 +w—1)
' C"_"+1(272+w_1>=n+kb72“F (s—n—k,o-+s—n—k+l 1+w>
" 4ri o o P o-n—k+1 2 )

Setting w = —1 in this expression we obtain the generating function

Kk 2o =2k =2n) o pi (72_1)_"+k 2s
k! C 27 ) =50
for the coefficients b,. Similar but more complicated expansions can be obtained

for o —1, I —m noninteger. Conversely, for u and (¢ —m —pu)/2 = n nonnegative
integers we can expand the basis functions (4.2) in terms of the basis (4.6) to obtain

(=272 =2)

q—pVq’—1*PE™(-1+2(1—¢>)(1—-p?)

2n+

4.9
“w
a,(q> = 1)"*Cy () o2 o(q).

=0

Replacing p by £(g°—1)""/? and letting g - 1 we find in the limit

2n+, _ 1
(l—g)ﬂpflﬂ-,m)(_l_i_zgz): Z“as <s +m 2) <2n +2m+u +S+1) gs’
s=0 2n+p—s

a simple generating function for the coeflicients a,. More generally, expanding a
function (4.4) in terms of the basis functions (4.6) we find

m+u—omtuto

]
oF ©*-1D@*-1|(q-pYq*~1)*
1+m
(4.10) .
=Y a(@’ - D"*Crn@)C )

s=0

valid for all p, q such that [p£vVp>—1|>|(g—1)/(g+1)|"/* and q is not pure
imaginary. To compute the coefficients we set p = ¢ (qz— 1)_1/ % in (4.10) and let
q-1:

m+tu—ocm+uto

X +1
(1-gyoF,| 2 2 &
1+m
_ R fot+m+s+]1\ (m+s—3 .
_s§0a5< o—m-—s )( s )(2§), lél<1.
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Since [I14, I23] = 0 it follows that the function exp (al14)Fi, is an eigenfunc-
tion of I,3 with eigenvalue im. Thus one can expand this function in terms of the
{F®} basis with only asingle sum. Consider thecase m e C,[—m =n,o0 —[ =k, n,
k=0,1,2,---. A straightforward computation yields

(1-¢*)(*~-1+1-h*@)
1-h%*@a)

]1/2) Cr ™" (h ()

. (1 _hZ(a))n/Z(l ___q2)m/2

exp (al1)Fn, p, 4) = 1" C? ([

where
h(a)=q~/1—a2—pa\/l—-q2.
Thus,
m+1/ (l—qz)(Pz‘l)"'l_hz(a) 1/2 m+n+1 2 n/2
@in e ([ ) T e~k e)
n+k

= E a,(@)(1-¢*y"*Cy () Criiii (@)

To obtain a simpler expression for the coefficients a,(a) we setp = £(1—q%) "% in

(4.11) and letg > 1:

a+éVl—a?
m+n+1 \/T'_z_
Va2(1—§2)+2a§\/1-—a2)Ck (1-e’-al)

S(@*(1-E)+2aeV1-a®)?

Cm+l/2 (
n

et (") (ST e

These expressions become much more tractable in the special case n = 0. For that
case and ¢ = V1 —a > we see that the left-hand side of (4.11) is symmetricinq and ¢.
Thus

as(t) =b,(1— 2> Crs*' (1)

and it is easy to check that

» I'Cm+1)
Ci (gt +pV(1-¢*)(1- )’m
k 2% (k —s)[T(m +s+1)T 2572
@412 X Trriamisty @m +2s +1)[(1-g*)A -]
CCRITHQCRET ) CT (), meC k=0,1,2,--

This is the addition theorem for Gegenbauer polynomials, [7, p. 178]. For o —[ an

arb(1t)rary complex number one can obtain similar expansions for the bases {F*},
{G™}, [8].
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Note that from the group-theoretic point of view, our last computation
amounts to the determination of the matrix elements of the operator exp (al14)
with respect to the basis {F{>}. Similarly one can compute the matrix elements of
group operators exp (¥, ; a;l;) with respect to the {F™} and {G"’} bases. Since
these results are essentially contained in [12] and [16], we shall not reproduce
them here.

For system (5) with

(4.13) r=e™1, r=x,, 0 =x3,
the functions
4.14) FO oz, r,0)=1""e"™J, _i(iwr ") (rw)

satisfy (2.2) and
IsF =imF, % F=-w’F.

Expanding F$), in terms of the basis {G ..} we obtain the identity (r =t 7", 8 = iw,
v=—0-—1)

o oo (s (45
R e oy

To evaluate the coefficients a; it is enough to set w =—1:
(B/ 2) - 2s
CTSIE

We see that (4.15) is equivalent to the well-known power series expansion for a
product of Bessel functions [7, p. 11].
Expanding F{), in terms of the basis {F{.} we find

)7 @ -6’1
q-oVg*=1"" | q-pVg-1
(4.16) . (p2_1)—m/2(q2__1)—m/2

0B =

(q —p~/t72_~_1)‘1b(

= 20 bs(q”~1)"*CT2t1(@)CT (o)

convergent for the same values of p, q as (4.10). As usual, a simpler generating
function for the b, can be obtained by setting p = i¢(1—¢>) /> and lettmgq ->1.A
more complicated identity results when one expands exp (al4)Fo, in terms of
{F®} basis functions.

The expansions in terms of the {F®} basis listed above and various generali-
zations of these expansions are all treated in a beautiful paper by Henrici [8]. He
studied the equation

+
(axx—(z" 1)ax+a,y+(2—m;il—)a,) B(x,y)=0

(4.17)
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which can be obtained from the complex Laplace equation A, = O by separating
off two variables, and showed that this equation admits R -separable solutions

(4.18) @—m”*@kﬂw4wciwj§%§cmx”mx
1+ww* w+w* x+iy—c x—iy—c

&= , M= , w=—7"—  w¥=——— cconst.
2V ww* 2Vww* x+iy+c x—iy+c

He then developed an ingenious theory of expansions of analytic solutions of
(4.17) in terms of the basis (4.18). Furthermore he observed that (4.17) permits
separable solutions in coordinate systems analogous to (1) and (5) as well as (3)
and derived generating functions for Gegenbauer functions by expanding each of
these separated solutions as series in the basis (4.18).

Note that equation (4.17) and equation (2.2) with I5;¥ = —m*¥ each arise
from the complex Laplace equation by separating off two variables. Moreover, in
the next paper in this series we shall show that these two reduced equations are
equivalent under the action of the local symmetry group O(6, C) of the Laplace
equation. Thus, every separable system for (2.2) is mapped to an R-separable
system for (4.17) and conversely.

It follows that Henrici’s analysis of (4.17) carries over to

(4.19) AV=0g(c+2)¥, I5¥=-mV.

The local symmetry group of (4.19) consists of the operators exp (al14),x €C,i.e.,
these operators map solutions into solutions. Thus if ¥ is a known analytic
solution of (4.19) we can discuss the expansion of exp (al4)V in terms of the bases
{F} and {F®}. In Henrici’s work, which concerns only expansions in the {F®}
basis, this freedom is expressed by choosing a family of coordinate systems
parametrized by a complex variable c. Systems corresponding to distinct values of
¢ are equivalent under an appropriate symmetry operator exp (af14).

By inspection we see that (4.19) separates in five coordinate systems: (1), (3),
(5), (13), (14). In his work on (4.17) Henrici employs R -separation in systems (1),
(3) and (5), but he fails to note the R-separation in analogies of (13) and (14).
(System (13) yields products of associated Lamé functions and will not be treated
here. See, however, [1].)

For system (14) the functions

14
Ffz,rrf(ula X2, u3)

4200 =e™2(1—u)* " (1—us)* " (urus)""?
a+to/2+1,a—0a/2 a+to/2+1,a—0/2
'2F1< U/m+1 /“1>2F1( /m+1 /u3)’
u, =th’x,, us=th® x5

satisfy (2.2) and

LsF =imF,  %,F =4(a —m/2)°F.
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Expanding F{s, in terms of the basis {G\),} fora —0/2=-n,n=0,1,2, -+, we

find

o—n+1,-n o—n+1l,-n
(T ) (T T )
4.21) L1
_ n 26 s—n,ot+s—n-+ +w)
3 batar (TS =),
+3 T_1[(w+3 ;)2 12
=g () e )]

Setting w = —1 we find

o—n+1,—-n
2F1( m+1

1_72>___ I'(m+1)I'(m+2n-0) (o--—n+1,—n
Tm+n+DIm+n—0o)> "

’)

o—-2n—-m+1
n

=Y br*.
s=0

Similar but more complicated expressions can be obtained forn #0, 1,2, - -.
Expanding F{s, in terms of the basis {Fi} for a —o/2=—n, 2a —m =k, k,

n=0,1,2,-+ -, we obtain
u3)

k+m+n+1,—n
[Q“Pqu"l]kzFl(

k+m+n+1,—n
R Rl

m+1

k+2n

=2 a,(q>— 1) Cl52q) N (),

4.22)
uy=(1-p*+p°q*+pqVq*-1)

+[(1-p*+p’q*+pgVq’>~ 1’ ~(q*~ (>~ D],

A simpler generating function for the coefficients a; can be found by setting
p=£&(q*>—1)""? and letting g > 1.
For our final example we consider system (16) with basis functions

Fgl,?l)(xla X2, x3)
(4.23)

= exp [iAxs VA2 —=x3)/2](x1x3)" PLE PN DL VAxd)

where L*(x) is a generalized Laguerre function, a polynomial if n =0, 1,2, « * -,
[17, p. 268]. These functions satisfy the operator equations

(Iz+il,)F=iAF,  %,F=-2YA(2n+o +2)F.

Note that the operator K = I3, +il 3= (x3+x3) " (x30x,—X19,,) commutes with
I, +il;;. Thus the function exp (@aK)F{R(x1, X2, x3), k=0,1,2,-+-, can be
expanded in a series of functions (4.23) with A fixed and n running over the
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nonnegative integers. The result is

2 2 2 2
L(a+1)(£1__£§_ +%) (a+1)(ﬁ_ﬁ+ n )
G et R) Ly tat

(4.24) =

2R =[(x2—x3-2a)*+4x3x3]""~
(We choose the square root so that 2% = xi +x3 when a = 0.) For evaluation of
the coefficients a; it is enough to set x5 =0:
(k +o+ 1)
k

a, LT P(DLE V()

i M=

0

- k st+o+1 -
L¢ “><x%—2a>=2as( ’ )Li (7).

s=0

-1
as:(k +Z+1) (S+(;'+1) L§c'_ls)(-—2a)

5. Integral representations for separated solutions. In analogy with a con-
struction in [1] we can represent solutions of (2.2) as analytic functions on the
complex sphere S,.. Indeed, let f(w) be analytic on S,.:wi+wi+w3=1,
w1=(1—w3—w3)"? and let F(z) be a function on S;. defined by

(5.1) dw, dw;

F(z)=4[f]= J’I [Wiz1+woza+wazs+iza] f(w)
@D

were 9 is a complex two-dimensional Riemann surface over w,-w; space. We
assume that the integration surface & and the analytic function f are chosen such
that #[f] converges absolutely and arbitrary differentiation with respect to
Z1, "+, 24 1s permitted under the integral sign. It follows that F(z) is a solution of
(2.2). (In fact F is a solution of the Laplace equation A,F = 0 which is homogene-
ous of degree o in z.) Integrating by parts, we find that the operators I, (3.1),
acting on the solution space of (2.2) correspond to the operators

Iz = w18y, — W2dw,, Ii3=—ws3dy,, I3 =—w3d,,,
Ly=—i(c +2)wi+i(1—=w1)dw, — iWw1W2dw,,

62 Liy=—i(0 +2)w;— iww1dy, +i(1—w1)ow,,
Liz=—i(0c+2)W3—iw3sw 0, —iWsW2d,,

acting on the analytic functions f(w), provided & and f are chosen such that the
boundary terms vanish:

IiF = S (I f).

The point of this construction is that we can use the operators (5.2) to
compute an eigenfunction f,,, :

Lif=A,  Lf=uf,
where £, &, are the operators characterizing one of the separable systems
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(1)—(21). It follows that the integral F,, = #(f,.) is a solution of (2.2) which
satisfies

$1F=AF, $2F=MF’

where now £, %, are expressed in terms of the operators (3.1). Thus F must be a
separable solution of (2.2) in the coordinates to which #;, ¥, correspond. This
fact enables us to evaluate the integral to within a few normalization constants
which are determined by inspection. Thus, this procedure leads to integral
representations for the separable solutions of (2.2).

We illustrate the method with a single example treated in detail. We adopt
complex coordinates «, 7 on S5, such that

(w1, wa, w3) =(cos a, sin @ cos 7, sin « sin 1),
(5.3)
sz dW3

e sin & da dn.

These coordinates will prove useful in the construction of integral representations
for separable systems in which the operator I»; =4, is diagonalized. If f(a, 1)
satisfies Io3f =imf then f=h(a)t™ where t=e™. We choose the integration
surface in the form @ = C; X C, where C; is the interval [0, 7] in the « -plane and
C, is a simple closed curve surrounding the origin in the ¢-plane. Performing the
t-integration and making use of the standard generating function for Gegenbauer
polynomials [17, p. 175], we find

F,(z)=$%[f]1=—i j"h(a) § [iz4+21 cos @ +§sin «a ($+£)]a t" 'dtda
(5.4)

—2'”( ) I (sina)’*'C U",,,[M]h(a)da

z sina
is a solution of (2.2) such that I,sF = imF. Here
+u? —-u”
22=z<u “ ), z3=z<u u ), 22 4+2242°=1
2 2i

and we assume that o, m are complex numbers such thato—m =n=0,1,2,- - -
The requirement that f(a, n)=h(a)t™ satisfy the system (3) eigenvalue
equations

1

Insf =imf, (Lot B+ ) f=—1(+ 1)f
leads to a family of solutions
(5.5) h(a) = (sin @)™ C7m"*(cos ).

Substituting this expression into (5.4) under the assumptions
o—1=k, l-m=n, ogeC, k,n=0,1,2,-
Rem >0, Re (m+0)>0

and using the fact that variables must separate in the resulting integral if



32 E. G. KALNINS AND WILLARD MILLER, JR.

coordinates (3) are employed, we obtain the identity

ACT ™ (cos x1)CZ " M 2(cos x,)

(5.6) = (sin x1)*(sin x,)*™
. J (sin a)? %"+ CiSa(i cot x; csc x, csca
0
+cotx, cot a)Ce "1 2(cos a) da,

where A is a constant to be determined. To evaluate A we first let x,—> 0 and
obtain

ACT T 207"  (cos x4)

- (sin xl)kr(k +n—o) onrk
I'(—o)(n+k)!

(5.7

w
. I (sin @)?7 72T TR 2005 @) (i cot x;+cos @) da,
0

an identity which is apparently due to Durand [18]. Finally, letting x,-> 0 and
using the orthogonality relations for Gegenbauer polynomials we obtain

w1 Lo+ 1) o—k)
rRo—k+2) -

By varying the eigenfunctions (5.5) and the integration surface & one can find a
variety of such identities. In each case the integral must separate in coordinates (3)

and this permits easy evaluation. Similar remarks hold for each of the twenty-one
separable systems.

A= (_l)k+n(i)k 220’
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GENERALIZATION OF CERTAIN SUMMATIONS DUE TO
RAMANUJAN*

CHIH-BING LINGTY

Abstract.- This paper presents a method of summation of two groups of 16 series containing
exponential or hyperbolic functions, which are generalized from certain summations due to Ramanu-
jan. The series are summed in closed form by introducing two special coefficients when the parameter
involved in the series takes on the value 1, V3 or 1 /3.

1. Introduction. In this paper, summations of the following two groups of 16
series containing exponential or hyperbolic functions are considered. In Group I,

_ Z n2s 1 13_ o (zn_l)Zs-—l
(1) 12 2n-nc F 1 14 = e(2n—1)'rrc ¥ 19
15 o ( l)n 1 2s—1 17_ o (_l)n-—l(zn_l)Zs
16 o 2n-rrc:F1 > Ig 2 e(2n—1)-rrc:F1 ’
and in group II,
) 2s—1 o 2s
n n
II, = —_— = —_—
! ,El sinh nrc’ I, n=1cosh nmc’
©  (@2n-1*"1 ® 2n-1)*
I, = N 3 IL,= )
@ 3 ,El sinh 2n — 1)7rc/2 Il ,El cosh 2n —1)mc/2
© (-1 n—1_2s—1 © (—1 n—1_2s
Is= Y ()—n’ He= Y (_)—"’
n=1 sinhnwc n=1 cosh nwc
n—1 2s n—1 2s—1
[e o] p— 2 — [ee] — . —
O ol TtV el 7l Vi
n=1sinh 2n —1)mc/2 n=1 cosh 2n —1)mc/2

where s =0 or 1 according to the exponent of n or 2n — 1 being 2s or 2s — 1, and
c=1,v3o0r 1/V3.

The following summations appear in Ramanujan’s Notebooks [1] and Collec -
ted Papers [2] without proof:

N> n 1 1 L2 oon 1
® 2 173 8 @ 2 w1507
e n’ 1 . © pt 1
(3) (lll) nE——:l e2n1r . 1 - 2—67':7 (lV) n§1 eZnﬂ' _ 1 - ﬂy
o (_l)n-—l(zn _ 1)4s—1 . o (___1)n—1(2n _ 1)6s—1
V) X =0, (vi) =
n=1 cosh (2n—1)m/2 n=1cosh (2n —1)7v/3/2
o (_1\n—1 _1\6s5—1
wi) > -D""2n-1) _

n=1cosh 2n — 1)77/2\/-?; -
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where s = 1 in the last three series. The proofs of (i) and (iv) were supplied later by
Watson [3] and Sandham and Cooper [4] and that of (v) by Rao [2, p. 326] and
Sandham [5]. An obvious generalization of the first four series is

o) n4s-—3
4 —_ s=1.
( ) "21 eZnﬂ' _ 1
A generalization of the remaining three series with respect to s is
© (-1 n—1 2n—1 2s—1
®) = 3 CO @D s=1,

n=1 cosh (2n—1)mwc/2’°

wherec =1, V3ori / V3. A similar generalization of (4) with respect to s and also
to the three values of ¢ is

2s—1
X n

I, = —_ =
(6) 1 Zle2n1rc_19 s=1.

n=

It is seen that (6) is the first series in Group I and (5) the last series in Group II.
Further generalization extends methodically to the other series in each group.
There is ground to assert that the list of series in the two groups is conclusive. A
discussion will be given later.

The summations of the following four less extensively generalized series were
considered by Sandham [5], for s =0:

4s+1 4s+1
. 2 n w2 (2n-1)
N T @ % ey
(lil) § (_1)n—1n4s+1 (iv) E (_1)n—1(2n_1)4s+3
n=1 sinhnw ’ n-1 cosh(2n—1)m/2°

which cover only one half of the series I, L, IIs and Ils, respectively, in the case
¢ = 1. In particular, the summation of the first series was also considered by Hardy
[6]in using a different method. The series so generalized are summed by Sandham
in closed form in terms of numerical constants which may or may not involve 7.
However, when they are further generalized into the two groups as shown in (1)
and (2), it appears that summations in closed form are possible only when two
special coefficients o4 and o6 are introduced. They are defined by the following
double series:

®) P Y S !

nmm—co (M +ni)* mi/3)6

nm=—co (M +ne

where the prime on the summation signs denotes the omission of simultaneous
zeros of m and n from the double summation. These two coefficients can be
expressed in terms of gamma functions [7]. Besides they have been evaluated
numerically by the author to 221S.
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2. Expansion of series into double series. It is known that the following four
hyperbolic functions can be expanded into partial fractions [8] in the form:
2x & 1

coth mx 1 +
X =T 573,
wxX W omeimit+x®

L1,z e
sinhmx wx @ me1m>+x°
)
tanh x—8x E ————1———
o 2 Cm—1) +4x?
1 42 () em-1)

cosh mx T omz1 Cm—1)2+4x*

Alternately, the functions can be expanded into power series of e ™ for positive
values of x. Consequently, by equating the two expansions and further decompos-
ing the partial fractions, we have

pgle—bm:_%_*,zl’; Z_ir—mil(miix—miix)’

(10) pzle—ﬂp—l)"x 5-;-—; ;m§1(— )m<m+1x—m—l-lx)
p=1(_1)pe_2p"x="%”L?;',,,Z:l(2m—1+2ix_2m—i—2ix)’
pozj’l (_1),,8-(2,,4)“:&21 =" (2m —-1+2ix T om ~i——2ix>'

Next, manipulate both sides of the first three equations thus obtained by the
following four kinds of operations before summing up from n=1 to co: (i)
Differentiate 2s — 1 times and put x = nc. (ii) Differentiate 2s — 1 times and put
x =(2n —1)c/2. (iii) Differentiate 2s — 1 times, put x = nc and multiply by (—1)".
(iv) Differentiate 2s times, put x = (2n — 1)c/2 and multiply by (—1)". The double
series formed on the left of each equation can readily be summed into a single
series. We thus find from the first equation,

Il:%-)‘zl_s)—[S% 1 nzlmzl{(m+lnci)23+(m"1nd)zs}],
2(2s2—1)! [Uzs
ﬂ' S

Hl= 2s +( 1)

’ ,.S; ,,.Zl {{2m + (2;: —1)ciy** +{2m —(2;1 —1)ciy* } ]
L= [y § § (S CU)

w21 m=1 l(m +nci)®  (m—nci)*

11)

228)! [U%i1 .,
=220 [ S
T C
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. ngl mZ=1 {{Zm +2n—-1)ciy**! _{2m -2n - l)ci}ZS“}]’

and from the second equation,

L=CS ey 55 (CE BT

w=1me1 l(m+nci)®  (m —nci)

2% (25 —1)! [Us,s
II;= '“stfs__)[ 22s+( 1y

o (_1) ( ]_)m
) ,,; mz;'l {{Zm +2n-1)ci}* +{2m -(2n—- 1)ci}zs}]’

(12) m+n m+n
CEIE o LA = il
MY I P w1 m=1 (m +nci)®  (m—nci)*
22s+1 2 ! U*s . s
L= 2s(+i9) [ 21:11“1(—1)
T c
. § 2 { (™™ B (=™ }]
Wiz 2m+C2n =Dt 2m—-Q2n -1y )
where
=21 _(271')2s -
_.El n*  2(2s)! B, s=1,
® 1 1
= —_— = =
U2S n§1 (2n _ 1)2s ( 22s) SZS, S = 1,
(13) o (L1t .
<o) (_l)n—l _ E2s (7’_)2s+1 _
Uz = nzl(zn—l)”“"z(zs)! 2/ s20.

B, and E,, are Bernoulli and Euler numbers, respectively. The first few values of
each are B,=1/6,B,=1/30, Bs=1/42 and Eo=1, E;=1, E,=5.
Similarly, we find from the third equation,

_(=1y (2s—1)' ©® 1 1
L=- a® nzl mzl{(Zm 1+2nc1)25+(2m 1- 2ncz)23}’
_ _2(—1)17(35— !
14 ' ,.EI ,,,Z:l [{Zm -1+2n—-1)ci}* +{2m -1-Q2n- l)ci}zs]’
S R S N
6 a* w1 mz1 l@m—142nci)*  2m—1-2nci)* )’
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_ 2i(—=1)°(2s)!

II6 2s+1
T
RIS [ (-1" _ =" ]
ez L 2m—1+2n =Dl 2m—-1-C2n -1y

Lastly, manipulate both sides of the fourth equation by the four kinds of
operations as before except that the differentiation now is 2s times in (i), (ii), and
(iii) and 2s —1 times in (iv). We find after summation,

_ Cyes)n* 2o =n" =n"
= >t ,,; mo1 {(Zm -1 +2nci)2”‘+(2m -1 —2nci)2‘“} ’
= -GV @2
23 (=" ="
) ' ,,2;'1 ,,21 [{Zm -1+(2n - 1)ci}2”‘+{2m -1-2n- 1)ci}2“‘]’
I =(_1)S(2s)!22s § o) { (_1)m+n (_1)m+n }
8 = 22 lem—142nc)* T @m —1-2nc)* )
L, = _i(~1)s(2s2: N1
a
. § 0o [ (_1)m+n 3 (_1)m+n ]
wZime1 L2m=1+Q2n—-1Dci¥® 2m-1-Q2n—-1Dci¥* 1

It is seen that the series in the two groups are each expanded into a double
series, together with a single series in the first eight cases. The order of summation
of the double series i$ interchangeable if the exponent 2s or 2s + 1 of the terms is
not less than 3. It is no longer interchangeable if the exponent is 2 or 1. These
expansions hold for any real ¢ in general.

3. Summation of double series. The four types of single series involved in the
first eight expansions of the series can be summed in closed form in terms of r by
(13). To sum the double series, we define for any real c,

x 1

X (. ’

oas(cl —_— D, =
23( )n,mz-—— o (m + nci)Zs s 2’

. 1 © 1 1 Z
1(z]ci) 2 "’mé_oo z—m—nci m+nci (m+nci)*)

(16) 1 o 1 1
Walz ei) =?+n,m§’—oo {(z —m—nci? (m +"Ci)2},
W, (zlei) = § 1 s=3.

nm=—oo (z —m —nci)*’

As before, the prime on the first three summation signs denotes the omission of
simultaneous zeros of m and n. For s =2, W, is an elliptic function of double



GENERALIZATION OF CERTAIN SUMMATIONS 39

periods 1 and ci and for s = 1, W, is a pseudo-elliptic function [9]. W; and W, are
known as Weierstrass zeta and elliptic functions, respectively. It appears that the
double series involved in the expansions of the series can be expressed in terms of
the coefficient o3, and the function W, at half and quarter periods.

By decomposing the double series in %, we find for s =2,

= (oo ]

17 s 2 { 1+——57-¢ 82 + —:+ .

( ) g2 (Cl) Sz ZnZI mzl (m_l_nCl)Zs (m__nci)Zs

If this expression is employed to define o4, its validity can be extended to include
the case s =1 provided that in this case the order of summation of the double
series is restricted to be not interchangeable. By similarly decomposing the double
series in the function W, at half periods, we find for s =1:

L3 =Lt [1+ 5 s,

n=1m=1 l(m+nci)” (m—nci) 2

+
nz=:1 mz=1 {(Zm —1+2nci)* Cm-1- 2nci)2s}

1 1] . 1 .
= 225+1 W2s (_2— l Cl) - U2s +§81,50'>2k((:l),
(18)

nz=:1 mz=1 [{2m +2n—1)ci¥* +{2m —(2n— l)ci}zs]

-1
Cl) (Czs) U2s+ 61 50-2((:1)

1 1.
=51 Wos (-Ct g

2

2 1 1
nz=:1 mz=1 [{Zm —-1+2n-1)ci}** +{2m -1-2n- 1)ci}2s]

1 1 1 1
= PRl W2s(2+2c1 cz) +§61,sa§‘(ci),

where 8, s is Kronecker delta. Note that the case s = 1 is in general a special case to
be considered separately. By decomposing the following double series into the
difference of two double series of positive terms, we further find, for s =1,

S [ MR )

(m +nci)®  (m—nci)*
1 1 1 1
_Ci)} + S;‘s (C2s) st 861,80; (‘iCl),

n=1m=1

1 1. 1
=g {7t (39) W (3

2 w{ 1" (-1)" }

(m+nci)®*  (m—nci)*®

n=1m=1
1 1 1
202s(26l) WZS (Cl IZCl) S2s (c2s) S2s 131,s0',2k(2Ci)’

S 2 (“1) =n"
,,z=:1 mz=:1 [{Zm +2n—1)ci¥* +{2m —(2n— 1)ci}2s]
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(19) 1 1|1 1,1 |1\ 1
“W{WZ‘(Z‘” Ec’>_W2‘(2+4C’ 2° >}_ & Uz
§ § { =1" 4 (=" : }

w1 me L Cm—1+2nci)*  2m—1-2nci)*
1 1 .
=55 { W (5 201)}-— Uas.

Again, by decomposing the following double series into four double series, we
similarly find for s =1,

. 1, .
201) — Wos <5+ ci

© o (_1)m+n (_1)m+n
,,z=“1 m=1 {(m +nci)* +(m —nci)2’}
11 1 1
~5 W (550 o)~ () o2
(20) { ( 1)}52s+451s0'2(6")
§ 0o [ (_1)m+n B (_1)m+n ]
Wi L 2m—1+2n-Dci}* {2m—-1-2n-1Dci}*

11
42S{W2’(4+4C’ C’) Wz‘(fZ” )

Note that the first expression has been simplified to the present form with the aid
of the following relations:

WaBlci) + Wa(Gcilci) + WaG+3cilci) =0,
Was Glci) + Wa, Gei|ci) + Way G +3cilci) = (2% — Do i(ci), s
Likewise, we further find for s =0,

i R . AN o

n=1m=1 L Cm—=1+2nc)*™ " 2m—1-2nci)*™*

1)

v
)

1 11 . 1 1
= “Zﬁ Wost1 (" ‘2‘01) + U;s+1 +_5o,30';‘ (501),

4 16
22 (=1)" -n"
,,gl mz=:1 [{Zm +2n -0y 2m—-(2n- 1)ci}2”1]

1
261) l(fzs+)1 U25+1+ 50 30'2(201)

1 1.
=5 Was+1 (501

4
© o (_ 1)'” (_1)"'
,,; ,,Z:.l [{Zm —1+Q2n—1)ci}**! +{2m -1-(2n— 1)ci}2‘“]

1 11
"2‘—2';.-:1‘ Was+1 <4+4Cl

1ci) 1+c;6 (1 )
2 16 272 \2°
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(22)

X (=" (=1)"
,El ,,,z=1 [{Zm —1+2n -1 2m—-1-2n-— 1)ci}2‘“]

1+ci
—2—2111- Was+1 (1 += 1cz 2cz) 4Cl 80.50%(2ci),

2 2
§ foe) { (__1)m+n N (_1)m+n }
w1me1 lCm—=1+2nc)*™ " 2m—1-2nci)*™!

1 11 . 1
=ZK$T { Was+1 (4+2Cl l) — Wass1 (Z

fe) o) [ (“1)m+" B (_1)m+n ]
2m+2n -1 2m—-Q2n—1ci}**!

Ci)} +U% 41 "% 80,05 (ci),

n=1m=1

1

1.1\ i(—-1
=zmT{W2s+1 =+ Cl‘Cl — Was+1 (401 Cl) £2s+1) U2s+1

1 .
-3 80,05 (ci).

Some of the summations of the double series were also found in the previous
papers [7], [10].

4. The results. With the foregoing summations, the following results are
obtained from (11), (12), (14) and (15):

I1 LLZ)(QZQS)T- {Ggs(Ci) - 2825}’
=T @ Dby cifaci) — ok (2ei) +2Sa + 81,08 (2ci),
2Q2m)
-1D*2s—-1)!
L= {" (2“)
- Wzs (% %Cl) + (22s+1 "4)525 —51,30"; (% Ci)},

L= —%#{WZS(;+;a cz)

— (22"‘1 - 1)0‘3:—(6'1) + 2ZSSZS +61,50'§(Ci)},

__(1P@es—1)! 1
Is= 2027)* {W2‘<2

(23)

ci) =25+, +61,So-’2"(ci)},

(=1)°(2s)! { (1 ) (1 l ) 2s+1 }
= —_— — —4 f—
I ) (2”_)25 Wos > 2ci ) — Wo, > ci|2ci)—2 Uss i,
1)°(2s)! s+ 1 1 .
I,= (2(2) §2s+)1 { 2s+1 l‘“Cl 4 1Uzs+1 Zao,so'ik (‘2‘01)},
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[ = CD @) {Wzs+1 (1+1 ci ci)

T 202m)*t! 42
1 . 2s+1yrk Ci EIP
= Wass (Z Cl)+4 UZs+1 +550,s0'2(61)>,
and
=1’@s-1! I .
II; =W { Wos (5 Cl Cl) +31,50'>2k((,‘l)},
2(=1y2s)! . 1 .\ ¢ ,
HFW{IWM (ECI 2(,‘!) +§ 80503 (2ci) ¢,
_(—l)s(2s—1)!{ (1 |1 .)_ (1 11 )}
11 200" Wos 16 2c1 W 2+ 1¢ 2cz ,
i(—1)y°2s)! 1 ] . 11 ]\ 1 .
00 II4='ET)')2sTI){W2s+1 (Za Cl)—W2s+1 <§+Za Cl)+§60,s0'>2k(61)}a
__(—1)‘(2s—-1)!{ (1 1. ) * }
II5— _“—(277)25 Wzs 2+2Cl Cl +61,50'2(Cl) ,
2i(—1)°(2s)! 1.1 |, )\ l+ci ,
IIg= "‘((27;25“_)‘ { Wasi (5“"2' ci ' 261) ———‘2&' 50,30'?(201)},
(=1)*(2s)! 1.1 |1 \ 1+ci 1 .
ty =Gyt | Wt (351 6) =5 0t (31}
i(—l)s(2s—1)!{ (1 1 . ) (1 1 )}
Iy = — 2= Wy, (347 ci| i) = Wau (-7 cifci) .
8 Cn) 2 4+4a ci)| =W, 2 zc|¢

It is seen that the two groups of series are thus expressed in terms of the
coefficient o%; and the function W; at half and quarter periods, of double periods
(1, ci), (1, ci/2) or (1, 2¢i). The relations hold for any real value of c. In particular,
whenc=1,v3orl /~/§, the values of the coefficients %, o¢ and the functions W,
W, W5 at half and quarter periods have been tabulated by the author in a recent
paper [11] for the three preceding double periods corresponding to the three
particular values of ¢. The values are expressed in closed form in terms of o4 when
¢ =1 and in terms of s when ¢ = V3 or 1 /~/3T . Itis also noted that the values of o
and W; are

¥ (ci) =2W1@lci),
(25)
Wi(z|ci) = —3Wh(z|ci).

Further values of o%; can be found successively in terms of of and o4 from the
following recurrence relation, for s =4:

(26) 3(s =3)(25 + 1)Gas = G4Gas-4+ G6Gag—6+* * * + G25-4Ga,

where, for s =2,

(27) G2, = (25 —1)o3(ci).
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The value of W, is given by
(28) Wa(z|ci) = Wi(z|ci) — Sa¥(ci).
A similar recurrence relation for W, with s =5 is
(29) §(s =2)(s =3)F, = F;F, 2+ F3F, 3+ - -+ F,5F,
where, for s =2,
30) F, = (s —1)Ws(z|ci).

Hence with the values of o-5; and W, so obtained, the two groups of series can
be expressed in closed form in terms of o4 when ¢ =1 and in terms of o
when ¢ =3 or 1/v/3. Note that some summations may not involve o4 or gs. The
summations of each series for s = 1 and 2 are shown in Tables 1 and 2 (following
§ 5), where the following notations are used for shortness:
31) u=(1504)"?,

v= (350’6)1/3.

The summations of the series I, and Ig for s =0 are shown in Table 3.

TABLE 3

c I7(s=0) Ig (s=0)

1 vV2u 1 Vu
1 = —

4" dar 4 4x
_ 1 37V 1 37223+ 1)V
V3 —t _—_

4 4qr 4 167

1 3Y43p 1 3Y42Y23 -3
N3 | ——+ -

4 4 4 167

Those of series 1I,, I14, Il and II, for s = 0 have been tabulated previously [10].
Note that when s =0, I1, =11I,.

The results confirm two of Ramanujan’s summations in (3) namely, (i) and
the particular case of (v) when s = 1. The summations (ii), (iii) and (iv) can be
confirmed without difficulty. To confirm those of (v), (vi) and (vii) in general, it is
necessary to show that in the expression of IIg in (24), the following relations hold
fors=1:

32 W G+ici|ci) = Wi, G—icilci) whenc=1,

Wes (& +3cilci) = We, t—3cilci)  when ¢ =+/3 or 1/V/3.

They can be proved readily by expanding the functions into series of their
arguments. Each such function is real.
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Besides, a summation analogous to the last three summations in (3) is given
by Sandham [5] as follows:
o (_1\r—1,,4s5+1
(33) AL sz1.
n=1 sinhnm
It is the series (iii) in (7), save s = 0. By using the expression IIs in (24), the result
follows at once on account of the following relation when ¢ = 1:

(34) W23+1(%+%Ci|Ci) = 0, s=0.

5. Conclusiveness of list. In the foregoing, it is seen that there are altogether
eight kinds of operations which can be manipulated on the four equations in (10).
On the left of the equations, a total of 32 series can be developed, which contain
exponential or hyperbolic functions. Of them 16 are listed in (1) and (2). On the
right, a single series and a double series are developed in each case from the first
two equations. The single series can be summed in closed form in terms of =
whenever it belongs to the four types in (13). This immediately excludes eight of
the 16 single series. In the eight single series which can be so summed, it happens
that the accompanying double series can be summed in closed form too in terms of
o4 Or o for the three particular values of ¢. The only exception is the particular
case in which the single series is of the form

o (_1\n—1
(39) L S

n

Although it can be summed to In 2, yet the accompanying double series cannot be
summed in closed form in the preceding manner. On the other hand, a double
series only is developed on the right in each case from the last two equations. It is
found that besides the eight double series in (14) and (15), none of the other eight
double series can be so summed. These investigations lead us to conclude that the
list of the 16 series shown in (1) and (2) is indeed conclusive of its kind.

TABLE 1
Summations of series in Group I fors =1 and 2

Series c s=1 s=2
1 1 1 W

I 1 ——— ——
! 24 8« 240 ' 807
A 1 Y3 1 30?
3 e ——p——y
24 24mw 327° 240 2567*

1 V3 30 1 27
143 ———— s ——t—
/ 24 8w 3272 240 2567*
I . 1, u 1 3’
2 24 167° 240 6407*
1 Y3+ 1 3@V3+1)0?

o — + —_—2
24 64

240 20487°
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Series

s=1

s=2

1 +3(2J§— o

1 27(4V3-1)v?

V3 -— -
1/ 64> 240 20487*
; P S T3
3 24 8x72 240 80m*
_ 1 @3- 7 34V3-1)0>
V3 “saT T2 520" H5aad
24 327 240 256w
7 1 32V3+1)w 7 274V3+1)0?
1 _— _—y—
3 24 3272 240 2567*
1 7 3u?
I — —
4 1 24 240 207*
_ 1 v 7 30?
V3 —— ——y
24 16w 240 327
5 1 3v 7 270
N3 24 167 240 327°
1 1 u 1 u?
I 1 e — —_——
3 8 87 8n’ 16 8=*
1 V3 B+1p 1 32+V3)w?
‘/5 _—+-"“‘+-————2— PV
8 24w 16w 16  64n
5 1 V3 3(+3-1)p 1 272-V3)w?
N3 8 8w  16nm° 16 647
. , 1Y RN,
6 8 82 16 327°
1 V23+V3)p 1 3v2(7V3+9)?
V3 FUMERCTY BT
8 327 16 5127
5 1 3v23-Y3)w 1 21v2(1V3-9)>
v+ (e ————t e __+—__.___
I3 8 327 16 5127*
, R S CApV 5,92 s
7 4 4" 4 "
1/4 2 L al/4
5 13 (3+z~/3)v3/2 5 3.3 (39+20J§)05/2

4 167>

——
4 64>
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TABLE 1 (cont.)

Series

s=1

1 9-3742-V3)

5 81-3Y413V3-20)

V3 - 3/2 - 5/2
V3 4 167 ° 4 64m° v
1 5p 5 3 sp
_..+__..... —— e
L ! T PR
1/441/2 2 . 21/441/2 2%
G _1+3 2 (3+~/3).03/2 5_3 314 (3+2~/3)vs/2
4 167> 4 8’
_ 1 9-3Y4V2/3-1) 5 81-3742Y%(2-3)
1/J3 __+___3—v:4/2 __—5__05/2
4 167 4 8w
TABLE 2
Summations of series in Group Il fors = 1 and 2
Series c s=1 s=2
I A S u
t 47 4n? 4
_ V3 (3-1)p 3(2—v3)?
V3 ootz T4
127 87 327
;i V3 3(W3+1)w 27(2+Y3)?
—_—t— —n
N3 4 8w 327*
V2 V2
11, 1 -—-2—3u?’/2 2—-—2-5145/2
87 327
1/40n [2 _ . 2l/4020 2
i 3'4(2V3 3 3-3Y439-20¥3)
3273 5127°
. 2l/4 2 L ql/4 2y
3 9.3 (2+«/3)v3/2 81-3Y4(13v3+20) s
3273 512%°
V2 3v2u?
I, o ALY
2w 2w
5 V23 -V3) 3V2(71V3-9)p?
8> 327t
3v2(3+V3)w 27v2(1V3 +9)0?
1/v3 - = il
8w 327



GENERALIZATION OF CERTAIN SUMMATIONS

TABLE 2 (cont.)
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Series c s=1 s=2
IL, 1 —1—-u3/2 —us?
71'3 1Ts
_ o1/231/4 __\/_ . n1/291/4 _
4 3 (3 3)1)3/2 3.21/73 £2~/5 3)05/2
8m 4qr
" 9.2Y234/3+1) . 8122342 ++/3) o2
S —_—
8w’ 47°
1 u?
I 1 - —_—
s 47 8m*
J§ ~/§ v 30
127 167> 1287*
V3 3 2702
W3 e bl
/ 4z 167 1287*
te L e e
1/451/2(2 _ 2 . 21/451/2 2
\/5 317421723 _/3) " 3.3Y%212(944/3) s
1287 20487°
. 21/491/2 [2 . 21/451/2 2
3 9.3Y41/2(J/341) o _81-3V% (3V3-1) s
1287 20487°
11, 1 5-11;3143/2 _%us/z
YUl
\/__ 31/421/2(3_‘_\/5) o2 3.31/421/2(9_@)
3 —_—v e
327 1287°
L 21/491/2¢ [a L 21/451/202 [2
3 9.3Y412(/3 1) . _81 317421233 1) s
y 27 v 1287 v
u
II 1 —
8 2‘”2 0
& V3 3v302
8u? 167*
" 3v3p 27V3p?
8’ T 16mt
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ON THE LINEAR THEORY OF HEAT CONDUCTION FOR
MATERIALS WITH MEMORY*

PAUL L. DAVISt

Abstract. The linear theory of rigid conductors of heat composed of materials with memory is
analyzed under assumptions consistent with the theory of Coleman and Gurtin. Under these
assumptions, the resulting integro-differential equation is shown to be parabolic modulo a trivial
hyperbolic part. An existence and uniqueness theorem follows.

1. Introduction. The linearized theory of rigid conductors of heat composed
of materials with memory is based [1], [5], [9] on the constitutive relations

t

e =00+J a(t—s)0(s) ds

—00

and

t

q= —Kvo—j B(t—3)V6(s) ds
where 6 denotes the departure of the temperature from its reference value, e the
internal energy and q the heat flux. Together with the energy-balance law for a
rigid stationary heat conductor,

ée=-V-q+r,

where r is the heat supply, these relations imply

%(ce(x, t)+£oo a(t—s)O(x,S)dS)

(1.1)

t

=k Af(x, t)+j Bt—s)A0(x,s)ds+r(x,t)

where x = (x1, X2, X3).

When k =0, (1.1) is, under appropriate assumptions on « and 3, a hyperbolic
equation in the sense that signals propagate with finite speed [3], [4], [S]. Little is
known about (1.1) when « # 0; uniqueness theorems are contained in [8] and [9].
Itis believed by many that (1) with k # 0 is, in some sense, parabolic. This is almost
true. We show in § 3 that for an appropriate class of kernels and cx >0, it is always
parabolic modulo a trivial hyperbolic part. These notions are defined in § 2. They
are intrinsic classification definitions [6]; that is, a definition that classifies an
equation in accordance with the behavior of solutions of a certain type of problem.
Consequently, an existence and uniqueness theorem is a consequence of classifi-
cation. It is discussed in § 3.

2. Background. For convenience we assume throughout that 6(x, t) =0 for
t<t;=0 and that @ is known for t; =t =0. Integrating (1.1) and isolating all
* Received by the editors March 15, 1976.
t Department of Mathematics, Manhattanville College, Purchase, New York 10577.
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known quantities, we have an equation of the form

0(x,t)=—c" J'ta(t—s)(?(x, s)ds
2.1) y .
+c—1J' (K +I B(1) d’T) AO(x,s)ds+g(x,t).

This is a special case of the equation

2.2) u(x,t)= f: Lt k,(t—7)Lu(x,7)dr+g(x, 1)

v=1

when x =(x, - - -, x,) and L, is a constant coefficient differential operator with
respect to these variables.

Let X be the space of continuous maps g(x, ¢) from [0, 00) to L?*(R") and let
Y < X be the subspace of C* maps from (0, o) to L*(R")NC®(R"). Let Z< Y
be the subspace of C* maps from (0, ) to Cg (R"). Let Z; be those elements of Z
which have their support in {x|—b; =x; =b;} for each t =0.

DeriniTION. Equation (2.2) is parabolic modulo a hyperbolic part if

(a) for each g € Z, there is a unique solution u = S(g) of (2.2) contained in Y
and

(b) there is nonzero T: X - Y such that
(i) TX)NZ={0}
and
(ii) foreachge Z,,S(g)—T(g)eZ.

S —T is called the hyperbolic part of the solution.

DEFINITION. Equation (2.2) is parabolic if the hyperbolic part is identically
zero.

DEerINITION. The hyperbolic part is trivial if it maps Z; and Z;.

Example. Equation (2.2) being parabolic modulo a trivial hyperbolic part
means the nonparabolic part propagates with zero velocity. An elementary
example of this phenomenon is the Cauchy problem for the partial differential

equation
(-(?- - A) _6_” u=0
ot

which can be reduced to (2.2) by integrating (n + 1) times with respect to ¢.

We investigate (1.1) for @ and B in the class & consisting of those functions
having rational Laplace transforms & (w) and B~ (w) (degree of numerator less than
that of denominator). Following [3], we have the following formula for the Fourier
transform (¢, t) of the solution of (2.1) with respect to x:

2.3) B D=8 n+ j M(t—r, £)8(€, 7) dr,
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where
o = (wa(w)+klEP+Bw)IEP)
2.4) M(w, &)=

w+c (wa(w)+xleF+Bw)El)

Proceeding as in [2] or [3], we are led to the study of the singularities of M(w, £).
Indeed, 6(-, t) is in L>(R") if the singularities w,(f) of M(w, £) have bounded
real part for all real £ (Since a and B are in &, M has only a finite number of
poles.)

Assume at least one of a and B is not identically zero. Let

2.5) G(w)= z aw /z b’
and
2.6) Blw)= z o'/ § dw

where b, and d,, are not zero. (Assume that common factors are divided out.) The
smgularltles of M are the zeros of the polynomial

P(w, €)= Z bdeq+k+l+Z Z (bidx +c aidi )W !
=0 k=0
(2.7) =
q m—1 . -
+HéPeT e Y Y bdow™ g z z b,
j=0 k=0 i=0 k=0

The behavior of the roots w(|£]) of P(w, |¢]) =0 as |£]|-> o0 can be investigated by
examining the roots of

- 11
(2.8) R(w,z)=a™"""! "P( )
(,U V4

as |z|>0.

3. Analysis. We examine the polynomial

R(O),Z) Z Z bdka)m k+z Z Z (bdk+c a,dk)wm+q k—j
=0 k=0
(3.1) i=

q m qg m-—1 .
-1 m+q+i—k—j | —1 m+q+1—k—j
+c Tk )Y Y bdww +c Y Y cboo™™
j=0k=0 j=0 k=0

given by (2.8). The roots (w:(z), * -+, w(2)), 2=I=m +q + 1, satisty
THEOREM 3.1. Only one root approaches zero as z —0. That root can be
written as

(3.2) w(@)=—ck 22+ Y ez
k=1

Proof. Since R (w, 0) is a polynomial with ¢ ~'«b,d,.» as lowest order term, the
first statement is a consequence of ¢ _lqudm # (. The series (3.2) can be computed
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by constructing a Newton’s diagram [7] for (3.1). We just present the analysis
determined by the diagram. Let z =¢ and » = t*u. Consider

R(t%u, t) =bydt’(1+c 'ku) +°Gy(t, u)
and

G(t,u)=R(t’u,1)/t>.

It satisfies G(0,—ck~")=0 and G,(0,—ck™")#0. By the implicit function
theorem, there is u(¢), analytic in a neighborhood of the origin such that
u(0)=—cx " and G(t, u(t))=0. Letting w (z) = z°u(z), we have R(w(z),z)=0
where w(z) satisfies (3.2).

An immediate consequence is

COROLLARY 3.1. Only one of the roots of (2.7), given by

— l “ e l
(wi(lgl), - - -, wil(éD) = (wl(l /IEl’ ’wz(l/lél))

satisfies |w (|€|)| > as |¢| > c0. Moreover, that root can be written as

(33 wilgh =g /(ox = I euflet):

We can now exhibit the Fourier transform of Tg and the trivial hyperbolic
part using (2.3) and the representation of M(t, £) given in [2]; namely

l ~
MO =5 % | e M (w +w, (&), &) dw
27 =1 C0,5¢)

where C(0, ) is a sufficiently small circle of radius § about 0. The Fourier
transform of Tg is

(3.4) L Mi(t—,£)§(& 7) dr

where

(3.5) Myt §)=5 " | ™ N (w +wr(£), €) dw.
i C(0,5(¢, 1))

The remainder of (2.3) is the Fourier transform of the trivial hyperbolic part; i.e.
t
(3.6) BE0+| Mt 0086 dr

where M, =M — M;. The hyperbolic part is not zero, since if it were, we would
have (3.6) equal to zero. We could solve by successive approximations and deduce
that g, and hence g, is zero. An application of the Paley Weiner theorem, as in [2],
together with the first part of Corollary 3.1, implies that (3.5) defines a hyperbolic
part that is trivial. Standard arguments imply that the conditions of the definition
of parabolic modulo a hyperbolic part are not satisfied. We summarize:
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THEOREM 3.2. If a and B are in s and are not both zero, then (2.1) is parabolic
modulo a trivial hyperbolic part. Therefore, within the class X, there exists a unique
solution of (2.1) for each g € Z,.
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SATURATION THEOREMS CONNECTED WITH THE
ABSTRACT WAVE EQUATION*

JOHN W. DETTMANT

Abstract. The study of certain well-posed Cauchy problems for the abstract heat equation leads to
the theory of C, semi-groups of operators. The relevant saturation theory for the semi-group as a
strong approximation process leads to many important results in approximation theory and differential
equations. In this paper, we consider a certain class of well-posed Cauchy problems for the abstract
wave equation and the solution of them as strong approximation processes for either the initial values
of the solution or its derivative. The saturation order for each of these processes is found to be t* and
the saturation class is characterized in each case.

1. Introduction. Let X be a Banach space. Consider the abstract Cauchy
problem for the heat equation in X: u'(t) = Au(t), u(0) =f, where A is a closed
linear operator, densely defined, and with nonvoid resolvent set. It is well-known
that this problem is uniformly well-posed in R, ={t|0=¢ <o} (see [11]) if and
only if A is the infinitesimal generator of a C, semi-group €}(¢) and the solution is
u(t)=Q(r)f, f e D(A). The semi-group €(¢) is a commutative strong approxima-
tion process since [|Q(¢)f —f||> 0 as £ > 0" for each f € X. The process is saturated
with order ¢ and the Favard class (saturation class) is D(A)* (the relative
completion of D(A) in X) (see [7], [8]). These results are the basis for a wide
variety of saturation theorems in approximation theory. From the point of view of
differential equations the saturation theory gives information on the boundary
behavior of the solution, i.e., at what rate does the solution approach the initial
conditions.

The situation with the wave equation is not quite so clear. For one thing, the
well-posed Cauchy problem for the abstract wave equation u"(f) = Au(t) has not
been completely characterized within the context of semi-group theory. Actually,
Fattorini [11], DaPrato-Guisti [9], and Sova [17] have shown that the Cauchy
problem for this equation is uniformly well-posed if and only if A generates a
strongly continuous cosine function. They also give necessary and sufficient
conditions on the resolvent of A for it to be the generator of a strongly continuous
cosine function. However, this approach precludes our use of the results of
semi-group theory in the study of the saturation problem.

In this paper, we shall consider the following problem u"(t) = Au(t), u (0) = ¢,
u'(0) =4. This problem is uniformly well-posed in R ={t|—co<t<oo} if A =
B*+c”I, where B is the infinitesimal generator of a Co group and ¢ is a
nonnegative constant. Conversely, in many important cases (e.g. if X =L,
1<p <0, or X is a Hilbert space and A is a self-adjoint operator [11]) when the
Cauchy problem is uniformly well-posed A is necessarily of the form B*+c’I
where B is a group generator. We discuss another case of this in § 2. In § 3 we
consider the relevant saturation theorems for the solution operators when A =
B?, the square of a C, group generator. In § 4 we deal with the corresponding

* Received by the editors February 19, 1976, and in revised form July, 28, 1976.
T Department of Mathematical Sciences, Oakland University, Rochester, Michigan 48063.
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theorems in the case where A =B”+c”I. This depends heavily on a represen-
tation of the solution operators in the case ¢”# 0 in terms of the corresponding
operators in the case ¢ = 0. These results have been derived using the methods of
related differential equations [4]{6], [10]. Finally, in § 5 we analyze the orders
of [lu(®) = ¢l lu’'(#) = 4], and [l¢~"[u(6) — $1— || as £ >0.

Throughout this paper a very important concept will be that of relative
completion. Let X be a Banach space and Y a proper normalized Banach subspace
continuously imbedded in X. Let Sy(p) {fe X||fly =p}; then the completion
of Y relative to X, denoted by Y™, is defined by

Y¥= U Sy(p)*
p>0
In other words, Y™ is the set of all elements f € X which are in the closure in X of
some bounded sphere in Y. This concept was first introduced by Gagliardo [13]. It
is developed further by Aronszajn and Gagliardo [1] where it is proved that Y™ is
a normalized Banach subspace of X under the norm

Il = inf {p >0lf € Sy (p)*}.

It is also shown that if Y is reflexive then Y and Y™ are equal with equal norms.
The concept of relative completion has been used by Berens [3] and by Shapiro
[16]. (See also Butzer and Nessel [8].)

2. A well-posed Cauchy problem. Throughout this paper we shall take the
underlying space X to be a Banach space. We shall consider the abstract Cauchy
problem for the wave equation: u"(¢) = Au(t), u(0)=¢, u'(0) =y, where A is a
closed linear operator with nonvoid resolvent set defined on a domain D(A)
dense in X. We shall say, following Fattorini, that the problem is uniformly
well-posed in R if there exists a dense subspace D such that when ¢, ¢ € D there
exists a unique solution depending continuously on the data. In this case, there
exists a strongly continuous bounded linear operator S$(t) such that the solution
can be expressed as

u(t)=S(t)¢+ Ty,

where T(t)= ﬁ, S(r) dr. _This equation is interpreted in the strong operator
topology. Furthermore, $(¢) is of type =w, i.e. there exists a pos1t1ve constant M
such that [S(t)|=Me® ol for some real number w. The operator A is called the
infinitesimal generator of S(@).

For the moment, let us assume that the Cauchy problem is uniformly
well-posed if ¢ € D(A) and ¢ =0. Then it can be shown that

”(t)zjl_;tj’w e () ds

solves the abstract Cauchy problem for the heat equation (see [4], [11], [14])
v'(t)=Av(),
v(0)=¢.
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This means that A is the infinitesimal generator of a Co semi-group ((t),
holomorphlc in the right half-plane Re (£)>0. If $(¢) is of type =w then Q(¢) is of
type =w”. Therefore, for c>Zw?, there is a positive constant K such that

2@ e I=K

and Q(t) e °* is an equibounded semi-group with infinitesimal generator A —c”lI.
This means that we can take the square root of c¢’I — A (see [2]) and define

B=i(c’I-A)"?

which will be a closed linear operator densely defined in X. Therefore, B*>=
A —c’I and A = B?+¢I. This shows the existence of B and the desired represen-
tation A = B>+ ¢”I but does not yet show that B is the infinitesimal generator of a
Co group.

We have seen, having assumed that the Cauchy problem for the wave
equation is uniformly well-posed for ¢ € D(A) and ¢ =0, that A is a semi-group
generator and A = B> +¢’I. We now assume further that the Cauchy problem has
a unique solution if € D(A) and ¢ e D(B) N R(B) [R(B) is the range of B]. By
Theorem 5.9 and Lemma 6.1 of [11], the Cauchy problem u"(t) = (A —c*Nu(t) =
B?u(t) has a unique solution for u(0)=¢ and u'(0) = B¢ or —B¢. But then by
Theorem 23.9.5 of [15] B is the infinitesimal generator of a C, group.

We conclude this section with a statement of the representation of the
solution operators for the Cauchy problem u”(t)=(B>+c’Iu(t), u(0)=4¢,
u'(0)=y. Let

S® =3 U@ +U(-1)],
T@®) = Jr S(r) dr,
0

where U(z) is the Co group generated by B. Then

5 Li(cVt* - )
Si)=8 S d >
O=s0+a | M 50 a0
~ tI](C t2"'0'2)
Tt)=T ——=—0T(0) do,
=T +e [ HE=F 0T do

where I;(x) is the modified Bessel function of order 1 and the equations are to be
interpreted in the strong operator topology. These results were obtained in [10].
In terms of these operators the solution of the Cauchy problem is

u@®)=St)¢ +TO)p.

3. Saturation theorems (c =0). In this section, we consider the relevant
saturation theorems for the solution operators in the case ¢ = 0. We first note that
the operators S(¢) and T'(¢) have as domains the whole space X. Now consider the
approximation process S(¢)f, f € X. This is obviously commutative and is a strong
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approximation process since

Is®f-fl-0
as t>0. Now let fe D(A) =D(B?). Then

U(t)f =f +Bf + j (=0 U(0)B do,

U(—t)f=f—th+J: (t—o)U(-0)B*f do

and
S(tiﬁ f_ - j (t—0)S(o)B’f do,
“S(t)f f“ = sup [S(@)B|
2 osost

Therefore, for all feD(B?), |S(t)f —fll=O(t? as t-0. Furthermore, for fe
D(B")

S(’if f 32 j (t-0)[S(o)~11Bf do.
For sufficiently small ¢, ||(S(t)— I)B*f||<e, and
'S(t)f f 12?2]0 J’ (t—0) d ____2_
Since ¢ is arbitrary
‘S(t»: -f B?
2

We shall want to use Theorem 13.4.1 of [8] and for this purpose we shall need
a regularization process

1/n psl1/n
J,,f=n2J; L U(o +n)f dodny,

n=1,2,3,-.Clearly{/,}is a family of bounded linear operators defined on X,
J.[X]<= D(B?) for each n, |[J,f —f||=> 0 as n - oo for each f € X, and J,, commutes
with S(¢) for each n and each ¢.

An appeal to Theorem 13.4.1 of [8] now yields the followuxg result.

TaeoreM 1. (i) If f€ X is such that ||S(t)f —f fll”o(t ) then f e D(B?) and
B?f=0. (i) |[S()f — f||= O(t?) if and only if f ED(B Y (the relative completion of
D(B?) in X). If X is reflexive then D(B Y = D(B?).

The process T(¢)f is not an approximation process because T(¢)f >0 as ¢t > 0.
However, closely related to it is the process

V= Ter=1 [ s@ydr
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and ||V(#)f —fl|=>0 as £ > 0. In fact, lim,.o V()¢ gives the derivative u'(0) of the
solution of the Cauchy problem. V(¢)f is a commutative strong approximation
process. If f e D(B?), then

vey-f=1 [ [S@f-fldr

=% Lt {iB2f+JT (T—-cr)[S(cr)—I]Bzfdo-} dr

=_B f+1f I (r—o)[S(o) ~ 1B do d,

-

For ¢ sufficiently small [|(S(t) — I)B*f|| <& and

V()f-f B*
N

f I (r—0)|[S(e)—IB?*f|| do dr.

Since ¢ is arbitrary

-0

Vi)f-f 1_921
t? 6

as t >0 for each f e D(B?). At this point we introduce the same regularization
process as in Theorem 1 and appealing to Theorem 13.4.1 of [8], we have

THEOREM 2. (i) If f € X is such that |V (¢)f E[Lo(t ), then f € D(B?) and
@L 0. (ii) ||V(t)f fll=0( if and only if fe If X is reflexive then
D(B** =D(B?.

4. Saturation theorems (c # 0). In the case ¢ # 0, we have since x I,(x) =
1/2+x%/16+---=1/2+0(x*) as x >0,

s‘(t)f=5(t)f+c2j I‘if/_'t)S( )f do

=S(t)f +¢ “j I‘(““l 1 )S(t )f dn
R

~S@)f+ c—;—-j S(en)fdn+0(t*)
0

= S(Of + —2—‘ j " S(0)fdo+0(t").

Then

S07-r=s0r-1+S [ @)f do+o)
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and ||S(t)f —f|l-> 0 as t >0 for each f€ X. Hence S(¢)f is a commutative strong
approximation process. Furthermore, if f € D(B?),

S(ti{—f_B ;c ;e S(t:f f B’ f+c I [S)f—fldo + 0
and
IS@f—f B>+’ |
I i e

as t > 0. This shows that ||S(2)f —f]|= O(t?) whenfeD(B 2.
Next we show that in case ||S(¢)f —f||= o (t*) thenf € D(B?) and (B> +¢?)f = 0.
In fact, suppose

Ry

as t>0. Then

R e LR e |

and therefore

This shows (see the proof of Theorem 13.4.1 of [8]) that

B%+¢?
2

B* c?

feD(B?* and —f=g—7f or f=g.
But if g =0 then (B*+c)f =0.

Finally, if ||S(t)f f||— O(t?) then ||S(¢)f —fl|= O(t?) and by Theorem 1 this
implies that f eD(B ). We have then proved

THEOREM 3. (i) If f€ X is such that IS@)f —f ]I—o(t ) then f e D(B?) and
(B> +c2)f =0. (i) [S@)f —fll= O(t) if and only if f e D(B)*.

Finally, we consider a saturation theorem for the operator V(t)=t"'T(t). We
have

T(t)f=T(t)f+c2I I‘if/_;‘_(r) oT(o)f dor

=T()f +c’t?

jll“““l ") Tem)f dn

2,2 1

L nTm)fdn+0(tY,

=T@Of +

NI_‘
S

2

VOf=ver+5 [ aTenfan+0e).

0

-
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Therefore, V(t)f —f = V() —f +O(t) and |[V(e)f —f||> 0 as t >0, and V(¢t)f is a
commutative strong approximation process. Furthermore,

T@)f = T(t)f+£2— j t oT(o)f do+O(t*)

- T(t)f+£-2-[g—2 T(a)f’;——J: -‘I;S(a)fda] +o)

22 2

= T(t)f+———T(t)f———J't o’S(o)fdo +O(t?).

Hence,

V(‘t)f bt ¢ Vs - ——lj o2S(0)f do +0().

Now (1/£%) [y o?S(0)f do>f/3 as t-0. In fact, (1/£°) f, o*fdo =£/3 and for ¢
sufficiently small ||S(¢)f — f|| < &. Therefore,

1

L[ ctser-nao=5 [ o7ar =

If fe D(B?) then [V(t)f —f1/t* > (B?/6)f and therefore we have shown that if
feD(B?,

||V(t)f—f_32+c2f
¢ 6

as ¢t-0. This shows that ||V (t)f —f||= O(t ) for each feD(B ). Conversely, if
IV —fll= O then |V(e)f —fl| = O(¢>) and f € D(B>)*. Finally, suppose

R

-0

as t->0. Then

Vf—f ¢’
" 72 _(g_—éf) =0
ast—0, whlchlmpllesthatfeD(B *yand (B*/6)f =g —(c*/6)f or [(B>+c?)/6]f =
g. If g =0 then (B*+c?)f = 0. We have proved
THEOREM 4. (i) If f € X is such that IV —fl= ,_QL) then f e D(B®) and
(B2+c)f =0. (i) |V(t)f —fll= O(*) if and only if f e D(B?)™.

5. Orders of approximation in the Cauchy problem. If ¢ € D(B?) and
¥ € D(B)N R(B),then we can write the solution of the Cauchy problem as

u(®)=S@t)¢ +T)y.

In fact, this expression makes perfectly good sense for any ¢, ¢ € X. Therefore, we
shall refer to it as the generalized solution of the Cauchy problem. We now
consider the order of magnitude of |[u(t)—¢| as > 0.
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THEOREM 5. If ¢ € X is such that |[u(t)— ¢||=0(t*), then ¢ =0, ¢ € D(B>),
(B>+c?)¢ =0, and u(t)=¢. Furthermore, |[u(t)—¢|= O(t*) if and only if y =0
and ¢ eD(B 2)"

Proof. If If ¢ =0 then ut)—¢=S@t)p—¢ and |S(t)p — | = ||u () —¢ll=0@?
when ¢ € D(BY*. Conversely, suppose that ||ju(t)¢ — ¢||= O(t?); then

LSRR

t->0 t t->0

V(t)tﬁ

Since, lim,o V(1) = ¢ we know that lim,o (S(t)¢ — )/t exists. We shall show
that this limit is zero and, therefore, that ¢ = 0. For this purpose we introduce the
regularization process J, defined by

1/n
Jnf=nL U@)f dt.

We know that lim,.o(S@#)f—f)/t=0 if feD(B), and therefore
lim,o (S(t)J —J.p/t = 0. But J, commutes with S (¢) for each n and each ¢, and
therefore if g = lim,o (S(t)¢ — )/t then J,.g =0. However, lim, . J,g =g =0.
We have shown thJat ¢ =0 and hence ||u(t) ¢||—||S(t)¢ ¢||—O(t) By
Theorem 3, ¢ ¢ D(B )X If ||u(t)— ¢[|—o(t) ¢ €D(B’ ) and (B*>+c*)¢p=0.In
this case, u”(t) (B*+cdu(t)= (B*+c?)S(t)¢ =St)(B>+c*)¢ = 0. Therefore,
since u'(0) = ¢ =0, u(t) =¢. This completes the proof.

In order to differentiate u(t) we must have that ¢ € D(B), and in this case

u'(t) =%U(t)B¢ —% U(-1)Bp +< J S(t)¢ dr +9——tS(t)¢ +S()y +O0@).
2 ) 2
If in addition, ¢ € D(B?),
1 1 ‘ )
SU@OBg ~5U(~)Bp = L S(r)B’¢ dr
and

c’t _c’t s
750)(13 —'i“cb +0()

o 3
-< L S(r) dr +O(E).

Therefore, if ¢ € D(B?) and (B*+c?)¢ =0,

uw'@)—y =S¥ —¢+0().

Then if & € DB, ju’(t) —¢||= O(t*). On the other hand, if lu’'(t) —¢||= O(*)
then

0=lim“ O~ _ [U(t)B¢ 251( nB¢ S(t)l/f v, 2¢]

t->0 t->0

The regularization process J,, introduced in the proof of Theorem 5 commutes
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with U(¢), U(—t), and S(¢). Therefore,

. [U(t)J,.B¢ ~U(=0J.B , SO —J,,w] _
2 t

But J,¢ € D(B) and J,¢ € D(B) and hence

lim 2 ®)J.B¢ —U(=t)J.Bo
t->0 2t

SO~ _

—c?J..

t->0

= BJ,B¢,

lim

t->0

0.
The operator B is closed, which implies that ¢ € D(B %) and

lim (BJ,B¢ +c*J,p)=(B>*+c*)¢ =0.
From _this we have u'(t)—¢ = Sy - </1+O(t ) and Theorem 3 implies that
¥ eD(BH* If|u'(t) — ||= 0(t*) then ¢ € D(B?) and (B> +¢*)¢ = 0. In this case,

w'(t)=B*+cHu@)=St)B*+c)p +TA)B>*+cAy =0

and u(t) = ¢ +np.We have proved

THEOREM 6. If ¢ eD(B) and  are such that ||lu'(t)—¢||=o0(t?) then ¢ €
D(B?), (//eD(B ), (B*+c¢%)¢ =(B*+c¢ )l/l 0, and u(t)=¢ +ty. Furthermore,
[u'(t)— || = Ot?) if and only if € D(B?), (B>*+c*)¢ =0, and l/IED(B X,

In order not to have to assume at the outset that ¢ € D(B), it is of interest to
consider the difference quotient ¢ '[u(t)—¢] as an approximation process for
u'(0) = . We therefore consider

=8y 502 Y-y,

If 6 eD(B? and (B2+c¢?)¢ =0, then i(t)=S(t)¢p is _the unigue solution of
u'(t)=Ai), ﬁ(Q) =@, 4'(0)=0. Then &"(t) = (B*+c*)S(t)¢ = St)(B*+c)¢p =
0. Hence @ (t) = S(t)¢ = ¢. This shows that

u(t) u)—¢

—y =Vt —y.
Therefore, if ¥ € D(B?, ||Vt)¢ —y|l=0@? and

Conversely, suppose ||t '[u(t) — ¢ ]— || = O(t>); then

0=lim [“(’t)—;"’—ﬂ =lim [5(‘);4; —¢, V(t):lf —¢]

t->0 t—->0

and

i [S08 =0, VOY=4)_ &,

t->0
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At this point we introduce the regularization process

1/n 1/n
J,,f=nZJ'0 L U(o +n)f dodn

used in the proof of Theorem 1. J, commutes with both S(¢) and V(¢) and
J.f e D(B?) for all f € X. Therefore,

. [S(t)J,,d) ~Jut , VOt —Jnt/f] __c
12 t 2

Judp.

t->0

Since J.y € D(B?), lim,_.o (V(t)J. —Jp)/t = 0 and this implies that

fim 8OIné = 1) _ B 4,___]"¢,

t->0 t

or (B +c¢%)J,¢ =0. The operator B* is closed and hence ¢ eD(E_l_/ and
(B*>+c¢%)¢ =0. From this it follows that ||V (¢)y — c,l:lI—O(t ) and ¢ e D(B?)*.
If llt"l[u(t) —¢1-yl|l=0(? then V(@)W —¢|=0(*) and by Theorem 4,
«peD(B %) and (B*+c®)¢y=0. Then u"(t)=(B>*+c?u(t)=S@)(B*+c>¢p +
T@)(B*+c?)y =0 and u(t) = ¢ +np. We have proved

THEOREM 7. If d) and ¢ are such that ||t ' [u(t)—¢1—¢||=0(t?) then ¢ €
D(B 3, yeD(B?), B*+c)¢p =B*+c)HYy=0 and u(t)= ¢+t¢1 Furthermore,
[l [u(t) ¢1-v||=0@?) if and only if ¢ eD(B?), (B*+c>)¢p =0, and Y€
D(B 2.
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SOME COMBINATORIAL IDENTITIES OF BERNSTEIN*
L. CARLITZ}

Abstract. For g a rational integer such that A= 4g3 +27 is square-free, let w denote the real root
of ub+gu—1=0 and put w" =r,+s,w+t,w> w " =x,+y,w+2z,w>, n=0. Making use of the
theory of units in an algebraic number field, Bernstein obtained quadratic relations involving the r,
and x,, as well as explicit formulas. These lead to certain combinatorial identities. In the present paper
these and related identities are proved using only some elementary algebra.

1. Introduction. Let g be a rational integer such that A =4g>+27 is square-
free and let w denote the real root of the irreducible equation

(1.1) X+gx—-1=0 (g>1).
Clearly w is a unit of the cubic field Q(w). Put

(1.2) W =1+ S+ 1w (n=0)
and
(1.3) W= Xt YW + 2w (n=0).

Makine use of the theory of units in an algebraic number field, Bernstein [2],
[3] has obtained certain combinatorial identities. He showed that

® n_ 1+gu2
(1.4) n{:or,,u T 1+gut-u’
and
(1.5) Y =
‘ noo " 1-gu—u”

It follows from (1.4) and (1.5) that

pe= X (" ) e

(1.6) 3k=n 2k—1
' -k-1
= 1 n—k—l(n ) n—=3k—1
r2 +1 3kz<n( ) 2k g
and
= n+2k) 3k
Fan kgo( 3k )8
" on+2k+1
17 n = ( ) 3k+1
(1.7) Y= X\ gy )8
L& (nt2k+2\ s
Xans2 ,Eo( 3k+2 ) :

* Received by the editors April 30, 1976, and in revised form August 10, 1976.
t Department of Mathematics, Duke University, Durham, North Carolina 27706. This work was
supported in part by the National Science Foundation under Grant GP-37924X.
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Moreover, by (1.2) and (1.3),

o= Fneilns1 = Xn-3,
(1.8)

2 —_
Xn~Xn-1Xn+1= I'n+3.

Substituting from (1.6) and (1.7) in (1.8), we obtain the combinatorial
identities. Since A=4g>+27 is squarefree for infinitely many values of g, the
identities are indeed polynomial identities.

The object of the present paper is to prove these and related identities using
only some elementary algebra. Let g denote an indeterminate and put

1+gx’—x*>=(1—ax)(1—Bx)(1—yx).

Put
(1.9) gn=a"+B"+v",
where 7 is an arbitrary positive or negative integer. Then

3tntgth2=0.tgon—> (nZ2)
and

O_p=3%,—28%Xn_1 (nz=1).
We shall show that
O =0n=0y

and that generally o, kK =1, is a polynomial in o, o—, with integral coefficients;
see (3.14) for an explicit result. Moreover

(1'10) OmOn =a'm+n+0'm-—na'—n_0'm—2m

for arbitrary m, n. There are numerous formulas involving the products #,,00,
Xm0, If we let p, =r, or x_, according as n =0 or n =0, these formulas can be
included in a single identity:

(1.11) PmOn = Pm+n +pm—na-—n_pm—-2n
and

20mPn = Pm+1Pn-1—Pm—1Pn+1
(1.12) "

=Om-30n-3""Om+3—-6 " Om—3Pn-3 " On-3Pm-3 + 2pm +n—6
for arbitrary m,n. The latter formula contains (1.8) as a special case.
We also obtain an explicit formula for py, in terms of o, o—,, Pn, P—n.
Corresponding to (1.6) and (1.7) we have

- ik n 3k—n
(1.13) o= XD k(n_ Zk)g (n>0)
and

n n—2]> n-3j
. ey = _ >0).
(1.14) oo 3iz§nn_2],( e (n>0)
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The functions r,, x,, o, o—, are all polynomials in the indeterminate g and
may be thought of as analogues of the Chebyshev polynomials [4, Chap. 4]. For a
detailed discussion of the linearization of the product of two classical orthogonal
polynomial see Askey [1, Lecture 5].

2. In what follows g will denote an indeterminate. Put

2.1) 1+gx’—x>=(1—ax)(1—-Bx)1-yx),
so that a, B, v are the roots of
(2.2) 2’+gz-1=0.
Let
1+gx? A
2.3) gx~ B C

= + +
1+gx*—x> 1-ax 1-Bx 1—-yx’
where A, B, C are independent of x. By (2.1)

a+B+vy=0,
2.4)
BytyataB=g  aBy=1
and by (2.3)
A =L"2‘
(@=B)a—v)
It follows from (2.4) that
2.5) A= !
’ 3-2ga

with similar formulas for B and C.
Comparing (1.4) with (2.3) we get

(2.6) =y Aa"=Aa"+BB"+Cy" (n=0).
It is easily verified that
2.7) A=4g>+27=T1(3-2ga)=[1A"".
Hence, by (2.6),
A-r=%(3-2gB)3—2gy)a"

=Y (9+6ga +4g°By)a".
We define

2.8) o.=ya"=a"+B8"+y" (neZz).
Thus

2.9) A r,=90,+6g0,,1+48°0,_1.
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In the next place, since
1-gu—u®=(1-Byu)(1-yau)(1-epu),
we may put
1 A B’ C
1—gu—u3= 1—Byu+1—yau+1—a[3u’
where A’, B', C' are independent of u. Then

1=Y A’'(1—vyau)(1—aBu).

(2.10)

For u = & this reduces to
1=A'(1-a’B)1-a’y)
=A'(1-a’*(B+y)+a’By)
=A'(1+2a%)=A'(3-2ga),
so that
(2.11) A'=A, B'=B, C'=C.
Hence (2.10) becomes

1 . A
1-gu—u’ 1-Byu’

2.12)

Comparison with (1.5) gives

(2.13) =Y AB"y" =Y Ae™"  (n=20).
It follows from (2.6) that
(214) Fonl'm =ZA2am+n +Z BC(Bm'Y" +YmBn).

In particular

ri=Y A’a’>"+2Y BCB"y",

Fasifa1 =Y A’a’" +5 BCB"'y" (B2 + 7).
Subtracting the second equation from the first, we get

ra=rfasita= =Y BCB"'y" T (B—7v)’.
It is easily verified that
BC(B-v)’=-Ad’,

so that
(2.15) ro—Fpsilao1=Y AB" y" .
Therefore, by (2.13),
(2.16)

2 —
r'n=rp+1rm-1= Xp-3,
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in agreement with the first of (1.8).
Next, by (2.13),

(217) XmXn =ZA23m+n‘ym+n+z BCam+n(Bm,yn+,ymﬂn).
Hence, exactly as above, we get
X p=Xps1Xn-1=—Y BCa>"B" 'y (B - y)

=ZAC¥2"+ZB"—1’Y”_1=ZAC!"+3,
so that

2
(2.18) Xn=Xn+1Xn—1= In+3,

in agreement with the second of (1.8).
The coefficients A%, BC in (2.14) suggest that it may be of interest to evaluate

A BC A® BC
We find that
A’ 1 a+bx+cx®
(2.19) ey g —x™
where
a=243+144g+16g°,
b=4(108—81g”+4g"),
c=3g(135-48g+24g>+16g°);
BC _1 27+4g2x—3gx2‘
(2.20) Zl—ax—A l+gi—x
2.21) g AL _1a+6gQ7+16g)x+by’

1—-[3yx‘—A2 1-gx—x
where a, b have the same meaning as in (2.19);

BC _127-3gx+4g’x"

2.22) z 1-Byx A 1-gx—x°
3. We have defined
3.1 o, =Y a",
for all integral n. Thus
S  oa_v_ 1 _(0-Bx)1-w)
,,go o =1 1-—ax a2 1+gx*—x>
which reduces to
x n 3+gx°
(3.2) T oa" =
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Similarly we have

® 3-2
(3.3) 3o =I:gx_—g-xx_3'
Comparing (3.2) with (1.4) and (3.3) with (1.5), we get
(34) 3r,+grm-—2=0,+g0,-> (n=2)
and
3.5 On=3Xx,—28%n—1 (n=1).

In the next place, it follows at once from (3.1) that
oi=0, +2Y B
Since aBy =1, this gives
(3.6) Tn=020+20-,,
for both positive and negative n. Then
(0n= 02— —an) =02 — 03, =207,
so that
3.7 (02— 02,V =2(03n—04n)+ 80,
We have, for arbitrary m and n,
omon =L a™ "+ B Y (BT ™).
Since
LB B " +y" ) =L B Y (Om-n—a™")
=Om-no-n—Y (@By)'a™ ",
it follows that
(3.8) OmOn =Omint OmnT—n—Cm—2n.

For m = n, this reduces to (3.6).
Interchanging m, n in (3.8) and subtracting the result from (3.8), we get

(3.9) Om-nO—n—Om=2n= On-mT—-m = On—2m.
A slightly more symmetrical form is obtained on replacing n by —n:
(3.10) OmanOn —Om+2n = O—-m—n0—m ~ FT-2m—n-

For m =2n, (3.8) reduces to

OonOn =03, +0,0-,—3.

Thus by (3.6)

(3.11) Tan=0—30,0-_,+3.
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For m =3n, we get

O4n = 03p0n —O2n0—p + Oy,

so that

(3.12) Osn=0n— 4020, +40,+202%,.
Similarly

(3.13) Osn=00—5020-_n+502+502020— 50

By an easy induction, g, is a polynomial in o, o—, of degree k in o, and of
degree [k/2] in o—, and with leading term o%. Moreover one might guess that, for
k prime, all coefficients except the first are divisible by k.

Clearly, for arbitrary »n, we have by (2.8)

2 1
Y owmx =Y .
k=0 1—ax
YA-B")1-9"x) _ 3-20x+0_x°

T (1-a")1-B"x)1-y"%) l—owx+o_mxi—x>

From this it is clear that o, is a polynomial in o,, o_, with integral
coefficients. Since

e o)
(I—ox+o_x*=x>'=Y (opx—o_x®+x°)
r=0

— § (__1)2(r+s+t)' r__s r+2s+3t
=0 risit! e
QO
k s(r+s+0)! ,
= x -1y ——00
k§0 r+2s§3!=k ) ris!e! o
-k
= Z X Cn,ks
k=0

say. Thus
Okn = 3Cn,k - 2o'ncn,k—l + O —nCpk—2-
After some manipulation we find that

k  (r+s+1)! , |

n¥ —n-

3.14 = —1)°
( ) Tk r+2s§3t=k( D r+s+t  risie!

We have accordingly found an explicit formula for oy, as a polynomial in o,
o_n. Moreover, for k prime, it is clear that all coefficients except for the term o &
are indeed divisible by k.

4. It is convenient to define
4.1) pn=Y Aa",
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for all integral n. Thus

r, (n=0),

x—, (n=0).

By (3.1) and (4.1), for arbitrary m and n,

PmOn =Y Aa™ - ¥ a"

=% Aa™""+3 Aa"(B" +7")
=PmentL Aa" " (y " +B7")
=PmintLAa" (@ —a™").

Hence we have, for all m and n,

4.2) on=|

(43) PmOn = Pm+n +pm—n0'-n ~Pm—2n.

In terms of r, and xi, (4.3) includes numerous formulas. In particular, we
have

4.4) FmOn = Fmin+ 'menO—n— Fm—2n (m=2rn=0)
4.5) XmO—n = Xmin+ XmenOn —Xm-2n (M=2n=0).

We have also, using (4.1),

T pr*= T x*3 Aa*"
k=0 k=0
Ly A __TAQ-BWA-yY)
1-a"x (1-a"x)1-8"x)(1—-v"x)
Since
1-a"x)1-B"x)1-y"x)=1—0ox +o_x*—x>
and
YAA-B"%)1-y"x)=YA—xY A(o,—a™)+x*’Y Aa™"
=1— (0w —pu)X +p_px’=1+0_,x%
we have
© 2
(4.6) kgo Prnx* = 11__(2:;5 :_)::zp__';g .

Hence, as in the proof of (3.14),

(4'7) Pin = Cnic = (On _pn)cn,k—l +P-nCn k-2,
where

(r+s+1)!
4.8 k= ~y S g
(48) 4= b Y g o

Thus we have an explicit formula for py, in terms of o, 07—, pPrn, P-n.
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We shall now obtain a formula for

4.9)

We have

This gives

Rm,n = 2pmpn “Pm+1Pn-1"Pm—-1Pn+1.

Pmpn =Y. A’a™"" +3 BC(B"™y" +y"B").

PmPn = Pm+1Pn-1= —2. BCB—y)B™y" ' =y"B"7Y),
Pmbn = Pm-1Pn+1=—% BC(B—7)(B"y™ " —y"B™ ).

Also as above

Hence

BC(B—-1v)*=-Aa’.

Run=—=YBCB—yYB™ 'y +y™ 18"

(4.10)

Since

- Z A(ﬂm—3yn—3 + ym—3Bn—-3).

By +B "y =B +y")B" +y")= (B + ™)

it follows that

= (O =a™)On ")~ (Omen—a™*")

+
= OO, —Oma" — 0™ — Oy +2a™",

(4.11) LAPBTY +BY") = 0mOn —Omin —TmPr — TnpPm +2Pmsn.

Hence, by (4.9), (4.

10) and (4.11), we have

20mPrn = Pm+1Pn—1—Pm—1Pn+1

(4.12)

= Om-30n-3—"Om+n—6"—"Om—-3Pn—-3— On-3Pm-3 + 2pm+n—-6'
It can be verified that, for m = n, (4.12) reduces to (1.8).
5. By (3.2) we have

0
Y o.x"
n=0

. 3+gx’
1+gx’—x

=@+e) T (1M e-x)

=G+t E 1 3 () e

=(3+gx2)§0x" )X (—1)"”‘( g )g”"".

n—2k

n/3=k=n/2

73
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It follows that
R o ) i SR P B CE)
) " wask=n2 k \n—-2k ’
Similarly, by (3.3),
= -2
T o= 3-2gx
n=0 1—gx—x
S ks (kY ke
=(3-2gx) ¥ x" X (.)g x
k=0 , j=0\]
< _.n n=2)\ 3
~6-2e0) % «" 3 (")
n=0 3j=n ]
and we find that
(5.2) cu= 3 (") eV @>0)
sji=nB—2] \ | )

We may now substitute from (5.1) and (5.2) in the formulas of § 3 to obtain a
variety of combinatorial identities. In particular, substituting in (3.6) we get

_ n+k£ k ) Z!vk—n}2
{n/3§%§n/2( D k(n—2k g

- ¥ (_l)kgﬁ( k >g3k—2n

2n/3=k=n k \2n—-2k
(5.3) )
n h— ]) n—3j
—_ >
3j§nn—2j( j g (n>0)
and
n ”—21> n—3j}2
{3,-Z§nn—2j( i/t
n (2n-2 ne3j
= X _‘( . ]> 82 3
3j=2n P —] ]
(5.4)

k
+2 _ n+k£ > 3k—n >0).
n/3§%§n/2 =D k (n -2k g (n>0)

In substituting in (3.8) or (3.9) there are a number of possibilities depending
on the relative sign of m and n. However we shall not take the space to write out
the resulting identities.
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6. Equating coefficients of powers of g in any of the polynomial identities
leads to certain binomial identities. For example (5.3) gives

5 2022 ) o)
ris=k F\n—2r/s\n—2s k \2n -2k

6.1)
1Yk 2n 2k"'n> 2__n< - )
S 2k—n(n—-k (3 =k=n),
while (5.4) yields
n n—2 n n—2s
r+§=kn"27( r ’)n—2s( s )
6.2) n (2n—-2k n n—k
- - _q\n+k _ " - K <
n—k( k )+( D n—k<2n—3k> 3k =2n).

Binomial coefficient summations such as (6.1) and (6.2) may, if we prefer, be
written in the notation of generalized hypergeometric functions. For example the
left hand side of (6.1) is equal to the well-poised sum

n n 1 n-n+1-n+2
B R U S B T
oFs +2 —n+1 n+3 +2 +1
—n —n n n n
7 T2 03 kTyThkTyok
REFERENCES

[1] R. ASKEY, Orthogonal Polynomials and Special Functions, Society for Industrial and Applied
Mathematics, Philadelphia, 1975.

[2] L. BERNSTEIN, Zeros of combinatorial functions and combinatorial identities, Houston J. Math., 2
(1976), pp. 9-16.

[3] , Zeros of the functions f(n) =Y, o (=1)'(*7%), J. Number Theory, 6 (1974), pp. 264-270.

[4] G. SzEGO, Orthogonal Polynomials, American Mathematical Society, Providence, RI, 1939.




SIAM J. MATH. ANAL.
Vol. 9, No. 1, February 1978

PRODUCT FORMULAS AND NICHOLSON-TYPE
INTEGRALS FOR JACOBI FUNCTIONS.
I: SUMMARY OF RESULTS*

LOYAL DURANDY

Abstract. Nicholson’s formula gives a generalization of the relation sin® x +cos” x = 1 to the case
of Bessel functions. We present a similar result which relates the sum of squares of the Jacobi functions
P&P(x) and Q) (x) to an integral over a single Jacobi function of the second kind, with the
integrand positive. The Nicholson-type formula is a special case of a general product formula for two
Jacobi functions of the second kind with different arguments, QP (z,)QEP (z,). Various confluent
limits of these expressions give Nicholson-type integrals and product formulas for general Gegen-
bauer, Laguerre, Bessel, and Hermite functions. These results are summarized in the present paper.
Derivations and applications will be given elsewhere.

1. Introduction. In 1910, J. W. Nicholson [1] gave a generalization the
familiar relation e™e ™ =sin” x +cos’x =1 for the case of Bessel functions.
Nicholson’s result expresses the sum Hf,l)Hf,z)=J,2,+ Y? as an integral over a
hyperbolic Bessel function with the integrand positive,

(1.1) J2(x)+Y2(x)= -1-78—5 J Ko(2x sinh ¢t) cosh 2wt dt.
0

Derivations of (1.1) and some related integrals are given in Watson [2]. Nichol-
son’s result has been of considerable importance in the theory of Bessel functions.
It was used by Nicholson [1] to obtain asymptotic expansions of J. + Y for large x,
and by Watson [2] to derive bounds on the Bessel functions and to establish a
number of interesting monotonicity properties. It follows, for example, from the
analysis given by Watson [2, § 13.74] that the function x[J2(x)+ Y>(x)] is a
completely monotonic function of x for » >3, a result used by Lorch and Szego [3]
to prove a number of remarkable monotonicity properties of the nth differences of
the zeros of Bessel functions and the areas under successive arches.

One would expect expressions analogous to Nicholson’s integral to exist for
the classical orthogonal polynomials, as these reduce to Bessel functions in
appropriate confluent limits. However, despite the extensive literature on these
polynomials [4], [5], [6], no such results were known until 1971 when the author
[7] derived a Nicholson-type formula for Gegenbauer functions of arbitrary
degree and order. I have recently obtained the corresponding results for general
Jacobi functions.

Our basic result is a formula which expresses a product of two Jacobi
functions of the second kind, Q*®(z,)Q**?’(z,), as an integral involving a third
function Q*®(Z) with a modified argument. The form of this expression was
suggested by the integrated form of Koornwinder’s addition theorem for the

* Received by the editors February 12, 1976.
t Department of Physics, University of Wisconsin, Madison, Wisconsin 53706. This work was
supported in part by the University of Wisconsin Research Committee with funds granted by the

Wisconsin Alumni Research Foundation, and in part by the U.S. Energy Research and Development
Administration.
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Jacobi polynomials [8]. A special case of the product formula gives the Nicholson-
type integral for Jacobi functions. By considering various confluent limits of the
Jacobi functions, we obtain analogues of the product formula and Nicholson’s
integral for Gegenbauer, Laguerre, Bessel, and Hermite functions: These results
will be summarized here. Details of the derivations and some applications
involving bounds, addition theorems, asymptotic expansions, and higher
monotonicity properties of the functions will be presented in a series of papers in
preparation.

2. Results for Jacobi functions.
2.1. Definitions. Let P?)(z) and Q*’(z) be the Jacobi functions of the first
and second kind defined for arbitrary a, 8, n and complex z by [4, § 4.21, 4.61]

I'n+a+1)

@1 PP =D

1-—
2F1<—n,n+a +B+1;a+1;-—2£),

ntat OC+B+D)  a i
Tonta+p+y &V (z+1)

Q(a’B)(Z) — 2n+cx+BF(
2.2) ,
. 2F1(n+1, n+a+1;2n+a+p +2;1—_-;>.

We define the Jacobi functions for real argument x “on the cut”, —1<x <1, by"

P'(ta,ﬂ)(x) =_l_[eiﬂaor(la,ﬂ)(x +i0)_e—iﬂao'(la,ﬁ)(x _'IO)]
w

(2.3)
=PP(x £i0), -1<x=1,
2.4) QP (x) =™ QP (x +i0)+e ™Q“P(x —i0)],

-1<x<1.

P&®(x) and Q% (x) are real for real n, a, .

! The definition of the (seldom-used) function Q*’(x) given in (2.4) differs from that given in [6,
§ 10.8(22)] and [4, § 4.62.9],

Qi P(x) = QW (x +i0)+ QP (x —i0)].

The latter definition destroys the analogy between P&®(cos 8), Q¥®(cos 6), and the trigonometric
functions, and is not appropriate for our purposes. With our definition (2.4), the functions
QP(cos 9 +£i0) are the analogues for Jacobi functions of the complex exponentials e*. In fact, for
large n,

Lym\'2( o\ e\ B2 a B 1
(a,8) +i0)~=(= Y ( _) FiINOFi(a+1/2)m/2 N=n+—+—+=
Q" (cos 0+i0) 2(n) (sm2> 0052 e S n AR
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2.2. The product formula. Our basic result is an expression for the product of
two Jacobi functions of the second kind,

[(z1—1)(zo— 1)]I+m/2[(21 +1) (2, + DI™2QE e +m)(21)05.‘!—731':""8“")(22)

2.5) =N:::f,.,j

dr J' dt QYR (Z)p{ P ~1ETm(2p2 1)
1 1
. Cf;,,(t)(t2— 1)B~1/2(r2_ 1)a-3—1r23+m+1‘
Here Ch(t) is a Gegenbauer function of the first kind, defined in (3.1). The
argument of the Jacobi function Q“P(Z) on the right hand side of (2.5) is given
by
(2.6) Z =212, +[(z1- D3~ D]V ?rt +3(z,1 = D(z2 - 1" - 1),

and the normalization factor Ny'f,, is given by

N@B = 92B+20+2m rG)rn+g—Il+1)n+a+i+1)
whm Tn=l-m+1D)I(n+B+)l(n+a+B+l+m+1)

2.7
@7 T(n+a+p+1)I(m+1I(I+1)
I'(m+2B)T(+a—pB)

The expression (2.5) holds for complex n, a, B8, I, m with Re a >Re B>—3,
Re(m+B)=0, Re(l+a/2+m/2)=0, Re(n—I—-m+1)>0, and Re (n+a —
B —m +1)>0.The Q’s are holomorphic in the complex plane cut from +1 to —co.
Equation (2.5) holds in the form given for |arg (z;£1)|<, |arg (z, £ 1)| <,
|arg (z1— 1)(z2— 1)| <, |argVz} — 1 V22— 1| <, and can be continued elsewhere
by using the reflection symmetries of the Q’s for z >e*™z. For [=m =0, 2.5)
reduces to a relatively simple expression,

Fn+a+1)

(@.8) (,8) -
Qr" (20 (z2) = M1"(n + 1)@ +2)(a - B)

2.8) © o
' f drf dt QP(Z) (£ —1)P /22 — 1) B 1,2+
1 1 ’

Rea>ReB>3, Re(n+B+1)>0, Re(n+a—B+1)>0.

The double integral in (2.8) can be converted to a single integral by making
the change of variables

2.9) e” cosh t;=cosh t, cosh t, +sinh t, sinh t,r e,

e~ cosh t; = cosh t; cosh t,+sinh ¢, sinh t,re ~*

b

with z; = cosh 2¢,, z, = cosh 2t,, t = cosh ¢, and integrating over . This gives an
expression analogous to the kernel form of the expression for the product of two
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Jacobi polynomials derived by Gasper [9] and Koornwinder [10],

I'h+a+1)

QP (cosh 24,)Q " (cosh 24,) = Var 2%~ UZW_)
2

(2.10) - (sinh ¢, sinh £,) ">*(cosh ¢ cosh £,)* #~! J Q™ (cosh 2t3)
0

- 1 1-B
. (BZ_ 1)a 1/22F1(a +B, o —B’ o +§; T)(Cosh t3)a+[3 Sinh ts dt3,
where
2.11) _cosh® t, +cosh’ ,+cosh’ t5— 1

2 cosh t; cosh t, cosh t5

2.3. Nicholson-type integrals. We obtain Nicholson-type integrals for Jacobi
functions by letting z; and z, in (2.5) approach a real point x on opposite sides of
the cut, with —1 <x <1. If we use the relation

(2.12) QLP(x +i0)QL P (x —i0)= [Q“"‘”(x)]_,. [P(aB)( P

which follows from (2.3) and (2.4), we find from (2.8). that

g Dlnta+)

(a,B) (a,B) 2
(O P +7 P ) T(n+ )8 + )l (a - B)

2.13) ]| Car j dt QP+ (1=x)rt +3(1-x)%(r* = 1)

'(t2_1)3—1/2(r2_1)a~3—1r2ﬁ-—1’ _1<x<1.

The integrand is real and positive for @, B, n real. A more general result follows in
a similar fashion from (2.5),

2
(1 __x)2l+m (1 +x)m{[oita_-il—zl':m,ﬂ+m)(x)]2 +_7Z_[P£‘a_+l-31’:'—m,3+m)(x)]2}

(2.14) = ,,,,,,L er' dth,“’B)(x2+(1~x2)rt+%(1—x)2(r2—1))
1

. })l'(a-—‘ﬁ—l,ﬁ+m)(2r2__ I)Cﬁl(t)(tl__ 1)3—1/2(’_2_ 1)a—B—lr23+m+l.

2.4. Laplace-type integral representation. We can also obtain an interesting
new integral representation for QP (z) from (2.8) by letting z; = z and taking
z,->00. Comparison of the two sides of the equation gives

I'n+a+1)
I'(n+1I(B+2)(a~B)

QeP(z)=2Vm

(2.15) I drj dt [z + (=D’ +3 -1 -]
1 1

. (tl_ 1)ﬁ~1/2(r2_ l)a—p—1r23+1.



80 LOYAL DURAND

This integral representation is similar in structure to the Laplace-type integral
representation for the Jacobi polynomials P&*®)(z), n =integer, derived by
Koornwinder [8].

3. Results for Gegenbauer functions.

3.1. Definitions. The Gegenbauer functions of the first kind, Ci(z), are
defined in [6, § 3.15],

« I'(n+2a) 11—z
Cn == [y . —® c—
(2) F(2a)F(n+1)2F1( nnt2e;ato;— )
3.1)
=2—2a+1\/; F(n+201)

(a—1/2,a—1/2)
T@)Tn +a+3) " ().
The functions of the second kind, D3(z), will be defined as in [7],

I'n+2a)
IN'e)f{n+a+1)

Di(z)=e™

{22)_"_2"2F1(2+a, Zta +1; n+a+l; z_z)
(3.2)

2 2 2
=2—2a+1 ei'tra 1 F(n+2a)

(a—1/2,a—1/2)
Jm T@lntatrn" ).

The phase factor e™ is included in the definition of Djy(z) so that Dy and Cy
satisfy the same recurrence relations with respect to a [7] (P<® and Q% as
usually defined satisfy different recurrence relations with respect to a).

We define the Gegenbauer functions for real argument x ‘“‘on the cut”,
—-1<x<1,by

(3.3) Ci(x)=Din(x +i0)+e *™Dn(x —i0)= Ca(x £i0), —1<x=1,
(3.4) Di(x)=—iD3(x +i0)+ie > Du(x —i0), -1<x<1.
C(x) and D5 (x) are real for real n and a.

3.2. The product formula. The product formula for the Gegenbauer func-
tions of the second kind can be derived from (2.5) by converting the integral on r
into a contour integral on a contour around the segment of the real axis 1 =r <oo,
and then letting 8 equal . The integrand has a first order pole at r = 1 for a =,

and the integration over r is trivial. The result is nonzero only for / = 0. After using
the definition (3.2), we obtain the product formula [7]

(z7=1)™(z3 = 1)’ D25 (z0)D 5 mi(22)

_ A—2a—2m+1 F(za - 1)F(m + I)F(n +2a +m)

(3.5) (M@ +m)TRa+m—1)I(n—m+1)

©

' e""“‘”’"’[ DHZ)Cw (1) (= 1) dt,
1

2 The functions DZ(z) defined above differ from those of Robin [5,§ 170(93)] by a factor
oL e?™@ V9 which simplifies the connections between the C’s and D’s. The definition of D(z)
given in [6, p. 175, corrections on p. 2] is inappropriate for our purposes. )

3 The phase factor on the right hand side of (3.5) is given incorrectly in [7, Eq. (13)] as e'™.
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where
(3.6) Z=z1z2+(z - 1)"*z3-1)"*.

This result holds for complex n, @, and m with Re a >0, Re (@ +m)=0, and
Re (n —m +1)>0. The D’s are holomorphic in the complex plane cut from +1 to
—co. The expression in (3.5) is valid in the form given for |arg (z;+ )| <,
larg (z,+1)| <, |argVz; — 1vz3 — 1| <, and can be continued to other regions

*iar

by the use of the reflection symmetry of the D’s for z > ¢ ™"z,
(3'7) Dﬁ(ze:tiﬂ)ze:Fi‘rr(n+2a)Dz(Z).

An alternative derivation of (3.5) based on the addition formula for Gegenbauer
functions is given in [7].
For a =3 and m =0, (3.5) gives a product formula for the Legendre functions

Q.(2),

38 D)=L 0.2)

(3.9 Qu(z1)Qn(z2) =f Ou(z122+ (21 =123 =)’ 1)(* - 1) dt,
1
Ren>-1, |arg[(zi—-1)"*z3-1)""*]|<m.

3.3. Nicholson-type integrals. We obtain Nicholson-type integrals for the
Gegenbauer functions by letting z; and z, in (3.5) approach a real point, x,
—1<x <1, on opposite sides of the cut. If we use the relation

(3.10) Di(x +i0)Dy(x —i0) =3 e*™{[Ca(x)]* +[D7(x)]*}
which follows from (3.3) and (3.4), we find from (3.5) that
(1=x*y"{{Calm)P+[Dalm(x)}

Ia—1DI'm +1DI'(n +2a +m)

G =2 N G )T 2a +m = Dl —m + 1)

-e"'""f Dax*+(1—-x3)Ca ) - 1) 1d, —1<x<1,
1

where the functions on the left hand side of the expression are the Gegenbauer
functions “on-the cut”. For m = 0 and a =3, we obtain a Nicholson-type formula
for the ordinary Legendre functions,

(3.12) [P0 +—5Qu ) =~ J'OO Q. (x> +(1—x*)1)(*— 1) dt,
T )

-1<x<l.
3.4. Laplace-type integral representation. We obtain an integral representa-

tion for Dy (z) similar in structure to the Laplace integral for Cy(z) by letting
z1 =z in (3.5) and taking z, - c0. Comparison of the asymptotic forms of the two
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sides of the equation gives

IF'Ca—-1I'(n+2a)l'(m +1)

2_q\ym/2pna+tm = —-m—2a+1
(@ = D™ Dnn(z)=2 T(@)'(2a +m—1)T(n—m+ 1)« +m)

(3.13) el L [z +(E* =142 Cn7 )

S(*=1)*"dt,
Rea >0, Re(n—m+1)>0.
This reduces to a known result for the associated Legendre functions for m = 0[6,

§3.72)].

4. Results for Laguerre functions.
4.1. Definitions. The Laguerre functions L(z) for general values of n and
are defined in terms of confluent hypergeometric functions [6, § 6.9.2(37)],

o I'n+a+1)
(2)=———r——P(—n,a+1,
L&) = s rasn 2w e th2)
4.1) I )
n+a+
- — . + . .
T+ D)la+D) FiCmeth2)
A second solution to the Laguerre equation is given by [6, § 6.7]
(4.2) Niz)=sTn+a+1) e’ ¥(n+a+1,a+1,—2).

We will define the principal branch of the many valued function N,(z) by the
condition 0 <arg z <2, with —z = e ~""z. With these choices for the functions of
the first and second kind, L;(z) and N;(z) are confluent limits of the Jacobi
functions,

—im 22
. %(2)= 1 fla,ﬂ) Fe i )
4.3) Li(z) gl_{?oP (1 e 5)
(4.4) Nu(z) = lim Qf."’”)(1+e""’—2ﬁz), 0<argz <2m.

The Laguerre functions on the cut 0 =z <0 will be defined as

4.5) La(x)= i[ei"“Nf,'(x —i0)—e ™NI(x +i0)],
(4.6) Na(x)=3[e™Ns(x —i0)+e ™ Nu(x +i0)],
and correspond to confluent limits of the Jacobi functions on the cut,
2x

4. *(x) = Ii gg»m< __)
.7 Liw)=im PE(1-27),

a1 (e:8) 2x
4.8) N"(x)—‘;ln;lo Q, <1_E)’ 0=x<oo0.
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4.2. A product formula. We obtain a product formula for the Laguerre
functions of the second kind from (2.10) by making a change of variables

4.9) cosh 2t; = cosh 2t, cosh 2, +sinh 2¢, sinh 2¢, cosh ¢,

replacing cosh 2¢; and cosh 2t, by 1+e " (2z,/B8) and 1+e " (2z,/B), and
considering the limit 8 - 0. Use of the confluence relation (4.4) gives the product
formula

@ a _ a—l/ZF(n+a+1)
N (z1)Nn(z2) = Va2 —F(n +1)

(4.10) I N"((zl/2 z3%)? +4(2122)1/281nh22) ~(z125)1/2 cosh ¢
0

- I,_1,2((z122)"? sinh t)[(z12,)"/? sinh t]**"/*(sinh £)** dt,
O<argz,<2m, O0<argz,<2m, 3mw<arg (z122)"* <3,
Rea>0, Re(n+1)>0,

where I,_1/2(z) is a hyperbolic Bessel function [2, § 3.7]. This result is the
analogue for the Laguerre functions of the second kind of the product formula for
L7 (z1)L(z,) derived by Watson [11].

4.3. Nicholson-type integral. We obtain a Nicholson-type integral for the
Laguerre functions by letting the variables z; and z in (4.10) approach a real
point x, 0<<x <o, from opposite sides of the positive real axis. If we use the
relation

(4.11) N%(x +i0)N%(x —i0) =[N2(x)T +Z [L,.( )
which follows from (4.5) and (4.6), we find that

a2 Toir a2\ ?Tn+a+1)
[NZx)] + 3 [La(x)] —‘/7_7(;) T+l

4.12) : J' N‘,’,‘(——4x sinh? 1) ¢ cosht
o 2

- I—1/2(x sinh t)(sinh 1)+ g 0<x <00,

where the functions on the left hand side of (4.12) are the Laguerre functions “on
the cut”. The integrand in (4.12) is real and positive for n and « real.

5. Results for Bessel functions.
5.1. Product formulas. We can derive product formulas for the hyperbolic
Bessel functions K, (z) [2, § 3.7] from our product formula for the Gegenbauer
functions, (3.5), by using a confluent limit of the D’s [7],
2
) lim et e Dy(1425) =
n->co 2n

—a+1/2
«/—I‘(a)(z z) Ka-1/2(2).



84 LOYAL DURAND

Thus, if we let » =a —3 and ¢ = cosh ¢ in (3.5), replace z; and z, by 1+3(z1/n)?
and 1+3(z,/n)?, and let n >0, we find that [7]*

Kyon(@) Kysm(z2) _ o s T@)T(m +1)

z5 P2 I'(m+2v)
(5.2) -
. j 0 K, (w)Cl(cosh ¢)(sinh ¢)*” dob,
0
where
(5.3) 0 =(zi+2z3+2z:z,cosh ¢)'?,  |argw|<m/2.

This expression is similar in structure to the product formulas for ordinary Bessel
functions given by Gegenbauer [2, § 11.42].

5.2. Nicholson-type integrals. We obtain a generalization of Nicholson’s
integral from (5.2) by replacing z; and z, in (5.2) by xe'™? and xe ™2,
0<x <00, and using the relations

(5.4) K, (x e*/?) = q=i§ e[, (x) FiY, (x)].

After a change of variables ¢ - 2¢, we obtain

Toim(x)+ Yoim(x) = Triz %Q

(5.5

(4x)”

. J K, (2x sinh t)C;,(cosh 2t)
0

- (cosh ¢)*” (sinh t)” dt.

We recover Nicholson’s formula (1.1) by taking the limit » - 0, m arbitrary, and
using the relation

(5.6) Jim LOLn +1)

i m +2v) C.(cosh 2t) =2 cosh 2mt.

6. Results for Hermite functions.
6.1. Definitions. We define the Hermite functions H,(x) and G,(x) for
arbitrary complex n in terms of confluent hypergeometric functions[6, Chap. 6],

g 1 )
H,(x)=2 \I'< 2,2,x

o Efem )

n 13 ,
+2xsm—2—F< +1)¢< > 2,2,x )],

* The factor 2”~" on the right hand side of (5.2) is given incorrectly in [7, Eq. (44)] as 2".
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2" n, 1 nl
G, = [ - ( ) (__,_’ 2)
(x) \7; sm F ) o 22 X

nm(n _n,13 . ]

+2x cos ™ r<2+1)<1>( S ) .

These functions are related to the standard parabolic cylinder functions D, (+z)
[6, § 8.2] by
6.3)

(6.2)

H,(x)=2"2¢*"’D,(v2 x),
1
(6.4) G, (x)=2"? e**>*——[cos mnD2(V2 x)— D, (—2 x)].
sin 7n

As defined, G,(x) and H,(x) are simple confluent limits of the Gegenbauer
functions C,, and D;, “on the cut”,

6.5) H,(x) = lim a™T(n + 1)Cr(x/Va),
(6.6) Gu(x) = lim a™’T(n+1)D%(x/Va).

Theresult for H, (x) is well-known [4, § 5.6(3)]; that for G, (x) is easily derived.

6.2. Nicholson-type integral. We obtain a Nicholson-type integral for the
Hermite functions by considering a confluent limit of (3.11). Let n>n+m,
x - x/v'm, and t = cosh 2¢. The limit m - o0 then gives

e [H2x)+Gix)]=7"2"""T(n +1) J exp[—(2n+1)¢ + x> tanh ¢ ]
(6.7) 0
. (sinh ¢ cosh ¢)~"/* dé.

It follows immediately from this result that the expression on the left is an
absolutely monotonic function of x.
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CALCULATION OF SOME EXTREMAL CONFORMAL MAPPINGS*
E. GRASSMANNT AND J. ROKNET

Abstract. The following two extremum problems are treated:
(i) To find a continuum that connects n given points in the complex plane C and has minimal
capacity;
(ii) To find a doubly connected domain D that separates two given finite sets of points in the
complex plane and has maximum modulus.
In both cases the solution is constructed from the solution of a system of equations. This system is then
solved by the sequential secant method, which seems to outperform comparable methods in this case.
The computational procedure is then described with the particularities of this problem, e.g. how to
“teach” the concept of a Riemann surface to a computer. At the end the solutions of some particular
examples are displayed graphically.

Introduction. Many extremum problems have been attempted in theory and
conditions for the solutions have been found but only very few solutions have been
explicitly calculated. That is, however, often quite possible in our time of modern
computers as the present paper shall show. We chose two particular problems
partly because they have applications outside mathematics and partly because the
pure mathematics involved is not too complicated. They can be considered typical
though because most extremal conformal mappings satisfy equations similar to
our equation (2).

Even specialists would be hard put to name five essentially distinct conformal
mappings that have any kind of extremum property. The experience of actually
seeing such mappings and the corresponding heuristic insight is therefore
extremely limited. Originally our only aim was to fill this gap. While doing so we
encountered several interesting problems and developed techniques which we
believe are interesting for their own sake.

To cite Hamming [7], discussing the impact of computers on mathematics:
“Much of mathematics has arisen from observation of special cases. Computers
now enable us to compute many more special cases than we could by hand, to see
much more detail in those we do examine, and consequently have led to many
more insights.”

Since [6] we have mainly improved our numerical techniques and we have
replaced binary search by the sequential secant method. This method seems to
outperform the discretized Newton method in our case by about 2:1 and binary
search by a much larger factor. The fact that it does not necessarily converge even
locally (unless special provisions are made) did not matter to us since we were not
so much interested in proving that the method would work in every single case as
in solving as many problems as possible. It deserves to be pointed out that this
local nonconvergence never actually happened to us.

In § 1 we describe the mathematical background of our problems; in § 2 we
describe the sequential secant method and compare it with the discretized Newton
method, and § 3 describes programming techniques and discusses some examples.

* Received by the editors August 15, 1975, and in revised form May 18, 1976.
T Department of Mathematics, University of Calgary, Calgary, Alberta, Canada T2N 1N4. This
work was supported by the National Research Council of Canada.
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A reader mainly interested in pure mathematics can skip § 2 and most of § 3.
Sections 2 and 3 should also be understandable on their own. They provide
numerical techniques which we believe are interesting in their own right.

1. Mathematical background.

1.1. The extremum problems. Already in [6] we treated the following
extremum problem: Given n points c; in the complex plane C, find a continuum
that contains all the ¢; and has minimal capacity. We showed there that the
solution can be obtained from the following system of 2n —4 real equations in the
n —2 unknown complex numbers ; (i=1,---,n—2):

ReJ’ vQ(z)dz =0, i=2,-++,n—-2,
(1) -
ReJ’ vQ(z)dz =0, i=1,---,n—1,

where
Q(Z)='.ll—]12 z-a) /1] (z-¢).
j= j=1

We used the method of binary search but it converged so slowly that we could only
solve a limited number of cases. The sequential secant method converges much
faster and gives a drastically greater scope. We shall refer to this problem as
Problem 1.

In this paper we will mainly deal with a conformal invariant of a doubly
connected domain bounded by two continua C and D. Such a domain can be
mapped conformally onto an annulus {1 < |{|<r} where the number r is uniquely
determined by the domain. (See [1, pp. 246-247].)

log r is called the modulus of the domain and arises in many problems of
complex variables. It is also the reciprocal of the capacity of the two-dimensional
capacitor determined by the two complementary continua. It is connected with
the capacity of one continuum in the following way: If we leave C fixed and let
D ={|z| =R} then cap C =limg ., [log r —log R] (see [8], [10]).

We now pose the following extremum problem: Given two clusters of points
{1, +,c.}and {dy, - - -, d,.}, find continua C and D which contain all the c;
(respectively d;) such that the mutual capacity is minimal. We shall refer to this
problem as Problem 2. It should be pointed out that c0 does not play the
distinguished role it played in Problem 1. It is therefore more convenient to use
the extended plane C.

There is always a solution to this problem but in general more than one. In
fact if the two clusters are {—1, +1} and {0, oo} then it is known that one solution is
the upper half of the unit circle-line plus the lower half of the imaginary axis, and
another solution is the lower half of the unit circle-line plus the upper half of the
imaginary axis. One observes that the resulting two doubly connected domains
cannot be deformed into each other within the four times punctured Riemann
sphere C\{+1, —1, 0, co}. This observation gives rise to the following definition:



CALCULATION OF SOME EXTREMAL CONFORMAL MAPPINGS 89

_ DEermniTION. Two regions () and , in C\{c;, d;} are called homotopic in
C\{c;, d;} if there is a continuous mapping h: Q; %[0, 1] C\{c;, d;} such that
h(z,0)=z and h(z, 1) is a homeomorphism of Q; onto (.

It is easy to show that this is an equivalence-relation. One can therefore speak
of homotopy-classes. We restate our problem in the following manner:

Problem 2: Given {c;} and {d;} and a homotopy class H that separates the {c;}
from the {d;}, find continua C and D containing the c; (respectively d;) such that
Q=C\(CUD)e H and that the capacity of Q is minimal.

It is known [5], [13] that this problem always has a unique solution.

1.2. The fundamental equations. We start with the known fact (see [5], [12])

that the mapping function which maps () onto {1 <{¢| <r} satisfies an equation of
the form

(2) _ P(x)
log = j \/H (z—c) Il (z—dy) dz

where P(z) is a polynomial of degree n +m —4. It has n —2 zeroson C and m —2
zeros on D (counting multiplicities). C and D consists of analytic arcs and their
limiting endpoints.

Those arcs are the trajectories of Q(z) dz>=0, where Q(z) is the rational
expression under the square root. The endpoints are the poles of Q where
precisely one arc ends. They are among the (but in singular cases not necessarily
all) ¢; and d,.

On a zero order k precisely k +2 arcs meet at equally spaced angles (see [8]).
We shall refer to such a point as branch point of multiplicity k. These conditions
are also sufficient for extremality. Furthermore C and D do not contain any closed
curves. For proofs of these statements see [5], [13].

We denote the zeros of P on C with a; and the zeros of P on D with b;. Since
Re (log ¢) =0 on C and Re (log ¢) =log r = const. on D it follows that there are
polygonal arcs §; joining a,; with ¢; for 1=j=n and a, with a, (k =j—n+1) for
n+1=j =2n -3 and polygonal arcs v, joining b, with d; for 1 =j =m and b, with
b (k=j—m+1) for m+1=j=2m—3 and a real number a representing the
argument of the leading term of P(z) such that

Rej vQ(z)dz =0, j=1,---,2n-3,

3) K

Ref vQ(z)dz=0, j=1,---,2m-=3, j#m,
Yi

where

wll(z—a)[1(z=b)
Q z —_ eld
@) [I(z=c)]l(z—d)
and where the branch of the square root is followed continuously along the arcs.
Itis to be observed that we dropped an equation corresponding to a path that

connects b; with d,,, thus getting 2(n +m)—7 real equations in as many real
unknowns. We shall show that this last equation is automatically satisfied.
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It should also be pointed out that the 6; and v; can be chosen such that
C\{U8;, Uy} e H, or more explicitly that H is determined by these polygons.

1.3. Sufficiency of the fundamental equations. In this subsection we shall
show the following:

THEOREM 1. Given a real number o and complex numbers a; and b; and
polygonal arcs 8; and v; as at the end of the last subsection such that no §; intersects a
v; and such that equations (3) are satisfied. Then the missing equation

ReJ’ vO(z)dz=0

holds and the a; and the b; are the branch points of the extremal continua in the
homotopy class of C\{U;, U§;}.

The proof follows essentially the lines of Theorem 1 of [6] but it is more
involved because the topology is more complicated.

Itinvolves the concepts of a covering surface which is extensively discussed in
any text on Riemann surfaces.

We start the proof by constructing a simply connected covering surface of the
Riemann sphere C on which |Re[ vQ(z) dz| is unique. We denote by R, the
universal covermg surface of C\{d;, b} R, contains for each ¢; and q; infinitely
many ¢; and d;; covering them. We choose one such copy for ai: d,. Then we lift
all the §; with initial point d,, this obtammg unique endpomts ¢; and a;. We now
puncture R; on all the remammg Cy and 4 d; and denote by R the universal covering
surface of this punctured R;. R covers also the Riemann sphere and contains to
each ¢; and q; precisely one point d; and ¢; covering it and those are connected by
the 5, .

We show now that if & and B are two arcs connecting 4, and p on R then

|ReI vO(z) dz|= IReL vO(z) dz|

or, since we can change the sign of the square root all along B if necessary
Re j _ VO(z)dz=0.
af 1

According to Cauchy’s integral theorem it is enough to show this for a set that
generates the homotopy-group of R @z, -+, 82,81, "+, c,,} But the 6 fol-
lowed by a small circle along the endpoints and back along 57" do generate this
homotopy-group and have according to our assumption the required property.
(See also the first Lemma of [6].) Therefore |Re [7 vO(z) dz|=u(p) is indeed
unique on R. u(p) is harmonic exccpt on the set C= {p|lu(d)=0}. ¢
is a closed set, contains all the ¢; and d; and consists of arcs covering the
trajectories of Q(z) dz><0, i.e. Re VQ(z) dz =0 since those are precisely the
lines u(p) = const. It contains no interior points since then grad u(p) = +vQ(z) =
0 on an open set, which is impossible. There are no closed curves contained on ¢
since those divide R into two components, one of which would have to have
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compact closure. According to the maximum principle ¥ would have to be zero on
this component.

Itis easy to show by induction on K that a connected set consisting of arcs and
not containing any closed curves has precisely K —2 branch-points (counting
multiplicity) if it has K endpoints. C has n endpomts and n —2 branch points; it
can therefore contain only one component i.e., C is connected.

We can project € down to the Riemann- sphere and obtain a continuum C
that consists of finitely many trajectories of Q(z) dz*>=0. € can not cover any
point of C twice since that would introduce new branch points. The only
branch-points available are the a; that are already taken and the b; which are not
even covered by R. C is homotopic in C\{d; } to the §; since € ends on the same
endpomts on R and therefore on R; as the 8.

= C\C is again simply connected and contains all the b; and d;. Almost as
before we prove that v(z) = |Re [;, ¥ Q(z) dz| is unique in Q,, the only difference
being that we have no equation in the system (3) that corresponds to a path joining
b, and d,,, i.e. we need one extra path to generate the fundamental group of ().
We choose a path ¢ joining b; with C, then once around on a path 8 close to C and
then back to b, along o~'. According to the argument principle, arg Q(z)
increases along C by 27{(n —2) —n}=—4x (or 27{(m —2) —m}=—4x if 0eC)
and therefore the branch of v Q(z) remains unchanged so that integrals along o
and o' cancel each other. Since Re vQ(z) dz =0 on C we get

ReJ' vQ(z)dz =0.
o 60

Thus we can conclude as before that v(z) is unique in £),. It is again harmonic
except on the set D ={z|v(z) =0} plus possibly d,,. But if d,, were not in D it
would be an isolated singularity of a harmonic function that is bounded in a
neighborhood of d,,. This is not possible and therefore d,, € D. D contains as
before no closed curves and no interior points and connects all the b; and d;. It is
harmonic in Q= C\{CUD}, zero on D and constant on C. Let ¢ be a (multi-
valued) conjugate harmonic function and X its period. Then

2
{=exp (—w{v (z)+ iﬁ(zx)})
X
maps () conformally onto an annulus {1 < |z| <r}. This function obviously satisfies

log £ = j S/ XP0G) dz

and therefore the extremal function according to (2).

For the discussion of this mapping we observe that the images of the
concentric circles around the origin are precisely the lines Re j vQ((z)dz =v(z)=
const. or Q(z) dz*><0. Similarly the lines Q(z) dz* >0 would be the images of the
radii. We added in some of our plots some of the lines of the first kind to give a
better impression of the mapping. Since v is the potential function if D is
charged with a charge x they are the equipotential lines. We will refer to
Re [V Q(z) dz as total potential.

Remark 1. An interesting set of questions is of course the dependence on
H; especially which of the homotopy classes gives actually minimum capacity.
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Also interesting is to solve for a particular homotopy class. We avoided these
questions partly because we wanted to solve the easiest problem first; and that is to
start with straight lines, instead of complicated polygons. It is also not quite clear
whether H would switch or not during the iteration process described in § 2 if we
would attempt such questions.

Remark 2. Even though Theorem 1 holds for multiple zeros without change
we rather avoided this case because we suspect that the Jacobian then is zero and
the iteration method becomes very inaccurate. For example, in case of Problem 1
for the square i.e. ¢; = +1+1, a shift of the points according to +(1+ &) +i makes
the zeros shift along the real axes for £ >0 and along the imaginary axis for £ <0,
indicative of a singular Jacobian. We solved Problem 1 numerically with the
method and found that the accuracy of the solution was of the order 107 even
though the function values were of the order 1072,

2. On the sequential secant method.

2.1. On problems and the known equation-solvers. We are faced with
problems of solving n nonlinear equations in n unknowns where the computing
costs for obtaining values of the integrals (3) for given approximations (in our
cases approximations to Re a;, Im a;, Re b;, Im b;, ) are high. In addition the
calculation of derivatives is very cumbersome so we had to look for methods that
involve no derivatives and require only one function-value at each step.

The discretized Newton method as it is described in Ortega and Rheinboldt
[11]is a possible candidate. If the discretization is asin[11, eq. (16), p. 186], then
it requires n +1 function evaluations at each step. At the expense of speed of
convergence one may skip evaluation of some of the discretized Newton method
derivative matrices. It is not clear, however, that this will improve the total cost.

In the following we will discuss the sequential secant method by Wolfe [15].
This method requires only one function evaluation per iteration. Although it
converges slower than the discretized Newton method, the total cost seems to
be lower if it is measured by the number of function evaluations only.

For test purposes we applied the sequential secant method to Problem 1
where the assumption of the cost function is satisfied. (Each evaluation contains in
our case, approximately 5000 - n multiplications). We then compared it to the
discretized Newton method. The results are givenin § 2.3. A convergence analysis
for the sequential secant method was given by Bittner [2].

2.2. The sequential secant method. We are given a system of n nonlinear
equations in n unknowns:

v(x)=0, ov,xeR",
and n+1 approximations xi, -+, X,+1. Let v;=0v(x;), i=1,2,---,n+1. We
assume v,, - - *, v, is a complete set of vectors in R, and can then write

4) Ups1= ;1 A,
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We interpolate the function v linearly by v *(x) = B(x —b) where B is a linear
map, such that v*(x;) = v(x;) fori =1, - - -, n + 1. In particular we have

(5) Vps1=BX,+1—b).
Using (4) we get

Vps1 =2 A0 =X B ) =X MB(b)=BE Ax; —b X \;);
from this we get (together with (5)), assuming that B is nonsingular,

L AXi —Xni1 LAX =Y Ak

6 p=LAN X RAKT L A
() Z/\,_l Xn+1 Z/\,_l
For numerical reasons we use the right-hand side of (6) since we supposedly
compute a small correction at each step. Since b now is a zero of v *(x) we take it as
a new approximation to a zero of v(x) and replace the x’s as follows:

(k) _ ,.(k—=1) -
Xi = Xi+1 1_1,”.”1’

k k
X, =%,

k=1,2,3,---.

2.3. Numerical example. To compare the sequential secant method to the
discretized Newton method, we used our Problem 1 for 4 points ¢;. We chose

C1=1+i, C2=_1—i, C3="1+i and c4=1—ia,

where « is a real parameter to be varied. We computed the solutions shown in
Table 1, each time requiring the norm of the integrals to be less than 107°.

TABLE 1
Cost in Cost in
function function
evaluations. Discretized evaluations.
The sequential Sequential Newton Discretized
a secant method secant method method Newton method
-1 —.0003004—i.000001258 11 .001285-i.001419 60
.0003099 +i.000008233 —.001299+i.001439
=75 —.1619+i.05818 10 No convergence No convergence
.2210+i.07559
-5 .3573+i.1651 33 —.2316+i.1129 40
—.2399+i.1071 .3510+i.1727
-.25 —.2822+i.1603 9 —.2822+i.1603 20
4589 +i.2966 .4589+i.2966

These values were obtained using the same starting points for both methods.
Although one may not conclude anything from such a small sample of
computed solutions, this, together with other experiments that we have made,
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suggests that the sequential secant method is about half as costly as the discretized
Newton method for the kind of equations arising out of Problems 1 and 2.
We therefore chose the sequential secant method for the equation-solving.

2.4. Initial values. In the easier cases like Problem 1 for n =4 or Problem 2
for n =3, m =3, it is generally not too hard to find suitable approximations. A
rough eyeball estimate and some perturbations thereof will usually be close
enough to produce convergence of the sequential secant method.

The following result is an example of a typical case. The clusters are

C-points: —3+i2 D-points:  0+i3
0+i 0—i
—-2-i3 2—i3.

The input approximations to the sequential secant method were as in Table 2.

TABLE 2

approx. a approx. b1 approx. a
-3 2+i .50
—-3.01+i 2.01+i1.02 55
—-3.04+i.24 2.035+i1.0245 4687
—2.998+i2.41 2.0541+i.9987 .4987
—2.99987 —i.002 2.00354+i.9874 .556
—3.004 +i.00054 2.004127+i1.2415 .55745

After 9 iterations the accuracy ¥;_, [v'(b)| < 10~ was reached. The solutions are
listed below:

a;=-2.540+i.7214,
b,=2.111-i1.510,
a =.3491.

The following case is a case with 3 C-points and 4 D-points. In this case there
was a problem in finding convergent initial approximations. However, the follow-
ing procedure was used. An initial guess was made. The run of that guess would
give a sequence of nonconvergent approximations. The approximation with the
smallest norm was then chosen and a new set of input data consisting of
perturbations of this set was used as initial approximation were chosen. Two or
three repetitions of this procedure usually would suffice in order to find a
convergent set of input data. It is clear that this procedure may also be automated.
We chose not to automate it since the expense in programming effort would be
quite large. Such a procedure (automated) would of course greatly enhance the
success rate of the secant method. The following is a sample test run.

C-points: —3+i2 D-points: 0+i3
0+i 0—i

-2-i3 2—i3

2+i2.



The input approximations are listed in Table 3.
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TABLE 3

approx. ay approx. by approx. by approx. a
—3.14+i.00412 2.14+1.42 41+i.12 .02
—3.0214+i.0241 2.014+i1.42 241-i.124 .0214
—2.998+i.0241 2.0541+i.9987 .214+.024 .0257
—2.99987-i.002 2.00354+i.9874 —-2+i2 412
—3.01+i.01 2.01+i1.02 01+i5 .5
—3.04+i.024 2.035+i1.0245 -.02+i.02 241
-3 2.+i 0 .5
-3.004+i.00054 2.004127+i1.2415 | .24—i.124 .024

These input approximations converged after a sequence of 30 steps to
a,=-2.547+i.7232,
by =2.172+i2.128,
b,=2.063—i1.448,
a =.3306.
This procedure looks better than to just simply scan the space—in this case R’.

3. The computational procedure. A program was written that accomplishes
the following tasks: 1) Solves equations (1) or (3) using the sequential secant
method of § 2, 2) plots the minimal continuum and 3) plots equipotential lines
between the continua.

3.1. Flags. Throughout the program a difficulty arises from the fact that the
square root should be followed continuously, whereas computationally the square
root on the CDC 6400 is given by a subroutine CSQRT delivering the principal
value of the square root, i.e. with a discontinuity on the negative real axis. If W
crosses the negative axis the direction of CSQRT(W) changef/t_y 7, 1.e. one winds
up on the other branch of the Riemann surface belonging to v W. In this case one
must multiply by —1 to compensate for the jump. We therefore introduce flags
taking on values +1 or —1. The test for crossing is accomplished by remembering
the last value of a square root and then testing whether the new value is about 7
out of direction. Since we have small changes and continuous functions this is a
reasonable test. An alternate test is to determine whether Re (new value/last
value) <0, in which case CSQRT must have jumped between the branches.

Such flags were introduced along each path of integration since the square
root should be followed continuously. Since a change of the branch all along one
of the paths would change the sign of the corresponding integral and therefore
destroy the iteration-procedure—after all, our sequential secant method assumes
that the functions are C'—such flags were also introduced in the solution process.
One was attached to each integral between zeros and two to each integral between
azero and a pole. The initial value and its flag was passed to the next solution step.
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The plotting of the continua between poles and zeros necessitated the use of a
separate reusable flag and the plotting of the equipotential lines another three
flags. In these cases a missing flag makes the plotter return to where it came from.
It deserves to be mentioned that this did indeed happen in our earlier attempts.

In the following we will assume that such flags have been introduced without
showing them explicitly.

3.2. Solution of equations (1) and (3). In order to evaluate the integrals of
both problems numerically we have to rewrite the improper ones that connect a,
with ¢; (resp. by with d;) in the following manner:

j “/Q(Z) dz=I l%dz=j i %dz—Zg(ci)Val——ci,

where g(z) =vQ(z)(z —c;), which is continuous at c¢;. The integral on the right is
now a proper integral. The proper integrals that occurred were evaluated by
Simpson’s rule over 20 subintervals. Since the path of integration in all cases was
of order unity, the accuracy of the integral evaluation using the remainder term of
Simpson’s rule is of the order (35)°~107°. One might use a quadrature rule
requiring less work for the same accuracy. We felt, however, that because of the
rather complex nature of the program otherwise we would rather stay with a
simple quadrature rule.

The results were used in the calculation of the increment of the sequential
secant method. It should be noted that the program is built up of a main program
(the sequential secant method) and function evaluation subroutines. The main
program then is a real equation solver and the complex evaluations are delegated
to subroutines and as such not known to the main part.

The accuracy of the equation solvingis 10~>, this being tested both against the
sum of the absolute values of the functions and the sum of the absolute values of
the change in function values. In view of the accuracy of Simpson’s rule this is a
reasonable and achievable tolerance.

3.3. Plotting C and D. The continua are now plotted starting from the zeros.
Let a; be simple zero, i.e. Q(z) = (z —a;)Q;(z) where Q; is analytic at a;.
The trajectories satisfy, according to § 1.2,

Q(z)dz*=0
or

arg Q(z)+2argdz ==
or

arg Q;(z)+arg (z—a;)+2argdz = —7 —2nm.

Setting arg (z —a;) =arg dz we get argdz =3((2n+1)7 —arg Q;(a;)). This gives
three possible directions 27/3 radians apart. Careful consideration also has to be
given to the choice of routine for computing arctan to ensure that the result is in
the range 0-2# in order that the computations proceed properly. Having com-
puted one of the directions, the other two are obtained by adding 2#/3 to the
argument and looping.
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From the second step onwards the direction for the plot is given by
Q(z) dz* <0, which gives arg dz = 3(—arg Q(z) + ). It turns out that the plotting
of the continuum by this method gives sufficient accuracy.

The continua terminates either on a pole or on a zero. In either case a
tolerance less than the distance between any two zeros or poles in the continua is
used to determine if the continum is getting close to its terminating point. If that is
the case, a counter is set up that plots the exact number of segments necessary to
reach the terminating point before the procedure terminates.

This provides incidently a control for the procedure since the trajectories
would not hit their target if the a; would be grossly wrong.

3.4. Plotting the equipotential lines. The total potential P between the two
continua is now computed and divided into n equal parts corresponding to n — 1
equipotential lines. In order to find the equipotential line with a given potential P,
we define an integral from a point ¢ on C (¢ #¢;, 1=i=n) to z as

fo)= [ VoG dz-P.

With zo=c we compute z;.,=2z,—f(z;)/f'(z;), i=0,1,2, -+, i.e. Newton’s
iteration formula.

From then on, a first attempt was made to plot the potential lines in the same
manner as for the continum: i.e. direction given by

arg Q(z) dz*=.

We define the points of the potential surface to be zg, z4, - + - with increments
of uniform size along directions

arg dz; =3(m—arg Q(z;)), i=0,1,---.

That is, |dz;| = const.

It turns out that in this case the accumulated error is far too large and that a
closed potential line was not plotted as a closed curve but as a spiral. Therefore
one had to resort to predictor—corrector approximations of the following form:

8h .
z¥ =2z, _5+4hz]_, +—§-(z£— 2z _1+zl5), (predictor)

— %
Zr41,0= Zr+15

h (corrector)
Zritne1 = Zr-1 +2h2£+§(2$+1,n-— 2z;+z;,.9) n=0,1,2,---.

Using only one iteration step in the corrector step, we found that the plotting was
more than accurate enough. The four initial approximations were computed by
Z0= Zo,
z1=2¢% 2o,
z2=zo+(zot+2z1)/2+21,
z3=z1+(z1+23)/2+23,
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this scheme being a bit more accurate than the simple stepping along the curve
each time.

3.5. Specific examples. One would expect that the solutions of Problem 1 are
“very straight”. The plots confirm this; the curvature of the arcs is indeed very
small. This is also the reason that the rough method of following the trajectories
proved to be sufficient for the plots. Puzzling is the fact that the trajectory in Fig. 1
that ends at 5+i4 has an inflection point. This seems to be a luxury in view of its
being “very straight”.

The input data for the configuration in Fig. 1 consisted of 5 points:

C1=O+i5, C4=—5“i3,
C2=—5+i4, C5=5_i5.
C3=5+i4,

With suitable input approximations we had convergence in three steps to
a,=.7552+i1.447, a,=.1078+i1.765, a;=-1.360+i1.272

with an error in the integral evaluations of the order 107"
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An interesting behavior is shown in Figs. 2 and 3. The point cs is moved
slightly up and the configuration changes topologically. Between the two there
would be a double branch point but it seems reasonable to conjecture that in these
cases the Jacobian of (1) becomes 0, and our method accordingly very inaccurate.
(We can prove this fact in case of the square but not in general.)

The input data for Figs. 2 and 3 were

¢1=—5+id, Cca=5—i5,
c,=—5-i3, {5+i2.2 (Fig. 2),
c3=i5, * 15+i2.17 (Fig. 3).

The output was as shown in Table 4.

TABLE4
Fig. 2 Fig. 3

a, -1.055+i1.504 -1.105+i1.448
a, 2.035+i.1936 2.052+i1.734
as —1.66+i1.468 -1.128+i1.52
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Figures 4, 5, 6 and 7 display solutions to Problem 2.

As mentioned earlier, the homotopy class H is determined in these cases by
the straight lines joining a, with a; and ¢; (respectively b; with b; and d,).

In Fig. 4 the input data was two clusters, each containing 3 points:

c;=-3+i2, d,=i3,
c3=—1+i, d,=-2,
c3=—-2-i3, dz;=-2+i.
With suitable approximations we got the solutions
a;=-2.984-i.7671, b;=-.002794+i2.614, « =.9357.

The total potential between the two continua was calculated to be —.6472. Figure
4 shows the plotted continum and the potential lines. It should be noted that

[convex hull C]N [convex hull D] # .

The plot shows the distortion of the potential lines that one would expect in this
case.
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In Fig. 5 we display the case where C has three points and D 4 points:
¢1=-3+i2, dy=1i3,

C2=i, d2=_'1,
c3=—2—13, d;=2-i3,
8
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Even with close input approximations it required about 30 iterations with the
sequential secant method before we were close enough to the solution. This
displays the fact that R’ is rather “roomy”.

The solutions were

a;=-2.547+i.7231, b;=2.173+i2.129, b,=2.064—i1.448, a =.3306.
Note that the “intrusion” of the point +i into the D-continuum forces that

continum into a rather unnatural shape. That is we now get a solution outside the
convex hull of the D-points.
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In Figs. 6 and 7 we display two solutions of the case when both continua have
4 points as follows:
¢1=-3, d,=1+i3,
cr,=—1+i2, d,=2+i,
c3=-2-i3, d;=—i3,
ci=—1-1i2, 3—i2 (Fig. 6),
—{2 —i2 (Fig. 7).

The solutions were as shown in Table 5.

TABLES

Fig. 6 Fig. 7
a, —2.72-1.04296i —2.71—i.—4485
a, —1.952-1.94i -1.945-i1.941
b, 2.443+1.1351i 2.49+i1.1173
b, 2.084-2.077 2.897-i7.926
a: .006696 —.01622
potential: .5740 .5629
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It is interesting to note that even though the difference between the two sets
of continua is not substantial the value of the parameter a changes surprisingly
much. The parameter « has the following meaning: If 8 is the direction of the
equipotential line at infinity, then

B =3lm—al.

Furthermore we note that the perturbation changed one zero from being in
the convex hull of D to outside the convex hull. We also notice that the continuum
C did not change appreciably due to this perturbation.

In both cases the continuum C has several inflection points. This again is not
surprising since D can force C into almost any shape.

The procedure normally used for the solution of the equations did not
converge in the case of Fig. 7. We found that in this case, the approximation to the
integral between b; and b, was not sufficiently accurate due to the proximity of a
zero to the path of integration. Halving the stepsize for this particular integral
solved that problem.
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LINEAR DIFFERENTIAL INEQUALITIES*
JAMES S. MULDOWNEYt

Abstract. A notion of generalized zero with respect to a linear differential operator L, for a
function f at a singular point of the operator was introduced by Levin and further considered by
Willett. This involved a comparison of f with certain solutions of L,y = 0 near the singular point. It is
shown that the role of these solutions may be fulfilled by certain solutions of inequalities L,y =0 (=0)
introduced independently by Hartman and Levin. This result is applied via a generalization of the
Pélya mean value theorem to the problem of finding best possible relationships between bounds on
differential operators and a discussion of the extremals of these relationships. Second order operators
are considered in some detail; an analogue of Landau’s inequality is proved for second order operators
in which the coefficients need not be constant.

1. Introduction. Real differential operators of the form
Lf=f"+a0)f" P+ -+ +a.(0)f, te(aB),

where —00 = a < 8 = 0, are considered. It will be assumed throughout that either

(A) f™ exists on (a, B)and a;€ C(a, B), i=1, -, n, or

(B) felocAC" (a, B) and a;eloc L' (a, B), i=1, -, n.

The results presented hold in both cases so these conditions will not usually be
repeated in the statements of results and proofs. The statement L, f =0 should be
interpreted as holding everywhere in case (A), almost everywhere in case (B), and
L,f#0 means L,f(t)# 0 for some ¢ € (a, B) in case (A) and L,f>0 (or <0)on a
set of positive measure in case (B). An end point 7 = B(a) is called singular if
|7| =00 or at least one of the coefficients a; is not integrable on a neighborhood
(relative to [a, B]) of 7.

Let Z;(I) denote the number of zeros of f on an interval I counting
multiplicities and Z;(¢) the number of zeros at t. L, is said to be disconjugate on
Ic(e,B) if Z,(I)=n—1 for each nontrivial solution y of L,y =0. Levin [3]
introduced a concept of generalized zeros of a function f at an end point = which
permits an extension of the notion of disconjugacy of L, to subintervals I of [a, 8]
evenif @ and B are singular. Willett [10] also gave a definition of generalized zeros
in a form convenient to the use of induction arguments for the extension of some
of the classical results on disconjugate operators. It can be shown that the
definitions of Levin and Willett are equivalent for functions f such that L, f does
not change sign in a neighborhood of 7 so they lead to the same concept of
disconjugacy. Both definitions are expressed in terms of asymptotic restrictions on
the behavior of f near 7 involving a comparison with the behavior of members of
certain solution sets (called principal systems) of L,y = 0. Thus a fairly intimate
knowledge of the null set of L, is required for applications of these concepts to
specific differential operators. However, results of Hartman [2] and Levin [3]
show that the behavior of principal systems of solutions to L,y =0 is closely
related to the behavior of principal systems of solutions to differential inequalities
L,y =0 (=0) which are more readily accessible.

* Received by the editors May 21, 1976.
t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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The object of this paper is to present some of the ramifications of the theory
of Hartman and Levin for results on singular differential operators developed by
Willett [10] and later considered by Muldowney [4]. A good discussion of the
results of Hartman and Levin may be found in Coppel’s book [1].

2. Results. An ordered set of functions S = (uy, - - + , u,)iscalled a Descartes
system on an interval I if W(u;, -+ -, u;, )>0 on I for each increasing set of
indices (i1, +* -, ix) and W(uy, * -+, u,) denotes the Wronskian determinant
det{uf™},i,j=1,---, n. S iscalled a principal system at = B(a)if u, >0ina
neighborhood of = and

lim (up/ux+1) =0, k=1 :--,n-1

and is a fundamental principal system on (a, B) if (41, -+, u,) is a principal
system at B and (u,, - -, u1) is a principal system at a. If (4, - -+, u,) is a
fundamental solution set for L,y = 0 and a principal system at 8 Levin considers
Zi(B)=r if r=max{k: limg_ (f/un—r+1)=0} and, if (u,, - -, u1) is a principal
system at @, Z¢(a)=r means r = max {k: lim,+ (f/ux)=0}.

ProvrosriTiON 1. (a) Suppose S, = (uy, * * + , u,) satisfies

(i) (=1)""*L,ux =0 on a neighborhood of a,

(i) (un, - * * , u1) is a principal system at a,

(iii) (u1, * * +, u,) is a Descartes system on a neighborhood of a.

Then

lirE+inf (f/u)=0=lim sup (f/u,)

implies Zf(a)=r for any function f such that L,f does not change sign on a
‘neighborhood of a.
(b) Suppose Sg = (v1, * * * , v,) satisfies
(i) (=1)""* 'L, =0 on a neighborhood of B,
(ii) (v1, ** *, v,) is a principal system at B3,
(iii) (v1, * * -, vn) is a Descartes system on a neighborhood of B.
Then

lin; inf (f/vp—r+1)=0= lin};sup (f/vn=r+1)

implies Z¢(B)=r for any function f such that L,f does not change sign on a
neighborhood of B.

If r<n in (a) [(b)] then u, [v1] may be omitted in the hypotheses.

Proof of (b). It is shown by Levin [3] and is easily deduced from Hartman’s
results [2] (cf. Coppel [1, pp. 133-134]) that under the conditions stated there
exists a fundamental solution set (Ui, * -+, U,) to L,y =0 which is a principal
system at B and, near 3,

Uk=O(Uk), k=1,---,n.

Thus, if (f/ve)(%)=>0 for some sequence of points {#,} converging to B,
(f/U)(#)~ 0. By a result of Hartman and Levin (cf. Coppel [1, p. 128]) L, is
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disconjugate on a neighborhood of 8 and f/ U, is monotone near 8 (cf.[1, p. 132])
and thus limg_ (f/U,)=0.

Simple examples of sets S, and S can be found by considering expressions of
the form L, (e*") or more generally L, (t"¢""). Suppose for instance that L, (e*) =
e“P,(A, t) and the polynomial P,(A,t) has n real zeros A(t), - - -, An(¢) for
each ¢ and that there exist constants wo, - - * , u, such that uo=A;()su, -+ =
An(t) =, Then S_oo = (e, - - -, e“"), S = ("', - - - , e*—1") satisfy the condi-
tions of Proposition 1if wo<pq *** <pp If pics <pi = vt = *° = Mier < Mir+1
then the functions (e*,e*+, .- e*+') should be replaced by
(eI e || ~%e™, - - -, e**)in S_» and by (e**, te*, - - -, " 'e*') in Sw.

All the applications of Proposition 1 presented here use the following
theorem. The reader is reminded that L, and f satisfy either condition (A) or
condition (B) of the Introduction.

THEOREM 1. Let L, be disconjugate on [, Bl and leta =to=t, - - =t, =B.
If Zi(t;)=r,and ro+ - - +r, =k =n, then

Lnfgo $ pkLn-kféo

where pi(t)=[lmoo(t—1t)", o(t)=sgnt, —0=t=00, Loy=y, L, iy=
W(¢11 Tt ¢n~k’ }’)/ W(‘bly D) ¢n—k) and (¢1’ ) ¢n—k) is a basis for
{¢: L, =0, Zs(t;)=r;}. Furthermore if L,f =0, then piL,«f(t)>0 at any point
t #t; such that L,f#0 on some interval (t,t) or (t, t;) and r;>0. In particular if
to<tm, Yo, tm >0 and L,f# 0 on (to, tn,), thenpkL,,_kf> Oon (a,B)—{to, " * * , tm}-

This theorem, a multipoint generalization of Caplygin’s inequality, is due to
Pélya in the case (A) when the points ¢ are nonsingular [5, Thm. V] although
Pélya’s formulation is somewhat different. Extensions to include singular points
are given by Willett [10] and Muldowney [4]; these papers consider more general
boundary conditions than those given here. The conditions on L,f which imply
pLn—rf>0 are an improvement on those given in [4] but follow readily from a
closer scrutiny of the proof in that paper. There are also restrictions placed on the
asymptotic behavior of L, f near a, 8 and ¢; by the condition L,,f=0, L,f#0,
but these will not be discussed in detail. The following corollaries are used in the
applications.

CoROLLARY 1.1. Under the conditions of Theorem 1, if L,f=0 and
L,_f(t)=0 for somet #t, then L,f =0 and L,,_,f =0 on every interval of the form
(t, t) and (¢, t;) for whichr;>0; i.e. f=c11+ * -+ + Cpin—i On the union of these
intervals.

Proof. 1t is clear that L,f =0 on every such interval since L,f# 0 on any of
the intervals implies L,—«f(#) # 0 by Theorem 1. Also L,_«f(t)=0 implies the
existence of constants (cq, * * *, cn—x) such that, if f=f—ci1d; * -+ —Co—tkPn—r>
Zi(t)=n—k. Thus L,f=0 and Zx(I)=n where I is the union of intervals in
question and, since L, is disconjugate on I, f=0onlL

COROLLARY 1.2. Let L, and t; be as in Theorem 1. Suppose f and g are any
functions such that L,g >0, Zi(t;)=r, Z;(t)=r, 0=i=m, ro+ - +rp, =k =n.
Then

Dk [Ln—kf+Ln—kg”Lnf/(Lng)”] =0 ’
143 [Ln—kf-Ln—kg”Lnf/(Lng)"] =0,
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and in particular,

‘Ln-kf| = |Ln—kg| "Lnf/(Lng)";

the only functions f for which equality holds at some point are f=
cg+cidy +** +CoikPn_i on all intervals [t,t], [t,t]. Here ||| denotes the
L%(a, B) norm.

Proof. Consider f=f+g|lL.f/(Lug)l; then Zxt)=r and L.f=
L,f+Lag|Laf/(Lug)l= Lug[Lnf/(Lng)+||Lnf/(Lag)| Z0 so that piL,—«f Z0 by
Theorem 1. The same procedure with f replaced by —f establishes the second
inequality. The statement about achievement of equality follows from Corollary
1.1.

Remark 1.1tis clear that Corollary 1.2 requires only Z(t;) = r; for both of the
functions f considered in the preceding proof. This is slightly less restrictive than
the condition Z;(t;)=r,, Z,(t;)=r; in the case of singular points #. For example if
Z,(B)=r and f satisfies the asymptotic condition of part (b) of Proposition 1, then
f also satisfies this condition so Zi(B)=r since L, f does not change sign.

THEOREM 2. Suppose a,, (the coefficient of f in L, f) is either strictly positive or
strictly negative on (a, B) and So=(u1, * -+, Un), Sg =1, * +  , v,) satisfy the
conditions (i), (ii), (iii) of Proposition 1(a), (b) respectively. Let r be an integer
0=r=n.Inthecasesr=0,r=n,0<r <n,itis assumed that L, is disconjugate on
(a, B, [a, B), [a, B] respectively. Suppose further that

(2.1a) lim u, = 00, lim inf ié 0=Ilim sup L, ifr>0
o+ a+ " a+ U,
and
(2.1b) lim v, =00, lim inf f =0=lim sup f , if r<nm.
8- B—  Upt1 B—  Ur+1

Then (—1)""a,>0 and
2.2) Ifl=1(1/an)Lafll

The only functions for which equality holds in (2.2) at some point are the constants.
The hypotheses on S, may be omitted if r = 0, Sg may be omitted when r = n and the
functions u,, v, are required only in the cases r = n, r = 0 respectively.

Proof. First the conditions imply (—1)""a,>0. Suppose otherwise and
(-1)"""a, <0; the function f=(—1)""""" satisfies (2.1) so, by Proposition 1,
Zia)zr, Z;B)zn—r and L,f=(-1)""""a,>0 implies (-1)""f>0 by
Theorem 1, i.e. —1>0. This contradiction shows (—1)""a, >0. The rest of
Theorem 2 follows from Corollary 1.2 and Remark 1 with g=(—1)""" since
L.g=(-1)""a, >0 and the functions

f=£f+gILaf/(Lug)l = £f +(=1)"""[(1/an)Luf]l

satisfy Zx(a)=r, Zx(B)=n—r.
Inequality (2.2) implies

(2.3) I£I=1I(1/an)Laf]l.

The constants are not however the only extremals of (2.3). For example when
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L,y =0 has a fundamental principal system of solutions (U, * - -, U,) which
satisfies
li;nljl:()’ i:l’---’r’ llmazo’ i=r+1,-..’n
then, if y € (e, B), the function
1—‘61U1(t)“‘ e “C,U,(t), f>‘Y’
1= )
cr1Upi(0)+ - - +c, U ()—-1, t<v,

where the constants ¢; are chosen so that feloc AC™ '(a, B), satisfies || f]=1,
I(1/as)Lafl=1.

The conditions on L, required for Theorem 2 are satisfied by operators of the
form L,=(D—Aq) - (D—A,) provided A1 <A+ <A <0<Apg v 00 <Apj
the result also holds when A1=A, - =X, <0<A,4; - -+ =A, although this
situation is not covered by the theorem except when r=0 and r=n. More
generally if L, satisfies the appropriate disconjugacy requirements on [—00, 0]
and A =A;(t), i=1, - - -, n are the zeros of P,(A, t)=e *L,(e"") then the func-
tions u;(t) = e"", v;(t)= e satisfy the conditions of Theorem 2 provided

MO=p1=A2(8) - Sun-1=A,(t)= un, near —oo,
nEM=v, s =)= v,=A(), near o,

i # Wi, vi#y; wheni#j, and u,<0<w,q.

The exponentials should be multiplied by appropriate polynomials if u; = u; or
v; = v;. The constants w,, »; are not required except in the cases r=n, r=0
respectively. Disconjugacy criteria may be found in the papers of Hartman [2],
Levin [3] and Willett[10] and in the monograph of Coppel [1] and its references.

While inequality (2.2) is best possible in the sense that equality may hold, it
can be qualitatively improved by using Theorem 1 for general k = n rather than
for k = n as was done in Theorem 2. One can replace the estimate on f in (2.2) by
estimates on M, f where M, is any operator of order k = n. These estimates may
be presented in terms of Wronskians of solutions of L,y = 0 and expressions L;f
where L, are factors of L,. However to reduce this to fairly concrete terms and still
aspire to achieve sharp inequalities requires good estimates on these Wronskians.
Such estimates are currently available in generality only for Wronskians of orders
1 and 2 from the work of Hartman and Levin. Thus a relatively complete picture
can be presented in this paper only for n=2. In situations such as L, =
(D—=Ay) -+ (D—A,) where Aq, + -+, A, are real constants a comprehensive
system of inequalities may be developed based on Theorem 1; however, good
results are already available in this case in the work of Sharma and Tzimbalario
[8].

Let Lof = f"+a.(t)f' + a>(t)f. While the following theorems may be formu-
lated in more general terms of systems S,, Sg on any interval (e, B8) it is more
appropriate for reasons of exposition to consider only the interval (—o0, c0) and

24) Ly(e™)={A = 2:1(OHA —12(1)} €™
where A;(¢) and A,(¢) are real.
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PROPOSITION 2. Suppose L is of the form (2.4) and
V1§A1(t)§ M1 <0< V2§A2(t)§ﬂ2.

If a; are continuous [locally Lebesgue integrable] and f" exists [f' is locally
absolutely continuous] on (—00, ©) with

lim inf e ~*+'f(¢) = 0 < lim sup e™*"'f(t)
2.5)
lim inf e™*'f(£) = 0 < lim supe ~"f(¢),

then there exist continuous real valued functions p,, p, on (—00, ) such that

1=pi()=Spu1<0<r=py(t)= 2

and if b and c are any real valued functions satisfying

1/p1=b=1/p:, p1=c=p2,

then
(2.6) bf' = fI=1I(1/a2)L |,
i < P2=C)lprl+(c—p1)pa| 1
@7 s =

Equality can hold only for certain functions. The constants vy, ., may be omitted
in the hypothesis and conclusion.

This result is proved by Sharma and Tzimbalario [8, Cor. 4] in the case of
constant coefficient operators. Although it is best possible in that equality can
hold, a qualitative improvement is given in (2.10), (2.11) and Theorem 3.

Remark 2. If A,(t) = =A,(t)(i.e. a,(t) = 0), then it is only necessary to assume
that a»(¢) <0 provided (2.5) is relaced by the conditions

2.5) lintlai)nf %f(t)-i-Oélinlosoup ~:—f(t)

and o= -1 =|laa]"%.

Proof of Proposition 2. The operator L is disconjugate on (-, ] and on
[—00, c0). Thus two positive solutions U;, U, of L,y = 0, unique to within positive
multlples are determined by the conditions Zy, ()= 1, Zy,(-)= 1. Let u;(t)=

e*, vi(t)=e"",i=1,2;then (=1)* 'Lou; =0, (=1) ""Lov; =0 and (u1, u,)isan S_o
system while (v, v2) is an S, system. Since lim_o (v2/u1) = lim_o(t2/u,)=0,
Z,(-0)=1, Z,(—©)=1 and, from Theorem 1, L,v,=0, L,u;=0 imply
W(U,, v2)=0, W(U,, u)=0. Similarly W(Uy, v,)=0, W(U4, u1)=0. Thus

V1 S—l‘U]‘l'f/.Ll <0< V2<‘g;5/£2
If f=f+|[(1/a;)L.f|. Then Zzxo0)=1 by Proposition 1, and therefore by
Corollary 2,

W, S IW @, Ol |LaA],

(WU, 1) =W D |- LaA],
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Thus, if p; = U1/ Uy, p2= U’z/Uz,
~f=]5 ~r-fis|;

If y: (—00, 0)~>[0, 1]and b = y(l/p1)+ 1- ‘y)(l/pz) then (2.6) follows from (2.8)
and the triangle inequality. Inequality (2.7) follows from

(2.8)

| =p1fl=lpil

1
—L
|a2 2f ’

|~ paf| S| —Laf
az
similarly.

To investigate the nature of the extremals of (2.6) observe that |(1/p:)f' —
fl(to)=(1/a2)L,f| implies f = n + ¢, U; on (t,, ) where c; and 7 are constants,
by Corollary 1.2. Similarly |(1/p2)f' — f|(to) =I(1/a2)L f| implies f = 8 + ¢, U, on
(=90, to). If both inequalities hold simultaneously then 8 = +n since |8|=|n|=
(1/a2)L,f|l, and the constants ¢y, ¢, must be chosen so that f € C" (=00, ®©). When
1/[p1(t0)] < b(t6) < 1/[p2(t0)], |bf' — f|(fo)= ||(1/a2)L>f| can only hold if it holds in
both of the extreme cases b(to) = 1/[p1(to)], b(to)= 1/[p2(to)] and also (bf' — f )(to)
must be of the same sign in these two cases. This rules out the possibility

= —n # 0 and the only functions f for which

1 1
P—l(z;) blio)< ) p2(to)

=00 = |- L1]

are the constants. In (2.7) the same possibilities for equality as in (2.6) exist in the
extreme cases ¢ (t0) = p1(to), ¢(to) = p2(to) and when p1(to) < ¢ (to) < p2(to) equality
is only achieved for f=mn+c1U; on (ty, ©), f=—n+c2U, on (=, to) with the
appropriate choice of ¢y, ca.

To obtain an improvement on (2.6) consider

é1(n, )= [U1(6)Uxs(n)— U()U1(m))/[W(U,, U2)(n)],

&2(n, 1)=[U2(6)Ur(n)— Ur() U/ [W(Us, U2)(m)],
i.C.L2¢i(TI, t)=0 and ¢?_1)(Tl’ n)=5,ii, i’ j= 1’ 2. If (bl(t): ¢1(0’ t) and ¢2(t)=
(bz(O, t) let

(d1(1)—1);

7= FO~FOps )= F Opao)+ |- Lot

since Z7(0)=2 and Lf=a)[(1/a)L,F —|(1/a3)L, flIl1= 0 (recall a, < 0) it follows
that f(¢)= 0 and f(to) = 0 for to> 0 (t,< 0)if and only if f=0 on [0, ] ((to, 0]). The
same remarks apply if f is replaced by —f and therefore

’ ¢ (t) ¢1(t)
e |ro ol =garo- o)+l
Thus, if
c(0)=—lim & U0 p2(0)>0 or c(0)=~lim ¢ _U:(0) p2(0)>0

e, Us0) © ¢y Ux(0)
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(2.9) implies
(2.10) |£'(0)— c(0)f(0)|= G(c(0))
where G(c(0))= G(L,, f, c(0)) is defined by

1
-

and {o is defined by ¢1(t0)/[#2(t0)] = —c(0). Under the conditions of Proposition 2
it follows from (2.6) with b =0 that ||f||=|/(1/a2)L.f| and therefore (2.10) is an
improvement on (2.6). If ¢; = p; and ¢, = p; then

G(c(0)=

1
as !

)+leo)|-L2

[(c2(0)—c(0))G (c1(0)) +(c (0)— €1(0)) G (c2(0))]
[c2(0)—c1(0)]

for all ¢, c;=c =c,, which is (2.7) in the case ¢;=pi1, ¢2= p2; however other
choices of ¢, ¢, lead to better inequalities than (2.7) if ||f|| <||(1/a2)L.f]. In fact
the following construction shows that there exist pairs (c1, ¢2), ¢1 =p1, ¢2 = p> for
which equality may hold in (2.11). For each n; >0 there exists 1, <0 such that

2.11) [f'(0)=-c(0)f ()=

(2.12) %(bl(ﬂz, 0)= _a%dh(’fh, 0).
Let ¢1(0)=—¢1(n1)/[20n1)], c2(0)=—b1(n2)/[b2(n2)] and define fo(t)=
fo(n1, 2, 1) by

G1(n2, )—3[d1(n1, 0)+ d1(n2,0)], M =t=0,
—¢1(n1, D+3[d1(n1, 0)+ d1(m2, 0)], 0=t=mny,

fot)=fo(n1), t>mn, fo(t)=fo(m2), t<m:

so that f eloc AC'(~0, c0) and

fol)=|

1 1
Ifoll = 2[#1(n1, 0)+ d1(m2, 0)] -1, “a_2L2f0

=3[é1(n1, 0)+ ¢1(n2, 0)].

Since L, fo(t) = (sgn t)a>(t)|(1/az)L2 foll, n2 =t = n,, it follows that

(#1(n:)—1),

(sgn mlfoll= Folm) = Fo@)s(n)+ FoO)alm)+ s m)| - Lofo

i=1,2, and so equality holds for f, in (2.10) with ¢(0)=c¢;(0), i=1,2. Also
f0(0)— ¢1(0)£o(0), fo(0)—c2(0)fo(0) have the same sign so equality holds in (2.11)
for fo with ¢1=c =c;. In the case n; =00, 1, =—00, ¢1(0)=p1(0), c2(0)= p,(0)
existence of the extremals in (2.11) has already been discussed in Proposition 2 (in
this case ||fol| =1/(1/a2)L2 fol| and (2.11) is the inequality (2.7)). It remains to show
that these extremals of (2.11) are unique; more precisely it will be shown that if
equality holds in (2.11) for some ¢ (0) € (c1(0), ¢2(0)) 2 (p1(0), p2(0)) where ¢;(0)=
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—d1(n:)/[d2(mi)], i =1, 2, then n,, 0, satisfy (2.12) and f is a multiple of f, on
[n1, n2]. If equality holds for some such ¢(0) then it holds for all ¢(0)e
[¢1(0), ¢2(0)] and in particular (2.10) holds for ¢ = c;, ¢; therefore from (2.9)
lf(m)l=|fll and f'(m;)=0. It may be assumed without loss of generality that
f(m1)=|fll. Let f be as before so that Z;(0)=2, Zz(n1)= 1, Lf=0 imply f=0 on
[0, n1] from Corollary 1.1. Thus (1/a2)L, f =||(1/a2)L.f] on (0, n1) and similarly
(1/az)L,f==|(1/az)Lof|| on (n2,0). This together with the conditions that
Ifm)l=1Ifll, f'(n:)=0 and the continuity of f, f' at 0 shows that f is a constant
multiple of fo(n1, 112, t) where 11, 1, satisfy (2.12).

The difficulty with (2.10), (2.11) is that the null set of L, is not always known
so the inequalities are difficult to compute for general operators. Theorem 3 shows
that the inequalities corresponding to (2.10), (2.11) for the operator (D —v;)
(D — ) are, under the conditions of Proposition 2, also valid for the operator L.

THEOREM 3. Under the conditions of Proposition 2

(2.13) |f'—cfl=H(c)
ifc())= vy or c(t)= w2, where H(c)=H(L,, f, v1, u2, ) is given by

If ci(t) = v1, c2() = w2 and c1(t) = c(t) = ca(2), then
(2.14) If' = cfl=[(c2—c)H(c1)+ (c —c1)H(c2)l/ (c2—¢1).

Equality can hold in (2.13) and equality can hold in (2.14) whenever L,=
(D —v1)(D — w2) on any interval [to+ m2, to+n1], where

_ _ _ 1
He)= s =l a0 "‘)(”f"— .
2

Mz—cil
ni =
M2Vt —Ci
and c; satisfy the constraint
(2.15) |2 __C1|u2/(u2~v1)| v1— C1]_V‘/(“2—v‘) = |M2 - Czlnz/(“ru‘” vi— C2|_V‘/(“2_"‘).
Proof. Let
1
¢1(t)— (uze —p1e*),  ¢a(t)= (e**'—e™")
M2~ V1

and P(A, t)=(A —Al(t))(A —A2(t)). Consider

7= FO=FO1) £ Olt)+ |- Lar| (6113
Lof=a - Lof [ Lo] |+ Lt [ 1O + 1O 2224 | LA |20

since a, <0,

1
L2¢1 = [Pz(l/l, f)[.Lzeult—Pz(Mz, t)vle“z']éo
M2— V1
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and
_L2¢2(t)= Py(v1, 1)e™' = Py(us, t)e*'
Ly¢i(t)  Py(vy, huze™ — Py(ua, t)vie*'
so that
Lo Db 1 f(0)+f(0)L2¢2 Lfl‘>0
2 L1~ ua

by (2.6). The same analysis holds with f replaced by —f and, since Zz(0) =2 in both
cases, Theorem 1 implies that (2.10), and hence (2.11), is satisfied with this choice
of ¢1, 2. Inequality (2.10) is (2.13) in this case and (2.11) is (2.14) since if

—¢1/¢2=c then
|¢2‘ = |V1 ._c|"l-"2/(ﬂ'2_l'1)lu2_c|vl/(y.2-—,,1).

Also ¢1(n, t)=d1(t—m), ¢2(n, t)= ¢2(t—n) and the condition (2.12) is (2.15).
Equality holds in (2.13) if f is a constant; there are however other extremals when
L, is a constant coefficient operator. If L, = (D —v;)(D — u,) on [to+n2, to+ 1]
the extremals for (2.14) are of the form Cfo(n1, 2, to+1), t€[to+n2, to+n1]
discussed prior to the statement of Theorem 3; these are also extremals for (2.13).
For fixed values of ||f], [|(1/a2)L |, c, the best inequality from (2.14) may be
obtained by minimizing the right hand side of (2.14) over all admissible pairs
(c1, ¢2) such that c €[cy, ¢c;]. The exact minimum is difficult to determine for
general (v1, u2). But if (v1, o) is replaced by (—u, u) where u =max {—v, u}
then (2.14) holds with H(c)= H(L,, f, —u, i, ¢) and this minimization procedure
leads to the following corollary, an analogue of Landau’s inequality.
CoroOLLARY 3.1. Under the conditions of Proposition 2

(2.16) |f' —cf| = uK(f, L)
if
le|= ull(1/a2)Lo fIIK (f, L))"

where K(f, L,)= ||f||1/2(2"(1/02)L2f""||f||)1/2 and p =max {-v1, uo}. Equality
can hold in (2.16) if L,=D*— u>.

ThlS result was proved by Sharma and Tzimbalario [8] for the operator
L,=D?-u?; it was also proved in that case for ¢ =0 by Schoenberg [7] and
Muldowney [4] The extremals for ¢ = 0 are given by Schoenberg [7] and these are
also extremals for all ¢ permitted here—the extremals found for (2.11) are those
of Schoenberg in this case.

Remark 3. If L,= D*+ a,(t) then (2. 16) holds provided only that a,(¢)<0
and f satisfies (2.5), in which case u =||a,||'*

Remark 4. The present procedure also leads to a slight extension of Landau’s
inequality. If f is twice differentiable or if f' is locally absolutely continuous on
(—00, ), then

F(&)=F(t) = FO)— 1 (0)+ (% /2)lIf"
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satisfies /" = 0 and Z(0) = 2. The same is true if f is replaced by —f and therefore
oy L LS L1 P
FO+4fO)| S+ 1, it e20.

The right hand side has its minimum at ¢ = +v2||f]|"/3|f"||"*/* and so
2.17) 1 =DFI 2 e 72 1 m1/2)) £~ 1/2
: [f'=cf =201 %, i Iclé\/—-z-llf I~

The extremals for Landau’s inequality (i.e. ¢ =0; cf. Schoenberg [6]) are also
extremals for (2.17).

Proposition 3 and Theorem 4 pertain to the situation when L, is of the form
(2.4) and A (), A2(¢) have the same sign.
PrOPOSITION 3. Suppose L, is of the form (2.4) with

o< V1 éAl(t)—f— Vzgﬂz(t)
and f satisfies

(2.18) lim inf e f(H)=0= lim sup e f(t).

Then there is a continuous real valued function p, on (—0, ©) such that
0<wvi=p:i(t)=w,

and if b and c are real valued functions satisfying

1
0sb=—, c<pi1,

P1
then
(2.19) |bf'~ fI=1I(1/a2)L- A,
(2.20) |f' —cfl=@2pi—c)(1/az)Laf].

Equality can be achieved in (2.19) but cannot be achieved in (2.20) if f#0.

Proof. From the results of Hartman and Levin the operator L, is disconju-
gate on (—00, 00] so that a positive solution U; of L,y =0, unique to within a
positive multiple, is determined by the condition Zy,(0)=1. Let v;(t)=e",
i=1,2; (v, v2)is an Sy system for L, and since Z,,(0)= 1, Lv; = 0 it follows from
Theorem 1 that W(Uj, v1)=0. Also W(U}, v2) = 0; this follows from the fact that
if U, is any solution such that W(U,, U,)>0 then

W(U,, Uz)r W(U,, v2)

U LW, U)

so that if W(Uq, v2)(t0)<0 then W(Uq, v2)(t)<0 (i.e. v3/v,<U1/U,) for all
t = to, which contradicts the minimality of U, at oo since Hartman [2] shows there

is a positive solution U such that vi/vi=U'/U=v3/v,. Therefore, since
W(Ul, Ul)é 0= W(Ula vz)’

n=Ep1=w,, if pr=U1/Us.

] =L202§0
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If f=f=+|((1/a2)L,f| then Zz(c0)=2 by Proposition 1 and by Corollary 1.2

e e G EIL TR S
Therefore
=L 1. oL
(2.21) e e iE —L.f].

Equality can hold in the first of these expressions if and only if f is a constant and in
the second if and only if f =8+ yU; where & and y are constants. Inequalities
(2.19), (2.20) follow from (2.21) by the triangle inequality; equality holds in
(2.19),0=b < 1/p,, if and only if f is a constant. To see that equality can not hold
in (2.20) if f#0, observe that if ¢ <p;

If = cfl=|f' = pifl+(p1—O)lf| = (2p1—Ol(1/a2)L-f]|
and that

f'(t))— ¢ (to)f (to) = £(2p1(t0) — c (to))I(1/@2) L2 f|
if and only if

f'(to)— p1(to)f (t0) = £p1(t)l(1/a)Lafl,  f(to)==l(1/az)L f]|

with the sign + or — chosen consistently throughout. Since p; >0 and from the
nature of the extremals discussed above the only function for which this holds is
f(@®)=0, te[to,©) and ||(1/a2)L.f]|=0 so that f=0.

A better inequality than (2.20) is proved by Sharma and Tzimbalario [8, Cor.
5] when L, is a constant coefficient operator. The analogue of (2.10) in this case
improves both (2.20) and the result of [8], but has the same difficulties of explicit
computation as (2.10). The following approximation of this analogue is also an
improvement on (2.20) and [8].

THEOREM 4. Suppose

O<vi=A)=va=A(0)= wo, w2>vs,
and f satisfies (2.18). Then
(2.22) |f' = cf|=F(c)
where
F(c)=cll(1/a)Lafll, if cZva,

1

e _ 1
F(c)=|pa—c[ /2y, — |2/ ¥2 ”2)[||f||+ —Lof| [+ —Lof|, ifcSua.
2 2

J+e

Equality holds in (2.22) for certain functions when ¢ = v, and when ¢ < v, equality
can hold only if L, = (D — v>)(D — u2) on an interval.
Proof. Let

1 "
(w2e™' —1e*),  ¢a(t)=
M2— V2 m2— V2

d1(t)=

(eu,zt _ evzt)



118 JAMES S. MULDOWNEY

and consider the function

FO)=F(©)—F(0)p1()— ' (0)2(t) +[|(1/az)L2fII(1 — $1(2)).

|- Lo ro+ @72+

L2 —sz

lIV

Lof= az[ sz"'“_sz

J=0

since a, >0,

1 v
Logi(t)=—- Vz [2P2(v2, 1) — vaPo(p2, t)e*']1=0,

L2¢2(t) Py(ua, t)e"*' = Py(va, t)e™
L2¢1(t) v2Pa(u2, 1)e"” — uoPy(va, t)e™

so that
Ly¢, - 1
Ly¢:

by Proposition 3. The same analysis is valid if f is replaced by —f and since
Z#(0)=2 it follows as before that

Lz¢2

0= - and fO)+f(0);" =

=0

—sz

Lf

az

&1(t)
2.23
223) |0+ ¢2(t)f(0)‘

If —¢1(t)/[h2(t)] = ¢ then
|¢2(t)l = |I~"2—C|v2/(“2_v2)| Vy— Cl—y,z/(y,2_,,2)

and (2.22) follows from (2.23) and (2.19). The discussion of extremals is similar to
that for preceding results.

If ¢i(t), i=1,2 are defined by L,¢; =0, ¢¢ "(0)=4; then (2.23) holds
also—this is the analogue of (2.10) in this case. In the constant coefficient case
Corollary 5 of [8] gives a similar bound to (2.22) except that ||f| is replaced by
l(1/a2)L,f|| when ¢ = v,. But, from (2.19) with 5 =0, ||f|=|/(1/a2)L.f], i.e. the
bound in (2.22) does not exceed that of [8] and is an improvement when ¢ < », and
IF1<ll(1/a2)L .

The following example illustrates how bounds may be obtained for M, f if M,
is any second order differential operator, given some information about f and L,.

Example. Let L, = (D —u,)(D — u,) where w1, u» are real constants. Sup-
pose p1, p2€loc L' (=00, c0) and f € loc AC" (=, ) or py, p» € C(—00, ) and f is
twice differentiable.

(@) If w1 <0<, and f(t)=o(e™") (t > —00), f(t)=o0(e"*") (t > +00), then

i+

] (1)
|¢2(t)|

- ()]

#2+p1(Ouz+pa(t)
M2 (Mz 1)

£+ D10+ Do S Lo+ ]

+ IM%"‘Pl(t)ll—l +p2()
(22— p1)

(b) If 0<pu1=u, and f(t)=o0(e*") (t > ), then

+ ui+pi(Bpr+pa(t) ]

£+ pae) ™+ a0 S Lo+ I o

M1+ 2+ pi(r)
M2
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Proof. 1f L, and M, are any two differential operators of order n with leading

coefficient 1, then L,, = M, if and only if L,u; = M,u;, i =1, - - - , n for some set of
functions (u1, - - -, u,) satisfying W(uy, - - -, u,)#0. Therefore if M,f is a
second order operator
W(us, uzf) W, f) W(ua, f)
M,f= + Myu,+———M,u
= W, w2) | Wtn, w) 2 Wi, ) 2

if W(uy, u,)#0, and

W(uy, uz, f), Wius, f)[ Us ] f
M,f= + Myu,——Mouy | +—M,u
2f W(ul, uz) W(ul, u2)|. 22 Uy 2% Ui 2
if W(uy, u)#0 and u;#0. Choosing M,f=f"+pi(t)f' +p.(t)f, ui(t)=e",
u>(t) = e*?* and using Propositions 2, 3 to obtain bounds for |W(u1, f)|, | W(uz, f)|,
|f| yields the bounds given for |[M>f]|.

3. Concluding remarks. In [7] Schoenberg shows that if f satisfies f(¢)=
0(e"" (|| > ), a>0 and L,f = f"—a>f then

o1 , 1
IFl= LAl if Ifl= LI,

IFISIA@IL A= AN, it 1<l A1,

However, as shown in the present paper and in [4] there are no real valued
functions f satisfying the asymptotic condition f(r)=o(e'") (|t|> ) and |f]|>
(1/a®)|L2f]l so the first inequality pertains only to those functions for which
Ifll=(1/a®||L.f| and the first and second inequalities are the same in that case.
Therefore it is unnecessary to distinguish between the cases |f|| < (1/a?)|L.f]l,
Ifll= (1/?)|L.f]. Schoenberg’s results are proved for complex valued functions
satisfying the asymptotic condition and the techniques of the present paper are not
applicable without a re-examination of the proof of Theorem 1 and its corollaries.
Nevertheless it can be seen that the foregoing remarks also apply in the situation
considered in [7] since such functions satisfy
ir(’ * at-
()= —;U e*COL, f(s) ds +j e*“IL, f(s) ds]
—00 t

and hence ||f|=(1/a®)|L.f|l. Several of the results proved by Sharma and
Tzimbalario [8] also have an extra condition analogous to that of Schoenberg
which is unnecessary.

The technique developed in this paper and in [4], while it leads to good
inequalities without the necessity of constructing Green’s functions, seems to have
an undesirable element of guesswork in the discussion of extremals. In contrast,
the method of Schoenberg and its development by others features an elegant
treatment of extremals (cf. [6]), the nature of which is evident from the sign of the
kernels involved.

The versions of Theorem 1 proved by Willett [10] and Muldowney [4] allow
more general conditions at the endpoints «, 8 than those presented here. A
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condition Z¢(a)=r may be replaced by
W(ul’ ) uiaf)zo
W(uy, -+, uj+1)- ’

j=0, -+, r=1,if (un, * -+, uy)is a principal system at « of solutions to L,y =0.
Z¢(B)=r may be replaced by

lm‘ll sup -1

W(um c 0ty Un—j+1, f)

lim sup (—1)" =0
B— W(um trty, un-—i) ’
j=0,---,r=1,where (uy, - -+ , u,)isaprincipal system of solutions at 8. Itis an
attractive conjecture that, for example, instead of requiring (uy, * - , u,)tobe a

principal system of solutions at 8 it would suffice if it were a system Sg satisfying
conditions (i), (ii), (iii) of Proposition 1 (b). This conjecture is unfortunately
true only for r=2. Consider the operator Lif =f", f=—t+logt and Sz =
(U, uz, uz)=(1,4,1°=logt); —f/us, —Wus, )/IW(us, u2)l, —Wus, us,f)/
[W (us, uz, u)] have limits 1, 0, O respectively at co. A principal system at co of
solutions to Lzy =0 is (U, U,, Us)=(1, ¢, t?) and the corresponding expressions
have limits 1, 0, —o0; the elements in this triple are not all nonnegative while those
obtained from (uy, u,, usz) are.
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INTEGRAL OPERATORS FOR FOURTH ORDER
LINEAR PARABOLIC EQUATIONS*

PATRICK M. BROWNT

Abstract. An integral operator is constructed that maps analytic functions of two complex
variables onto analytic solutions of fourth order linear parabolic equations of two space variables with
analytic coefficients. The operator reduces to Bergman’s operator for the fourth order elliptic equation
when the solution is independent of the time variable. In the case of radial coefficients, the kernel
functions of the operator are independent of the dimension and by a method of ascent, analytic
solutions of three or more dimensions may be represented by a simple modification of the operator.

1. Introduction. Integral operators in the sense of S. Bergman [2] and I. N.
Vekua [15] have been used extensively to represent and study analytic solutions of
elliptic partial differential equations. The corresponding tool for parabolic
equations would map analytic functions of two variables onto analytic solutions
and would be valuable for investigating the analytic behavior of these
solutions. Previous attempts by Bergman to construct an analogous theory for
parabolic equations resulted in operators which had a complicated structure and
did not yield an onto mapping [2, pp. 74-78]. Hill[11] also constructed an integral
operator for parabolic equations, but again his operator had the disadvantage of
constructing a very complicated kernel function. Recently Colton [4] has con-
structed an operator for second order parabolic equations in two variables which
overcomes the difficulties of earlier attempts. Not only is the operator an onto
mapping but its kernel is constructed through a straightforward method that is
suitable for numerical techniques. In this paper we construct a Colton-Bergman
operator which maps analytic functions of two variables to solutions of a fourth
order parabolic equation in two space variables, namely

(1.1) A’u + au,, +2bu,, +cu,, +du, +eu, +fu+gu, =0,
where
Cox? ay” *ox

We will assume that the coefficients are analytic in some polydisc in the space of
two complex variables. This operator generalizes Bergman’s operator for fourth
order elliptic equations in the sense that when the solution of (1.1) is independent
of ¢, the integral operator reduces precisely to Bergman’s operator. (See [1].) In
the second part of the paper we use the method of ascent developed by Gilbert (cf.
[8], [9]) to construct an integral operator for a class of fourth order equations in
p+2 independent variables. These operators can then be used to obtain a
complete family of solutions of equations in two space variables.

* Received by the editors August 22, 1974, and in revised form April 20, 1976.
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A possible application for the complete family of solutions is in the area of
quasi-reversibility for non-well-posed problems (cf. [12]). In this technique a
non-well-posed problem is approximated by a well-posed problem. For example,
an initial boundary value problem for the backwards heat equation can be
approximated by a well-posed initial boundary value problem for a fourth order
parabolic equation which is then solved by a Fourier series expansion [13, p. 12].
Due to the difficulty of constructing the Fourier series for equations with variable
coefficients, our integral operator provides an alternative method of solution that
merits further investigation.

2. An integral operator for (1.1). We will now construct an integral operator
that maps analytic functions of two complex variables to complex valued solutions
of (1.1). Since it is convenient to work with complex notation we begin by
considering the equation

(2.1) Uirziex+ MU, + LU+ + NU,+,«+ AU, + BU,«+ CU = DU,

where z = x +iy and z*=x —iy. We shall abbreviate the left side of (2.1) by the
notation L[U]. Since x and y are allowed to assume complex values, z and z* are
independent complex variables and z*=Z only when x and y are real. The
coefficients M, L, - - -, D are analytic functions of z and z* defined for |z| =r, and
|z¥|=r,.

It should be noted that if U = u +iv, then equation (2.1) is equivalent to a
system of two real fourth order equations. If C, D, and L are real valued when x
and y are real valued, and M=N=M,+iM,, A=B=A,+iA,, then both
equations of the system have the form of (1.1) where

a=4L+8M;, b=8M,, c=4L—-8M,,

(2.2)
d=16A,, e=16A,, f=16C, g=16D.

Motivated by Colton and Bergman we look for solutions to equation (2.1) of
the form

1 ! z dsdr
2.3) Uz, z*, =——§ I E,*,—,f(— ~s? )——
(2.3) (z,z%,1) 2 D s Ly (z,2*,7—1t,5) 2(1 s9), T (1—-s)"?

where f(z, t) is an arbitrary analytic function of two complex variables defined in a
neighborhood of the origin in C>.

The first integral in equation (2.3) is a contour integral in the complex 7-plane
in a counterclockwise direction around a circle with center ¢ and radius 8 where
0<6,<8 <8,. The second integral is over a path in the unit disc connecting the
points s =1 and s = —1. The function E(z, z*, t, s) is required to be an analytic
function of s for |s| =1, ¢ for §,=|t| =8, and (z, z*) in some neighborhood of the
originin C*. By substituting (2.3) into (2.1) and integrating by parts with respect to
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s, it follows that E(z, z*, 7 —t, s) must satisfy the differential equation

T(E)=z"'s"'(1~s?)[E,;»;+s + ME,, + LE,,«+3AE]
+ %Z—zs —2(1 - sz)z[Ez*z *ss +MEss]

(2.4) — 27 s [E e+ + ME, +3LE,«+3AE]
—227273(1 =Y [Egyup++ ME, ] +32 25 *[E +,++ ME]+L[E]
—DE,=0.

Also, the expressions

(2.5) 2z s7'DL(E).

and

(2.6) z7's7'[Dy(=2E, —z 'E—3z""s 'E, +327'sE, +3z 's 2E)— AE — LE,.],

where D,(H) = H,+,«+MH, must be continuous functions for sufficiently small
values of z and z*, |s| =1 and 8, =t — 7| =8,. Details relevant to the derivation of
(2.4) are found in [1] and [2].

Solutions can also be represented by the integral operator

dsdr

Uz, z*,t) =—l—£—”=8 J‘1 E(z,z*,7—1t, s)f(%j: (1-s?), 7') a—s7

27Ti —~1
where E satisfies an equation obtained from (2.4) by interchanging differentiation
with respect to z and z* and exchanging A with B, M with N, and vice versa. This
differential equation will be denoted by

T*(E)=0.

We now intend to construct two linearly independent solutions of (2.4), E &Y
and E"?, having the form

POz, z%)

2.7 E(z,z*,t,5)= + Y §2"z2"PP(z, 2%, 1)
n=1

and satisfying the initial conditions

(2.8) E*Y(z,0,t,5)=1/t, E{P(z,0,1,5)=0,

(2.9) E%?(2,0,t,5)=0, E&’(z,0,t,5)=1/t

The functions P®™ are to be determined. Substituting (2.7) into (2.4) we obtain
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the following system of differential recursion equations for the P®(z, z*,1):

(2.102) P+ MP? =0,
(2.106) PZ,.+ MP® = —2[AP© + LPQ +2PO. . +2MPP]
z7z t z zz7z z b
-1
@2n '3;4) @2n+d) _ - + (2';+3) + +l
P&+ MP n2+2n+3/4[(2n NPz +(n+3)

. (LP(%«"+2)+AP(2"+2))

+(2n+1)MPZ"*? + NPX).+ BPY

+CP+ AP + PO v+ MPEY
+LP3Y—DPP™].

(For n=0, p® is replaced in (2.10c) by —P©/t?). Setting Q(z, z*)=
PP(z,z*) and Q®V(z, z*, t)=¢t""'P®(z,z* t), n=1,2,- - -, in (2.10) yields
the recursion equations:

(2.11a) QL.+ MQ© =0,
(2.11) Q2.+ MQO?®=-2{[AQ®+LQ2+2QY.,-+2MQY],
Q(Z*n-:4) +MQ(2n+4)

(2.10¢)

—— 1@+ DO + (2 +)LOE? +AQ)

+(2n+1)MQP P +t(NQZ).+ BQE
+CQ(2")+AQ(2n)+Q(2"2n *+MQ(2")+LQ(2':‘)_DQ$2n))
+(n+1)DQ®"].

It is clear from (2.11) that the Q®" are uniquely determined. To prove the
existence of the functions E"” and E"?, it is necessary to show the convergence
of the series (2.7). Due to the complicated nature of the recursion equations, we
cannot directly apply the method of dominance to majorize the Q*" as done in
previous problems (cf. [5]). For the fourth order elliptic equation, Bergman
overcame this difficulty with two lemmas which have been modified due to the
time variable and are stated here without proof. Details of the proofs or the
properties of domination may be found in [1] or [2] respectively.

LEmMMA 1 (Bergman). Let M, M,, R, R, be regular analytic functions of z and
z* for |z| =r, and |z*|=r,. Let A,(z) and B,(z) be regular analytic functions of z
for |z|=ry. Let ¢(z, z*) be a solution of the differential equation

(2.11¢)

o’
az*?

(2.12) +Mgp =R
satisfying the initial conditions

¢(z,0)0=A(z) and S ) =B(z)

9z*| jue
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and let ¢,(z, z*) be a solution of the equation

:az‘Pl
9z %2 +Mp, =R,
satisfying the conditions
0
01(2,0)=A:z) and 5|  =Bi(2).
Z 7 2x=0

If A(z)<A(z), B(z)<By(z), R(z)<R(z), and M(z)< M(z), where “<«”
denotes domination, then

o(z, 2%) < @y(z, 2%).

For the second lemma, assume M(z, z¥*) is regular for [z|=R,, R, >ry, and
|z¥|=r,. Let K and A, A <1, be given positive numbers. Let {u,,} be a sequence
of nonnegative integers such that

KriR,
A(R1"71)

and u,, =0 for m >m, where m is sufficiently large.
Lemma 2 (Bergman). Consider the differential equation

(M +m =2}, +mMm—1)> form=0,1,2---,

2 .
(2.13) aif2+M<p =R(z 2% 1)
where
k
M« a=Z/R)A=2"/r)
and

R« CA—-z/r)™(1—z*/ry)™"-(1—1/26,)" =C{n, m, p}, || < 8.
If ®(z, z*, t) satisfies (2.17) and if
D(z,0,8)=D,+(2,0,1)=0,
then ®(z, z*, t) is regular for |z|=ry, |2*| =1y, |t| <80 and

Cr?
(m +m=2) (i +m—1)(1-A)

(1=z*/ry) ™ 2(1-1/28,)".
In the following, it will be convenient to use the notation

(I=2z/r) " (1=2z*/r2)""(1~1/28,)*={n, m, p}

D(z, 2%, 1)« (1=z/r)~ P

(2.14)

and
{n, m, 0}y={n, m},

where m, n, and p are integers. Using these lemmas we can now dominate the



126 PATRICK M. BROWN

Q®" and show convergence of the series (2.7). Since Q is a regular solution of
equation (2.11a) there is a constant C” such that

(2.15) 0z, 2%« C{1, 1}.

Now, let K be the maximum of the coefficients of (2.1) for |z|=r, and |z*|=r,.
Then the coefficients will be dominated by K{1, 1}. Since M(z, z*) is assumed to
be regular for |z| =R, R, >ry, |z*|=r,, there is a constant, also denoted by K,
such that

M<«K(1-z/R)'1~z%/ry)™"
«K(1—-z/R)'A—z*/ry) 2

Let R® represent the right side of (2.11b). Then using the properties of
dominance, (2.15) and (2.16), and the fact

1<28,(1-1/(28))7%,

(2.16)

we obtain
R®?=-2{AQ”+LQR+2QY:,«+2MQ]
«48,CO[Kr1'(3, 3}+2r1'r52{2, 3} +3Kr; {2, 3} +3K{2, 2}1(1 — /(28 ,) !

« 166 c‘°>[—+K]{3 3,1},

where
T=min{ri'r5;m,n=0, 1, 2}.

Thus by Lemma 2,
168,CV[1/(rr3)+ K/7Ir5{4, us+1, 1}

(m3+ D(us+2)(1-A)

=C%{4, us+1,1}.
Let p =max {8, 1} and we obtain the bound
C(O) C(Z)(I»% + D (us+2)(1— A)_ C(Z)

Q(2) «

r 16p[1+Kr,r3/7] =16
We will now show by induction that
(2.17) Q% « CP®3k +3, k+v(k)+3, 2k —1}
and
C(Zk—Z) 1
= (2k)
(2.18) =16 C

where the sequence of numbers v(k) is defined by »(0)=0, v(1)=pus, v(n)=
v(n—1)+u,,, and g, =n+4+v(n—1). We define

mo
0,= Y m and o=} .
k=0 k=0
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Clearly v(n)=v(n+1) and v(n) <o, =o. It is easy to see that (2.17) and (2.18)
hold for k =0, 1, and next we assume they are valid for k =n and n+1. Let

R@"*¥ be the right side of (2.11c). The induction hypothesis and the properties of
dominance imply that

R®*¥« ;#M[C(Z"”)(Zn +1)(3n+6)(n+4+v(n+1))
c(n+S5S+v(n+1)ri'r3n+7,n+6+v(n+1),2n+2}
+28,C*(Bn+3)3n +4)(n +3+v(n))
c(n+4+v(n))(rir)*Bn+5,n+5+v(n),2n+1}]

20,K [C®"*Yn+4+v(n+1)n+1/2)+(n+1/2)C?*?

T2 +3/4)
+(2n +1)(3n +6)C*"*?
+28,C*(m+3+v(n))(n+4+v(n))
+286,C%(n+v(n)+3)+26,C%"
+268:3n+3)C?+268,(3n +3)(3n +4)C*
+26,3n+3)(n +3+v(n)C®
+2n-1)C® +(n +1)C®]
-{3n+8,n+6+v(n+1),2n+2}

Using (2.18) for k =n +1, we find that
RO« C(2"+2)(4p ) [(3 +6)*(n+5+v(n+1))%ri'r

+£<(3n +6+v(n+ 1))2]
T
-{3n+8,n+6+v(n+1),2n+2}.
Applying Lemma 2, we obtain

4 Zc(2n+2)
Q(2n+4)<< (4
rn(1-Ay’(n+4+v(n+1)+u,, Jn+5+v(n+1) + e, ts)

2r 2r1K

[(3n +6)’(n+5+v(n+1))*+—"=Bn+6+v(n+1))?]

Bn+9,n+4+v(n+1)+penry 20 +2}
4p2c(2n+2) [ ,
« (=AM In+5+o) +

{3n+9,n+5+v(n+2),2n+3}.

2r§r1K<3n —6+a)2]
n+2
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Thus,
Q@+ « C(2n+4){3n +9,n+5+v(n+2),2n+3}

and

C(2n+2) n2(1 _A)C(2n +4)
i 4p9(n+5+0)+2rirK/7)[(3n+6+0)/(n +2)]]
B n2(1 __A)C(Zn+4) C(2n+4)
=77 "<
4p [9(n+5+0)7] 16
This completes the induction proof.
We now prove the convergence of the series (2.7). Let |s| =s, where s,=1,

8,<|t| <8, where 8,>0 and &, is arbitrarily large, and p = max (84, 1). From

(2.17) it is seen that the series expansion for E Tk =1,2,1is majorized by the
series

0 o2n|. |
CO{]-’ 1}+ Z So |Z|

n+1
8o n=1 00

Since |t| <&, and |1 —1/(281)| > <4, an application of the ratio test shows the series
converges absolutely and uniformly for

-3

C®{3n+3,n+3+0,2n—1}.

V4
1-%
r

z
r

2|7 _(1=A),
144p°%s3”

We summarize this result in the following lemma.
LeMMA 3. There exist two sequences of functions,

1-—

r;

{P(I,i,O)(Z, Z*)’ P(I,i,2n)(z, z*, t), n=1,2,--- }, i=1, 2
satisfying the differential equations (2.10 a, b, c) such that

PUO(Z,0)=1,  PE9(z,0)=0,

(2.19) P25 0.0)=0, P4%"™z,0,1)=0, n=1,2,---,
and
(2.20) P%%%z,0)=0, P50z, 0)=1,

P"*(2,0,t)=0, P%*(2,0,1)=0, n=1,2,---
and such that for §,=|t| =8, |s|= so, and

|Z/r1| < S0
[1—z/ri[1=z*/r,| ~144p°sy

the series

PERO(Z 2%)
b

E%(z, z*,t,5)= .

o0
+ ¥ §2"z"PPRA(z, 2% ), k=1,2,
n=1

converges uniformly and absolutely.
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Remark. Similarly for z and z* sufficiently small there exist two linearly
independent solutions of T*(E) = 0, and these will be denoted by E“*"(z, z*, t, 5)
and E"?(z, z*, t, s). The form of their series expansion is
P(O) * ')

(Z, z )+ Z s2nz*nP(2n)(Z, Z*, t)

n=1

E(z,z%,t,5)=

(2n)

and the corresponding P*“" satisfy the conditions

P(II,l,O)(O Z*) — 1 PiH,l,O)(O’ Z*) _ 0’

(2.21) PUEL2N(Q 2% =0, PULLI(Q, 2* £)=0),
and
222 PU290,z% =0,  P{"*9(0,z%)=1,

P(II,2,2n)(O, Z*, t) = O, PiII,Z,Zn)(O’ Z*, t) — O'

The existence of four generating functions will imply that the integral operator

5-71—1_7;1 i s I 1 [E(”‘)(z FAR SA s)fk( (1-5%), ’T)

*
+E®(z, 2%, 71, S)gk(%- (1-5?), T)]

2.23
( ) dsdr

1-s37

is a solution of (2.1). Finally it should be noted that if the coefficients in (2.1) are
entire functions of z and z*, then E®* and EY*_ k =1, 2, are entire functions of
z,z*, s, and t except for an essential singularity at ¢ = 0.

For the existence of the integral operator, it is necessary that the generating
functions satisfy the continuity conditions given by (2.5) and (2.6). Using (2.7) and
(2.10a) we see that the first condition has the form

2 5TIDWE) =5 Y s*z"D(P®M).
n=0
This is clearly a continuous function of s, z, z*, and ¢ for |s|=1,z and z* in a
neighborhood of the origin and 8§, < |t| < 8, §,> 0. Equation (2.6) takes the form

1[-2
-z;[ (PO +MP<°>)+ - (P2, + MP?)

—3(PZ, *+MP‘2))+ 2(P(°) +MP©)— AP“” 1LP§92]+(- ),

where (- - -) represents a continuous function. Equation (2.10a) implies the second
and fourth terms equal zero. Equation (2.10b) implies the remaining terms in the
bracket equal zero, leaving only a function continuous in the required region. We
can now conclude that the integral operator defined by (2.23) exists and maps
functions analytic in some neighborhood of the origin in C* into the class of
complex valued solutions of (2.1).
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3. Invertibility of the integral operator and the time-independent case. In
this section we will show that the integral operator (2.23) is an onto map for
regular complex valued solutions. Next we will demonstrate that for solutions
which are independent of t, equation (2.23) reduces to the solution given by
Bergman [1].

Let U(z, z*, t) be a solution of (2.1) which is analytic for z and z* sufficiently
small and ¢ in a neighborhood of the origin in C'. And let U(z, z*, t) be a solution
of (2.1) derived from the integral operator (2.23). We shall establish that f; and g,
can be chosen in (2.23) in such a way that U, U,, and U,~ assume preassigned
analytic data on z = 0 and z* = 0, namely the values of U and its derivative there.
Knowing the form of the E functions, using the initial conditions (2.19) and (2.20),
and adding the assumption

agk (0’ t) =
at

we may represent U(z, 0, t), U,«(z, 0, t), U(0, z*, t),and U, (0, z*, t) in terms of f;
and g, k =1, 2. We obtain

(32) UG 0,0=] fiZa- )L

(3.1) 8. (0,1)= 0, k=1,2,

1 sk d
U, z*, t)=J gl(%-(l—-sz), )(1 s)1/2+P(”°)(0 2¥)U(0, 0, )
(3.3) -
+P%200, z2*)U,+(0, 0, ¢).

Similarly, expressions for U,«(z,0,t) and U, (0, z* t) can be obtained. The
transformation

(3.4) 8z, 1)= flf(-;-n—sz])(l T

and its inverse

. ! PN
3 fer2n=—=[ sCli-s10%

(see[10, p. 114]) allow one to solve integral equations (3.2) and (3.3) for f; and g;.
Also the equations for U,+(z, 0, t) and U, (0, z*, t) could be solved for f, and g,.
With these ideas in mind, we are motivated to define four analytic functions from
the given solution U(z, z*, 1).

Define

(3.6) fi(z/2, t)———%f U(z(1-52),0, t)%

s/ 0=—= [ 100,241 -59,0
2 )4

—PELOQ, 2%(1-52)U(0, 0, t)
(3.7)

—PE20(0, 2%(1—5%)U,«(0, 0, t)]fsi—i
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with f, and g, defined in a similar manner. Clearly these functions are analytic and
gi and g, satisfy (3.1).

Let U(z, z*, t) be the solution obtained from the integral operator (2 23)
using the analytic functions f,, g defined above. We claim that U(z, z*, 1) =
U(z, z*, t). The definition of f;, equation (3.6) and the transformation (3.4)
imply

1
~ — E _ 2 ds
0.0.0= | fi(30-59 1) =2
Hence U(z, 0,¢)=Ul(z, 0, t). Similarly it may be shown that

Uz*(z’ Oa t) = 02*(27 07 t)a
3.8) U, z*1)=U(0, z*,1),
U, (0, z*, 1) = U,(0, z*, 1).

Since both U and U are analytic solutions in a neighborhood of the origin, they
have a power series expansion say,

U(z, 2%, 1) = Y apmnpz "2 *" 17, Uz, z*,t) = Y bmnpz "2 P
where sums are taken from m, n, p = 0 to co. Thus the conditions (3.8) imply

(3 9) amOp = mep’ aOnp = bOnp
an, 1p = bm 1p> alnp = blnp

m,np=0,1,2,---

Since U satisfies equation (2.1) we substitute the series expansion into this
equation and set the coefficients of like powers of z™z*"t? equal to zero. This
yields a relationship on the coefficients by which all the coefficients a,,,, can be
uniquely expressed in terms of @omp, @ 1nps Amops aNd @, 1,- Replacing U by U in the
above argument, we find that the coefficients b,,,, satisfy the same relationship
and can be uniquely expressed in terms of bomp, b 1nps Dmops bm1p- Hence by (3.9),
U = U. We summarize our results in the following theorem.

THEOREM 1. For |z| and |z*| sufficiently small, |s| =1 and 8,<|t| <., where
80>0 and &, is arbitrarily large, there exist four functions E Gz, z*,t,5), j =
LII k =1, 2, such that in some neighborhood of the origin

2

Uz, z*% t)= > fﬁt' , J: [E”‘k)(z, z¥ 11, s)fk<§(1 fsz), ’T)

27le 1
ark) % z* 2
+E®R(z, ,'r-t,s)gk(-z—(l—s ),T)]

dsdr

is an analytic solution of (2.1) where f, and g, are arbitrary analytic functions
defined in a neighborhood of the origin in C. Conversely, if U(z, z*, t) is a complex
valued analytic solution of (2.1) defined in some neighborhood of the origin, then U
can be represented by (2.23) where the functions f, and g, are given by (3.6)-(3.7)
and are analytic in some neighborhood of the origin in C>.
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Since the operator defined by (2.23) is based upon the work of Bergman, it is
not surprising that it reduces to Bergman’s operator [1, p. 620 when U(z, z*, t) =
U(z, z*) is independent of ¢. Equation (2.1) becomes

U,zpo:++ MU, + LU,,++ NU,»,+»+ AU, + BU,«+CU =0

and (3.6) and (3.7) imply that the associate functions f; and g, are independent of
t. This is also true for f, and g>- Thus it is possible to integrate termwise in (2.3)
with respect to 7. We define P®"(z, z*) as

~ 1
PO (z, 2% =— P®(z, z* 7—1t) dr.
2mi |r—t|=5

We find that P satisfies (2.10a), and P®" are defined recursively by

(3.10) P2 .4+ MP® = -2[APO+LPQ+2PY.,.+2MP]
and
. . -1
P(Z*r;-::ét) + MP(2n +4) —
= n®+2n+3/4

[@n+ )PP +(n+1/2)(LPE P+ APC"?)
+(@2n+1)MP,®"? + NP+ BPA + CP
+APIV+ P+ MPEV+LPEY), n=0,1,2,-

(3.11)

The representation for U becomes

*) — ' Z1_¢2 __ds
UGz, 2% = LIE(Z,Z*,s)f(z(l s )) T

where

E(z,z*,5) =Pz, z¥)+ ¥ s¥"z"P®(z, z%)
n=1
with the p®,n =0, 1, - - -, satisfying equations (2.10a), (3.10) and (3.11) respec-
tively. A comparison of these equations with Bergman’s operator for fourth order
elliptic equations shows that they are identical.

4. Fourth order radial equations in two space variables. We will now use the
theorem of the previous section to construct an integral operator that maps
harmonic functions with a complex parameter onto real solutions of the differen-
tial equation

4.1) Apiau(x, )+ A () A, ou(x, 1)+ B(rAu(x, t) = C(r)u,(x, 1)
where X= (X1, * * =, Xp42), " =X;+X5+ - - + X} 42, U, is the partial derivative with

respect to ¢, and A(r?), B(r?), C(r®) are real valued analytic functions of r” for
|r| = R. We first consider the case when p = 0. In terms of the complex variables z
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and z*, the equation takes the form
(4.2) 16U, %+ +4A(zz*)U,,«+ B(zz*)U - C(zz¥)U, =

where U(z, z*, t) =u((z +2%)/2, (z —z*)/(2i), ) = u(x, y, t) and the coefficients
are analytic in some neighborhood of the origin in C*. This is a special case of (2.1)
in which the coefficients are real valued when z* = Z and the coefficients M, N, A,
B equal zero. Complex valued solutions are provided by (2.23), but the generating
functions E®¥(z, z*, 1, 5), k =1, 2, now satisfy the equation

27T (1 =) [Epprons +8A (22 %) B ] +32 2 (1= 2% B puyegs
— 27 T [Eppnr+3A (22 ¥)E ] =32 25 (1 =5 Eyyn»
+32 725 Epeye+ Epppnpe +5A (22%)E, .« +16B (22 %) E
—%C(zz*)E, =

The form of E®*(z, z*, t, 5) is given in (2.7), but the recursion equations for the
p®(z, z*, t) are simpler. These equations become

(4.42) PO.=
(4.4b)

4.3)

Piz*)z* = —%[i‘ A (ZZ *)Piq")"{' 2Pioz)*z*] s

1 1 1
(2n+4) + (2n+2) ( ___) * (2*n+2)
P n? +2n+3/4[(2'1 DPzA 47 (nt7)AGEZDP:
1 1
(4.4¢) +—1€B(zz*)P(2”)+P§2;;lz*+—A(zz*)P(z”)—ig C(zz*)P$2">]

n=0,1, 2,---.

The initial conditions (2.19)-(2.21) imply that p®*?(z,z*)/t=1/t and
p®Oz, z%)/t =z*/t.
It should be noted that when z*=Z and s and ¢ are real valued then

4.5) ETOG 51 5)=EY™)(z,z,1,5)=E"(Z, 2, 1, 5), k=1,2,

since the complex conjugate of (4.3) becomes precisely the equation that E“"*)
(z, z*, 1, s) satisfies. Not only the form of the power series for E** is the same as
that for E”* but their initial conditions also agree. Thus P“*2"(z, 7, t) and
p**?(2, z, t) must satisfy the same recursion equations and (4.5) follows.
Furthermore, it is easily verified that the generating function E® is a real

function of r*= zz, t, and s, and we define the function EX(r2, 1, s) by
(4.6) E®@2 1, 5)=E"Y(z, 2%, 1, 5).

Also E*?(z, 2, t, s) is of the form

4.7) E®P(z, z* 1 5)=2z*E@(r% 1, 5)

where E@(r?, t, s) is areal function of r?, ¢ and s (cf. [3] or [6, p. 64]). The function
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E®(r,t, 5) has a series expansion of the form

4.8

“8) E®@?, ts)=—+ Z s2"eP(r? 1)

with

4.9) e0,0=2200 - n=1,2,

From the results of §2, it follows that this series converges absolutely and
uniformly for r in some neighborhood of the origin, 6, <t <8; where §,>0and é,
is arbitrarily large, and |s| = 1. The second generating function converges in the
same region and has the expansion

(4.10) EOq2, t,s)=—:—+ S s2EO(2 p)
n=1
with
~(2)
(4.11) éP (0, t)=ae"—ar(9ﬁ=0, n=1,2,---

THEOREM 2. Let H(x1, x5, 7), H?(x1, X2, T) be arbitrary harmonic functions
with a complex parameter 7, defined for (x4, x,) in a starlike domain with respect to
the origin and 7 in a neighborhood of the origin in C'. Then in some neighborhood of
the origin, the function defined by

1 1
wein =524 [ O T 9O -5, )
T—t|=8 J—

(4.12) +E®@?, v—1t,5)
dsd
- H®(x(1-5), T)](Tﬁ

is a real valued solution of (4.1) for p=0. The function E®(r?t,s) has the
expansion given by (4.8) while E®(r*, t, s) has the uniformly convergent expansion

E®@% t,s)=rY1- sz]( + Z s2é@(r?, t))
(4.13) -
Er7+ Z 2n (2)(', t)

Furthermore, every real valued analytic solution of (4.1) (for p=0) in a
neighborhood of the origin can be represented by (4.12).

Proof. In (2.23), let g(z*/2,t)=f1(z*/2, 1), g.(z*/2,t) = f,(z*/2, 1), and

= z. Then by using (4.5), it can be shown that the integral operator (2.23) equals
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the expression

1 1
2Re <———§ I [E(””(z,z*, 'r—t,s)fl(g-(l-—s2), 'r>
290 Jpg=s 1 2
(4.14) =] , dsd
-

+ E(I,2)(zy Z*’ T t’ s)fZ(z(l _s2)7 T):l(l __s2)l 2)7
where “Re” denotes “‘take the real part.” Thus, pairs of analytic functions are
mapped onto real valued solutions. On the other hand, using the facts (4.5)-(4.7),
equation (2.23) equals (4.12) if we set

0355 )7 (2]

r’H®(xy, x5, 1) = %[2?f2<§, t) + zfz(g, t)]

(Recall from (3.1) that we may assume f,(0, ¢) = 0). Finally if f,(z, ) has the series

expansion
z 2 Z\™ ,
l51) = Eaml3)
then

[ee] m
HP(xy, x5, )= Y [Re am,,<£) ]t",
m,n=0 2

Therefore H(x,, x,, t) is a harmonic function in (x,, x,) with a complex param-
eter ¢ and the theorem follows.

The differential equation (4.3) which E(z, z*, ¢, s) satisfies is now trans-
formed for both functions E®P(r% ¢, s) and E®(r% t,s) into the differential
equation

1— 2
: [2Errrs - zErrs - '2_2E"s + A(r2)Ers]
rs r r

(1-s?? [ 1 ] 1 [ 2 2 2 ]
+— [ R — —_—— +
252 E, rEm e 2E"'+rE" rzE, A(r)E,
(4.15)

3(1-s*
- ( 3 5 )[En _'];Ers] +%[En—lEr]+Errrr+zEﬂr
sr r sr r r

1 1
—;EE,, +r—E, +A (rZ)[E,, +%E,] +B(r’)E-C(r)E,=0
3
and the initial conditions

E®0,t,5)=1/t, E®(0,t,5)=0,

4.16
(4.16) E®(0,1,5)=0, E®(0,t,5)=(1-s%/t.

These equations follow from (4.9) and (4.11).
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There is one more representation for solutions in two variables which will
prove valuable in our attempt to represent solutions with n variables. This type of
representation was originally used by Gilbert in [9] for the elliptic equation
Au+c(r)u=0 and later extended by Colton and Gilbert in [6] to AZu+
A(r?)Au+B(r*)u=0.

THEOREM 3. Let h®(x1, x5, 7) and h®(x1, x,,7) be arbitrary harmonic
functions, with a complex parameter =, defined for (x1, x,) in some disk centered at
the origin and 7 in a neighborhood of the origin. Then the function

u(xq, X2, £) = hO(xy, X2, ) +*H P (x4, x5, 1)

1 1
3 - j [eGO@? 71—, 1-0)h P (x,02, x,0%, 7)
T—t|=8 Y0
4.17
( ) +0G?(r?, r—t,1-0?)
“h@(x102, x,0%, 7)) do dr
where
) @) (2 1
(418) G(l)(rz, t, u) — Z 2en (r > t)r(n +2) n—1 i= 1’ 2’

L TOTmy ¢

is a solution to (4.1) for p = 0. Furthermore, every real valued analytic solution of
(4.1) for p = 0 has a representation of the form (4.17).

Proof. The harmonic functions defined in Theorem 2, H"(x,, x,, 7) and
H®(x,, x,, 7) can be expanded in some disk about the origin in the following
form:

(4.19) H(x1,%,7)= Y Y bpar™ e™r"
n=0 m=—c0
where b,., = b_,,.,. Define the harmonic functions A ®(x,, x,, 7) and h ®(x,, x,, 7)
by
) ! (k 2 2 ds
@200 W)= [ HOG =5 x(0=50),
-1 -
A standard formula for the beta function together with (4.19) implies that in a disk
about the origin, h”(x, x,, 7) and h®(x1, x, 7) have expansions of the form
T2 mel @QT(Im|+2)
4.21 h(xq, X5, T)= Bpr™! @ MO—2 120 om,
( ) ( 1> A2 ) n§0m=z—-oo F(|m|+l)
We substitute the series expansions for E”’ and E® into (4.12) and integrate
termwise with respect to s. Also we perform termwise integration of the kernel
function expansion in (4.17). The theorem now follows by making use of (4.21)
and comparing the terms of the series expansions.

Remark. We note that an important consequence of an invertible integral
operator which acts on analytic or harmonic functions is that it can be used to
obtain complete families of solutions. This, in turn, has been a useful tool for
approximating solutions to standard boundary value problems (see [8]). In the

k=1,2.



INTEGRAL OPERATORS 137

present context, a complete family of solutions to (4.1) in a compact starlike
domain can be obtained from the integral operator (4.17) by using Runge’s
theorem [7, p. 47] and the completeness of the harmonic polynomials [14]. In
particular, we let {h, (x1, x,)}» =0 denote the set of harmonic polynomials and in
(4.17) set h(xq, X2, t)=h,,(x1, x2)t" where m,n=0,1,2,---. Also it can be
shown that the integral operator (4.14) yields a complete family of real valued
solutions to (1.1) in a starlike domain by setting f(z, t) = z™t",m,n=0,1,2,- - - .

5. The method of ascent to p +2 space variables. We now consider (4.1)
for p>0. The remarkable fact about the method of ascent to solutions for
higher dimensions is that the kernels in the n-dimensional case are the same as
G2, t, u) and GP(r?, t, u) in the two dimensional case. The integral operator is
merely modified by a factor of ¢” and the harmonic functions are functions of
p +3variables, X1, X5, * *, X,2, t. This result is analogous to the results for elliptic
equations (cf. [6], [9]). The coefficients of (4.1) are assumed to be analytic
functions for r <R.

THEOREM 4. Let EV(r*, t, 5; p) and E®(r%, t, s; p) be solutions of the differen-
tial equation

—¢2 _ —
2 op,, + 2 g 20V E s AGE,
rs r r
+(1_2sz_) [Errs _1Erss] +p 21 [2Errr +_2'Err —22_ Er +A (rz)Er]
(5 1) rs r rs r r
. _ 4 _ _
NS TIET P B TEST] A
rs r rs r

1 1
+% E,. —PE,, +;3- E, +A(r2)[E,, +% E,] +B(r)E—-C(r)E, =0

which are regular for r in some neighborhood of the origin, |s| =1, and §,<t <8,

where 8, is positive and 8, is arbitrarily large. Suppose they satisfy the boundary
conditions

52) EVQ,t5p) =7 ER0,1,55p)=0,

(5.3) E®0,ts;p)=0, E®0 ts-p)=—1-(1— & )

‘ * s by ’P ’ r s by I t p+1

Let HY(x, 7) and H®(x, t) be harmonic functions of x=(xy, ", x,) with a

complex parameter T defined for x in a starlike region with respect to the origin and 7
in a neighborhood of the origin in C'. Then for §,<8 <8,

1
wen=5=¢ [ BV r—t 5 pHOKI=5),7)
27ri |r—t|=6 -1

54
54 +E®(*, 7—t,5;p)

, , dsd
- H?x(1-s2), T)]U—_SST)TW

is a solution of (4.1) in a neighborhood of the origin.
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Proof. The differential equation for the E function can be verified directly by
substituting the integral operator (5.4) into (4.1) and integrating by parts. The
choice of these boundary conditions is for the purpose of normalization in the
method of ascent. We observe that for p =0, the differential equation and
boundary conditions reduce to (4.15) and (4.16).

THEOREM 5. There exist functions EX(r?, t, s; p) and E®(r*, t,s; p) which
satisfy the differential equation (5.1) and boundary conditions (5.2) and (5.3). They
have the expansions

(5.5 E®@2 s p)=—+ Z s?"eV(r?, t; p),

2

(5.6) E®(@?, t,s;p)=r7+ Y s>e(r, t; p),
n=1

which converge uniformly and absolutely for r in a neighborhood of the origin,
80<t <8, where 8,>0 and 8, is arbitrarily large, and |s| =1

Proof. Setting e{"(r%, t; p) =1/t and e (r*, t; p) =r?/t and substituting the
series (5.5) and (5.6) into (5.1) we find that both e“’(r t;p) and e2(r?, t; p) for
n = 0 satisfy the recursion equation:

n+2

(@1 +p+3)2n-+p+1){efa=2) 4200 +p+ rets

~(4n+2)2n+p+ 1)(e':,+1 =< r+1) +2n+p+1D)rA(rde, .,
(5.7) o

+r%e"+r(2—4n)e” +(4n? —1)( p )

24,2 1- 20/(.2 2y, 20%€n

+reA(r )(e',’,+ +r°B(r)e, —r“C(r )—-———0

with
t-

59 n0,1;p) =22050) g, n=23

2)

Here ' denotes differentiation with respect to r. The functions e{"” and e{® must

satisfy the equations
'

(5.9) ef?"~=-=0
and
@ 92
5 ar_ef_ :
(5.10) eq . (p+1)tA(r )

)

respectively. For e{”, we choose the boundary conditions

m
0,t;
(5.11) eP0, t;p)= % 0
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which implies that

(5.12) e’(r?, t; p)=0.
In solving for e, it will be desirable to choose constants in such a way that the
term 1/(p+1) may be factored and the boundary condition (5.3) reduces to
equation (4.16) when p = 0. The appropriate conditions are

920, t; p) 1
(2) =
(5.13) (0,1;p)=0, > G

and thus

(5.14)  eP@*t;p) =

(1»[ I CAE) dE~ [ 3A(§2)d§]

Forn=2,e?(r* t; p),i =1, 2, are defined recursively by (5.7) and (5.8) and
then the series (5.5) and (5.6) formally satisfy (5.1) and the boundary conditions
(5.2) and (5.3) respectively. In order to show that the series (5.5) and (5.6)
converge, observe that E¥ (r2, t,s) and E®(r* 1, 5;0), i =1, 2, satisfy the same
differential equation and boundary conditions. Since their expansions have the
same form, it follows that e(r?, t; 0) = e®(r% t), i = 1, 2. Thus, the series (5.5)
and (5.6) converge for r in a neighborhood of the origin, 8, <t <84, §0>0, and
|s|=1 when p=0. Next we define new functions c(r t;p), i=1,2, n=
0,1,2,- -, by the formulas

P p)=1/t, 07 tp)=r/t,
2eP(r?, t; p)T(n+p/2+1/2)
I'(m)I'(p/2+1/2) ’

(5.15)

Pt p)= n=1,2,---.

Using (5.12) and (5.14), and the values of e§” and e§” in (5.7) with n =0, we

determine that ¢{” and ¢ are given by the following formulas:
(5.16) ci’(r?, t;p) =0,
P t;p)=(p+ e 1;p)
1 r r
(517 - —1[rer] aeas-| eae .
(4]

et =L owy-1pe),

(c‘f)"—% c‘f”) +re"~ (c‘f)"——} 0‘12)'> +2 A()e?”
(5.18)
= 'E [2A %) +—B(r2)+ C(rz)]
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Forn=1,2,---,cP(? t; p), cP(r?, t; p) both satisfy

1 1
4n(n+ 1)<c;{+2—7 c;+2) +4rnc’ 1—4n(2n + 1)(c,,+1 — c,,+1)

(5.19) +2nrA (r*)cl o1 +ric”+ (2 —4n)rc" +(4n2—1)(c’,’,—%)
+r?A (rz)( [ 1-2n ) +r*B(rd)c, —-rzC(rz)
with
n b t;
(5.20) cn(O,t;p)=a—C%£2=0, n=2,3, -

Since (5.16)~(5.20) do not involve p, they imply that the c¢(r?, t; p) are in fact
independent of p. This result, together with the fact that the series (5.5) and (5.6)
converge for p = 0 implies from (5.15) that these series converge for any positive
integer p in the domain stated above. This concludes the theorem.

THEOREM 6. Let h'V(x, 7) and h'® (x, ) be arbitrary harmonic functions of
X=(X1, * * *, Xp42) With complex parameter 7, defined for x in some sphere centered
at the origin and 7 in a neighborhood of the origin in C'. Then for §,<8 <8,

ulx,)=hO%x, 1) +r’h?(x, 1),
1

(5.21) +——1—, J PGP0, 1=t 1-)hP(xo?, 7)
27 Jji =5 o

+G2(?, r—t, 1-0)h®(x0?, 7)) do dr

is a solution of (4.1). The functions GV and G® are independent of p, have
expansions of the form

G®u? tu)= Z c®r?, Hum?, k=1,2

n=1

with ¢ defined in (5.15), and satisfy the boundary conditions

(5.22) G0, u)=0, GP(0,t,u)=0,
(5.23) G?0,t,u)=0, G%0,t,u)=-1/t.
Proof. After substituting (5.5) and (5.6) into (5.4) and defining
1
B 1) = [ HO(x(1 =5, 1) = k=12,
0

the calculations follow exactly as in Theorem 3. A comparison of the expansions
for the G functions above with those in Theorem 3 equation (4.18), shows that
they are identical since ¢, (r?, t; p) are independent of p. The boundary conditions
follow from (5.20), (5.16) and (5.17).

In conclusion we wish to point out that it remains to be shown that the integral
representation of Theorem 6 is invertible and yields a complete family of solutions
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for p>0. Also it should be noted that if the coefficients of (4.1) are entire
functions then the kernel functions will be entire functions of r?.
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ON AN ELLIPTIC BOUNDARY VALUE PROBLEM
WITH MIXED BOUNDARY CONDITIONS,
ARISING IN SUSPENDED SEDIMENT TRANSPORT THEORY*

GUNNAR ARONSSONt AND BENGT WINZELL#%

Abstract. In this paper we prove the existence of an equilibrium distribution in the three-
dimensional diffusion model for suspended sediment transport. Mathematically, this means that we
solve an elliptic boundary value problem with mixed boundary conditions in a domain with
corners. We use Riesz-Schauder theory and some of the classical Agmon-Douglis—Nirenberg
estimates, among other things.

Introduction. The problem of suspended sediment transport in a turbulent
water stream has attracted very much attention, both theoretically and
experimentally. One attempt to treat the problem mathematically is given by the
so-called diffusion model with all its variations. See, for instance, [3, pp. 164-202
and pp. 398-419], or [9].

An equilibrium distribution is, roughly speaking, a distribution which is
independent of the coordinate along the channel, independent of time, and
satisfies certain boundary conditions. If one neglects the influence of the lateral
coordinate, then the equilibrium distribution only depends on the vertical coordi-
nate and is easily determined mathematically. This case has been known for a long
time; see [3, pp. 172-173], and references given there.

If the influence of the lateral coordinate is not neglected, then the question of
the equilibrium distribution leads to a boundary value problem for an elliptic
differential equation in two variables under mixed boundary conditions. Further-
more, the boundary has corners. It is this problem that is treated in this paper.

We have proved that this boundary value problem has a unique solution.
Thus an equilibrium distribution exists and is unique. Physically, we have in mind a
waterflow or a channel with a fixed cross-section and a bottom which is not too
steep. (A very steep bottom makes the boundary condition questionable.)

The paper is divided into a physical and a mathematical part, which can be
read separately. The first part is mathematically elementary, whereas the second
part requires knowledge of the theory of partial differential equations.

1. Physical assumptions for the diffusion model. We shall consider sediment
transported in suspension by a turbulent water stream in an infinite channel. A
number of simplifying assumptions must be made. To begin with, we consider the
channel as being horizontal with a fixed cross-section ,. We introduce a
horizontal lateral coordinate x, a vertical coordinate y and a horizontal longitudi-
nal coordinate z. The geometry of the problem is shown by Fig. 1.

We assume that the influence of the sediment on the water flow conditions
can be neglected. This is reasonable, if the sediment concentration is not too high.

* Received by the editors November 26, 1975, and in revised form June 15, 1976.

T Department of Mathematics, Chalmers University of Technology and Géteborg University,
S-402 20 Goteborg, Sweden.
§ Department of Mathematics, LinkGping University, S-581 83 Linkoping, Sweden.
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We assume that the sediment has a well-defined settling velocity (the terminal
fall velocity for a single particle in stagnant water).

We assume that the water flow conditions depend only on (x,y)e Q.
This means that the intensity of turbulence, and therefore the diffusion coefficient,
and also the (mean) flow-velocity of the water, do not depend on the longitudinal
coordinate z, or on time.

We introduce the following notations:

t = time,

u(x, y, z, t) = concentration of sediment,

¢ (x, y) = diffusion coefficient,

w = settling velocity of sediment,

¢ (x, y) =horizontal velocity of water, when turbulent variations have been

“averaged out”’.

It is now part of our approach that the motion of sediment can be divided into
the following three parts, which are superposed upon each other:

a) Isotropic turbulence of water gives a flux with direction

—(9u/dx, du/dy, du/dz)

and magnitude

o(x,y)- V(ou/ox)* + (du/dy)* +(du/dz)?;

b) the settling of particles causes a vertical flux with the magnitude
w-u(x,y,zt);

c) the horizontal mean velocity of water causes a flux in the positive
z-direction with the magnitude ¢(x, y) - u(x, y, z, t).

2. The basic differential equation. By expressing mathematically the con-
servation of mass it follows from the above assumptions that the concentration of
sediment u satisfies the parabolic equation

u

o =@ (x, y) Au +upx +uyp, + wu, —ju,,
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which is natural since it describes a diffusionlike process. Consequently, a
stationary solution u = u(x, y, z) must satisfy

o (x,y) Au +up, +uypy +wuy, —ygu, =0,

which is an elliptic equation. The reader will find in [3, Chap. 8] a more physically
oriented presentation of this model, as well as further references.

3. Requirements on an equilibrium distribution. A boundary value prob-
lem. An equilibrium distribution of sediment is a stationary solution to our
differential equation, which is independent of the longitudinal coordinate z, and
which also satisfies certain boundary conditions. The boundary condition for the
surface states the fact that the net vertical transport at the surface is zero, and the
boundary condition for the bottom expresses a balance between the suspended
load and the bottom load.

The net vertical flux is wu + ¢ (x, y)ou/dy, so the condition at the surface C; is
simply wu + ¢ (x, 0)ou/dy = 0 there. See Fig. 2.

As for the bottom condition, we reason as follows. Consider an arbitrary
vertical line L, where the depth is . It is usually agreed as a convention that the
transport at greater depth than 0.95h is dominated by the bottom transport. It is
further assumed that, in a state of equilibrium, the suspended load must be
adapted to the bottom load. Now we suppose that the bottom processes do not
depend on z. It therefore seems reasonable to assume that the equilibrium
distribution at P € C; must be equal to a concentration g(£), which is exactly the
concentration that can be maintained by the bottom processes close to P. We
therefore have, along C;, a boundary condition of the form u = g(x).

Summing up, we find that the question of the existence of an equilibrium
distribution leads to the following boundary value problem :

Find a solution of the differential equation

o(x,y) Au +u,@, +uyp, +wuy, =0
in the domain (), which satisfies the boundary conditions

u=g(x) onC

FiG. 2
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and
ou
wu+e(x,00—=0 onC,.
ay

Here the function ¢ (x, y) is positive and smooth in Q,wisa positive constant and
the function g(x) is nonnegative and smooth. Further C; is a segment of the x -axis
and Cj, the rest of 3€), is a smooth curve which can be represented by y = h(x).

It will follow from the subsequent analysis that this boundary value problem
has a unique solution and hence there is a unique equilibrium distribution.

The mathematical investigation which follows will require some further
conditions on ¢(x, y), h(x) and g(x). But these conditions must be considered to
be physically reasonable and will not be discussed further here.

4. Exact mathematical formulation of the boundary value problem. A
uniqueness result. We are thus led to consider a problem of the form

u d .
Au+a—+b—u+cu=0 inQ,
ox Iy

®) u=g onl,

[¢]
2iyw=0 onL"
dy

Here () is a bounded domain in the xy-plane, the boundary of which consists of the
closed segment L on the x-axis and the curve I in the lower half-plane. I'is given
by x> (x, h(x)), x e L, where h e C?**(L). L° is the relative interior of L, and
h(x)<O0 for x e L°.
For the coefficients of (P) we require
(i) a,beC'™ (), 0<a<l,
(i) ¢ =0 belongs to C* (),
(iii) y >0 belongs to C***(L).
As a tool for uniqueness proofs we employ the Hopf maximum principles.
See M. Protter and H. Weinberger [4, Thm. 6, p. 64, and Thm. 8, p. 67]. These
theorems imply
LEmMA 4.1. Letu e C(Q)NCYQUL® N C?*(Q) be a solution of (P). Then a
nonnegative maximum (or a nonpositive minimum) is taken on at I'. If in particular
g=0, then u=0in Q and we get

max u = max g.
o r

COROLLARY. A solution of the problem (P) is unique in the class C(Q)N
C'(QUL)NC*Q).

Remark. If g >0 on T, it follows that ming u >0, which seems physically
satisfactory.

5. Transformations of the boundary value problem. We intend to derive
existence results for (P) by a reflection method, similar to the classical Schwarz’
reflection principle. Our present condition for u on L’ is inconvenient for this, so
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we have to make a simple transformation into a problem with the condition
ou/ay =0on L°,

Having assumed that I’ is given by the graph of a function, it follows that the
projection of () on the x-axis coincides with L. Thus, by the formula

Flx,y)=y - v(x)
we have defined a function F e C***(Q) satisfying

(5.1) gf(x, 0)=7y(x) onL.

LEMMA 5.1. ue CQ)NCYL°UQ)N C*(Q) is a solution of (P) if and only if
the function

(5.2) v=e" -u,

having the same regularity, satisfies

Av +A@+B§£+Cu =0 in(},
ox ay

P v=G onl,
gl—’=0 onL’,
ay
where
oF F F F
A=a-2% B=b-2% c=ctvFP-2F-a %L a G=¢
ox ay ox ay

Remark. A, BeC'**(Q), CeC*(Q).

_COROLLARY. A solution of the problem (P') is unique within the class
CONCQULYNC*Q).

The reflection technique. Denote by () the reflection of Q in L, i.e.
Q={x, —y)lx, y)eQ}.

Put D=QUL°UQ. Then D is a bounded domain in R?. It is symmetric with
respect to the x-axis. See Fig. 3. D has corners at the endpoints of L. The angles

FiG. 3
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are less than . Denote by I" the reflection of T. Then D =T UT. Define the
symmetric extension of £’ =A+ /4 d/dx + B 9/dy + C to a differential operator in
D by.f A+Ad/ox+B a/ay +there A and C are even and B is odd in y. We
also extend G evenly in y to G.

The new problem to be investigated is a Dirichlet problem with a side
condition:

AG+AL av+B—;+Cv -0 inD\L,

. =G onaD,
P) .. . .
0 is even in the variable y,
seC(D)NC(D)NC*D\L),

where we assume that Glr=GeC"™™(I).

Remark. Aisa LlpSChltZ function in D and restricted to Q2 or Q) it is of class
C”"‘ c € C*(D) but Bisin general dlscontmuous at L. However, the restriction
of B to ) has a continuous extension to £ which is in C**.

We immediately get

LEMMA 5.2. A solution of (P) is unique within C(D) ﬂ ok (D) NC*D\L). For
given G on T, the problem (P') has a solutionv € C(Q)N C* (Q ULYNC*Q)ifand
only if the problem (P) has an even in y solution s € C(D)N C' (D) N C*(D\L) with
& =G on dD, and in that case © is the even (in y) extension of v.

Remark. We may replace () by any domain with boundary consisting of one
segment of the x-axis and a bounded curve in the lower half-plane.

6. Existcnce results for a modified problem. Since the domain in problem
(P) has corners we will approximate (P) by problems in smooth domains.

In the sequel we will use the following convention: the functlons a, b and c of
problem (P) are extended (see [5, Th. 4, p. 177]) to all of R* as a’, b’ and ¢’ with

¢’ =0 and with preserved regularity. Then A’, B" and C’ are analogously defined

in the lower half-plane. We get A, B and C on all of R? with symmetry and
regularity as in § 5.

The following result is proved by standard arguments. (See also [10].)

LEMMA 6.1. Assume that X is a bounded domain of R?, symmetric with
respect to the x-axis. Further, assume that 32 is of class C***. Let ¥ (x, y; & m) be
the Green’s function for the Laplacian in X.

Letw e C***(S)NC™*(E), and let G € C***(32) be even in y. Then w satisfies

Aw+ A B L Gw=0 in P
0x ay

Q) w=G on s,

w iseveniny
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if and only if

W(x, }’)= _J’ G(‘f,"’l
(6.1) =

y; € m)dsgy

+J- (AQE+§——VE+C'W> EH(x,y; & n)dédn
s ox ay
in Z and wis even in y.

LEMMA 6.2. X is as in the previous lemma. The integral equation (6.1) has a
solution we C***(Z)NC'**(Z) which is even in y for every even (in y) Ge
C'*(93).

Proof. Consider the linear operator

% w+j Gﬁ—J (A——+1§—+Cw)
T:((f;)'—) s v s ax

~

defined on X ={(w, G) e C' ()X C'™(3%): w and G are even in y}.

1) Tmaps X into X. The only fact that needs a proof is that the integral over
the domain in the first component of T(¢) is in C !, This, however, follows from an
application of Theorem 9.3 of [1] and we have the result that in fact the map
f »——>j>; f¥ is continuous from L(Z) to C'** () for every a €[0, 1[. For the details
we refer to our paper [10].

2) T—1=K is compact on X. We already know that K ( G) (v 0 u) with
v, uc C'"*(E). Since v e C***(2) and Av =0 in I, Theorem 9.3 of [1] gives

lolfsa=C - IG]Ta-

and the argument of 1) shows that
lulfra=C - lIwlf.

Introduce the norm

[(3)] =wit+1c1.

in X. We have shown that T—1I =K is compact by the Arzela-Ascoli theorem.
3) The null space of T'is trivial. Assume that (w, G)e N(T), the kernel of T.
By definition of T it follows that G = 0 and that

W(x,y)=f

(AS2+BS7+Cw) € m) - (s, y5 & m) dg dn.

s ox ay

Since we C'(Z) and A, B, CeL™(S), it follows from [6] that we C'"*(Z).
Furthermore, w is even in y, so aw/dy(x, 0)=0. By the C T+ regularity of the
restrictions of B to the components of Z\{x- ax1s} it follows that A ow/ox +
Bow/dy +Cw e C*(Z) and thus Aw + Aw + Bw + Cw =0 in = and w € C*** ().
This is a minor modification of the result in [2, p. 250]. Since w has zero data it
follows that w is identically zero.
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4) Therange R(T) of Tis all of X according to the Riesz—Schauder theory (see
[8, Chap. X]). Thus the theorem is proved except for some regularity results which
however are of standard type. Q.E.D.

7. An existence theorem for the basic boundary value problem. The nota-
tions I, {) etc. now mean the same things as in § 4.

MAIN Ex1STENCE THEOREM (Theorem 7.1). Forevery g € C'™**(T) thereisa
unique solution ue C(Q)NC*(Q\(C'NL)N C*(Q) to the problem (P).

Remark. By u e C"**(Q\('N L)) it is meant that for every compact set K in
O\TNL), ulx e C'™*(K).

Proof. The uniqueness was proved in § 4. It remains to prove the existence.
The full details of this proof are given in [10] (available from the authors). The
main difficulty is due to the fact that D =QUL°UQQ is not of class C>**. To
circumvent this, we construct a sequence of C***_domains D, D and a corres-
ponding sequence {V,,} of solutions to problems similar to (P) in D,. Finally, we
show that a subsequence of {V,.} converges to a solution & of (P).

All that can be done by arguments based on a priori estimates from Theorem
9.3 of [1]. Such estimates also show that the limit function & has the regularity
stated in the theorem except possibly at the corners and that the function u which
is the solution of (P) corresponding to # satisfies the boundary conditions. To
prove the continuity of u up to the corners we employ the theorem on bounded
convergence and the estimates for Green’s function in [6] and [7] to see that u
satisfies the integral identity

o o . d = 0N
=—| 6=+ - Z(A%)-B=+
i y) LDGav Lu{ F AT B3 c.%}
—I ag?%—J ﬁ9§9z+2j uB%.
o oM 6 o L

Now the continuity follows in the same way as for smooth boundaries by the
estimates in [6] and [7]. Q.E.D.

Remark. This main existence theorem can be generalized in various ways.
For instance, we may allow I" to have a finite number of convex corners. Widman’s
estimates for the Green’s function still hold and our smoothing process can still be
applied. Naturally, it is assumed that the sections of I connecting these corners are
of class C***. We obtain a solution u to our boundary value problem in the class

UeC*™ Q)N C)NC'**(Q\all corners).

Mathematically, this would enable us to include the case of an artificial channel
with a convex, polygonal cross-section, for instance a rectangle. However, it is far
from clear what the physical boundary conditions should be then, so it seems
advisable to refrain from any physical statement in that case.
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THE ENERGY APPROACH TO THE KARMAN-FOPPL
EQUATIONS*

MELVIN MULLINY

Abstract. It is shown that the energy of a nonlinear elastic plate, subject to an infinite set of
constraints, attains its minimum. These constraints are equivalent to the stress-strain relations. It is
also shown that the minimizing functions w, ¢ satisfy the Karman-Fo6ppl equations:

NA2W - ¢x,.,Wyy - ¢yywxx + 2¢xywxy =D,
A2¢ + E(Wyxwy, —w2)=0.

Introduction. An energy method is used to prove the existence of solutions
to the nonlinear system of Karman-Foppl equations:

1) NA’w - DxxWyy = GyyWix +2dxyWiy =p,
2 A2¢ +E(WuWyy — wiy) =0.

The function w gives the deflection of an elastic plate occupying a plane region ()
and subject to a normal load p(x, y); ¢ is the stress function; N and E are positive
constants. The equation (1) may be formally derived as a necessary condition for
the existence of minimum potential energy E(w, ¢) subject to the constraining
equation of compatibility (2). A basic difficulty in proving the existence of a
minimizing pair (w, ¢)is due to the fact that E(w, ¢) contains only derivatives up
to second order. This implies that the minimizing functions should be sought in a
space of functions with square integrable second derivatives. The fourth order
compatibility equation is not meaningful for such functions. In § 1 it will be shown
how the constraint (2) can be replaced by an infinite set of integral constraints
containing only second derivatives of ¢ and first derivatives of w. It will be shown
in § 2 that if there is a smooth pair of functions (w, ¢) that minimizes E(w, ¢) over
all pairs that satisfy the infinite set of constraints, then w and ¢ solve the
Karman-Foppl equations (1), (2). The existence of such a pair will be established
in § 3.
When no forces are applied at the boundary, the energy is given by

G) E(v, $)=2 B(w)+34s(#)= (W, ),
where

@ BOn= | [@wy -20-) 0wy = w3,
(5) qd:(w): J;) j¢xxwg+¢yywi—2¢xywxwy,

© wo)=| [we

and the Poisson ratio » satisfies 0 <v <1.

* Received by the editors December 11, 1975, and in revised form September 14, 1976.
+ John Jay College of Criminal Justice, City University of New York, New York, New York.
Now at Becker Securities Corporation, New York, New York 10041.
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A problem arises in trying to find a lower bound for g4 (w), the quadratic form
in w defined by (5). If the plate is under tension at a point (x, y), then the integrand
in g4 (w)is positive there. It will be shown that g4 (w) is positive without the a priori
assumption that the plate is under tension.

Previous existence theorems have been based on the Schauder fixed point
theorem (Knightly [7]), or have been established for small loads by perturbation
techniques (Fife [4]). The energy approach presented here is somewhat more
constructive than the use of fixed point theorems and is not restricted to small
loads.

1. The set of constraints. The compatibility condition results from the
elimination of the displacements u and v, in the x and y directions respectively,
from the stress-strain relations:

1 1
(7) Uy +§W§ = E(¢Y¥ = Vhxs),
1 1
(8) Uy +§w3=E(¢xx_V¢yy)’
) Uy + v+ wewy = — 2(1; V)quy.

This is accomplished by applying 8 to (7), 32 to (8), —3,dy to (9) and adding. To
avoid the fourth order equation (2), the following approach is taken here: Taking
an arbitrary function ¢ € Cg (Q2), equation (7) is multiplied by ¢y, (8) by ¥,,, and
(9) by —¢y. The sum is integrated over (), yielding

% L j(wxxwi + Py W2 = 2y Wiwy) =% L IA¢ Ay, VyeCo(Q),

or from the definition (5):

(10) St =5 | (8680 veecr@)

This is the weak form of the differential equation (2).

2. Necessary conditions. For simplicity we consider in detail only the case of
a clamped plate to which no forces are applied at the boundary. It will be shown
that if (W, @) is a pair of smooth functions that minimizes E(w, ¢) over all
functions (w, ¢) that satisfy (10) and the boundary conditions
(11) w=0, w,=0 on d(),
(12) ¢=0, ¢,=0 on 4},
then (W, @) is a solution of the Karman-Foppl equations (1), (2).

Let v € C5(Q) and set

(13) w=Ww+ev.
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Denote by ¢ (&) the solution of the differential equation
) A2¢ =—E(WxxWyy — wiy)a

subject to the boundary conditions (12). If we multiply (2) by any ¢ € Cg (Q) and
integrate by parts, we find that the pair (w, ¢(¢)) satisfies (10). Since the
differential equation (2) has a unique solution ¢ satisfying (12) for a given w, we
conclude that ¢ (0)= ¢ and that the pair (W, @) is a solution of (2). Furthermore,
because ¢(0)= ¢, E(W + £v, ¢(¢)) has a minimum at £ =0 and therefore

(14) k"; _E(+e0,¢(e)=0.

From the definitions (3)-(6), this is equivalent to
(15)  NB(W, v)+3q5(%, v)+iqe, ()~ (x, p) =0,

where

16) B(w,v)= I jAw AV = (1 = v) (WexUyy + WyyUxx — 2 Wy Usy ),

Q
17) qe(w,v)= A J¢xxvywy + ByyVsWx — Gry (Wxby + Wyy )

d
18) ¢ =T e=0¢(8)-
We will show that
(19) qs.(W)=24q(W, v)

and therefore (15) may be written as
NB(Wa v)+q$(W, 1.7)" (U, P) =0.
Integration by parts yields

j J‘[N Azw _$xxwyy - $yy”-’xx +2¢—xywxy "‘p]U =0.
Q

Since v is arbitrary, we obtain the equation (1):
N AW~ quywxx - ‘;xxwyy + 2‘lf’—xy“vxy =p.

It remains to prove (19). We differentiate the constraint (10) for ¢ = ¢(e),
w = w + v with respect to & to obtain

2

(20) 2 [ [ad a0, = 240.(7)+ 45(9, 0)

If we multiply (2) with £ =0 by ¢. and integrate by parts, we obtain

@1) [ [a0. 86 =Zas, (3.

Equations (20) and (21) yield the result (19).
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3. Existence of a minimizing pair. We consider functions in the space H*(()
and H}(Q). These are the completions of C*(Q) and C3(Q) in the norm:

(22) ||u||§=j Ju2+j J‘(Vu)2+‘[ I(u§x+u§y+2uiy).
) 0 )
For functions w in H 3(0) we have
1
(23) E"W”zéB(W)l/zéK"W"z-

THEOREM. There is a pair of functions (W, &), with w and ¢ € H3(Q), that
minimizes E(w, @) over all such pairs (w, ¢) restricted by the infinite set of
constraints (10).

Proof. The set of pairs (w, ), with w, ¢ € H5(Q2), that satisfy (10) for all
¥ € Co (Q) will be denoted by €. We observe that € is not empty; for if w € Co (),
then we may find a ¢ € H5(2) by solving (2), (12). Multiplying (2) by ¢ € C3(Q)
and integrating by parts, we obtain (10).

Since (0, 0) € €, we find that

(24) m= ir%f E(w, ¢)
satisfies
m =E(0,0)=0.
It follows that we may find a sequence {(w;, ¢;)} in € such that
(25) E(w;, ¢,)=0, Vj
and
26) lim E(w ;)= m.

We will show that the sequences {w;} and {¢;} are bounded in H3(Q).
Definition (3) of the energy together with inequality (25) yields

@7 S BOY)+0,(%)S (D).

Since both sides of (10) are continuous linear functionals on ¢ € Hy(Q)), we may
take ¢ = ¢; to find

2
g4, (W)= EJJ(A¢j)2 =0.
Thus
N
EB(WI‘) = (wp, ) =lwililipllc..

From the definition (22) of the norm in H3(2) and inequality (23), we conclude
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that
2K?
(28) lIwill. = T"P"Lz

Thus the sequence {w;} is bounded in H ().
It is well known [5] that

1
29) 'I-{l||¢|lz =|Adl, =Kill¢l. for ¢ € Ho(Q);

thus it suffices to show that {A¢,} is a bounded sequence in L>. Equations (10) with
¥ = ¢; imply

g2 = 21l . =S E 1A o Awil
or
(30) IAd o= E
where

(31) o= [ [+ ”,,;Jr”u:

It can be shown [5] that
(32) lulls.e = Kollull.  foru e Ha(Q).
Thus inequalities (28) and (30) yield

Al = KallpllZ 2,

i.e., {A¢,} is a bounded sequence in L>.

Since a Hilbert space is weakly compact [2] we can find a subsequence
{(Wj» #;,)} such that {w;} converges weakly in H5(Q) to a function w, and {¢,,}
converges weakly to ¢ in Ha(Q2). We will show that (w, ¢)e € and

(33) E(w, $)=m.

This means that (W, ¢) minimizes E(w, ¢) on 6.
For convenience, we rename our subsequence {(wj, ¢;)}. Note that

s, (W) — s (%)| = s, (w; — W, w; + W)+ G5 ()
= Killpl22lw; — w4+ |qe-3(P)\.

The first term on the right above tends to zero because {w;} converges to w weakly
in H5(Q) and consequently in the norm (31) [5]. The second term tends to zero
because {@,} converges to ¢ weakly in H3(Q). Therefore

(34) lim gq,(w;) = q5(%).
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Since a norm is weakly lower semi-continuous [2],

(35) lim B(w;) 2 B(7).
It follows from (26), (34) and (35) that
m =,1ng10 E(w;, ¢;))ZE(W, ¢)
It remains to show that (W, ¢)e €; i.e., (W, ¢) satisfies (10):
2= (G 89), Ve CF(O)

This is true because the left side is a continuous function of w in the norm (31), the
right side is a continuous function of ¢ in H5(Q2), and (w;, ¢;)€ € for every j:

1 .1 .1 1 -
5‘“(“’) = lim E‘Illz(wi): lim E(A¢ia Ay)= E(Aqﬂ, Ay). Q.E.D.

The minimizing pair (W, @) is a “weak solution” to the Karman-Foppl
equations. It has been shown that such solutions are smooth [3]. In fact if the load
p is Holder continuous with exponent a, then w € C*** and ¢ € C®**. The proof is
based upon the well known ‘“boot strap” method [5] for proving regularity of
weak solutions of elliptic partial differential equations together with results of
Agmon [1] on L” solutions to the Dirichlet problem.

Acknowledgment. The author would like to thank Fritz John for many
interesting discussions.
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ON CONVEXITY PRESERVING OPERATORS*
RIVKA SENDEROVIZHt

Abstract. Let K * f denote a convolution type operator, defined for periodic functions with period
24r; we present a characterization of the class of such operators preserving the set of odd functions
which are concave on 27. The paper concludes with some necessary conditions on the Fourier
coefficients of functions of those classes.

1. Introduction. Let P be the class of odd functions f(x) with period 2
which are L-integrable and nonnegative for 0=x =.

Let C be the subclass of P consisting of all functions f(x) of P which are
concave in the interval 0=x = .

Finally let the integral operator:

1 o[ K=oy dy =K 00
where K (x) is a real periodic function of bounded variation, be defined on P. The
question is: under which condition does the operator (1.1) preserve the class C?

In [3], S. Karlin gives sufficient conditions for a kernel K which is twice
continuously differentiable. He proves that if K is cyclic totally positive of order 3,
and.if all its Fourier coefficients are positive, then the suitable operator (1.1)
preserves the class C and K * f satisfies the inequality K * f =f on [0,7].

In a way similar to that used by G. Plya and I. J. Schoenberg in [4] for the de
la Vallee-Poussin means, it can be proved that, if K(x) =Y . u, e™ isin SC; and
SC3; and has two continuous derivatives, and if w; >0, then K solves problem.

In the sequel we use M. Fekete’s [1] conclusions to find necessary and
sufficient conditions for the above problem.

2. Necessary and sufficient conditions for a kernel to preserve the classes C
and P.

DEFINITION 1. A periodic function is a bell function if it is nondecreasing on
(—r, 0) and nonincreasing on (0, 7).

LEMMA 1. If K(x) is an even bell function, then for each x and x in [0, 7] the
inequality K(x —xo) — K (x +x0) =0 holds.

This property of an even bell function leads to the following theorem:

THEOREM 1. Let K (x) be a continuous even function of period 2. Then, for
eachfof P,K * f gwen by (1. 1) belongs to P if and only if K is a bell function.

Proof. It K(x)=Y "0 une™ is an even function, and f(x)~ Yo by sin nx,
then

8@ =K * ) =5 [ K&=yf)dy

=2i I"[K(x"Y)“K(x +y)1f(y)dy =0 on [0, 7]
™ Jo

* Received by the editors June 20, 1975, and in revised form July 12, 1976.
T Department of Mathematics, Technion—Israel Institute of Technology, Haifa, Israel. This
paper is contained in an M.Sc. thesis submitted to the Technion, 1973.
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whenever f belongs to P if and only if [K(x —y)—K(x +y)]=0 or equivalently
K(x) is a bell function.
Integration by parts yields

2n 1 v n
g0 =5- [ KG-yr™)ay

which leads us to:

THEOREM 2. Let f be an odd function satisfying f*>=0 on [0, 7w]. Then
g(x) =K = f(x) satisfies g® =0 on [0, 7]if and only if K is an even bell function.

For n =1 Theorem 2 gives us the condition under which K preserves the class
C.

Remark 1. Using Theorems 1, 2 and the definition given by M. Fekete [1, p.
110] we find that a sequence of Fourier coefficients of an even bell function is one
which preserves the classes P and C as well as the class of all odd functions
satisfying f** =0 on [0, 7].

3. Some inequalities for the Fourier coefficients of a function of C and an
even bell function. The class C'is a cone, and its extreme rays are the family

b

;x, x €0, a],
if a (0, 7);
bz x’ x €(a, 7],
T—a
b
f(a, b,x)= —;(frr—x), x€(0, ],
ifa=0;
0, x =0,
kx, x €[0, 7),
’ﬂ'
ifa=m;
\O, X =,

with b >0.
Using their Fourier series we get:
THEOREM 3. If f(x) ~ Y., b, sin nx belongs to C, then:
(@) Yi_,nb,z0,k=1,2,---.
() [bulZk|bin), n=1,2,-;k=1,2,---
Moreover, by Remark 1, we have
THEOREM 4. If K(x) =Y ", un €™ is a continwous even bell function, then:
@ Yno pwnz0,k=1,2,--.
®) lunlZ |l n=1,2,---; k=1,2,--.

Acknowledgment. The author wishes to express her deep gratitude to
Professor Z. Ziegler for his guidance and inspiration.
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SINGULAR PERTURBATION OF AN EXTERIOR DIRICHLET
PROBLEM

GEORGE C. HSIAOf

Abstract. This paper discusses a class of singular perturbation problems such as those of slow
viscous flow past a cylinder. A semilinear second-order elliptic equation with a small parameter is used
as a model to illustrate the correlation between a regular perturbation procedure and the method of
matched asymptotic expansions. Some justification of the formal inner and outer expansions is
established. It is found that the use of integral equations of the first kind for treating such a class of
singular perturbation problems seems most desirable.

1. Introduction. In [8] we discuss the validity of the method of inner and
outer expansions for treating singular perturbation problems such as those of slow
viscous flow past a cylinder. The particular model we studied there is an ordinary
differential equation problem:

1
y"+; y'—eyy'=0 onx>1,

®.)

y=0 atx=1; y->—a asx->0,

where ¢ is a small positive parameter and a is a positive constant independent of &.
Based on a regulai perturbation procedure developed by Finn and Smith [4], [5],
it is shown that the formal asymptotic expansions constructed by the method of
inner and outer expansions are indeed in some sense the asymptotic expansions
for the exact solution of the problem (P.).

The purpose of this paper is to see how the ideas used for (138) might be
extended and applied to similar problems for partial differential equations as a
first step towards establishing the validity of the formal procedure for obtaining
the inner and outer expansions in the case of full nonlinear Navier-Stokes
equations. As a genuinely two-dimensional model,’ we consider an exterior
Dirichlet problem in the plane for the semilinear elliptic partial differential
equation,

(E) Au—eguu,, =0,

in an exterior domain () with a smooth boundary 9{) consisting of a simple closed
curve. Here points in the plane E; are denoted by x=(xi, x,); u = u(x; €) and
Uy, = du/0x. The boundary condition and condition at infinity are respectively,

(B) u=f onaQ

* Received by the editors September 24, 1974, and in final revised form August 17, 1976.

t Department of Mathematics, University of Delaware, Newark, Delaware 19711, and Fach-
bereich Mathematik, Technische Hochschule Darmstadt, D 61 Darmstadt, West Germany. This
research was supported in part by the Alexander von Humboldt-Foundation, and in part by the U.S.
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! Notice that (P,) might be considered to represent a problem for the two-dimensional Laplace
equation in an axially symmetric situation.
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and
(©) u->-a as|x|->oo,

For simplicity, we assume that the given function f is sufficiently smooth and
independent of . Throuhgout the paper, we denote by (P.) the above problem.

Problems (P.) and (P.) belong to the special class of singular perturbation
problems, a class whose prototype is the problem of the stationary incompressible
flow of a viscous fluid past a cylinder [9], [11], [17]. Singular perturbation
problems of this kind often arise in fluid mechanics, elasticity as well as in other
fields of mathematical physics [10]. In this class of singular perturbation problems,
the differential equations considered in general are of the form

1.1) Liu=Lou+eNu=0,

where L is a linear elliptic operator, and N is an operator which may or may not
be linear but whose order is less than that of the operator Lo. The equation (1.1)is
to hold in a region which is in some sense infinite. Solutions of (1.1) are to be
subject to a boundary condition of the form (B) and a condition at infinity such as
(C). The problems are singular in the sense that the degenerate problem (Py),

(1.2) Lou=0

together with the conditions (B) and (C), has no solution®. This is the analogue of
the Stokes paradox in fluid flow [20], and thus, the degenerate equation, (1.2), is
often referred to as the Stokes equation. In contrast to the usual singular
perturbation problems considered in [23], [16], [3], neither the order nor the type
of the degenerate equation, (1.2), has been changed from the original one,
and the region of nonuniformity (or the boundary layer) in this case is the
neighborhood of the point at infinity, rather than of the boundary [20, p. 153].

The degenerate problem (Py), of course, will have solutions if the condition at
infinity is relaxed. There will, in fact, be many solutions of (1.2) satisfying (B).
More and more can be obtained by allowing increasingly singular behavior at
infinity. Among them, there will be certain ones with the weakest possible
singularities at infinity. We make use of what might be called the weak singularity
principle (WSP) which states that only these weakest singular solutions should
enter into the problem (compare [20, p. 53]). In problem (P, ) we consider here, as
one will see in § 2, WSP implies that the condition at infinity (C) should be
replaced by the modified condition

) u=Alog|x|+0O(1) as|x|>00,

where A is any arbitrary constant. The question arises as to whether or not we can
choose A so that the problem, Lou =0 together with (B) and (C'), will give a
meaningful result. It is here that one needs the matching principle in the singular
perturbation theory. We will discuss this in § 3.

2 Throughout this paper, unless otherwise specified, by a solution of the problem we always mean
a solution in the classical sense. (e.g. u is a classical solution of (P.)if u e C*Q)N C(©) and satisfies
(E), (B) and (C)).
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On the other hand, for the nonlinear operator N, there is a different kind of
linearization which emphasizes the behavior at infinity. If we let u = —a + v, then v
will satisfy an equation of the form

1.1) Zv=%Lv+eNv.

Here £ is a linear operator depending on £ and hence different from Lo, while the
operator & may or may not be the same as N. That there exists a unique solution to
the linearized problem,

1.2) Pv=0

together with conditions that v = g on Q) and v tends to zero at infinity, is the basis
for the procedure of Finn and Smith [4]. Here g may be any given smooth
function. In particular, one may set g equal to a +f in view of the boundary
condition (B). In fluid flow, (1.2')is referred to as the Oseen equation [20], and the
corresponding linearized problem as the Oseen problem. The solution of the full
nonlinear problem is then sought as a regular perturbation of the solution of the
Oseen problem (see § 5). This regular perturbation procedure, in fact, gives us a
kind of asymptotic development for the solution of (P.) (see § 6).

For the nonlinear problem (P, ), the main results can be summarized in the
following two theorems.

THEOREM 1. There exists a solution u(x; €) of the problem (P.) defined by
(E), (B), C) for ¢ sufficiently small.

THEOREM 2. Let 9 be any compact subset of Q) and let 9 5 denote the region
{€€ E,: |E| = 8}, where 8 >0 is a parameter. Then there exist functions qo, q, defined
for xe @, and Q, defined for € # 0 such that

u(x; e)=qo(x)+q1(x)(log e '+ O(log €)™> ase->0"

uniformly on 9, and
u(f; e) =—a+Q;(£)loge) " +O0(loge)” ase~>0"

uniformly on 9Ds for any 8 > d, where d = sup {|x|: x € 8 Q0}. Moreover, functions qo,
q1 and Q1 can be constructed by the matching principle.

Remark. In view of standard results of singular perturbation theory [22],
[13], and [21], one might expect that the solution of (P, ) has a uniform representa-
tion of the form

*) (a solution of Lou = 0) +(boundary layer terms) + (terms which
tend to zero uniformly with ¢).

Indeed, one will have the form (*) by constructing a composite expansion of the
solution. This will be indicated in §§ 2 and 6. .

We recall that the results for (P,) are similar to those for (P.), although
Theorem 2 here is not as complete as the one obtained in [8]. In recent years, there
has been an increasing effort to apply the method of matched asymptotic
expansions to Dirichlet problems for elliptic equations with small parameters. In
surveying the literature, we see that either the degenerate equations are of lower
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order than the original ones or the domains under consideration are bounded. In
sharp contrast to these, much less attention has been paid to the kind of problems
considered here from the viewpoint of the rigorous justification of the formal
procedure. A pertinent reference with respect to this aspect seems to be [6], where
a fourth order ordinary differential equation problem has been used as a model to
discuss the validity of the asymptotic matching principle developed there. As
indicated in [8] for (P, ), the matching principle in § 3 is a simplified version of the
one in [6]. Some partial justification of formal procedures for the Lagerstrom
model, a variational form of (P, ), has been given in [2], [12] and recently in [18].
There are, of course, many papers concerning primarily the construction of the
formal procedures in this connection. To mention a few, the special case of flow
past a cylinder has been treated in detail in [11], [17], and [1]. It is our hope that
the present investigation including [8] may shed some light on the validity of the
method of matched asymptotic expansions for such a class of singular perturba-
tion problems, in particular for problems concerning the viscous flow past
obstacles.

The proof of Theorem 1 is given in § 5 and uses estimates for solutions of
linear problems. These estimates are obtained in § 4. Theorem 2 is established in
§ 6 based on the asymptotic development for the linear problem (the Oseen
problem) in § 2 and the matching principle formulated in § 3.

2. The linear problems. In this section, we would like to devote our attention
to the linear problem (the Oseen problem for our model (P,))

Fv=Av+av,, =0 in(},
(Po) v=g ond,
v->0 as [x|>00,

where a = g« and g is a given smooth function.’ We note that the linear problem
(Po) is singular according to our definition, if [, g(x) dS, # 0. Hence in order to
gain some insight of the singular nature of the nonlinear problem (P..), it is natural
to begin with a study of the asymptotic behavior of the solution of (Py). Our
approach here is based on a method of integral equations of the first kind
developed in [9]. It is found that the use of single layer potential for treating
singular perturbation problems of this kind is particularly desirable from the
viewpoint of constructing asymptotic expansions.
In this connection, we also consider the modified degenerate problem

Au=0 in Q,
(Po) u=g on (),
u=Aloglx|+0(1) as |x| >0

for a given constant A. It was mentioned in the Introduction that the solution of
(Pg) does exist and is unique for every fixed A. We will explore this idea here again
by the use of single layer potential (see [9]).

3 In what follows, it suffices to assume that g is of class ct+ (0Q2), the class of Holder continuously
differentiable functions on 4() with exponent 0 <A <1.
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In what follows we write v (x; a; g) for the solution of (Pg) (which exists as we
will see), and write u4 (x; g) for the unique solution of (Pg). We recall that the
fundamental singularity of the equation £v =0 is

2.1) Sx—y;a)= —ie‘("/z)("l—“)Ko(glx—y|).
2 2

Here Ko(r) is the zeroth order modified Bessel function of the second kind which
decays to zero as r - % in contrast to the logarithmic singularity of the Laplace
equation. For x, y in a compact set, the series development of K takes the form

(2.2n Ko(% Ix—yl) =—log [x—y|+ (To—log a)+L(x;y; a)

where I'y is a constant and the series L(x;y; a),

0

(2.2), Lxy; )= Y {ax(x y)loga +bi(x, y)la’

k=1
converges uniformly on compact subsets. Here

A (xa y) = Fk |x_y|2k’ bk(x7 Y) = (Yk +Fk log |X _y|)|x—y|2k

with constants I'x. and .

We now formulate the fundamental theorem on the asymptotic representa-
tion of v (v; a; g):

THEOREM 3. Let D be a compact subset of () and let D5, denote the region
{x € E;: |x| = 8o}, where 60> 0 is a parameter. Then we have

(2.3) v(x;a; g)=uo(x; g)+u_nm(x; 0)loga) ' +O(loga)” asa-0",

uniformly on 9 ; and
2.4) v(x;a;g)= me—(a/2)x1K0(52'. le) (loga)'+O0(oga)? asa-0%,

uniformly on @s, for any 80>d/a, where d =sup {|x|: x € 9Q} and m is a linear
functional of g.

Remark. Expansions (2.3) and (2.4) are usually referred to respectively as
the inner and outer expansions, which will be discussed in § 3.

This theorem needs some explanation. It yields a kind of asymptotic expan-
sion for the solution but reflects the nonuniformity of the expansion. One can form
a composite expansion from (2.3) and (2.4), which is uniformly valid for all xe Q).
This can be done by introducing a mollifier ,, an infinitely differentiable function
of xe E, defined by

1 for |x| §r+§,
(2.5 Yo (x)=

p
<p—-—
0 for |x|=r >

where p is a small positive number such that 0 <p <r —d, and 2r is the diameter of
a compact set containing € = E,\Q. Then, the solution v (x; a; g) of problem (P})
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has the uniform asymptotic representation:
(2.6) v(X; a; g)=w(x; a)+v.(ax; a)+z(x; a)

where

w(x; a)= (1 -, (ax){uo(X; g)+ U—m(x; 0)(log )},
vo(ax; @)= z[/p(ax){ me_(“/z)"‘Ko(g]xD (log a)_l};

z(x;a)=0(oga)? asa->0"

uniformly on ). Note that in this case, the boundary layer is the neighborhood of
the point at infinity. Hence the term v,(a(x; @) in (2.6) corresponds to the
boundary layer term according to [21].

The proof of Theorem 3 is based on the following two lemmas:

LeMmMA 2.1. For given A and g, the provlem (Pt) has a unique solution in the
form:

2.7 ua(x; g)= U073 x)—my,

where m, is a fixed constant depending on g; o satisfies the integral equation,
U’(o; X) = g(x)+myg, x 0Q, and U°(o'; X) is defined by

2.8) U0 %)= [m o (y) log [x—y| dS,.

LEMMA 2.2. Forgiven g, the problem (Po) has a unique solution in the form:
2.9) v(x; a;8)=U(é; x; @),

where ¢ satisfies the integral solution, U(¢ ;, x; a) = g(x), x€ 0Q), and U(d; x; a) is
defined by

(2.10) U(d;x; a)=—e @2 La )5 xl) dS;.

Remark. The function e®®* U is a solution of the equation Aw — (a'>/4)w =
0 for any smooth function ¢ (e.g. ¢ € C*(3Q)).

A proof of Lemma 2.1 is essentially contained in [9]. We will, however,
repeat the proof here so that we have enough information about the density
function o to see how the asymptotic developments (2.3) and (2.4) are derived.
The proof of Lemma 2.2 will be omitted, since the proof is similar to that of
Lemma 2.1., and the property of the density function ¢ can be obtained from that
of o.

Proof of Lemma 2.1. We begin the proof by seeking a solution of the
problem (P}) in the form (2.8). For any o continuous on 3, U°(c; x) is harmonic
in (). We determine o by requiring that

(2.11) Ul(c;x)=g(x)+m,;  xciq.
Differentiating (2.11) with respect to the arc length Sy along 3(), we obtain the
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integral equation
) d
@.12) §@=| _o0)=gloglx—yl dS, = M(o).
19} x

Here the dot indicates differentiation with respect to Sy. Equation (2.12) is a
singular integral equation of first kind. For the theory of such equations see [15].
The homogeneous equation adjoint to (2.12) can be shown to have the unique
linearly independent solution & = 1. The condition of solvability of (2.12)is hence
fulfilled. The general solution of (2.12) has the form

(2.13) a(y) =M (g)+ B DoY),

where ®o(y), [, Po(y) dSy # 0, is a fixed, nontrivial solution of the homogeneous
equation corresponding to (2.12), B, is an arbitrary constant, and M~'(¢g) has the
resolvent form

(2.14) M@= @)+ | 4TG0 ds.
with a continuous resolvent 7. We choose B, so that
(2.15) I o) dS,= A,
19)
and set
(2.16) da(x; g)=U'(c; )= U (M (8); X) + B U°(Do; X).

Then #4(x, g) is harmonic in Q and equal to g(x)+m, on (), where m, is a
constant defined by

2.17) mg=U(M"'(g); x)— g(x), x € 9Q).
Here we have used the fact that
(2.18) U°(®o;x)=0 onaqQ,

which can be proved by an argument similar to that in [9]. Furthermore, we have

1
Gia(x; g)=A log x|+ O(m) as |x| - c0.
Hence

(2.19) ua(x; g)=1ta(x; g)—mg

is the unique solution of (P3).
We return now to the proof of Theorem 3. From Lemma 2.2., the solution of
(Po) has the form (2.10),

v(x;a; 8)=U(d; x; ),

where ¢ satisfies the integral equation of the first kind,

(2.20) U(g; x; )= g(x), x € 9Q.
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By the series development of K, in (2.2), equation (2.20) can then be written in the
form,

g0+ 3 g.@a"= | 4 loglx-ylds,~(To=loga) [ s s,
(2.21)

—jm L&x-y; @)é() dS,

with g, (x) = (1/n!)(x1/2)"g (x). Differentiating (2.21) with respect to arc length S,
along of) and rearranging terms, we obtain

(2.22) g+ 3 g+ | LGGY; )60 dS,=M(8),
n=1 an a0

with M(¢) as in (2.12). Since the left hand side of (2.22) is orthogonal (in the L,
sense) to solutions (that is, constants) of the homogeneous adjoint equation, we
can invert it. The inverse can be written as a resolvent term plus an arbitrary
constant times ®q as in (2.13). When the resolvent is applied to the terms in (2.22)
involving L(x;y; a) and the order of integration is interchanged, we obtain an
equation of the form

223 $=MT@+ L M@ +B00+ | K@y a)b0)ds,,

where the linear transformation K (x; y; a)is O(a’ log a) and B is some constant
to be determined.

We can solve (2.23), by successive approximations, in the form
(2.24) =M (&) +Baot X,

where y = O(a). We set B = B; + Bo, where B, is defined by (2.15) with A = 0, and
Bo is to be determined. Then,

(2.25) j _66)dS, =B j  ®u(3) S, +O(a)
and
(2.26) jm $(3)log [x—y| dS, = do(x; g)+ BoU°(@o; x)+ O(a)

(cf. (2.8) and (2.16)). By making use of (2.17), (2.18), (2.24), and (2.25), we obtain
mg

Bo= T Boly) 45,)To—Tog a)

Consequently, for x in a compact subset & of (), it follows easily from
(2.25)-(2.27) that if one uses the series (2.2);, then

2.27)

+O(a).

v(x; a; g)=to(x; g)—m, J‘ancI:oo(y)dSy{loga+(103a)2+0<10303)

- U®o;x)+O(a loga) asa->0%,

(2.28)
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uniformly on &. Now let
(2.29) m = m,.

Then if we compare (2.28) with (2.19) (A = 0), we see that the first two terms are

just uo(x; g) and the coefficient of 1/log a is precisely u_n(x; 0). Moreover,

|mg| = const. |g|l;, where

d*g

F , 0=k=n,

and S is the arc length. This proves the first part of Theorem 3.
To prove (2.4), we see that the representation (2.10) implies

lglln = max

Q30 vwase=—(] s01ds,) e koSl + 2

where &(x; @)= O(a) as @ ->0" uniformly for |x|>d/a, d=sup {x|: x €3Q}.
Then the result (2.4) follows easily from (2.25), (2.27), and (2.29). This completes
the proof of Theorem 3.

3. Inner and outer expansions. With the help of the preliminary analysis in
§ 2, we now propose a formal procedure for obtaining what are usually called the
inner and outer expansions of the solution to the nonlinear problem (P.). This
procedure is based on a matching principle similar to the one used in [8]. To
illustrate the idea, we shall describe the procedure (matching principle) by
computing the first few terms of the former inner and outer expansions. Then, we
show that this procedure can, in principle, be continued to be used for obtaining
higher order terms. We believe that it will be true this actually yields an asymptotic
expansion for the exact solution of (P.), although we can only carry out the
verification up to the term of order (log £)~* (see § 6).

We begin with the formal inner expansion,

2 Ua(x;0)
. s €)~uo(x; )+ .
(3 1) u(x 6) uo(x f) k§1 (lOgS)k
Here uo(x; f) and ua, (x; 0) are solutions of the problem (Pg) with A, g replaced by

0, f and Ay, 0, respectively; that is, these are solutions of the Laplace equation
subject to the conditions:

uo(x; )=f ondQ,  uo(x;f)=0(1) asl|x|>00,

G.2) Ua, (x;0)=0 onadQ),  ua(x;0)=A;log|x+O(1) asl|x|~>c0.
The A’s, k = 1, are constants to be determined by the matching principle which
will be stated later.

Remark. To be more precise, in general one requires the inner expansion to
satisfy the equation (E) and the condition (B) but not (C). Instead, the condition
(C) is replaced by the condition (C'). It is here that one needs the matching
principle to choose a unique constant A. Thus, we refer to (C') as the matching
condition.
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Despite the undetermined constants A, k =1, we have here the representa-
tions

(33) uo(x;f)=jmo(y)loglx—yldsy—mf; ()= M (f)+ B0

and

ST U J' _
(3.4) Ua, (x; O)—].mq)o(y) a5, o ®o(y) log |x—y| dS,, k=1.

The functions ®o, M~'(f) and the constant B; are defined in the same way asin § 2.
We note that from (3.3) and (3.4) the matching conditions read

uo(x,f)—-m,«+0(t l) as x| > 0
3.5)

ua, (x; )= A log|x|+0<l l) as |x| > o0,

Next we shall construct the outer expansion. To this end, we introduce the outer

variable* £ = ex and set U(£; £) = u(&/¢; ). We denote the domain Q by Q; and
adapt the similar convention for other notations in connection with the outer
variable.

Observe that, in terms of the outer variable, the equation (E) becomes
(E') A5U= (J[Jg1 in Qg

and conditions (B) and (C) become, respectively

(B) U=F(E) ona
and
(o) U->-a as|g->w.

The outer expansion is of the form

6.6 U e)~—a+ 5 G0

This expansion is required to satisfy the equation (E') and the condition (C") but
not (B'). Formally substituting (3.6) into (E'), (C") and equating coefficients of like
powers of (log )", one obtains the conditions for the functions Uy (£); that is,

gUk AgUk+a 5 Uk—Rk’ g#:o’

3.7) Uc>0 aslg»>o0,

4To be consistent, the original variable x may be referred to as the inner variable. The
transformation from inner variable to outer variable is a contracting rather than a stretching
transformation.
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where

8[Jk —v
0&1

Remark. The region ()¢ = E,\Q; depends on & and shrinks to a point as &
tends to zero. Thus, it might be expected that U, satisfies the equation in (3.7)
everywhere except at £ =0. If one considers § as the original variable, then the
boundary layer is the neighborhood of the origin (indeed, the neighborhood of the
boundary d{}y).

Solutions of (3.7) are clearly not unique. Hence in order to account for the
nonuniqueness, we need some kind of matching condition in the neighborhood of
£=0. This can best be described from the construction of the term U;.

For k =1, the general solution of (3.7) is of the form®

R:=0, Ri=a Z U——, k=2

(3.8) U(§)= —ale“(“’Z)flKo(g|§|>

for arbitrary constant a;. From (2.2) we have

(3.9) Ui(§)= a1 log|g[+ b1+ O(lg log |&)) as&-0,
where

b= al(l"o-—log a).

To determine by, we first substitute (3.9) into the outer expansion (3.6) and obtain
asymptotically,

U(E; £)=—a+{aylog |&|+ b1+ O(E log |E)}(log €)'+ O(log £) ) as£~0.
(3.10)

Next we write (3.1) in the form

(3.11) u(%; ) (g f>+ > {uAk(g )}(logs)

Now let £ tend to zero, with § fixed. Then the argument x = §/¢ becomes large and
we substitute into (3.11) the asymptotic expansion (3.5). This yields

(3.12) u(%; s) ~(—ms—A,)+{Alog €| — A}(log )+ O(log &) >

The matching principle requires that coeflicients of like powers of (log ¢) should
agree in (3.10) and (3.12), provided one neglects terms which tend to zero as
|&| > 0". This yields

(3.13) -mi—A;=—a, Ai=a,;, and —A,=b;.

Thus, we obtain ua,(x; 0) and U1 (). Now it is not difficult to see how the general

5 The general solution contains also multiples of terms such as e “*/ 24K, (a/2)|£]), where the K,
are modified Bessel functions of the second kind. Since K, (a/2)|&]) = O(€™") as £~ 0, these terms will
be automatically rejected. This will be made clear when the matching principle is introduced.
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matching principle can be formulated, provided one knows the behavior of the
general solutions of (3.7) as & tends to zero.
The general solution of (3.7) admits the representation

(3.14) Ue®=—ae K (JIg) +Du®, k=1,

where D,(§)=0 and

De@=a 3 [[sE—m DU Viatmydn, k=2

E;

Here S(£—m; 1) is the fundamental singularity of LU = 0 (see (2.1)); the ax’s are
constants to be determined by the matching principle. In order to see that Dy
indeed decays to zero at infinity, we need some estimates of Dy ; furthermore, we
also need some information about the singular behavior of Dy in the neighbor-
hood of §=0.

To this end, we introduce the function k; = h;(|€|) defined by

1

l-g—l, 0<|§|§1,
(3.15) hi(E)= .

IPRE &> 1.

Remark. It is easy to verify that there exists a constant / such that

() =2

LemMA 3.1. For € E», let

(3.16), JE)= e~ J’ I Ko(le.|g_,,|) Ko(%"n')hl(%lnl) dn.

E>

Then, Jis continuous at £ = 0. Moreover, there exist constants H, and H, such that

(3.16), IJ(§)|<——K0( |§|) o@D
and
(3.16); |57®]=2m(5e).

The proof of the estimates (3.16), and (3.16)s is tedious but straightforward and
will, therefore, be omitted here. To establish the continuity, one can assume
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(a/2)|g <1. Then consider the integral (3.16); over the region (a/2)m|=1. By
setting f = Koh1, we see that f is integrable for (a/2)m|=1. Hence the result
fcllows immediately from the continuity of the integral

” log (glé‘—nl) f(glnl) dn.

(a/2)m|=1

With the help of Lemma 3.1 and the remark below (3.15) it can be shown
that D,(£) is continuous at £ = 0, and tends to zero as |§| > 0. Hence by induction,
it follows that Dy (£) is continuous at £ =0 and tends to zero as |§| > 0. Thus, the
solutions Uy of (3.7) satisfy

(3.17) U(€) = ax log |€|+ b + O(E[ log |&)) asE~>0

where

bx = ar(T'o—1log a)+ Dy (0).

We are now in a position to formulate the matching principle for the higher
order terms.

MATCHING PRINCIPLE. Defermine the constants A of (3.11) and a,. of (3.17)
so that the coefficients of log |£| and the constant terms for corresponding powers of
(log £)~" are equal.

Comment. It was shown in [8] that for the model (P, ), the matching principle
presented here may be considered as a simplified version of what is called the
asymptotic matching principle in [6]. The same conclusion holds in the present
case.

The matching principle gives a procedure for constructing formal inner and
outer expansions. To establish the validity of this formal procedure is, in general, a
difficult task, For the model problem of the ordinary differential equation ®.), we
have shown that the validity of the procedure can be completely verified. In the
present case, because of technical difficulty, only partial justification is obtained.
In § 6, we shall show that the process produces the correct first two terms in the
expansions.

4. A priori estimates. We now consider the inhomogeneous problem

ZLw = a(¢‘//)x1 in Q,
4.1) w=0 on (),
w->0 as |x| > oo,

where a = ea and ¢ and ¢ are functions of x satisfying certain conditions which
will be specified later. We intend to majorize the solution of (4.1) in terms of
something like the solution of the linear problem (Pp) in § 2. These estimates will
be needed to establish the existence of a solution to the nonlinear problem (P, ).
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In view of the asymptotic behavior of the solutions of (Po), we introduce two
auxiliary functions, ko= ho(r) and ho = ho(r), defined by:

log%, o<r=1,

ho(r)=
—1—- r>1
\/;’ ’
4.2)
_ log2, 0<r=1,
ho(r)=
ho(r), r>1.

One can easily see that there exist constants /; and /, such that
(43) I e_rho(r)§K0(7)§lz e_'ho(r).

We now state the results as follows:
THEOREM 4. Let ¢(x; a) and ¢(x; &) be functions of class C?in Q and of
class C" in Q such that, for xe Q,

195 )| = Boho( 5 )
4.4) and

| (x; a)léBlhO(g‘b‘l)

where Bo and B are constants. Then there exist an ao € (0, 1), a constant H = H(Q)),
and a solution w(x; a) of (4.1) such that

4.5) lw(x; a)|§HBoBlﬁo(%|xl>, xe,

forall 0< a = ay.

Remark. The proof of this theorem would be greatly facilitated by a know-
ledge of bounds for the derivatives of the Green’s function. We were not able to
obtain sufficiently sharp bounds and thus were forced into the rather complicated
procedure of this section. However, for later use, a bound for the derivative of the
Green’s function will be given by Lemma 4.2 at the end of this section.

Our first observation is that

wl(x;a)=a ”S(X~y; a)(@y)y, dy

Q

is a particular solution of the equation in (4.1) provided that (¢¢),, is suitably
restricted at infinity. An integration by parts yields

@6) W) =a | Sa-yia)cosmiyoudS,~a [ Tax-yiapudy.



174 GEORGE C. HSIAO

Assume that (4.6) does indeed give a solution of the equation and let w" (x; a)
be the solution of the problem (Pg) with g(x) replaced by —w?; the latter can be
obtained as in § 2. Then the function w=w”+w" is a solution of (4.1). To
establish the inequality (4.5) it is necessary to estimate the solution of the problem
(Po). We need a kind of maximum principle:

LEMMA 4.1. Suppose 0<a < 1. Then there exists a constant M depending on
the geometry of Q) such that the solution v(x; g; a) of (Po) satisfies the inequality:

h 2
@) o6 g3 )= Mgl 2520
uniformly on Q), where

k

lgln =max | 2% |, k=m;

S is the arc-length.

The proof of Lemma 4.1 follows easily from the construction of v(x; g; a).
We omit the details. It is clear from (4.7) that w" satisfies (4.5). Thus to complete
the proof of Theorem 4, we need only show that w” satisfies (4.5). The proof is
technical and will be deferred to the Appendix. We remark, however, that the
analysis is complicated by the existence of a region where the fundamental
solution S(x—y; a)in (2.1) decays slowly. This is analogous to the Navier-Stokes
equation [19] and represents a kind of wake region phenomenon.

To conclude the section, we state alemma on an estimate of derivatives of the
Green’s function with respect to the domain ). This lemma will be needed for the
existence proof.

LEMMA 4.2. Let G be the Green’s function of v =0 for domain Q. Then
there exists a geometrical constant C such that for all x, ye (},

s

4.8) P

= |

2@
y1

+ Cho( |x|) sup

zeo()

—S sa l
P (z—y; @)

Remark. The Green’s function G can be written in the form
G(x—y; @)=Skx—y; a)+e " h(x—y; a)

while an explicit form for the regular function A is given in [14]. The result (4.8)
then follows easily with some manipulations. The details will be omitted here.

5. Existence theorem. In this section, we prove that there exists a solution to
the problem (P, ) for ¢ sufficiently small. Our approach is a variation of a technique
due to Finn and Smith [5]. The idea here is to seek a solution of (P, ) as the value at
infinity, —a, plus a small perturbation. This leads to the consideration of the
perturbed system for which the value at infinity tends to zero. Then it reduces the
effect of the nonlinearity in the original equation and facilitates the construction of
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a solution. To be more specific, we consider the family of problems
Lo =arvv,, in(, a=ga,

1
.1 v=l+-£ on {2,

v-0 as x| > 0.

Here 7 is a small parameter, 0= 7 = 1. Note that if v(x; a; 7) is a solution of (5.1),
then

(5.2) u(x; e)=—a+av(x; a;1)

is a solution of (P.). Hence, our object is to prove the existence of a solution of
(5.1). At this point, it should be remarked that other methods can also be used for
the existence proof but it should be constructive in order to study the asymptotic
behavior of the solution in detail. We now state the results as follows:

THEOREM 5. For a sufficiently small, there exists a solution v(x; a; 7) of (5.1)
for 7€[0, 1]. This solution can be represented by an absolutely and uniformly
convergent series

(5.3 v(x;a;7)= Y va(x;@)7"
n=0
where each v, (x; a) satisfies
P, =¢, inQ,
(5.3), v0=1+-£, v, =0, n=1, ondQ,

v,>0 as|x|> foralln=0
with
n—1

d
Yo=0, Un=a Y Ux—Un-1-k n=l1.
k=0 0X1

COROLLARY 5.1. For ¢ sufficiently small, there exists a solution u(x; ) of
(P.), which can be represented as

5.4) ux;e)=—a+a i va(X; £a).

The first step in the proof is to construct the series (5.3). vo can be constructed
by the method in § 2, and hence by Lemma 4.1 we have

(5.5) |vo| = Coho(glxl) forxeQ,

where Co= M)/|log a|, M, a constant. We note that

”il ; avn—l—-k__ 1 9 nil oud
k =3 kUn—1—k-
k=0 dx1 2 3x1 k=0 "
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Thus if we use Theorem 4 and the fact that Ao((e/2)x]) < ho((e/2)|x|), we readily
verify, by induction, that all the v,’s exist.

Our next step is to establish the convergence of the series (5.3) under the
hypothesis of the theorem. This is based on (5.5) and the following lemma, which
is an immediate consequence of Theorem 4.

LEMMA 5.1. Let the sequence {C,} of constants be defined by

M,

5.6 Conr=H ¥ GCooro Co=r20_
( ) +1 k§=:0 k k 0 llogal

Then
v (x; @) = CJo(%le), nzl,

uniformly on Q.
It follows from Lemma 5.1 that the series

57) C(rs @)= (ool - Co)+ ¥ Cir*

will dominate (5.3), since Ao((a/2)|x|) is bounded and less than one. Here
[lvol|= supxealvo(x; @)|, which is bounded by the maximum principle. By an
analysis analogous to that in [8], we can show that

we1(2HCo)"
(5.8) cng%lco, n=z0,
where
1, n=0,
Yn+1=

o @k-3), nz=l.

Moreover the series (5.7) converges for 7 < (4HC,)"". From the definition of Co,
this latter holds for all 7 €[0, 1], provided ¢ is sufficiently small. Consequently,
(5.3) converges uniformly and absolutely.

Our final step is to demonstrate that the sum (5.3), v(x; a; 7), satisfies the
differential equation in (5.1). This can be facilitated by considering the corres-
ponding integral equation. Our main task here is to establish the result:

LeEMMA 5.2. The function v defined by (5.3) is a solution of the integral
equation
5.9

@290 ~ .
2”v aylG(x y; a)dy,

Q

v(x; a; 7)=vo(X; @)—

for the Green’s function G.
Using (5.9), we find that it is straightforward to verify that v(x; a; 7) has the
required differentiability and that it satisfies (5.1).
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To complete the proof of Theorem 5, we establish the result (5.9). First,
observe that the v,,’s can be written in the form

5.10 G (!
( ) vn(x,a)——ijfay { Z Vklp—1— k} dy, nzl.
Q
Hence, if we write
(5.11) v =Y 0.7,
n=0

then (5.10) implies that
5.12 m aG(m1 n
( ) vV =vo— J’J’ { Y X (tn-i)T" }dy, mz=1,

2 dy1ln=0 k=0

o

and

v=vo~—T—;Ij Gdy+(v v )+——JJ§€—{ *mzl()'j Viln— k) "}dy.
Q [}

Thus, to verify (5.9), it suffices to show that the last two terms on the right hand
side can be made arbitrarily small for m sufficiently large. This is clear for the first
term, v —v™, from the uniform convergence of the series. However for the second
term, we need a more mvolved procedure. This will proceed as follows.

Let ®,, =02 =Y (s, vkn_i)". For any fixed x€ Q, we write

(5.13) "‘U)ayl 1, dy = a{ ]+ ” }Ig—y(—f

D,(x) Q\D,(x)
where D, (x) is a disc with x as center and radius p. If we choose p small enough,
then for y € D, (x), |dG/dy1| will be dominated by some constant times 1/a|x—y|.
Hence for any given w >0, there exists a p so small that

(5.14) “ IaGl u
_ m <—,
a oy |®.n| dy 3

D, (x)

m| dy,

Now for this fixed p, by Lemma 4.2, it is possible to choose a number R so large
that for all |y|= R and |x—y|=p,

_‘aS(x y,a)‘ ‘35( y,a)‘

(5.15)

. 9y1
where C is a constant depending only on the geometry of (). Then with p and R
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fixed, we have

G 9G
G tayzaf [ + [ 1|22 olay.
a”laylllya ay1||y

Q\D, (x) e=ly—xl  psly—x|
lyl=R lyl>R

In the region where p =|y—x| and |y| = R, since 9G/dy; is regular, we obtain

(5.16) N ” ‘gg'dyéM(p;R)

p=|y—x|
lyl=R

for some constant M. Then given any u > 0, there exists a number N;(u ) such that
for all m =N;(u), we have

m
(5.17) |¢m(y)|<m.

This is so because of the uniform convergence of the series Yoo (Sr o Viln—i) 7"
Therefore, we have from (5.16) and (5.17)

oG I
518 [ 28]l ay<t
(5.18) @ ™ |®,.| dy 3
p=ly—x|
lyl=R

In the region where p =|y—x| and |y| > R, we obtain by (5.15) and (5.6)

« [ |5 onay=e [] {|FEE)
ay1 9y1

p=|y—x| p=ly—x|
lyI>R lyI>R
- 2
(5.19) +C}a—s(——y’—"—))}{e““/z”lho(glyl)} dy
dy1 2

0

) (léo CkCn—k>7n-

Now both terms in the square brackets are bounded independently of x, say by M,
(see (A.1)). Moreover, the series Yoro (Yoo CkCai) 7" converges for 7€ [0, 1],
for sufficiently small @. Hence given u >0 there exists a number N,(x ) such that
for all m = N,

0

. " M
(5.20) Y (kgo CkCn—k)T <gr

Consequently, it follows from (5.14), (5.18), (5.19), and (5.20) that for any given
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u >0, there exists an N =max {N;, N,} such that

ia”ale _...21 i Okl — k} dy\<u

ay1 n=0 k=0
Q

for all m = N. This completes the proof of Lemma 5.2.

6. Asymptotic properties. From the constructed solution u(x; €), one can
now study the asymptotic behavior of the solution as ¢ tends to zero. We shall
concentrate on the leading term v, of the series (5.3). In particular, we attempt to
make some justification of the formal inner and outer expansions constructed in
§ 3. We begin with the following basic result.

LeMMA 6.1. For ¢ sufficiently small and for any fixed integer m =0, the
solution u(x; ) defined by (5.4) satisfies the inequality :

6.1) 'u(x;s) {—a+a Z v;(x; ea)}'__l(lTZ:J)'%gl ( |x|>

uniformly on Q, where dp+, < is a constant independent of & and x.

The proof follows easily from Lemma 5.1. We omit the details.

Lemma 6.1 yields a kind of asymptotic development for the exact solution
u(x; €) of (P.). We see that since Ao((ca/2)|x|) is bounded and less than one, we
have

(6.2) ux;e)=—a+a ¥ vix;ea)+0O(loge) ™? ase->0"
i=0

uniformly on {. In particular, for m =0 we have shown that

avo(x; ea)=—e ¥/P% j ¢(Y)K0(%l|x—yl> ds,,
o)

where ¢ can be determined by the method in § 2. Then from Theorem 3, we arrive
at two expansions. More precisely we have proved the following results:

THEOREM 6. Let & be any compact subset of Q) and let D5 denote the region
{xe E,: |x| =8} for any 6 >d/e with d =sup {|x|: xe 6Q}. Then we have,

(6.3) u(x; €)= uo(X; f)+ Uam,(x; 0)(log e) '+ O(log €) > ase—>0"

uniformly on 9; and

u(x;e)=—a—(a—my) e_(s/z)“"lKo(%llxl) (loge) '+O(oge)? ase->0"
6.4)

uniformly on Ps. _
COROLLARY 6.1. The solution u(x; €) has the representation for x€ (),

ux; e)=w(x; e)+uv.(ex; &)+ z(x; &),
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where

w(x; €)= (1=, (e X)){uo(X; f)+ tam,(x; 0)(log €)'},
ve(ex; )=, (sx){ —a—(a—my) e“(e/z)“"lKo(ff|x|> (log € )_1},
z(x;e)=0(oge)? ase~>0"

uniformly on Q.
The proof of Theorem 2 then follows immediately from (6.3)-(6.4).

Appendix. Proof of Theorem 4. From Lemma 4.1, it is easy to see that the
solution, w"”, of the corresponding homogeneous problem will satisfy the
inequality

" ) = Mo S 1)

in O for some constant M’. Hence it suffices to consider the particular solution w”
in (4.6). To this end, we need the following two lemmas.

LEMMA A.1. Suppose 0 <a <1. Then there exists a constant H,, depending
only on Q, such that

Vi(x; @)|= 1a Lﬂ Skx—y; a){ ho(%lyl}2 dsy
(A1)
§H150(§|x|>, forxe Q.

Proof. Without loss of generality we may assume that (a/2)|y| = 1 for y € Q).
Then the function J;(x; @) is dominated by

(A.2) Fux; a)= {a(log ) j e"("‘/z)("‘_yl)Ko(%lx—yD dSy}.

f:10)

For (a/2)|x|>1, clearly Ji(x; a) can be made less than some constant times
ho((a/2)|x]), since y € 8Q). For (a/2)|x| =1 the integral in (A.2) will be dominated
by |log a|, and since a(log @)’ is bounded, the result still follows.

LEMMA A.2. Suppose 0 <a <1. Then there exists a constant H», depending
only on Q, such that

a(x; @) = ‘a ” a—i—ls(x—y; a){ ho(glyl) }2 dy’
(A.3) “
§H250(§|x|), forxe Q.

Before starting our proof, we record a lemma which we will need in the
following. A proof of this lemma can be found in [6, p. 198].
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LEMMA. Let the numbers p and o be such that p <2, 0 <2, p+0o>2. Then
there exists a constant Cy depending on p and o such that

(A.4) J‘ j’ dz - C:
x—2°lz—y|” " [x—y|""
E;
forall x,ye E; and x#Yy.
Throughout the proof, we denote constants by Ax. These constants may
depend on the domain ) and their values may change.
Proof of Lemma A.2. We split the domain () into subregions )’ and ()" where
={y: (a/2)ly|= 1} and Q"={y: (a/2)|y| < 1}. The corresponding parts of J, in
(A.3) are then denoted respectively by J5 and J5. To facilitate the proof, we first
observe that for |n| =1,

2 e} | scoms, 2 CHICT CHLDIFHE

which implies that (3/0m1){e ™ Ko(/m|)} vanishes exponentially with n except in the
region (the so-called “wake region” in fluid mechanics):

nl(1 —ﬁﬂ) = 0(1).

However, in this region, we have

t-f=li)

Hence we can conclude that for |g| =1,

(A.5) ,—{e"‘Ko(lnD}l coF,“z

whether it is in the wake region or not.
Now let us consider J5. By changing variables,

A0 nwal=g] [f e Rl dn)
l=1

where |§| = (a/2)|x]. We now consider two cases according to the location of &:
Case 1. 0<|§|= 1. Equation (A.6) implies that

rsarzal [[ [FEER e [[ o)

1=ln|=2 2s|m|

=A; §A3ﬁo<g‘|X|) .



182 GEORGE C. HSIAO

Case 2. €= 1. We can write, from (A.6),
) d | - 1
o=l [[ + [ |2t mrle—abi - dn
oM [l

Inlz1 [nl=1
le=ml=1  [&-ml>1

=|J51(x; a)+Tha(x; ).
Here both J3;(x; a) and J5,(x; @) are dominated by the integral

j I |§—n1|3’ 7T 4

[nl=1

This follows easily from (A.S) and the fact that
9 _
| Kol —nb| =lg—nl"* forlg-ml=1.
M1
Hence an application of (A.4) yields the desired result that
7305 @)l = AdlE™2 = Ao S1x]).

Next we consider J5. From the definition of ko, we see that

A7) 5(x; )| = II '5%;{(3—«1—1'1)1(0“&_“0}‘<logl_§ﬂ)z in

fml=1

where €| = (a/2)|x|. Similarly, we consider two cases according to the location
of &
Case 1. |§ =2. Condition (A.7) implies that

s s [ g2 [[ oty dn).
I

[al=1 =1

This is clearly bounded, and we have
~ ([
305 @) §A2h0(§|x|),

since for (a/2)|x| =2, ho((a/2)|x|) is bounded by a nonzero constant.
Case 2. |g|>2. Condition (A.7) implies that

Vi als A [] |2t Kalg-n|(1 +log ) dn

Inl=1
1 1

=A,— —(1+1 2d
Jlgliu T airig L Hlogmb"

§Asﬁo<g-|x|).
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Now if we collect all the estimates, we find that the proof of Lemma A.2 is
complete.

Lemmas A.1 and A.2 and condition (4.6) yield the estimate

-

lw” (x; a)léBoBl(H1+H2)ﬁo(g‘|x|>, xe{d.

By a similar argument one can show that there exists a constant H3 such that
w?|li = BoB1H;. Consequently, the result (4.5) follows if we let H=H;+
H,+ MH;. This completes the proof of Theorem 4.
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EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS
OF AN ABSTRACT INTEGRODIFFERENTIAL EQUATION
WITH APPLICATIONS TO VISCOELASTICITY*

SARP ADALIY

Abstract. By using certain energy estimates, the existence of a unique solution for an abstract
integrodifferential equation in function space is established. Then, the asymptotic behavior of
solutions of the equation, which represents the abstract form of the dynamical equations of viscoelas-
ticity theory, is investigated under conditions which are mechanically realistic in the framework of the
theory of viscoelasticity. The recently developed theory of compact processes seems the most
appropriate in this respect. The use of the invariance principle for the compact process generated by
the equation under investigation, combined with the existence of a Lyapunov functional, leads to the
proof that the solutions tend to zero as time goes to infinity. In the last part of the paper, the results are
applied to the equations of viscoelasticity and the mechanical interpretation of the assumptions is
given.

1. Introduction. In this paper we study the problems of existence,
uniqueness and asymptotic stability for a class of abstract integrodifferential
equations in function space. The results are then applied to viscoelasticity
equations.

Let Ho, H; and H, be real Hilbert spaces with norms | - o, || |l and || - ||,
respectively, and such that H,< H; < H, algebraically and topologically. We
define another space H_; as the dual of H; via the inner product (-, -) of Hy. Thus,
H_; will be the completion of H, under the norm

Kw, V)l
(1.1) [Wl-1= sup ==
vem VI
and (-, -) is extended onto H_; X H; as a continuous bilinear form. We will assume
further that the injection of H; into H;_,, i =0, 1, 2, is compact.
We consider the following history value problem:

1.2) gt-(p(t)d(t))+ COu(t)+ j_ G(t—r, Hu(r)dr =f(t)

for ¢ € [s, 00), where s is a given parameter, with the history
(1.3) u(r+s)=ov(r), e (—, 0]."

Here p(¢) is a self-adjoint operator in Hy for every ¢t € (—00, +0); C(¢), for
fixed ¢, and G (¢, ), for fixed £ and ¢, are bounded linear operators from H; to H_;.
We note that equation (1.2) represents the abstract form of the dynamical
equations of viscoelasticity theory with (1.3) specifying the history and the
independent variable ¢ denoting the time. The viscoelastic body considered here
has the property that C(t), G(&, t) and p(t) approach time-independent limiting

* Received by the editors May 24, 1973, and in final revised form September 16, 1976.

t Department of Mathematics, Middle East Technical University, Ankara, Turkey. Now at
Council for Scientific and Industrial Research, National Research Institute for Mathematical
Sciences, Pretoria, Republic of South Africa.

! 4i(r) denotes the first derivative of u(?).
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values at large times as in the cases of many polymers. In this paper we are
interested in the existence and asymptotic behavior of solutions of (1.2), (1.3)
under conditions which are realistic in the framework of the theory of viscoelastic-
ity and preferably have definite mechanistic interpretations. The investigation will
answer the question of whether a Boltzmann type dependence of the stress on the
history of deformation, when this history is specified up to a certain time, will
induce a damping mechanism with the solutions uniquely determined.

Previously, the invariance principle has been exploited successfully in the
investigation of the asymptotic behavior of solutions of evolutionary equations
which generate dynamical systems [11], [5] or compact processes [6]. A similar
approach seems to be the most appropriate for the abovementioned problem from
the viewpoint of mechanics. Similar problems in viscoelasticity have been consi-
dered by Dafermos [5] and by MacCamy [13] for the case where C(¢), G (¢, t) and
the density were time-independent, and they proved that solutions decay to zero
as time goes to infinity under suitable conditions. Dafermos [4] has also investi-
gated a similar initial value problem in function space and established a set of
sufficient conditions for the asymptotic stability of its solutions. The methods in [5]
and [13] for establishing the asymptotic stability fail in our case for the reason that
both depend on kernels of convolution type.

In this paper, we investigate the asymptotic behavior of solutions of the
equation (1.2) in the framework of the theory of compact processes developed by
Dafermos [3]. The observation that (1.2), (1.3) generate a compact process which
is, in the terminology of [3], asymptotically a dynamical system and the use of
invariance principle combined with the existence of a Lyapunov functional for this
process enable us to prove the asymptotic stability of the solutions of (1.2), (1.3)
under a set of sufficient conditions which is different from, and in some applica-
tions [5] weaker than the corresponding set in [4]. For example, the assumption of
convexity of G(¢&, ¢) in [4] which does not admit a mechanistic interpretation is
dropped and so is the positive-definiteness of G/dt. Nevertheless, the results
differ in form rather than in essence from their counterparts in [4]. Another
advantage of the new method is that it emphasizes the history rather than the
initial value problem, and consequently it leads in a natural way to function spaces
of fading memory type. This is important from the viewpoint of mechanics
since these spaces constitute a natural setting of viscoelasticity theory [2].

We first prove the existence of a unique solution u(¢) for the history value
problem (1.2), (1.3)in § 2 by using certain energy estimates. Edelstein and Gurtin
[10] and Odeh and Tadjbakhsh [14] studied the uniqueness problem for the
classical viscoelasticity equations similar in form to (1.2) assuming the positivity of
a constant density and the definiteness of the elastic modulus C(¢). We give the
proof of an existence theorem for equation (1.2) essentially under the same
conditions; however our guidance here will be the work of Dafermos [4], where he
discusses the existence and uniqueness questions for an abstract Volterra equa-
tion taken as an initial value problem. Indeed, in establishing our results we adapt
an existence theorem from [4].

The compact process generated by (1.2), (1.3) is studied in § 3. After
constructing a Lyapunov functional for this process, we give our main result about
the asymptotic stability of zero solutions in § 4.
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In the last section we apply our results to the equations of linear
viscoelasticity;

( . t)au,(x t)) aix(qjkl(x’ t)%’—)

+ J‘:w Gij(x, t—T,t) ) +fix, 1).2

The reduction of equation (1.4) to the form (1.2) will be postponed to § 5. In this
form, equations (1.4) represent the dynamical equations for a viscoelastic material
when small deformations are superposed on a large deformation history and/or
when there is an aging process taking place in the material. The asymptotic
behavior of the solutions of (1.4) is considered when the initial deformation path
tends to a stationary state and/or the aging process tends to stop as time goes to
infinity. In § 5, after applying the results of the previous sections to viscoelasticity

equations (1.4), we give the mechanical interpretation of various assumptions
made in the paper.

(1.4) dug (x, 1')
ax;

2. Existence and uniqueness of solutions. Throughout this work we will
assume that

1. C(t), C(t)e L*((—o, 0); L(Hy; H-1)),
C(t), C(t)e L™((—o0, ); L(H>; Ho)).
Moreover
2.1) (C(t)w, v)=(C(t)v, w) forallv,we H;, and?e (—00,0),
(2.2) (C(t)w, w)zK|w|} forallweH;, andte(—o0,0).
2. Gl& 1)e C°([0, ©)x(—0, 00); HAH,; Ho)) N L™([0, )
X(=00, 0); K(H>; Ho)),
G(&, 1), Ge(€, 1), Gil£ )€ C°([0, )X (—00, 00); Z(H1; H-1))
N L®([0, c0)x(—00, ®0); AHy; H-1)).*
Furthermore, for fixed ¢ and ¢,

2.3) (G(¢ t)w, v)=(G(& t)v,w) forall v, we Hy,

(2.4) (G(& t)w, w)=0 for all we H;.
3- p(t)a ﬁ(t), ﬁ(t)’ ﬁ(t)e Co((_ma CX)); g(Ho; HO))n Loo((—wa CX)); g(HOa HO))a

(2.5) (p(®Ow, wyzpollwls, po>0, forallweH,, te[0,o),

2 x denotes a point in the three-dimensional Euclidean space E°. The summation convention is
employed throughout the paper and i, j, k, [ take the values 1, 2, 3.
3 $(H,; H_,) stands for the space of bounded linear operators from H; to H-_;.
The subscripts denote differentiation with respect to that independent variable.
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(2.6) (p@w,w)=0 forallweH,, te[0,c),
2.7 P@w,w)=0 forallweH, te]0,0).
(2.8) @@w,w)=0 forallweH,, te(—0,00),

4. f),f()e L™((-%0,0); Ho),  f(2), f(£)e L'([0, ©); Ho).

We first state a lemma from Dafermos [5].

LEMMA 2.1. Let f(t)e L'(0, ). Then there exists an increasing function
p(t)e C°[0, ) with p(0)= 1, p(t)->© as t>00, such that f(t)p(t)e L*(0, ).

It follows that we can assume the existence of a decreasing “influence
function” h(t)e C°[0, ) with the following properties:

h(0)=1,

(2.9)
h(0)>0 ast->o0,

(2.10) L UGE Ollew; mro +IGeE, Dllea; m-nlh 7€) dE <M <o

for every te(—00, ). After fixing some influence function h(t) with the above
properties, we proceed to the definition of some Banach spaces:

DEeFINITION 2.1. By €., k =0, 1, we denote the Banach space of functions
w(r)e C*((—0, 0]; Hy)N C***((—o0, 0]; Ho) such that

k 0) k+1 0)
Q1D wlhe= 3, sup DRI+ 3, sup (W] <e0.

It is clear that the above norm attaches greater weight to the recent than the
distant past, in accordance with the ideas of fading memory.®
DEeFINITION 2.2. By %, k =0, 1, we denote the Banach space of functions

w(r)e C*((—, 0]; Hy)N C***((—00, 0]; Hy)N C***((—0, 0]; Ho)
such that

k @) k+1 ) k+2 @)
(2.12) |wlle, =X sup [w()a+ X sup [w(r)li+ X sup [[w(r)]o<co.
i=0 (=00,0] i=0 (—00,0] i=0 (—0,0]

With these definitions we have 3, = Bo< €, < 6, algebraically and topologically.
We also have the following lemma from Dafermos [5].

LEMMA 2.2. For k =0, 1, the injection of B, into €\ is compact.

Next we state two theorems which will be used later in the proof of existence
and uniqueness of solutions.

Consider the initial value problem

(2.13) %(p(t)u ®)=C@)u(t)— J G(t—1, u(r)dr+f(@t)

®
5 By w(r) we denote the ith derivative of w(r). For simplicity we will write w(r)for uw)(v-) and w(r)
2
for W(r).
S An account of the theories of fading memory in viscoelasticity can be found in [2] and [16].



EXISTENCE AND ASYMPTOTIC STABILITY 189

for t = s and with the initial values

(2.14) u(s)=uoc Hy, u(s)=uoe Ho.
Here s is some fixed real number. Let f(t)= f(r)+ f®(t) and
(2.15) fO(eL (s, 0); Ho),  f®eL'(ls, 0); H-1).

THEOREM 2.1. There exists a unique solution u(t) of (2.13), (2.14) and
(2.16) u(t)e C°([s, ), Hy),  u(t)e C°([s, ®); Hy).
Furthermore,

@17) lu@lh+ i ©lo=v2e e uoks +lil
+ \/§ I (@ + 1 FP()-1] d,,}‘

Proof. We form the (-, -) product of (2.13) with u(¢) and integrate over (s, )
and observe the following relation:

J <£;(p(‘r)ll(‘r)), ll('r)>d’r = %(P (Du (), u'(t)>—%<p(8)ll (s), u(s)
2.18)
+% J; (p(T)u(r), u(r)) dr.

Recalling (2.6), we can complete the rest of the proof along the same lines as
that of Theorem 2.3 in [4].

Now we impose additional smoothness assumptions on the initial conditions,
namely,

(219) u(s)=uoeH2, d(s)=zloeH1.
Let ii(s)e H, be defined by
ii(s)=p ' ()[~p(s)ii (s)+ C(s)uo+£(s)].

We also define

(2.20) GV(t—1, )= j t Gi(t—¢& 1) de+G(0, 1)—C(¢),

(2.21) fi(h)= f'(r)—j G.(t—& Du(s) dé — G(0, Du(s)+ C(t)u(r).
Let f1(¢) = f2(0) + F2(¢) and
(2.22) (e L' (s, 0); Ho),  f2(t), fPe L' (s, ); H-y).

With these definitions, differentiation of (2.13) gives

(2.23) %(ﬁ(t)u(t)+p(t)ii(t)) =C(t)u(t)— J' GOt -, t)u(r) dr +f1(¢).
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Now we are ready to state
THEOREM 2.2. There is a unique solution u(t) of (2.13), (2.19) and

(2.24) i(r)e C'([s,); Hy),  ii(r)e C°([s, ); Ho),

o) + 1o =22 el +liolo+ [ U1+ 171 dr
(2.25)

N[ 1A ).

Proof. We form the (-, -) product of (2.23) with ii(¢) and integrate over (s, ).
We observe the following relation:

Lt <d_‘f-(p(7)u(")+"(7)ﬁ(7)), a@)} dr

1

(226)  =3pi®), GO)+5BOE), 1)~ o)), dls)

1 t t
3N, 46D +3 [ (@i, aw) dr=3 [ Gyt i) ar.

Recalling (2.6), (2.7), (2.8) we observe that the rest of the proof follows the same
lines as that of Theorem 2.3 in Dafermos [4].

Now we state and prove two theorems about the existence and uniqueness of
the solutions of (1.2), (1.3).

THEOREM 2.3. Forve %, k =0, 1, and T > s, there exists a unique u(t) such
that u(t)e C*((—o, T]; Hy)N C***((—0, T1; Ho) which satisfies (1.3) on (=0, s]
and (1.2) on [s, T). Furthermore,

k @) k+1 @) k @)
227) T supllu@®li+ X suplu@®lo=Cillvlle, +C2 X sup || (0o
i=0 [s,T] i=0 [s,T] 0 [s,00)

where C; and C, are independent of v.
Proof. Let us set

(2.28) F(t)=f(t)~ [ G(t—1, o(r—s) dr.
With this definition we can rewrite the equation (1.2) in the following form;

(2.29) %(p(t)u’ O)+C(u@)+ j G(t—r, Hu(r)dr=F(t).

With the initial data specified as
(2.30) u(s)=v(0), u(s)=1v(0)
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we have the same initial value problem as considered in Theorem 2.1. We have the
following obvious bounds for u(s), u(s) and ii(s);

(2.31) llu ()l =llo(O)] = (fg%] [A(=llo (7)),

(2.32) i)l =llo O = sup [ACnlo ),

(2.33) llsi(s)llo =15 (0)llo = Sup [ (=5 (o]
Consider now the decomposition;

(2.34) F(t)=F®@)+F2@),

(2.35) FO(t)=f(t)e L*((~0, c0); Ho),

(2.36) FP>t)=- j G(t—1, o(r—s) dr.

We have the following bounds for F(t) and F®(¢):
(2.37) IF@lo = ()lo= sup I (Ol

"F(z)(t)"—l = "—J' G-, t)v(r—s)dr

s
—00

-1

(2.38) s
= ([ 16€=r, Ol oh ™7 +5)ar)
- sup =Dl

If we set t—7=¢ and note that t—s =0 and b~ '(¢)=h™'(£—t+s5), after a
simple computation we obtain

sup [FOWI-1S [ sup_ G (& Dlvanirs oh™'€) de
[s,T] 0 te(—00,00)
2.39 _
239 - sup (A7 o],

In the same way, we can obtain bounds on F(t) and F®(r);

(2.40) IED@o =17 (®llo= sup 1£®)lo,
sup [EPW1= ([ [ sup_[1Ge(e Dlecan s
[s,T) 0 te(—00,00)
(2.41) + re(s—l::?oo) 1G: (¢, e, H_l)]h_l(f) d§)

- sup Rl
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Now using (2.17) and (2.25) we obtain the estimate (2.27). Assertion of the
theorem thus follows from Theorems 2.1 and 2.2.
THEOREM 2.4. For v e By and T > s, there exists a unique u(t) such that

u(t)e C°((—o0, T]; Hy)N C'((~00, T], Hy) N C*((~0, T]; Ho)
which satisfies (1.3) on (=0, s] and (1.2) on [s, T]. Furthermore,

4 L 0) 2 0
sup [lu ()l + X supllu(@)l:+ X supllu(®lo
(2.42) [s,T] i=0 [s,T] i=0 [s,T]

1 @)
= Cillollg,+ C2 X sup || £ ()lo-
i=0 [s,00)

Proof. Since Bo< €, we have v € €;. Then we can deduce the following
results from Theorem 2.3:

1. u(r)e C'((=o0, T; H1)N C*((=0, T]; Ho),

2. u(t)is the unique solution of (1.2) on [s, T] and satisfies equation (1.3) on
(—0, s].

There remains to show u(t)e C°([s, T]; H,). First we establish the following
estimate by using the inequality (2.27) for k =1;

l\%(" @) ()] =l (@)lollo (Yo + 1 (ol (o
(2.43)

1 @)
s sup (o (o + 16 O))] Cillolla,+Cz 3, sup 7).

Since this estimate is good for any ¢ € [s, T], we can conclude

sup [ (o(a@)] =sup to o+ I6(0))
(s,1 llat 0  [s0)
(2.44)

1 @)
[ Cullllan+ €2 %, sup I F O],

Now we obtain an estimate for F(¢), defined by (2.28), in Hy; that is, we
visualize G(¢, t) as a linear operator from H, to Hy. Using the fact that

(2.45) [ sup lo@)z] = lollae
(=00,0]

we have
(2.46) ?ugllF(t)Iloélsuwp) ||f(t)||o+(J‘0 ‘s[up)llG(é t)ll.se(m;no>dﬁ)lllvlllao-

To complete the proof we shall need the following lemma:
LEmMMA 2.3. For g(t)e C°([s, T]; Ho) there exists a solution w(t)e
C°([s, t]; H,) of the integral equation

2.47) CHw()+ J t G(it—r,w(r)dr=g(@t)
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on [s, T). Furthermore

(2.48) sup lw®l.=C sup llg (®llo

where C is independent of g(t).
Proof. We set wo=0 and apply the standard Volterra iteration scheme to
obtain the following expression for wy(¢):

(2.49) wa(8)= C (D)2 (6) = C(¢) J G(t—7, tywn_r(7) dr,

forn=1,2,---
By taking the difference w,.1(t)—w,(¢) and noting the assumption (2.2),
after a simple computation we obtain the following estimate:

M:
(2.50) "Wn+1(£) —Wn (g)HZ = _I—<—§ ?ug "wn (m)— Wn—l(T)IIZ
where £€[s, T} and
¢
@51) Me= 167, &)l s
Since M, = supjs¢} Mg, we have
M¢
(2.52) SUp [[Wn+1(8) — wa (O)l = =2 sup [Wn (7) = wy-1(7)]2.
[s.6] K (se
From (2.49) and (2.2) we deduce
1
(2.53) sup [[w1(t)l2 = 2= sup [lg (D)o-
[5.€] [s.€]
From this result and (2.25) it follows that
M;
(2.54) sup [Wns1(8) = wa ()= K P llg ®)lo-
[s.€]

If we choose ¢ sufficiently small so that M,/ K <1, {w,(¢)} becomes a Cauchy
sequence in C°([s, £]; Hz), and thus converges to some w(t)e C°([s, £]; H) as
n->00 and w(t) is a solution of the integral equation (2.47) on [s, £]. We also have
the following estimate for w(¢):

(2.55) sup lw(®)ll= EO sup [Wnrr ()= wa ()= sup IF®lo.

1- M.f/ K

To obtain the estimate (2.48), we extend w(¢) onto [s, T] by a step by step
argument.

Proof of Theorem 2.4 (continued). We have already established by (2.44) and
(2.46) that ||(d/dt)(p (£)u(1))llo and ||F(¢)||o are uniformly bounded, and their sum
gives g(¢). This implies that |u(¢)|, is also uniformly bounded due to the estimate
(2.48) of Lemma 2.3 and this establishes (2.42). The assertion of the theorem then
follows from Lemma 2.3 and Theorem 2.3.
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Remark 2.1. Suppose that
g()e C°([s, ); Ho) N L*([s, ); Ho)
and define M (¢) in the following way:

(2.56) Me®)= | 16 Ot o .

If Mo(¢)/K <1 for ¢ € (—00, ), then the sequence {w,(¢)} given by (2.49) will
converge to w(¢) uniformly on [s, o) and in place of (2.55) we have

2.57) sup ffw(t). =

[s,00)

1

K

3. The process generated by equation (1.2). In this section we make some
additional assumptions;

G.1) p(t)e L' ([0, c0); £(Ho; Ho)),
(3.2) C(1)e L'([0, 0); L(H1; H-1)).

These conditions are related to the assumed time-independent behavior of p(r)
and C(¢) at large times. Indeed, as consequences of (3.1) and (3.2) we have

(3.3) p()—>p, 1>,
(3.4) C(t)f(ff—‘—‘: C, t-> 00,

For the relaxation function G(¢, t), we assume that for each fixed ¢ € (—00, o)
(3.5) G(-, )e L'([0, ©); L(H;; H-1)).

Also in agreement with the ideas of fading memory, we require that for each
fixed t € (—00, 00)

(3.6) Ge(-, 1), Gi(+, ) e L'([0, 0); £(H1; H-1)).

Furthermore, it is assumed that

67 [ 16 eunn_ de sk <.

The last two conditions on G(¢, t) express the assumption that G(¢, ¢) approaches
a steady state as ¢ > 0. Indeed, as a consequence of (3.6) and (3.7) we have

68 | 166 0-6@lewnpds~0 astoo,

where G(£) is the limiting value of G (¢, t) as ¢ > 00. It is clear that p, Cand G(¢)
satisfy (2.1), (2.2), (2.3), (2.4) and (2.5).
We now consider the mapping

(39) a)fRX(goXR‘F-)(go

7 We employ the notation R = (—00, ), R* = [0, c0).
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which sends (s, v, £), seR, v € €o, £€R™, onto w*(v, &) € €, defined by
(3.10) o', ED)=u(s+E+7), 1€ (-0, 0],

where u(t) satisfies (1.2) on [s, £] and (1.3) on (=0, s]. Theorem 2.3 implies that w
is well defined.

THEOREM 3.1. The map w: RX 6o X R* > € which sends (s, v, £) to w*(v, £)
is a process on 6, (see [3, Definition 2.1]).

Proof. (i) We have by (3.10) and (1.3)

(3.11) o', 0)(r)=u(s+7)=0v(r) forallteR,
ie.,
(3.12) w’(v,0)=v forallve¥, secR.

(ii) From the definition of the map w it follows that

(3.13) @' (0, E+ M) =u(s+E+L+m)=0"" (0" (v, §), O)7)

forall ve %o, seR; & L eR™.

(iii) In the proof of Theorem 2.3 we have obtained uniform bounds for F(¢)
and F(t)in Ho and for F®(¢)and F®(¢) in H_, such that the constants C; and C,
in the estimate (2.27) are independent of s. Then using (2.27) we obtain

o' ONheo= sup [ +¢+ )]

(3.14) +Y sup A+ ¢+ )]

i=0 7€(—0,0

= Ciflollle, + C sup 1£lo-

Since (1.2) is linear, (3.14) implies that for any fixed £ € R*, the one-parameter
family of maps w’(-, £): 6o~ 6o, with parameter s, is equicontinuous. This
completes the proof.

On account of Theorem 2.4 the restriction of w to R X B¢ X R™ is also a map
(315) O)IRX%OXR*-'—)%().

THEOREM 3.2. The map w: RX Bo X R* - Bo which sends (s, u, £) tow* (v, &)
with s e R, v € Bo, £ R" is a process on Bo.

Proof. It is the same as the proof of Theorem 3.1, except we use estimate
(2.42) instead of (2.27) for establishing equicontinuity.

Consider now the map @: €oX R* - %, which sends (v, ¢), ve 4o, £€R™,
onto @ (v, £)€ 6, defined by

(3.16) @, E)NT)=y(§+7), 7€ (-0, 0],
where y(t) satisfies

t

(3.17) %(py(t))+ Cy(t)+£ Gt—r)y(r)dr=0
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on [0, £] and
(3.18) y(r)=v(r) on (-0, 0].

Here p, Cand G(¢) are defined by (3.3), (3.4) and (3.8), respectively; that is, they
are the limits of p(¢), C(¢) and G (¢, t) as ¢ goes to infinity. It can be shown that the
map @ is a dynamical system ([3, Definition 4.1]). For a proof we refer to [5, p.
304]. The connection between w and @ is established by the following theorem:
THEOREM 3.3. The process w is asymptotically a dynamical system with
asymptotic hull {@} (see [3, Definitions 2.7 and 4.4]).
Proof. We have to show that for any fixed v € € and ¢ e R™,

(3.19) ©° (0, ) —2 (v, £), ass >0,

Forming the difference o’ (v, ¢£)— @ (v, £) we observe that

(3.20) 0, E)T)— (v, E)(r)= W(s+£E+7)
with
(3.21) W(+éE+T)=u(s+E+1)—y(E+7)

where u(#) is the solution of (1.2), (1.3) and y(¢) is the solution of (3.17), (3.18). By
subtracting (3.17) from (1.2) we deduce that W(r) satisfies

Edr-(p(r)W(r))+ C(r)W(r)+J" G(r—r, YW(r)dr

(3.22) =f()~lp(r)=pli(r=5)=p()y(r—s5)=[C()=Cly(r—s)

- Ir [G(r—7,r)—G(r+1)ly(r—s)dr
on [s, c©) and -
(3.23) W(r)=0 forre (-0, s].
We now define 5 (r) and f &(r) by
3.24)  fPN)=F()~[p(r)~pli(r—s5)=p(r)y(r—s),

(3.25)  fP(r)=-[C(r)- C]y(r—-s)—J' [G(r—7,r)=G(r—7)]y(T—s)dr.

By using (2.17), (3.23) and the fact that I|ju(¢)|: = |lu(?)||o for all ¢ (o0, )
we deduce

IWElo +IW I+ W (o

é@e“’""”{ \/;E J £l dn +J e (m)—=p15(n =)o dn
(3.26) : *

+[ lsmy-slodn+ [ e~ Clym-s)-1 an

dn}.
-1

+ Lr lU_w [Gn—711,m)—G(m—71)ly(n—s)dn
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By noting that (3.17), (3.18) is a special case of (1.2), (1.3) we apply Theorem
2.3 and obtain the estimate

1 @)
(3.27) sup [yl + ¥ sup [y (®)llo= Cillvlle,
[0,£] i=0 [0,¢]

where ¢ is any fixed positive number.
Wenowletr=s+£&+17,n=s5+0 and s — 7, = —7, and take the supremum of
both sides of the inequality (3.26) over 7 € (—0, 0] to obtain

sup (W (s +&+Dlo+IW(s+ &+ +[W(s +€+)o)

T€(—00,

€ £
=3 e (V< [ I+ o do+ [ los+0) ol o do
(3.28)

p
+ ; 6 (s +)oCillvllle, do + L IC(s +0)— Clle@,; n_pCillvlle, do

€ ¢
[ [ 166720496l = v -oCllolle, dr o
0 J—oo
When we pass to the limit as s - 00, the right-hand side of this inequality goes to

zero on account of the integrability of £, ¢ and conditions (3.3), (3.4), (3.8) on p(¢),
C(t) and G (¢, t). Recalling (3.20), we see that this result implies that

(3.29) lim lllew® (v, €)(7) =@ (v, €)(7)lll«, = O,
that is, we obtain (3.19).

4. Asymptotic behavior of solutions. Throughout this section we will assume

that

4.1 (Gi(§, t)w,w)=0 forallwe H;, te(—0,0), €£€[0,00),
4.2) (Gd¢& t)yw,w)=0 forallwe H;, te(—00,0), €£€[0,),
(4.3) %J‘:’ IG (¢ Dl oy d€ <1 for t e (—00, ),

(4.4) (AW, wyzao|w|i for ap>0, forallweH;, te(—o,),

4.5) <(C(t)+ Loo Gi(& 1) d.f) W, w> =0 forallweH,, te(—o,),

where K is the same constant as in inequality (2.2) and A is defined by the
following identity:

t

4.6) A@)=C@)+ J G(t—r,t)dr.
We note that (4.1) is weaker than the corresponding assumption (3.6) of [4].
Furthermore, convexity condition (3.8) on G (¢, t) of [4] is not present here. On
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the other hand, assumption (4.3) made here has no counterpart in [4]. But we
remark that (4.3) and (4.4) are in the same spirit and in some applications these
two conditions coincide as shown in § 5 and [5].

In this section we will prove the stability theorem for the solutions of (1.2),
(1.3).

Let a functional V*(v) on €, X R be defined by

@.7) V=[5 +E @] e (+ f- 1o )

where v € €, s € R and

E*(0)=3{p(5)5(0), 5(0) +3(A ()0 0), 0(0)
4.8) L0
-] G 500-0e), 00-ve d
The functional V*(v) was constructed for the classical Volterra equation by Levin

[12]; he attributes the motivation to Volterra [15].
Due to (2.5), (4.4), (2.4) and the integrability of f(¢),

s L1 el 2
= = = =0.
9) Vi) 25—+l O + 300 O 20

Next we compute

. 1
(4.10) V*(v)= lim sup ;(V”e(ws(v, £))— V*(v))
e->0"
by temporarily assuming that ve ;. We add and subtract the term

[1/Q2po)+E***(w*(v, £))] exp (+]; [|f(7)llo dr) to the right-hand side of (4.10)
and after grouping terms together we obtain

. 1T 1
V*(0)= lim sup —{ [——+E‘+5(w’(v, e))]
g0t £ 2P0

@11 [ (+ 1 odr)—exo (+ [ 11w )|

B @ 0 ) -E @ exp (+ [ 1760 dr)]
On account of (2.5), (4.4) and (2.4), we have
4.12) E*(v) Z3pol5 (0)5 +3aollv 0.

From (1.3), (2.6), (4.1), (4.2), (4.5), (4.12) and the inequality

(FGs) (6= (5=+ SR 5o
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we conclude that

@13) V=[E6)-(5+E@)If6N] e ([ 1edr) <0,

where

B (@)= lim sup < [E*"*(@’(s, )~ E*G)]

=~ 246 sYi(s), (5 + 3 (A (u(s), u(s)

s

HI,as)=3 [ (Guls =, s)us)=ue), u(s) ~u(r) dr.

Since 4, is dense in €, and we have bounds on u(¢) by (2.27), the validity of
(4.13) is established in the case v € %,.

We now establish the equicontinuity of the one-parameter family of maps
V*(+): 6o~ R, with parameter s € R, by observing that

V@)= V@l = {30 6)61(0), 5300~ p(5)52(0), 52000

+2A 5)1(0), 21(0) —(A ()22(0), 020V

@19 22| K665 90~ 0=, 010 0i-5)
(G (s, 5)(0a(0) ealr =), L) vatr )] di] }
exp ([ Ifloar),

wrs (OO0 BOI—6EH0) 50)

. = llo (s Mo(l51(0)llo +l52(0)llo)lv1 — V2]«
wrg  AGRO O AER0, 00
' =14 (N (o1 O + o201~ w2l
[ KO£ 5010 0:6), 0:0)- 016
~(G(=6 $)(@(0)-2(&)), 03(0)~ 2(&)] dr
@.17)

= AM([[lvfll<, +llvalleNlor = vallleo-

The last inequality follows from (2.10).
It is clear that for every £ >0 there exists a § = §(v1, v2, €) such that

(4.18) |V?(v1)— V' (v2)l<e forallseR
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whenever [|v; — v2)|l¢, < 8. This proves the equicontinuity of V*(v).

From this property and (4.9) and (4.13) we conclude that V*(v)is a Lyapunov
functional for w (see [3, Definition 5.1]).

We now state and prove the asymptotic stability theorem:

THEOREM 4.1. Suppose that for every eigensolution ¢, of the eigenvalue
problem®

(419) C¢ —App = 0

there is at least one &, € [0, ) such that

(4.20) G(£)en #0.°

Let u(t) be the solution of (1.2), (1.3) with v e €o. Then

Hl

(4.21) u(t)—0, t->0x,
HO

(4.22) u(t)—> 0, t->00.

Proof. Consider the motion
(4.23) 0’0, )R > %,
of the process w which originates at the point (s, v). To prove (4.21) and (4.22) it is
sufficient to show that
(4.24) o’ (v, 5)—%—°>O as & - 00,

For this purpose we first establish a bound for |||’ (v, &)<,
From (4.13) we see that for any t=s

(4.25) Viw'(v, t—s))= V*(v)
and note that E, as given by (4.8), can be rewritten in the form

E'(0* (0, 1= ) =5 (p(0)i(e), i)+ (A Ou(), u(t)
(4.26)

t

-2 [ Ge=n pwo-u@), wO-uey ar

From (2.5), (4.4), (4.25), (4.26) and the fact that I||u ()| = |u(¢)lo for all
te(—o0, 00), we obtain

. 2 s 1/2
@27) sup il =(= V@)
[s,0) Po

2 1/2
(4.28) sup ()l = (= V(@)
[s,%0) ao

8 Since C™' € L(H,; H,) s a positive compact operator on Hy,(4.19) possesses a sequence {A,, } of
real positive eigenvalues and the corresponding sequence {¢,} of eigensolutions is complete in H,.
° Unless G(¢) is of a very special type, this assumption will be satisfied.
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2 1/2
(4.29) sup ||u(t)||o§l(— V‘(v)) .
[s,0) ao

Now we assume temporarily that v € B,. This will allow us to establish a
bound for [|w° (v, &)z, Let

4.30) G()(t—r,t)= j G.(t—¢& 1) de+G(0, ) +C (1),

t

(4.31) fil)=— I . Gi(t— &, t)u(—0) dé—G(0, t)u(—0)—C(t)u(—0).

The differentiation of (1.2) will give

(4.32) g—t(g;(p(t)u'(t))) +C(u(t)+ Lo GOt —r, Ou(r) dr = fO)+ f1(7).

By combining the term

s

(4.33) J' G(t—r u(r)dr
with f1(¢) we obtain

d(d , . R : !
(4.34) E(E(p(t)u (t))) +C(u(t)+ I GOt —r, u(r)dr =f(t)+fi(r)

where f1(t) represents the new term after the addition of (4.33) to f1(¢). We define
a functional Q(v)(¢) by

1

@35) Q)0 =|5-+10)0|exp (= [ Uflo+IFCH-0) dr)

for v € By, where

J(v)(t)s%(ﬁ(t)u(t), u(t)>+%<p(t)ﬁ(t), i (t)>+%<A Dy (r), u(t))
(4.36)

=3 [ 6=, 0-iten, i0-i(ey
4.37) AVD=Cc@)+ J GV(t—1,t)dr.
We make the additional assumptions,
(4.38) (APOw, wyzay|wl, forallweH,, te(—00,00),
(4.39) (G w,w)=0 forallweH,, ¢€[0,), te(—o0,),
(4.40) (GO —1,0)w,w)=0 forallweH;, 7e(-,1, te(—00,00),

4.41) (APOw, w)=0 forallweH;, te(~0,),



202 SARP ADALI

where

t
(4.42) AD ()= C(6)+ GO0, 1)+ j GOt ~1, 1) dr.

With these assumptions we can easily prove the following inequalities:
(4.43) Q)(®)=0,
d

4.44 — =
(4.44) ZOEO=0,
and hence
(4.45) Q)(s)=Q(v)(t) fortels, ).

On account of (2.5), (4.38) and (4.45) we establish

@46) supli0lo=[Z0@N0)] " exp (3 [ U Ho+Iri1) dr),

1/2 ©
@an splahs[Z0eX0]| e (5[ As@lotIfiol-0) dr).

From (4.3), (4.46) and remark 2.1 we deduce that |u(¢)|, is also uniformly
bounded on [s, c0). Then the motion w’(v, ‘) of w through (s, v) is uniformly
continuous on [s, ©) and its orbit is bounded in %, and precompact in €, by
Lemma 2.2. From Proposition 3.2 of [3] it follows that the w-limit set w*(v) of the
motion is nonempty, compact and

(4.48) ©° (0, ) —2 w° (V) as £,

Now we are ready to use the invariance principle for compact processes.
Actually in our case, the existence of a Lyapunov functional will enable us to use
even a more powerful stability theorem which results from the combination of the
invariance principle with the Lyapunov functional.

Let v; € w*(v). Using Prop. 5.1 of [3] and the fact that w°(v, &) is asymptoti-
cally a dynamical system with asymptotic hull {@} we deduce that

(4.49) @(vy, £)ew’(v) foralléeR™.

Next we proceed to show that w*®(v)is the set {0}. We observe that Z: $o> R
defined by

20)=3630, 500+ 3{(c+ [ 66 48)y ), y0)

(4.50) .
3 Lo (GE—m)y@®)—y(r), y)—y(r) dr

is a Lyapunov functional for the dynamical system @. Here y(¢) denotes the
solution of (3.17), (3.18). Since v; € w*(v), by Prop. 5.1 of [3], we have Z(v,)=0.
This, in turn, gives

4.51) G-y -y()=0, te(—0,0), re(—00,7),
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This implies that y (¢) = 0 for y (—c0, 00) as shown in [5, pp. 305-306]. Thus we
have
(4.52) »*(v)={0}.

The result follows from (4.48).
Now we can remove the assumption v € %, and establish the theorem for
v € €, by using an argument similar to the one given in [5, p. 306].

5. Applications to linear viscoelasticity. Let  be a bounded domainin E>. In
this section we consider the equations of linear viscoelasticity (1.4), in the cylinder
QX (—00, 00), together with homogeneous boundary conditions

(5.1) ux,)=0, xe€dQ, te(—o,®)."

The history of u(x, #) up to a given time s is assigned for the entire body:
(5.2) u(x, 1) =v(x, t), xe), te(—0,s).

Let C5'(Q) denote the set of three-dimensional vector fields with compact
support in 2 and components in C*(2). We obtain Hilbert spaces Ho, H; and H,,

respectively, by completion of C3(Q) under the norms induced by the inner
products

(5.3) (w,v)= w; dV,
Ja
(5.4) w, vy = | iy
Jo ox; ox;
C 3%w; 8%,
5.5 =| — —dV.
(5.3) (w,v2= | %2 9x2 av.

The space H_; will now be de