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RATIONAL BOUNDS FOR RATIOS OF MODIFIED BESSEL
FUNCTIONS*

INGEMAR NSELL’

Abstract. Double sequences of rational upper and lower bounds for the ratio I l(X)/I (x), x > 0,
u > 1/2 or u > 1, are established. The bounds are shown to converge, in certain cases monotonically,
to the ratio I,,+l(x)/I,,(x). A comparison with other approximations is made.

1. Introduction. The modified Bessel function of the first kind I is con-
sidered on the domain x > 0. It is real for u real and it is positive if u =>- 1. It was
proved in 1965 by Soni [12] that

I,+a(x)/I,(x)< 1, x >0, u> -1/2.
The aim of this paper is to extend Soni’s result. Specifically, we define in 3 a
double sequence of nonnegative rational functions L,,,k,m(x) (x >0, u>--l,
k, rn 0, 1, 2, and a double sequence of positive rational functions U.,,,, (x)
(x > 0, k, rn 0, 1, 2,. ., u > -1/2 if m 0, , >- 1 otherwise), and we prove that
the functions L.,,,, (x) are lower bounds and the functions U,,,k,,,(X) are upper
bounds of the ratio I+(x)/I,,(x).

These results and some properties of the bounds are derived in 2 and 3
below. The ideas used in our derivation are indicated by the following remarks.

The relation

(1) L,+I(X)= 2(, + 1_.___)+
I,,(x) x I,,(x)

shows that if F(,,x) is a positive upper (nonnegative lower) bound for
I,,+a(x)/I,,(x) (x >0, v >-1/2), then

2(u + 1__.._) +F(u + 1, x)
X

is a nonnegative lower (positive upper) bound for the same ratio (x > 0, u > 1).
By using this result one can generate the double sequence of bounds

g,,,,k,o(X), L,,,k,o(X), g,,k,l(X), L,,,k,I(X),"
k=0, 1,2,...,

from the sequence of upper bounds U,,,k,o(X), k 0, 1, 2, .
The sequence of upper bounds U,,,k,o(X) is found as follows. It is shown in 2

that the function

g,,(x)=x-"e-XI,,(x),

is completely monotonic. By repeated application of the recurrence relations for
I (x) one can express the kth derivative of g,,(x) in a form that contains modified
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Bessel functions of the orders v and v + 1 only. The following explicit form is
found from (3) and (7):

(v + 1./2)k
O< (--1)kg(k(x) 2kx e

(2v + 1)k

"[av,k (X )L (X fv,k (X )Iv+ (X )],
X>0, v>--1/2, k=0,1,2,"’.

Here, crv,k(X) and flv,k(X) are nonnegative polynomials in 1Ix defined in (8) and
(9), respectively. The sequence of upper bounds Uv,k,o(X) Of the ratio Iv/l(X)/L (x)
follows from the above expression; indeed

I.+,(x)
U..,o(x ),

L(x)

x>0, v>-1/2, k=0,1,2,"’.

Our work has been motivated by the need for bounds of modified Bessel
functions in certain recent epidemiological models. The tropical parasitic infec-
tion schistosomiasis is transmitted by helminthic parasites. Males and females of
the sexually mature forms of the parasite form pairs in blood vessels of human
beings. Mathematical models have been formulated for the transmission of
schistosomiasis in a community; see N/isell [8] and Nsell and Hirsch [9]. Modified
Bessel functions appear in these models to account for monogamous mating
between the parasites. Bounds for modified Bessel functions are needed in the
analysis of the qualitative behaviors of the solutions of certain systems of
nonlinear differential equations that appear in the models.

2. Some preparatory results. From Watson [13] we quote Schl/ifli’s integral
representation of Poisson’s type for the modified Bessel function

(x/2) I_ t)-/ -xt(1- e dt, v>-.L(x)
F(1/2)F(v + 1/2) ._

By defining a function gv through the relation

gv(x)=x e-XL(x), x >O, v>-3,

we find from the integral representation of Iv that gv(x)is the Laplace transform of
a function which is positive on the interval 0 < < 2 and equal to 0 for >-2. It
follows that gv is completely monotonic on (0, c) and that the strict inequalities

(2) (--1)kgk)(x)>O’
x>0, v>-1/2, k=0,1,2,...,

hold.
The recurrence relations for the modified Bessel function Iv can be used to

prove that
(v + 1/2)k

[Iv(x)-Gv,k(X)],g)(x) (--2)kx e-X
(2v + 1)k

(3)
x>O, v>-1/2, k=0,1,2,..’,
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where the function Gv,k is defined as a linear combination of/+1, Iv+k by the
relation

G,,,,(x) (-1)/
(2u + k + 1)j

(4)
x>0, v>-1/2, k=0,1,2,....

The function Gv,k satisfies the recurrence relation

(5)
G,,,,,+,(x)-G,,,,,(x)

(2v + 1)2
(2v + k + 1)2

It follows from (2), (3) and (5) that

[Iv+l(X)--Gv+l,k(X)],

x>0, v>-1/2, k=0,1,2,...

G., (x) < G..+(x)< g(x),
(6)

x>0, v>-1/2, k=0,1,2,...

Thus the sequence of functions {Gv,k} is a monotonically increasing sequence of
lower bounds of the function Iv. This result was proved in.Ntsell [7] by using an
expansion, given by Luke [6], of the confluent hypergeometric function in terms of
modified Bessel functions.

We proceed to derive relations that express Iv/, (x), where n is a nonnegative
integer, in terms of/(x) and//l(X). The relations take different forms, depend-
ing on whether n is even or odd. The relations contain certain polynomials in 1/x
that are defined as follows:

ml (re+k-l)(v+m k+ 1)2k ()2kav ,,(x)=
k =0 2k

+(m),

and
xS0, rn=0,1,2,...,

bvm(x) (v+m--k)2k+l
k=O 2k +1

xS0, m=0,1,2,....
Here, a (0) 1 while a (m) 0 for m # 0.

The polynomials av,., and b v,., are closely related. Specifically, the following
relations hold"

a,,,.,+(x)-a,,,m(X)=(v+2m + 1)(2/x)b,,+,,,,(x),
xS0, rn=0,1,2,...,

bv,m+,(x)-bv,.,(x) (v + 2m + 1)(2/X)av-l,,,,+l(x),
x0, m=0, 1,2,....

Relations between Iv, Iv+l, Z,+n are given in Theorem 1.
TEORZM 1. Let x : 0 and rn O, 1, 2, . Then
(a) Iv+2m(X)"-- av,,,,(X)iv(x)-bv,,,,(X)Iv+(x),
(b) /v+2m+l(X)-" av-l,m+l(X)Iv+l(X)-bv+l,m(X)Iv(x).
The proof of this theorem follows by induction.
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it is seen from (4) that the function G,k is a linear combination of the
functions Iv/,, I/2,’’ ", I/k. By applying Theorem 1 to (4) we are led to an
expression for/ (x) G,k (x) that involves polynomials in 1/x and L(x),/+l(X).
The expression has the form

I (x G,k (X a,k (X )I (x ,k (X)I+ (X ),
(7)

X>0, V>--1/2, k=0,1,2,’’’.

Here, the polynomials a,,k (X) and fl,k (X) are found from the relations

tk-J ( k ) 2(2u + l)2,,,-1(u + 2m)
a,k(X) 1 + a ,,(x)

,,=1 2m (2u+k +1)2,,,
[(k-1)/2] { k ’ 2(2p -1- 1)2m (l d- 2m q- 1)

(8) Or" Z ) bv+l,m(x ),
.,=1 2m + 1 (2v + k + 1)2m+1

x>0, v>-1/2, k=0,1,2,...

and

[(k-1,,2] { k 2(2v + 1)2,, (1 + 2m + 1)
/3,,(x) Y \ a_,,,+(x

m=o 2m + 1] (2v + k + 1)2m+1

(9) + [21 ( k )2(2v + 1)2m-1(V +2m)b,(x),
2m (2v + k + 1)2=

x>0, v>-, k=0,1,2,.-..

3, Ration bounds or the ratio l=+l(X)/l=(x). We proceed to apply the
results of the preceding section in the derivation of rational upper and lower
bounds of the ratio I+l(X)/L(x). As a preparation we define two double
sequences of polynomials in 1/x as follows:

a.,, (x) .+,(x)a., (x) +.+2, (x)6.+1, (x),
(0)

x>0, k,m=0,1,2,..., v>--2m,,,(x) +,(x)6., (x) ++,(x)a.-l,+l(X),
(11) x>0, k,m=0,.1,2,..., v>--2m.

Some elementary properties of these polynomials are summarized in Lem-
mas 1 and 2 below.

LZMMa 1. Let x > O, k, m O, 1, 2, ,

v>{- /fro=O,

-2 otherwise.

Then
(a) A,,,k,,,,(x) >-->_ 1,
(b) A,,,k,,,, (X -+ oo as k oo,
(C) A,,,k,m X "+ O0 as m -+oo,
(d) A,k+l,,,(x)-A,k,,,,(x)>O,k +m >0,



RATIONAL BOUNDS 5

(e) A,k,m+I(X)--A,k,.,(x)>O, k +m >0,
m "x O"X -k-2m+2\

v,k,ml, )= as x-+O, k +2m =>2,
(f)

[A,l,0(x) O(x 1) as x -+ O,
(g) Av,k,= (x 0(1) as x -+ oo.
LEMMA 2. Let x > O, k, m O, 1, 2, ,

>- /fm=O,

-1 otherwise.

Then
(a) B,k,.,(x)>O, k +m >0,
(b) B,k,., x -+ oO as k -+oo,
(c) B,k,,.(x)-+oo as m oo,
(d) B,k+l,m(X)--Bv,k,m(X) >0,
(e) B,k,m+,(x)--B.,k,.,(X) >0,
(f) B,k,,.(x)=O(x -k-2"+1) as x -+0, k +m >0,

Bv,o,m(X) O(x -1) as x -+ o0, m > O,
(g)

B,k,., (x)= O(1) as x -+ oo, k > O.
We use the polynomials A,k,.,(x) and Bv,k,m(X) to define two double se-

quences of rational functions as follows:

(12)

A.,.k...(X)

x>0, k,m=0,1,2,... - if m =0,
v >

1 otherwise,

(13)
L,,k,m(X)

Bv+I,k,.,(X)
A-a,k,.,+a(X)’

X>0, k,m=0,1,2,.", v>-l.

The explicit forms of these functions for k + m =< 3 are given in the Appendix.
Note that k m 0 gives U,o,o(X) oo and L,o,o(X) 0, which are trivial upper
and lower bounds, respectively, of I+l(X)/I(x). With k +m >0 we prove in
Theorems 2 and 3 below that each of the functions U,k,m (X) is an upper bound
of the ratio Iv+l(X)/Iv(x), and that each of the functions L,k,.,(x) is a lower
bound of the same ratio. The theorems also give monotonicity properties of the
bounds, exhibit their asymptotic behaviors, and establish their convergence to
the ratio I+l(X)/I(x).

THEOREM 2. Let x > O, k, m O, 1, 2, , k +m > O,

v>{- /fro=0,

-1 otherwise.
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Then

/v+l(X)
(a)

L(x)
< U,,,,.(x),

(b) Uv,k+a,m(X)< Uv,k,m(X),

(c) U,0,+(x) < U,o. (x),

(d) U.,k.m(X) -L+a(x) O(xk+4m-1),
Iv(x)

(e)
I.(x)

I.(x)

xO,

O(x), x

O(x-k), X, k >0,

(f) lim Uv k (X)
k-. Iv(x)

(g).l.,i Uv,k,,., (x)= L (x-----3-"
Proof. Replacement of v by v + 2m in relation (7) gives

Iv+z., (x G,,+2,,,,k (X Olv+2m,k (X)L+2,,, (X) flv+2,,,,k (X )L+2., +I(X).

Here we apply relations (a) and (b) of Theorem 1 to express L/2,,,(x) and
L+2.,+a(x) in L(x) and L+l(X). By also introducing Av,k,.,(x) and Bv,k,.,(x) from
(10) and (11), respectively, we find that

(14) L+Zm (X Gv+z.,,k (X Av,k, (X)L (X Bv,k, (X)L+ (X ).

Now L(x) > 0 and Bv,k,m (X) > 0 by Lemma 2(a). Division of both sides of relation
(14) by Bv,k,., (X )Iv (x gives, with the use of (12),

Iv(x) Bv,,(X)Iv(x)

The denominator of the right hand side of (15) is positive by the argument above,
and the numerator is positive by inequality (6). Thus U,,,k,m (X) is an upper bound
of I,,/(x)/L(x), and statement (a) holds.

The numerator of the right hand side of (15) decreases as k increases by 1, as
seen from (6). The denominator of the right hand side of (15) increases as k
increases by 1; see Lemma 2(d). Thus the upper bound Uv,k,,,, (x) decreases as k
increases by 1, as claimed in (b).

With k 0 we find from (4) that Gv,o(X)= 0 and that the numerator of the
right hand side of (15) equals Iv/z.,(x). As m increases by 1 we find from the
recurrence relation for L that the numerator of the right hand side of (15)
decreases. Lemma 2(e) shows that the denominator of the right hand side of (15)
increases as m is increased by 1. Thus the upper bound Uv,0,., (x) decreases as m is
increased by 1, as claimed in (c).
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The following asymptotic relations follow from results in [7]:

and

l.+.(x)-G.+.,,,(x)
I.(x)

O(x"), x O,

L+.(x)-G.+.,(x)
I.(x)

O(x-),

n=0, 1,2,...,

x, n=0,1,2,....

By using these results and the asymptotic behavior of Bv,k,m (x) (Lemma 2(0, (g)),
we find from (15) that (d) and (e) hold.

We note that Uv,l,o(X)= 1. It follows therefore from (a) that Iv+n (x)< Iv(x),
n 1, 2,.... From this inequality and (6) we find that

(16) O< Iv+’’x’-Gv+’’k’x’ <-_ 1, n =0, 1,2,
I,,(x)

By applying this result and Lemma 2(b) to the right hand side of (15) we conclude
that (f) holds. An application of (16) and Lemma 2(c) to the right hand side of (15)
shows that (g) holds.

Some of the properties of the rational functions Lv,k,m (X) are summarized in
the following theorem.

THEOREM 3. Let x > O, k, m O, 1, 2, , k +m > O, u > 1. Then

(a) Lv,k,,, (x)<
I.+(x)
I.(x)

(b) Lv,k,,,(x)<Lv,k+a,,,(X),

(c) Lv,o,m (x) < Lv,0,,, + (X),

(d) iv+l(x)--L,,,k,,,,(x)= O(xk+4m+l), X
l.(x)

(e) Iv+l(X’------)--L,.,k,,,,(x)= O(x-k), X aZ,I.(X)

(f) lim Lv k (X)/+1(X)
"-’ L(X)

I.+(x)
(g) .,-olim Lv,k,m (X Iv (x

This theorem follows in a manner similar to the proof of Theorem 2.

4. A comparison with other approximations. By writing each of the bounds
Lv,k,,, (x) and Uv,k,,,, (x) as a ratio of polynomials in x we find the degrees of the
polynomials in numerator and denominator to be those given by Table 1.
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TABLE

Function Condition

Degree of Degree of

numerator denominator

P q

Uv.o.,,. m _-> 2m- 2m -2
Uv,k, k >- 1, m >-0 k +2m- k +2m-
L.o.,. m _-> 2m- 2m
L,.k.m k >- 1, m >= 0 k /2m k + 2m

Thus, our bounds are of the form

S(x)Rp,q (x
Tq (x )’

where Sp (x) is a polynomial in x of degree at most p and Tq (x) is a polynomial in x
of degree at most q. Following Baker [2], such a function is called a Padd
approximantofafunctionF if its power series expansion agrees with that of F(x) in
its first p + q + 1 terms, i.e. if

F(x) Rp,q (x) 0(xp+q+ 1), x -> O.

From Table 1 and Theorems 2(d) and 3(d) we find that the bounds Lv,k,m (x) and
Uv,k,,(x), k +m >0, are Pad6 approximants of L+l(X)/Iv(x) for k 0 but not for
k > 0. The Pad6 approximants Lv,o,,, (x) and Uv,o,, (x), m > 0, are the approxi-
mants of the continued fraction expansion of I,/l(X)/L(x), which can be
developed from relation (1). It has previously been observed by Amos [1] that
rational bounds of L/l(X)/Iv(x) can be derived from its continued fraction
expansion.

Irrational bounds for I+l(X)/I(x) have recently been given by Amos [1].
Putting

x x
Cv(x)=u+1/2+[x2+(u+)2]l/2 and Dr(x)=

Amos shows that

Iv+l(X)< (X), X >0, / >0O<-Cv(x)<= Iv(x)=Dr
We note that Amos’ method can be used to give the more generally valid
inequalities

Iv+l(X)
0<Cv(x)< Iv(x)’

x>0, u>-I

and

Iv+l(X)
<D,,(x), x >0, t,> -.
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Asymptotically we find that

Iv+l(X)

I,+I(X) O(x-), x -,
O(x), x --, 0,

-G(x) O(x-), x,
G(x O(x ), x - O.

A comparison with Theorem 2 shows that D,(x) is a sharper bound than
U,,1,o(X) asymptotically both as x 0 and as x oo, but that U,,k,,,, (x) is sharper
than D,,(x) asymptotically as x 0 and as x- oo if k _-> 3, rn _-> 0. In a similar
manner we find from a comparison with Theorem 3 that C(x) is a sharper bound
than L,,,x,o(X) asymptotically as x 0 and as x oo, but that L,k,,, (x) is sharper
than C,,(x) asymptotically as x - 0 and as x - oo if k >-3, m >= 0. The following
lower bound for the ratio I,.(x)/I,(x) has been given by Ross in [11]:

I,,(x)
> ()-" F(tz + 1/2)

I, (x) r(u + 1/2)’

By taking/z u + 1 in this inequality, one finds that

Now

>u>0, x>0.

XL+(x)< x >0, u>0.
/(x) 2u + 1’

k=2,3,

X
Uv,o,l(X)

2(, + 1)"

It follows therefore from Theorem 2(c) that each of the inequalities

I+(x)
< U,o,.. (x),

I.(x)
x>0, v>-l, m=1,2,...,

is sharper and more general than that of Ross in the case u + 1.
Soni’s inequality is

I,+l(X._____) < Uu,l,o(X)-- 1, x >0, u > -1/2;
I,,(x)

see [12].
It follows from Theorem 2(b) that each of the inequalities

I,,+x(x)
< U,,,,,o(X),I,,(x)

x>0, v>-1/2,
is sharper than Soni’s inequality.
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Other results that are stronger than Soni’s inequality have been given by
Jones [4], Lorch [5], Cochran [3], and Reudink [10]. Thus, Jones proved that if
e > 0, v >= 0, and x > 0, then the inequalities

L/.(x)
0<<1

L(x)
hold, and furthermore the ratio I,,/(x)/I(x) has a positive derivative for x >0,
and it approaches the value 0 as x 0 and the value 1 as x oo. Lorch used a
comparison theorem to establish inequalities for Whittaker functions. As a special
case of these results, he draws the same conclusions as Jones concerning the ratio
I,,+(x)/L,(x) in the slightly more general situation when e >0, v>-1/2e, x>0.
Cochran established the inequality

oL(x)
<0, u_>O, x>O,

and Reudink used a different method to prove Cochran’s inequality for v >0,
x>0.

Appendix. Explicit expressions for some of the rational bounds.

U.,o,o(X) o,

U,,,a.o(X)-- 1,

Uv,o,l(X)
2(v + 1)’

U..,o(X)

Uv,l,l(X)

U,o,_(x)

U...o(X)

U.,,(x)

X

v+(1/2)+x’

2(v + 2)x +x
4(v + 1)2 + 2(v + 1)x +x

34(v + 2)2x +x
8(v + 1)3 + 4(v + 2)x 2,

(v + 1/2)x + 2x 2

2(v+ 1/2)(v + 1) +3(v + 1/2)x +2x z’

2(u + 2)(v + 5/2)x + 2(u + 2)x 2 +x

Uv, 1,2(x)

4(v+ 1)2( + 5/2) +4(v + 1)zx +3(u+3/2)x2+x
8(g + 2)3x+ 4(v + 2)2x2 +4( + 3)x 3 + X

4

16(+ 1)4+ 8(u + l)3x+ 12(v+2)2x2+4(v+2)x3+x

U.,o,(x)
16(v + 2)4X + 12(u + 3)2x3 +x 5

32(v+ 1)5 + 32(u + 2)3x2 +6( + 3)x 4’

L,,,o.o(X) 0,

L,,o(X)
2(v+ 1)+x’
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L,E,0(x)

L,,,,(x)

L,,,o,2(x)

L,,,3,o(X)

2(u + 2)x
4(u + 1)2 + x

(u + 3/2)x + xz

2(v+ 1)(v+3/2)+2(v+ 1)x +x

4(u + 2)2 x+ 2(u + 2)x 2 +x 3

8(v + 1)3 + 4(v + 1)2 x + 4(t, + 2)x 2 +x 3,

8(/ + 2)3x+ 4(u + 3)x 3

16(u+ 1)4+ 12(u+2)2xZ+x
2(u + 3/2)(t, + 2)x + 3(t, + 3/2)x2 + 2x 3

L,,,2, (x)

4(t,+ 1)(u+3/2)(v+2)+6(v+ 1)(u+3/2)x +5(v+ ll/lO)x2+2x 3’

4(u + 2)2(u + 7/2)x + 4(u + 2)2 x2 + 3(u + 5/2)x 3 + x 4

8(t,+ 1)3(v + 7/2) + 8(t, + 1)3x+8(t,+2)(t,+9/4)x2+4(v+2)x3+x4’

16(v + 2)4 x+ 8(v +2)3x2 + 12(u+3)2x3+4(+3)xn+x 5

L"’’z(x)=32(t,+ 1)5+ 16(u+ 1)4x + 32(t, + 2)3x2 + 12(u+2)2x3+6(t,+3)x4+x 5’

Lv,0,3(x)
32(u + 2)sx + 32(u + 3)3x3 +6(u + 4)x 5

64(t, + 1)6+80(v+2)4x2+24(v+3)2x4+x 6"

Acknowledgments. I thank Harold S. Shapiro for suggesting the com-
parison with Pad6 approximants and the referees for constructive comments on
the presentation of these results.
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LIE THEORY AND THE WAVE EQUATION IN SPACE-TIME.
2. THE GROUP S0(4, C,)*

E. G. KALNINS]" AND WILLARD MILLER, JR$

Abstract. Homogeneous solutions of the Laplace or wave equation in four complex variables
correspond to eigenfunctions of the Laplace-Beltrami operator on the complex sphere $3c" i4_- z
1. It is shown explicitly that variables separate in this eigenvalue equation for exactly 21 orthogonal
coordinate systems, each system characterized by a pair of commuting symmetry operators in the
enveloping algebra of so(4, C). Standard group-theoretic methods are applied to derive generating
functions and integral representations for the separated solutions. Henrici’s theory of expansions in
products of Legendre functions is incorporated into this more general scheme.

1. Introduction. In [1] we studied the relation betweensymmetry and
separation of variables for the differential equation in 3 real variables satisfied by
solutions of the wave equation 0,t-A3 0 which are homogeneous of degree r
in x, y, z, t. The appropriate symmetry group was S0(3, 1). Here we examine this
relationship in the case where all variables are complex. Instead of the Hilbert
space theory for expansions of solutions of the differential equation in terms of
separable solutions as developed in [1] we here construct a theory of analytic
expansions in terms of separable solutions.

We begin with the complex Laplace equation

(1.1)

4

A4CI)(y) 0, A4=

Y (Y l, Y2, Y3, Y4), yj E C,.

Clearly (1.1) is equivalent to the complex wave equation, (set Ya x, Y2 Y, Y3 Z,

Y4 it). We are interested in the solutions of (1.1)which are homogeneous of fixed
degree r E C: (ry) r(y). Introducing coordinates r, zj such that yj rzi,
4 2-"q= Z] 1 we see that these homogeneous functions are uniquely determined by

2
their values on the complex unit sphere S3c" z + z 2 "+" z 32 + z 1. Indeed (y)
r(z). The group S0(4, C)- SO(4) has a natural action on $3c which is deter-
mined by the Lie derivatives

Ii’k --ZjOzk--Zk(gz.i, l <=j,k <-_4, j #k.

(Since this paper deals with local Lie theory we are concerned only with the
behavior of analytic functions in small neighborhoods of a given point. Thus
f(r) r can be defined precisely in a neighborhood of r0 0 by choosing any
branch of the global analytic function, e.g., if ro Roeio, Ro > 0, -Tr < q0 < 7r we
can define f(r) for r=Rei in a small neighborhood of r0 by f(r)=
exp (o- In R) ei. The branch chosen makes no difference in the computations to
follow. However, in 4 it is necessary to be more careful about domains of
definition in order to determine precisely the regions of validity of our identities.

* Received by the editors April 1976, and in revised form July 23, 1976.

" Mathematics Department, University of Waikato, Hamilton, New Zealand.
: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.

12



LIE THEORY AND THE WAVE EQUATION 13

In that section we use the above definition of r for r R >0 and extend by
analytic continuation.)

It is straightforward to show from (1.1) that the restriction q of the
homogeneous function to $3c satisfies the eigenvalue equation for the Laplace
operator on $3:

(1.2) (I2 +I3 +I4+I3 + I24 + l4)t(Z) --0"(0" + 2)q, (,).

Moreover, the symmetry algebra of (1.2) is so(4), the Lie algebra of SO(4). In
other publications we have developed a method which relates the symmetry group
of a linear partial differential equation to the possible coordinate systems in which
the equation admits solutions via separation of variables, e.g., [2], [3]. Here the
method is applied to (1.2).

In 2 we apply results of Eisenhart [4] to construct all complex orthogonal
coordinate systems in which (1.2) admits separation. We show that there are
exactly twenty-one such systems. In 3 we show that each system is characterized
by a pair of commuting second-order operators ,’1, ,’2 in the enveloping algebra
of so(4) in the sense that the corresponding separable solutions are common
eigenfunctions of these operators with the separation constants as eigenvalues.
We also discuss the relationship between the subalgebras so (3), so(3) so(3) and
(2) of so(4) and some of the simpler coordinate systems.

In 4 it is shown how the Lie algebraic characterization of the separable
solutions of (1.2) can be used to derive generating functions and addition
theorems for these special functions. Since the basic theory of such expansions has
been discussed elsewhere, [5], [6], we merely present a few of the most interesting
cases.

Among the results is a new group theoretic proof of the addition theorem for
Gegenbauer polynomials C(x). The standard group-theoretic proofs of this
result, [7, Chap. 11], use global representations of the family of groups SO(m) and
are valid only for half-integer values of A. The proof given here is much simpler,
uses local representations of SO(4) and is valid for general complex A. In [8],
Henrici gave simple, elegant proofs of this addition theorem and many other
generating functions for products of Gegenbauer functions by employing complex
variable techniques on the partial differential equation (4.17) below, an equation
which is distinct from (1.2). We will show, that (4.17) is actually equivalent to (1.2)
under the action of the conformal symmetry group SO(6) of (1.1) and point out
the underlying group structure of Henrici’s technique. A related proof of the
addition theorem which implicitly employs separation of variables can be found in
a recent note by Koornwinder [9].

Finally, in 5 we show how to construct integral representations for each of
the twenty-one classes of separated solutions of (1.2) by transferring the action of
SO(4) from $3c to $2c.

We are ultimately concerned with the classification of all separable and
R-separable complex coordinate systems for (1.1) and the study of all special
functions which arise from the equation via separation of variables. The determi-
nation of all homogeneous orthogonal separable systems given here is a first step
toward realization of this program.
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Note that by characterizing each separable system in terms of Lie algebra
generators we have to a considerable extent reduced problems concerning the
expansion of one set of separable solutions in other sets to a problem in the
representation theory of the symmetry algebra. In [1] we studied unitary rep-
resentations and obtained Hilbert space expansions whereas here we study local
representations and obtain analytic expansions.

2. Separation of variables or the Laplace operator on $3c. Here we consider
the problem of separation of variables for the equation A, r(r + 2), where A is
the Laplace operator on the complex sphere $3c. This is not equivalent to the
corresponding problem on the real sphere $3 studied by Olevskii [10] and
Eisenhart [4] since we allow the coordinates to be complex quantities and ignore
the ranges of variations of the coordinates. We do, however, restrict ourselves to
orthogonal coordinate systems. The method we use for evaluating the systems is
an adaption of that used by Eisenhart for a space of constant curvature. Here we
look for all complex solutions for the metric coecients rather than for all real
solutions as did Eisenhart.

Let {x, x2, x3} be a complex analytic coordinate system on $3. If the system
is orthogonal then the metric takes the form

(2.1) ds2=Hdx+Hdx+Hdx
and the equation Aft (+2) in these coordinates reads

1

-(+ 2)0.

Eisenhart has shown that if (2.2) separates in the variables {x a, x2, x} then the
metric coefficients must have one of the forms

1. Hi=l, H2=(x,), H3=O(Xl),

2. Hi=l, H2=(x), H3=(x)O(x2),

3 H1 1, H2 (x 2 x3)X3(x3)(x2 2 --x3)X2(x2)I(X1), n (x2-

4. H=l(Xl)+e3(x3), H=I(X1)3(X3),
H=l(Xl)We3(x3), e =1

5. H (xi x,)(x Xk) (Xi), ] k i.

In addition to having one of these forms the metric coecients H2 must
satisfy the requirement that the space have constant unit curvature. This condition
is

1 (2 02 +Z He 0 H
Ox logn

Ox
log log H]

(2.3)
1 ( 0 +ZlogH 0 H+ 2logH 0x, log

1 0 0
+ logH logH -4,
Hk OXk OXk
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where i, j, k are distinct. We now compute the differential forms associated with
the four types of metric and subject to constraints (2.3).

1. For metrics of type 1 we find from (2.3) for 1, ] 2 and 1, ] 3 that
4, and 0 satisfy the equation d2/dx + 0, and for 2, ] 3 in (2.3) we have
the constraint (d4/dx)(dO/dx1)+ b0 0. There are two distinct solutions:

(i) =sinxl, 0=cosxl,

(ii) t-e ix1 O=e ix1

The corresponding metrics are

(1) ds2=dx+sin x dx2+cos2x dx’,
cls = +clx  ,

2. For metrics of type 2 we find from (2.3) with 1, j 2 and 1, j 3 that
b"+ ,/ 0. For 2, j 3 we find 0" + (b 2 + b’2)0 0. The possible solutions to
these equations are

(i) b=sinxl, 0=sinx2,

(ii) $=sinxl, 0=eiX2,

(iii) b e ix’, 0 X2.

The corresponding metrics are

(3) ds2=dx+sin2 x(dx+sin2x2 dx),
(4) ds2=dx+sin2xl(dX2+e2i’2 dx.).,
(5)

3. For metrics of type 3 we find from (2.3) with 1, ] 2 and 1,/" 3 that
7+=0. If =sinx then H=I, H=(x2-x3)X2sin2x and H=
(x2-x3)X3 sin Xl. For 2, ] 3 in (2.3) we obtain

2kX X3]
+(x2-x3, ()-() -4(x2-x3’3=0.

Differentiation of this equation twice with respect to x2 implies (l/X2)’’= -24 so

1/X =-4x +bx +cx +d f(x:).

Similarly X3 =-1//(x3). There are only three distinct systems of this type"

(6) ds2=dx+sinx(sn2 (x, k)-sn2 (x3, k))(dx-dx),

( 1 1 )sin2xx(dx_dx,(7) ds2=dx +
ch ch

X3 X/2

Here, sn (x, k) is a Jacobi elliptic function and we adopt the notation sh x, ch x, th x
for hyperbolic functions.



16 E. G. KALNINS AND WILLARD MILLER, JR.

In these equations we have introduced new variables j j(xi), j 2, 3. In
general, we do not distinguish between coordinate systems {Xl, X2, X3} and
{1, 2, 3} where (xi), j 1, 2, 3.

If tr e ix’ and 2, j 3, then (2.3) reduces to

]-0.
Differentiating this equation twice with respect to x2 we find (I/X2)"’ =0 or
1/Xz=ax+bx2+c=h(x2). Similarly 1/X3=-h(x3). There are four distinct
systems of this type"

(9) ds2=dx+e
(10) ds2=dx+e
(11) ds2=dx+e
(12) ds=dx+e

X(ch2 x2 -ch
2 x3)(dx-dx 32),

2’X(e2X + e2)(dx dx),
’X(x +x)(dx + dx ),
eix(4x2 4x3)(dx dx).

4. For metrics of type 4, equation (2.3) with 1, j 2 yields the constraint

---11) "O"3 2
O’1 +O"30"3 =--4(O"1+O"3)2"

Differentiating with respect to x3 we obtain

1 1 k 3

We can separate variables in this equation according to the scheme
t2

2 2 81 =4c,

3+
q3]q;

8q3 -4c

where c is a separation constant. First integrals of these equations are
t2
1 41(f+C-),

t2
3 4a(/-c-),

f is a constant. Choosing new variables 1 1, 3 =--3 we obtain the metric

ds=(-2) (a-2)(b-2) +l dx,

where ab -, a +b c. There are four distinct cases:
If a b, a , Ibm> 0, the metric can be reduced to

( as= -(sn (x, -sn (x, l(ax-ax
k

+cn (x, ) cn (x3, )) &, ’=1-,
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If a b # 0 we find

(14) ds 2 (th2xa-th2 x3)(dx-dx)+th2Xl th2x3 dx 2
27

while if a 0, b # 0, we obtain

(15) ds2=
1 1 (dx-dx)+ 2 dxch2 x ch2 x3 ch x ch2 x3

Finally, if a b -0 the metric becomes

(16) ds2= 1+ (dx+dx)+ dx

5. For metrics of type 5, equation (2.3) with 1, 2 becomes

1 1 { [ ()’1 ( )_]1- (x3-x)2 (Xl-X3) -,2(x---3--Z-x-1) + 1
X3 (Xl -x2)2

\ x2-xl

+(X3--X1)2 [(X2--X3) (2)
__(2(X3--X2) 1

\ "’-’X2 +I)-2]I+4(X3--Xl’2(X3--X2)2-’O"
Differentiating this equation twice with respect to xe we obtain a polynomial of
order three in x3. The coefficient g(xl, x2) of x must be identically zero. Thus

+96=0

and l/X2 -4xZ4 + ax + bx + cx2 + d f(x2). Similarly l/X1 f(x 1) and l/X3
/(x3). Five coordinate systems of this type can be distinguished. In each case the
metric assumes the form

ds2--(xl-x2)(xl-x3) dx+ (x2-x3)(x2-x1) dx+ (x3-xl)(X3-X2) dxf(xl) f(x2) f(x3)

and the systems are distinguished by the multiplicities of the zeros of f(x). The
distinct possibilities are

(17) f(x)=-4(x -a)(x-b)(x- 1)x,

(18) f(x)=-4(x-2)(x- 1)x 2,

(19) f(x)=-4(x- 1)2x 2,

(20) f(x)=-4(x 1)x 3,

(21) f(x)=--4X 4.

aCb,

This completes the list of orthogonal coordinate systems on the complex
sphere $3c which permit separation of variables for the equation Aq r(o" + 2)q.
There are exactly 21 such systems.
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3. Lie algebra characteristics of the separable systems. The three-dimensional
complex sphere $3c consists of those points (z l, Z2, Z3, Z4) in complex four-
dimensional Euclidean space such that z 2 + z + z + z 42 1. The connected Lie
subgroup of the complex Euclidean group which leaves this manifold invariant is
SO(4, C), the complex rotation group. A basis for the six-dimensional Lie algebra
so(4, C) of S0(4, C) is

(3.1) Ikl ZkOi--ZlOk, k, 1=1,2,3,4, k ysl, I =-I.
These basis elements satisfy the commutation relations

(3.2) [Ikl, Is, lsIk, ksIl, ltIks 2t- ktIls.

Further, if we put

(3.3)
J1 1/2(/23 -I14),

El 1/2(/23 +I14),
Jz 1/2(113 + I24),

L2=1/2(I13-I24),
J3 1/2(I12-/34),

L3 1/2(I12 +/34),
it becomes evident that so(4, C)-so(3, C)(so(3, C). Indeed

(3.4) [J,, [L,, [J,, 0.

It can be verified by tedious computations that each of the 21 separable
coordinate systems constructed in {} 2 is characterized by a pair of commuting
symmetric second-order operations 1,2 in the enveloping algebra of so (4, C).
That is, the separable solutions [I--[II(X1)Ill2(X2)III3(X3) corresponding to such a
system are characterized by the equations

(3.5) al//-- 0"(0" "- 2)1//, o11//-’-/ 10, o2/-- ,20.
The eigenvalues A 1, A2 are the separation constants. Expressed in terms of the
generators of so(4, C) the Laplace operator is

(3.6) -A Iz +I3 +I4+I3 +I4 +I4;
i.e., A is the Casimir operator for so(4, C).

We now present the explicit coordinates and the corresponding operators
2 for each of the 21 separable coordinate systems on $3c.

(1) z sin x cos x2, z2 cos x cos x3,

Z3 COS X sin X3, Z4 sin x sin x2,

& z 4;
(2) Zl=1/2[e-’X+(l+x+x)e"l], z2=ix2e ’x

Z3 ix3 e ix1, Z4 [e -ix+(-l +xz+x) eiX],

-1 (I42 + i/21)2, ,z (134 + iI13)2"

(3) z sin x COS X2, Z2 sin x sin x2 COS X3,

z3 sinxl sin x2 sin x3, Z4 COS Xl,

1 I2+I3 +I3, 2 I3;
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(4) z 1/2 sin x[e-iX + (1 x) ix ixe ], Z2 X3 e sin Xl,

-i
z3=-sinxl[e-iX2--(1 +x)e’], Z4 COS X1,

I+G+G, e (I: +i);

(5) lre-iX, ixlxZ 2t +(l+x)e’’], Z ie 2C0SX3,

z3=ieix2 sinx3, z4=(i/2)[e-iX’-(1-x)ei’q],, (I4 +i) + (I, +i), I;

(6)
1

z -; sin x dn (x 2, k) dn (x3, k
ik.

z2 sin X cn (x2, k) cn (x3, k),

Z3 k sin x sn (x, k) sn (x3, k), z4 COS X 1,

=I+I13+I3, I23 + k 21123;

(7) ( +Chx)x21 ch X3
ChZl= sinxl

chx2
z2 sin x thx2 thx3,

1 1 ch x3, +Z3 sin x
ch x2 ch x3 X2 ch

Z4 COS Xl

,.1= I2 +I23 +I3, ,..2= -I2-13 +123 + i{I31, I32};

(8) Z
-i sinxl [(x.x)2+4],
8X2X3

sin X [x + x .],Z2 X2X3
sin X

[--(X X)2 .. 4],Z3
8X2X3

Z4 COS X --{112, I13} + i{I12,123},

o.1 I2 +I3 + I.3, 2 -{!12, I13} -I- i{I,2, I23};

(9) z=1/2(e-iXl+[l+ch2x2+sh2 x3]eixl), z2=i chx2chx3e i’,

ix
z3 sh x sh x3 e z4---(e-iXl+[--1 +ch2 x2+sh2 x3]e’Xl),

(I42 -- ii21)2 + (I34 +//13)2, ’92 I223 + (I34 -]- ii13)2

(10) z =1/2(e-X+[1 +e 2x.,_e2X3]eiXl), z2 (sh (X2--X3)+exz+x3) e ix

1
z3 (sh (x2-x3)-e’2+x3) e ix1,

_i 2x2 2x3]z4=2 (e-i"’+[-l +e -e e

,1 (I42 + ii21)2 + (I34 + ii13)2, ,2 I3 (I42 + 131 + i(I12 + I34))2;
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(11)

(12)

(13)

2 ix ixZl--1/2(e-iXl+[l +d(x2+x)2]e Z2 (i/2)(x-x)e

z3=ix2x3 e ix1 z4=(i/2)(e-iXl+[-1 +1/4(x22+x)2]e ix1)

1 (I42 + i121)2 + (134 + ii13)2, -2 {123,/42 + i121};
z 1/2(e -ix1 +[1 + 2(x2-x3)2(x2 +x3)] eiXl,

ix
Z2 i[1/2(x2--x3)2+(x2+x3)]e ix1 z3 [-ff(x2--x3)2--(xe+x3)]e
z4=1/2(e-iXl+[--1 + 2(X2--X3)2(X2 +X3)] eiXl),

,C’l (I42 d" ii21)2 + (I34 "+- ii13)2,

2"-- {I23, 142 +I31 + ii21 + ii34}--i(I42--131 + i(I21--I34))2;
k

Zl-k Sn(Xl, k)sn(xa, k), ZE=-icn(xl, k)cn(xa, k)cosx2,

(14)

(15)

(16)

(17)

k
z3 -i 7-7, cn (Xl, k) cn (x3, k) sin x2,

K

1
Z4 F dn (x 1, k) dn (x3, k),

,1 I3, 2 1212 "+- I3 + k 2I4;
1 chx+Zl"’ chx3 ch Z2 th x th X3 ch X2,

Z3=--i thXl thx3 shx2, Z4--
-i t_t_" ChXl+

chx chx3 2 X3 chx

’1=I3, .g2 I224 + I324 I2 I3 I4 {I12 I42}-i{I13, I43};
2-l(ch x3 ChXl) x2 ix2+ Z2z --\ChXl chx3 2ChxlchX chxchx3

z3--thXl thx3, z4=i 2ChXl chx3 2 chx3 ChXl!

(I42 -]-ii21)2, =’2 2I2 +I3 +I4-I324 + i({I2, I42} +{I3, I43});

X:+X)2+4 X2 --ix2
Z1

8XlX3 2XlX3 XlX3
2-i (x33 x_) i(x+x)2-4i ’X2

Z3--"T Z4--
8XlX3 2XlX3’

0’1 (I42 -]- ii21)2, 2 {/’32, 142 -- ii21}--{I14, ii34--I13},

Z----XlX2X3 2 (Xl-- 1)(X2-- 1)(X3-- 1)
ab z2 (a 1)(b 1)

2 -(x-b)(x2-b)(x3-b) 2 (xl-a)(xz-a)(x3-a)
Z3"- z4--(a b )(b 1)b (a b )(a 1)a

abI2 + aI3 + bI4,
=(a +b)l2+(a + i)I3 + (b + 1)I4+aIz+bI]z+I]3;
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(18) (izl -Z2)2-’xlx2x3,
a

z+z=4[(a + 1)XlX2X3-a(xlx2+.XlX3+X2X3)],
a

2 -(Xl- 1)(x2- 1)(x3- 1) 2 (xl-a)(x2-a)(x3-a)
Z3-- Z4---a-1 a2(a-1)
=al (I42 ii14)2 a (132 + ii13)2 aI2,

Z2 (a + 1)I212 + I4 + I422 a(I3 +I2) + (I42 + ii14)2 + (132 + ii13)2;

(19) (Z1 +iz2)2=-(x, 1)(x2- 1)(x3-1),

Z+Z=2XlX2X3--(XIX3+X2X3+XIX2)+ 1, (z3+iz4)2=--XIX2X3,

Z-Z XlX3 -X2X3 q-XlX4-- 2XlX2X3,

=al 2(i31 + ii32)2 +{131 + ii32, 124 + iI41}+I2,

’2 2(131 + ii32)2 +{I31 + ii32, 124 +141}-- 14;
(20) (z2-izl)2= +xlx2x3, -2z3(z.z-izl) XlXz +XlX3 +XzX3-XlXzX3,

Z "" Z -" Z "+’X lX2X3 X lXz-- X lX3 X2X3 "-X "" X2 "-X3,

Z," --(Xl-- 1)(x2-1)(x3-1),

91 (I41 + ii42)2 +{I32-ii13, I12},

’2 1421 +I2-I4-(I41 + ii42)2 +{I41 + ii42, I34};

(21) (z1+iz2)2=2xlxzx3, (zl+iz2)(z3+iz4)=-(xlxz+xzx3+xlx3),

-(z1 +i22)(z3-iz4)+1/2(z3+iz4)2=x1 +x2 +x3,

1 1/2{121,114 + 123 + i(I31 + I24)}- 1/41113 + 124 + i(I23 + I41)]2,

2 1/2{121 + I43,132 + 114 + i(I13 + I24)}

+ 1/2{114 + 123 + i(I31 + I24), I43} + 1/2(142 +//23)2 1/2(113 +//14)2.
Here, {A, B} AB +BA.

To understand the significance of these systems it is useful to examine some of
the subalgebras of so(4, C). As shown in (3.3) and (3.4) this algebra can be
decomposed into so(3, C)qso(3, C), and it is easy to see that system (1) corre-
sponds to this decomposition. Another so(3, C) subalgebra of so(4, C) has basis
{I12, I13, I23} with commutation relations

and Casimir operator

[I12, I13] --I23, [I12, I23] I13,

[I13, I23] --112

I2 +I3 +1223.
It is easily seen that the systems (3), (4), (6), (7), and (8) correspond to this Lie
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algebra reduction so(4, C) so(3, C) and to coordinates on the sphere S2c" z-Jr
z22 +z const. Indeed as indicated in [11] there are exactly five such systems
corresponding to the so(3, C) subalgebra.

The operators

(3.7) E1= I42 + iI2, E2-I43+ii31, E3=I23
with commutation relations

(3.8) [El, E2] 0, [El, E3] E2, lEe, E3] --El
form a basis for the Euclidean subalgebra ’ (2, C) with invariant operator

(3.9) E+E.
The systems (2), (5), (9), (10), (1 1) and (12) correspond to the reduction so(4, C)
(2, C). Indeed, as shown in [12, Chap. 1], the complex Helmholtz equation with
symmetry algebra (2, C) separates in exactly six coordinate systems. The
remaining nine of our twenty-one systems are not obviously related to subalgebra
reductions. (However, systems (13), (14) involve the diagonalization of I2 and
systems (15), (16) involve the diagonalization of E.)

Our separable systems can be understood from another viewpoint. In [13] we
presented a group-theoretic analysis of the six separable systems for the Laplace
operator on the real sphere S" y + y + y + y 1. Here the symmetry algebra is
so(4, R). It is evident that each such real system can be analytically continued to a
separable system on S. Indeed the complexifications of these six systems
correspond to our five complex systems (1), (3), (6), (13) and (17). (Elliptic
cylindrical coordinates of types I and II complexify to the same system (1 3).) In [ 1]
we analyzed the thirty-four separable systems for the Laplace operator on the
hyperboloid y-y-y-y 1 (symmetry algebra so(3, 1)). Complexification
of the thirty-four systems yields all complex systems classified here with the
exception of the systems (10), (12), (16) and the nonsubgroup systems (19),
(21). However, it is evident by inspection that these five remaining cases arise by
complexification of separable coordinates for the Laplace operator on the real
hyperboloid y2_ y22 +y_y] 1, symmetry algebra so(2, 2) s/(2, R)s/(2, R).
Thus all our complex separable coordinates are complexifications of real separ-
able coordinates on the sphere S and the hyperboloids y-y-y-y] 1,
y y / y y 1. Similarly the separated solutions are analytic continuations
of the separated solutions for the real forms.

To be more specific, note that the coordinates corresponding to the sub-
algebra reduction so(4, C) so(3, C) all have the form

(3.10) Z1--W1 sin Xl, z2=w2sinxl, z3=w3sinxl, Z4 COS Xl,

where w+w+w 1 and wj wj(x2, x3). The separated solutions are of the
form

(3.11) f(xl, x2, x3)=sin XlCl+-ll(cOSXl)h(x2, x3)

where xr,(s) is a solution of the Gegenbauer equation

(3.12) (1 -s2)C"+ (2X -3)sC +a(a +2A)c 0
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and

(3.13) (I2 +I23 +I23)h -l(l + 1)h.

Similarly the coordinates corresponding to the reduction so(4, C)= g’(2, C)
all have the form

--ixz=(e +[l+w+w]e’Xl), Z2 iw2e ix1,
(3.14)

z3:iw3e ix1, z4=-(e-iXz+[--l+w+w]e’xl)

where wj wj(x2, x3), j 2, 3. The separated solutions are of the form

]’(Xl, x2, x3) e-iXaZ+(,+l)(ioo e-i’l)h(w2, w3),

where the cylindrical function Zv (s) is a solution of Bessel’s equation

sZ"+sZ’,, + (s- ,:)Z 0

and h is a solution of the complex Helmholtz equation

(3.16) (Ow2w_ + Ow3w3 + to2)h (w2, w3) 0.

It follows from the above remarks that, except for the rather intractable
systems (19) and (21), the separated solutions for all coordinate systems can be
easily obtained by analytic continuation of results found in [1], [12] and [13].

4. Generating functions for the separated solutions. Here we are concerned
with the analytic expansion of a particular separated solution of (2.2) in terms of a
set of separated solutions. For the most part we shall confine our attention to
expansions in terms of separated solutions corresponding to systems (1) and (3).

For system (1) with

ix ix(4.1) " sin x e : cos x e w cos 2x,
one can easily verify that the functions

() (.(4.2)

are solutions of (2.2) with

m +/z- m +/x +r
2 2

l+/z

+1

I14F ilzF, I23F im F.

(For (tr-/z-m)/2=n=0,1,2,... this solution is proportional
P")(w)’r’" where

(4.3) _.o"t’(x)=(n+)zFa(-n’a++n+lIna+l l-x),2

to
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is a Jacobi polynomial.) An independent solution is

m +/x-o- m +/x +o"

G 2 2
(4.4) ,,,,tr, sc, w)= ).F1

l+m

if (m +/x +0-)/2, m,/x are all noninteger.
For system (3) with

(4.5) r/= -e ix3 sin x2, p -cos x2,

it follows that the functions

(4.6)

satisfy (2.2) and

l+w

2

q COS X1,

l,ml,gq, p, q)= ’1’/ (1 --q"2l/2/m+l/2(p)Clcr+--ll(q)l-l-m

I23F im F, (I+I3 +I3)F -1(l + 1)F.

Here

F(a +2v)(a +2v,-al 1-z)C;(z)
r( + )r(ev) 2F1

/ + 1/2 2

ia a Gegenbauer function, a polynomial if a 0, 1, 2, . An independent set of
solutions is

(4.7) G(3) 2)l/2,--m+l/gzl,ml,n, O, q) n (1 --q C,-m go)Ol+]l(q),
where

D(z)=e
,, F(a + 2v)

F(v)F(a + v + 1)
{v +a/2, v +a/2 + 1/2(2z)-’-22F

v+a+l

The functions C(z), D(z) are analytic in the complex plane cut from -1 to -oo
and from + 1 to -oo, respectively, along the real axis.

Now suppose H(r, sc, w), variables (4.1), is a solution of (2.2) which can be
expanded in a convergent Laurent series in r, : and is analytic in 1 + w in a
neighborhood of w =-1. Then it follows by Wiesner’s principle, [5], [14] that

"’ W’*(1) ("rH(r, , w)= Y. "-qz,m’-’tx,m,
, W).

,m

This is a generating function for the t[G(1)lz,m,. We can evaluate the constants C,,,, by
choosing special values for the variables. Similarly, if H is analytic in 1-w in a
neighborhood of w 1 we can expand in terms of the basis L-,,,,,,,’r(1). Also, by
making use of known expansion theorems for Gegenbauer polynomials, e.g., [ 15,
p. 238], we can expand solutions of (2.2) in series of functions vflL-’(3)ll,m.f or "tt..Jl,mlf/’2(3)l
where =o--n, n =0, 1, 2,....

A convenient way of constructing these generating functions H is to choose
them to be separated solutions of (2.2) corresponding to one of our twenty-one
coordinate systems. In this manner one can derive a wide variety of generating
functions. However, the generating functions will usually lead to double sums.
Here we limit ourselves to single-sum generating functions for the bases (1) and
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(3) by restricting the generating functions to be eigenfunctions of 123 with
eigenvalue im. Thus the sum over m can be omitted.

For example, expressing the solution (4.6) in terms of the variables (4.1) in
the case r n 0, 1, 2, , m k 0, 1, 2, , o" C and expanding in
terms of the basis ,G(1,.. we find

1-2r2/ W"rn [167"2 + (2’r2 + w- 1)2]k/2c-k-n+l/2 I_x/16.r+ (2r+ W 1)2_)
(4.8)

( )
"+’ (s-n-k,o-+s-n-k+l l+w)-,+ 2,7-2 -I" W 1 bs,r.ZSzF1

4ri =o n k + 1 2

Setting w 1 in this expression we obtain the generating function
2

Tn(_272_2)k (2o--2k--2n)k (-cr--n+l (T 1).._.k bs’r2sk 2ri =o

for the coefficients bs. Similar but more complicated expansions can be obtained
for or-l, 1-m noninteger. Conversely, for/z and (r-m -/x)/2 n nonnegative
integers we can expand the basis functions (4.2) in terms of the basis (4.6) to obtain

(4.9)

Replacing p by sO(q2- 1)-1/2 and letting q 1 we find in the .limit

(1 sc)’P’’’’)(- 1 + 2sc2) as scs,
=o s 2n +/x s

a simple generating function for the coefficients as. More generally, expanding a
function (4.4) in terms of the basis functions (4.6) we find

(4.10)

m +/-o m+ +o-
2 2

+1

2El
l+m

(]0 2- 1)(q 2__ 1)I (q __/gx/q2__ 1)

Cm+s+l,, xCm+l/2(Z a,(q2 1)*/2 -,,-,tq)
s=0

valid for all p, q such that Ip+/p2-11>l(q 1)/(q+ 1)11/2 and q is not pure
imaginary. To compute the coefficients we set p sC(q 2- 1)-1/2 in (4.10) and let
q--> 1"

im+l--om+la,+o 1(1 sC)"zF1
2 2

+ 1

sc
2

l+m

so as (2so)
r -m -s s
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Since [I14, I23] 0 it follows that the function exp (l/14)F[3m) is an eigenfunc-
tion of I2 with eigenvalue ira. Thus one can expand this function in terms of the
{F(3)} basis with only a single sum. Consider the case m C, m n, r k, n,
k 0, 1, 2," . A straightforward computation yields

(aI4)Ft.m(l,p,q)=rl i’_h2(a Ck +l(h (a))exp (3) mc (1 ,q2)(f12 1)+ -h2(a)

(1 h 2(a )),/2(1 q 2)m/2
where

h(a)=q’,/1-a2-Oa41-q 2.

Thus,

(4.11) C’+l/2 ([(1-q2)(p2-1)+ l-h2(t)] 1/2)1 h 2(a) C’+"+l(h(a))(1 h 2(a ))n/2

n+k

a(a)(1-q2W2r"’+l/2"n.m]

To obtain a simpler expression for the coefficients a() we set 0 (1 -q)-/ in
(4.11) and let q 1"

m+1/2
O -]" :4i O/2 ) m+n+l 2

These expressions become much more tractable in the special case n 0. For that
case and t /1- a2 we see that the left-hand side of (4.11) is symmetric in q and t.
Thus

a,(t) bs(1-t2)s/2 cm+s+lk-s (t)

and it is easy to check that

F(2m + 1)
cT+l(qt +p4(i"q2)(i t2))=

[r(m + 1)]

22 (k s)![F(m + s + 1)]2
(4.12) "o F(k+2m s+2) (2m +2s + 1)[(1-qZ)(1-t2)]/

""++ xC"++ cm+I/2(’), m C k =0, 1 2,""’’k-s l(q! k-s (t) ,-

This is the addition theorem for Gegenbauer polynomials, [7, p. 178]. For o- an
arbitrary complex number one can obtain similar expansions for the bases {F(3)},
{G(3)}, [8].
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Note that from the group-theoretic point of view, our last computation
amounts to the determination of the matrix elements of the operator exp (xI14)
with respect to the basis vt,,,.r’(3 Similarly one can compute the matrix elements of
group operators exp (i<j aijlij) with respect to the {F(1} and {G(1} bases. Since
these results are essentially contained in [12] and [16], we shall not reproduce
them here.

For system (5) with

(4.13)

the functions

(4.14)

satisfy (2.2) and

"r e ix1, r x2, 19 x3

_(5) O)rio,mvr, r, e l(ito’r-1)jm(rto)

I23F = imF, IF -o)2F.

Expanding_,mW(5) in terms of the basis t’-" t,m, we obtain the identity (z t-, fl ko,
v =-o-- 1)"

(4.15) t--’J(t)Jm (t /l + (I +w)-"/z2
, ast2S2F1
=o m+l 2

To evaluate the coefficients a, it is enough to set w 1"

(fl/2)
astt-J (tit)

F(m + 1) =0 2s

We see that (4.15) is equivalent to the well-known power series expansion for a
product of Bessel functions [7, p. 11].

L-’(3) lExpanding .,,,.(5 in terms of the basis v ,., we find

(q -P4q2-1)-1J (qp4q2=i) Jm t-
(4.16) :- 1)-/:(q:- 1)-/:

Z b,(q2-1)s/2crfe2ks-l(q)CT+a/z)
s=O

convergent for the same values of O, q as (4.10). As usual, a simpler generating
function for the bs can be obtained by setting O i(1 q2)-1/2 and letting q 1. A

(otI14)Ftd,m in terms ofmore complicated identity results when one expands exp
{F3>} basis functions.

The expansions in terms of the {F(3)} basis listed above and various generali-
zations of these expansions are all treated in a beautiful paper by Henrici [8]. He
studied the equation

( (2r+1) (2m+1))(4.17) 0x O + 0yy + 0y (x, y) 0
x y
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which can be obtained from the complex Laplace equation A4/I 0 by separating
off two variables, and showed that this equation admits R-separable solutions

(4.18) ( "o)m-’(2--1)(’-l)/2t"’l+1() t’-’m+l
-1 ,.--"

/2(’l

l+ww* =w+w* x+iy-c . x-iy-c

s:=2"--*’Vww rt 2/w*" w= w cconst.
x +iy +c x-iy +c

He then developed an ingenious theory of expansions of analytic solutions of
(4.17) in terms of the basis (4.18). Furthermore he observed that (4.17) permits
separable solutions in coordinate systems analogous to (1) and (5) as well as (3)
and derived generating functions for Gegenbauer functions by expanding each of
these separated solutions as series in the basis (4.18).

Note that equation (4.17) and equation (2.2) with I23xI* =-mZxIt each arise
from the complex Laplace equation by separating off two variables. Moreover, in
the next paper in this series :we shall show that these two reduced equations are
equivalent under the action of the local symmetry group 0(6, C) of the Laplace
equation. Thus, every separable system for (2.2) is mapped to an R-separable
system for (4.17) and conversely.

It follows that Henrici’s analysis of (4.17) carries over to

(4.19) ARt r(o" + 2)xI*, I223xI* --m2XI*.

The local symmetry group of (4.19) consists of the operators exp (aI14), a e , i.e.,
these operators map solutions into solutions. Thus if xIt is a known analytic
solution of (4.19)we can discuss the expansion of exp (cI14)xI* in terms of the bases
{F(1)} and {F(3)}. In Henrici’s work, which concerns only expansions in the {F(3)}
basis, this freedom is expressed by choosing a family of coordinate systems
parametrized by a complex variable c. Systems corresponding to distinct values of
c are equivalent under an appropriate symmetry operator exp (I4).

By inspection we see that (4.19) separates in five coordinate systems: (1), (3),
(5), (13), (14). In his work on (4.17) Henrici employs R-separation in systems (1),
(3) and (5), but he fails to note the R-separation in analogies of (13) and (14).
(System (13) yields products of associated Lam6 functions and will not be treated
here. See, however, [ 1].)

For system (14) the functions

,m,,1 X2

(4.20) emx2(1--Ul)’--m/2(1--U3)’--m/2(UlU3)m/2

{c +r/2+ 1, c -/2
2El m+l u1) 2F1(t +’/2 + l’ t

+ l

ua th2 Xl, U3 th2 x3

satisfy (2.2) and

I23F imF, ’2F 4(c -m/2)ZF.
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.f/r.,(1) "1. for a -0-/2 -n, n 0, 1 2, weExpanding ]7(14) in terms of the basis tv. p.,mj

find

(4.21)

[o’-n + 1,-n
2F1 m+l u)2Fl(’-n+l’-nm+l u3)

[s-n, 0-+s-n +1bsT.2S2F
s=o \ m+l l w)

u= "4 -- q:
2

r -(2w +2)

Setting w 1 we find

2Fl (0--n + l, -n ) F(m + l)F(m +2n-tr) ( 0--n + l, -n
m + 1

1 -r2

F(m + n + 1)F(m +n "0-)2F1 \0- 2n m + 1

Z b,r2..

Similar but more complicated expressions can be obtained for n 0, 1, 2,-. .
Expanding _,.,]’(14) in terms of the basis I.a’l,m.fJ’iL"(3)’l for a 0"/2 =-n, 2a-m k, k,

n =0, 1, 2,..., we obtain

[q_p/q2_ 1]kzFl(k +m +n + 1,--n

m+l (k +m +n +l,-n
U 2F1 m+l u3)

(4.22)

k +2n

as(q2- ls/2rm+s+lV..k+2n_sl,tt]_, +l/2xr_.,
s==O

u, (1 --0
2 q_p2q2 +pqx/q’2 ’1)

3

+[(1 __/92 +/92q2 +/gq/q2_ 1)2_ (q 2__ 1)(,p 2__ 1)]1/2.
simpler generating function for the coefficients as can be found by setting
:(q2_ 1)-1/2 and letting q --> 1.
For our final example we consider system (16) with basis functions

(4.23)
a,n IXl, X2, X3)

exp [iAx2 +(x23 x)/2](xlx3)+2L(+l)(’4x2’r(+l)(/x)

where L((x) is a generalized Laguerre function, a potynomial if n 0, 1, 2, ,
[17, p. 268]. These functions satisfy the operator equations

(I42 + iI21)F iAF, 2F -2,,/(2n + 0- + 2)F.

Note that the operator K 134 + i113 (x +x)-l(X3Ox,-XlOx,) commutes with

142"" ii21. Thus the function exp (aK)F,l.,)(Xl, x2, x3), k 0, 1, 2,. ., can be
expanded in a series of functions (4.23) with A fixed and n running over the



30 E. G. KALNINS AND WILLARD MILLER, JR.

nonnegative integers. The result is

L(,+1) X3

2

2 2

k

(4.24)
s-----0

2 [(x 12 x 32 2a )2 .+. 4xx]1/2.
(We choose the square root so that 2 x +x when a 0.) For evaluation of
the coefficients a it is enough to set x3 O:

k
L a)(x-2a)= a L ),

s=0 S

a k s
L_(-2).

5. Integral representations for separated solutions. In analogy with a con-
struction in [1] we can represent solutions of (2.2) as analytic functions on the
complex sphere S. Indeed, let /(w) be analytic on S:z" w+wZz+w 1,
w (1 w w)1/2 and let F(z) be a function on $3 defined by

(5.1) F(z)__,[f]_.II[WlZl+W2Z2WW3z3+iz4],rf(w)dW2dw3

W1

were @ is a complex two-dimensional Riemann surface over W2-W3 space. We
assume that the integration surface and the analytic function f are chosen such
that o[f] converges absolutely and arbitrary differentiation with respect to
z a, , z4 is permitted under the integral sign. It follows that F(z) is a solution of
(2.2). (In fact F is a solution of the Laplace equation A4F 0 which is homogene-
ous of degree tr in z.) Integrating by parts, we find that the operators/k, (3.1),
acting on the solution space of (2.2) correspond to the operators

(5.2)

112 W10w2- W2Ow, 113 --W3Ow, 123 --W30w2,

I4a -i(tr / 2)w + i(1 w)Ow-iWlwEOw,

142 -i (r + 2)w iw2wlOw + (1 w)0,
I43 -i(o" + 2)w3-iw3wlOw-iw3W2Ow2

acting on the analytic functions f(w), provided and f are chosen such that the
boundary terms vanish:

/kF o(/kf).
The point of this construction is that we can use the operators (5.2) to

compute an eigenfunction

’1/= Af,

where 1, 2 are the operators characterizing one of the separable systems
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(1)-(21). It follows that the integral Fx, (fa,) is a solution of (2.2) which
satisfies

where now1, 9. are expressed in terms of the operators (3.1). Thus F must be a
separable solution of (2.2) in the coordinates to which 1, 2 correspond. This
fact enables us to evaluate the integral to within a few normalization constants
which are determined by inspection. Thus, this procedure leads to integral
representations for the separable solutions of (2.2).

We illustrate the method with a single example treated in detail. We adopt
complex coordinates a, rt on SEc such that

(Wl, WE, W3) (COS a, sin a cos rt, sin a sin
(5.3)

dwEdW3
sin c dc dr/.

w1

These coordinates will prove useful in the construction of integral representations
for separable systems in which the operator 19.3 0n is diagonalized. If
satisfies I23f--imf then f h(t)t where e ’. We choose the integration
surface in the form C1 C9. where C1 is the interval [0, r] in the c-plane and
C9. is a simple closed curve surrounding the origin in the t-plane. Performing the
t-integration and making use of the standard generating function for Gegenbauer
polynomials [17, p. 175], we find

Z u_+t tm-1 dt dafm(Z)--[f]=-i h(ot) iZ4"}-Zl COSa +sinc t u/_l
(5.4)

27r U (sin o)+1C -Zl cos -iz4 h(a) da
z sin a

is a solution of (2.2) such that lEaF imF. Here

2 2i
z+z]+z2=l

and we assume that r, rn are complex numbers such that r rn n 0, 1, 2, .
The requirement that f(a, rt) h (a)t satisfy the system (3) eigenvalue

equations

I23f-- imf, (I2+I3+I3)f -l(l + 1)f

leads to a family of solutions

(5.5) h (or) (sin c)mc’_+I/2(COS ).
Substituting this expression into (5.4) under the assumptions

cr-I =k, l-m =n, trC, k,n =0, 1, 2,. ,
Rem >0, Re (m +tr)>0

and using the fact that variables must separate in the resulting integral if
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coordinates (3) are employed, we obtain the identity

AC’-k +1(cos x 1)c-k-"+/2(cos x2)

(5.6) (sin x 1)k (sin x2)k +"

(sin a)2’-k-n+l Ck+,,( cotxl CSCX2 CSC a

+cot X2 cot Ol. )CC-k-n+l/2(COS Ol da,

where A is a constant to be determined. To evaluate A we first let x2 0 and
obtain

AC’-k-’+a/2(1)C-k +1(cos x 1)

(5.7)
(sinxl)kF(k +n-or) 2,+k

r(-,)(n + )!

)k+n(sina)E-2k-2n/lc-k-n/l/2(cosa)(i cot Xl +cos a da,

an identity which is apparently due to Durand [18]. Finally, letting X 0 and
using the orthogonality relations for Gegenbauer polynomials we obtain

a =(--1)k+"(i)k22’-k+1F(tr+ 1)F(tr-k)
F(2cr k + 2)

By varying the eigenfunctions (5.5) and the integration surface @ one can find a
variety of such identities. In each case the integral must separate in coordinates (3)
and this permits easy evaluation. Similar remarks hold for each of the twenty-one
separable systems.
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GENERALIZATION OF CERTAIN SUMMATIONS DUE TO
RAMANUJAN*
CHIH-BING LING?

Abstract.. This paper presents a method of summation of two groups of 16 series containing
exponential or hyperbolic functions, which are generalized from certain summations due to Ramanu-
jan. The series are summed in closed form by introducing two special coefficients when the parameter
involved in the series takes on the value 1, x/ or 1//g.

1. Introduction. In this paper, summations of the following two groups of 16
series containing exponential or hyperbolic functions are considered. In Group I,

(1)

and in group II,

n 2s-1 13 (2n- 1)2-aI E 2nrrc / (2n 1)rrcI2 n=l e q: 1 I4 n=l e q: 1

15 (--1)n-lrt 2s-1 Iv_ (-1)"-(2n- 1)2s

16 I8 1

n 2s n 2s

111 Y. , 112 Y’.
sinh nrrc cosh nrrc

(2)

(2n_ 1)2-1
II3 n=lE sina -7r/2’

(_l)--lnZ-a
IIs Z

.=1 sinhnrrc

(_l)"-l(2n_ l)2
I17=

n=l sni?Tr

(2n_ 1)2s
I14 Y

cosh (2n 1)rrc/2’

II6 Y, (-1)"’n_2*
cosh nrrc

(_l)-:-l(2n 1)2s-1

Ils=.=l 7o-(; 1)rrc/2’

where s =< 0 or 1 according to the exponent of n or 2n 1 being 2s or 2s 1, and
c 1, Vr5 or 1/x/.

The following summations appear in Ramanujan’s Notebooks [ 1] and Collec-
ted Papers [2] without proof:

n 1 1 n s 1
(i) Y. 2n’---’’ (ii) Y

e 2,,,
,,=le -1 24 8rr ,,=1 -1 50’

(3)

?19 1 n13 1
(iii) e2.----7 (iv) Y’. 2.=

.=1 -1 264’ .=le -1 24’

(V) Z (--1)n 1(2n--1)4s-l=0, (vi)
n=l cosh (2n- 1)rr/2

,, (--])"-1(2n 1)6s-1

.=1 cosh (2n- 1)rrVCf/2

(vii) E (-1)"-1(2n- 1)6s-1
n=l cosh (2n 1)rr/2x/- 0,

=0,

* Received by the editors April 30, 1976, and in revised form July 27, 1976.
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where s -> 1 in the last three series. The proofs of (i) and (iv) were supplied later by
Watson [3] and Sandham and Cooper [4] and that of (v) by Rao i-2, p. 326] and
Sandham [5]. An obvious generalization of the first four series is

n 4s-3

(4) E e 2n-n- 1’
s > 1

A generalization of the remaining three series with respect to s is

(5) II8 E (-1)"-’(2n- 1)2-1

.=a cosh (2n- 1)7rc/2
s->l,

where c 1, or 1/x/. A similar generalization of (4) with respect to s and also
to the three values of c is

2s-1

(6) !a= Z 2..c s>l
.=e -1

It is seen that (6) is the first series in Group I and (5) the last series in Group II.
Further generalization extends methodically to the other series in each group.
There is ground to assert that the list of series in the two groups is conclusive. A
discussion will be given later.

The summations of the following four less extensively generalized series were
considered by Sandham [5], for s >-0:

(7)

4s+ln
(i) X 2.=

=le --1’

(iii) Z (--l)n-ln4S+,
sinh nTr

(2n- 1)4s+l
(ii) (2n 1)-rr

n=le +1

(iv)
(-1)" (2n-1)4+3

n=l cosh (2n- 1)r/2

which cover only one half of the series 11, I4, 115 and 118, respectively, in the case
c 1. In particular, the summation of the first series was also considered by Hardy
[6] in using a different method. The series so generalized are summed by Sandham
in closed form in terms of numerical constants which may or may not involve zr.
However, when they are further generalized into the two groups as shown in (1)
and (2), it appears that summations in closed form are possible only when two
special coefficients O"4 and 0"6 are introduced. They are defined by the following
double series:

(8) 0"4 , 1
n,m=--o (m + hi)4’ 0"6-- Z 1

,,,,,, (m + ne

where the prime on the summation signs denotes the omission of simultaneous
zeros of m and n from the double summation. These two coefficients can be
expressed in terms of gamma functions [7]. Besides they have been evaluated
numerically by the author to 221S.
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2. Expansion oi series into double series. It is known that the following four
hyperbolic functions can be expanded into partial fractions [8] in the form:

(9)

1 2x 1
coth rx + 2rrx r m=a rn +x

1
sinh rx

1 2x (-1)- 2,, 2 2rrx rr m=a m +x

8x 1
tanh 7rx --Tr=l (2m 1)e + 4x 2,

1 4 , (-1)m(2m-1)
cosh rx -7 m=lL (2m 1)2 + 4x 2"

Alternately, the functions can be expanded into power series of e for positive
values of x. Consequently, by equating the two expansions and further decompos-
ing the partial fractions, we have

e_,= 1 1 1 1
2 m +ix m-ixp=l

2rrx ’m=l rn +ix m-ix
(10)

)y, (_1)p e_2p,,,, 1 1 1

p= 2 ’Wm =1 2m 1 + 2ix 2m 1 2ix

2 (-1)Pe -(2p-a)=x=- Y. (-1 +
p= ’7r 2m 1 + 2ix 2m 1 2ix

Next, manipulate both sides of the first three equations thus obtained by the
following four kinds of operations before summing up from n 1 to oo: (i)
Differentiate 2s- 1 times and put x nc. (ii) Differentiate 2s- 1 times and put
x (2n 1)c/2. (iii) Differentiate 2s 1 times, put x nc and multiply by (- 1)".
(iv) Differentiate 2s times, put x (2n 1)c/2 and multiply by (- 1)". The double
series formed on the left of each equation can readily be summed into a single
series. We thus find from the first equation,

(2s-1)’-----l’fS2s(2rr)2s
I_C {(m+nci)2s+l 1 }]I1 ,-Z+(--1) Y. 2

.=1,,,=1 (m -nci)2

IIa 2(2s2,- 1)! [ t’c

(11)
.=a.=a 2m +(2n-1)ci}e* +

1
{2m-(2n-1)ci}2" }]

12 -)Z [c 2. (-1)* (m+ci)2n=l m=l (m -nci)2s

2(2s)! [ U* ),II2-" 2s+17r 7ss’f’l i(--1
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,,=aZ m=y {2m +(2n- 1)ci}2+-{2m-(2n- 1)ci}2+a

and from the second equation,

(2s-l)! [$2, { (-1)"
2rr2’ l+(-1)= y’.=a,,,=Iy"

(m+nci)2" (m -nci)2s

I13= -trZS [c 2 +(-1)

(12)
"nl

(--1)m
,.=1 {2m +(2n- 1)ci}2

+ (-1)
{Zm-(Zn-1)ci}2’ }]

(Zs 1)t[S_ {2 (-1)"+"

2rr2s -(-1) .=IZ m=lZ (m + nci)2s (m -nci)2

II4 =
22’+1(2S) [ *U=,+

)rr2,+ 7g;- i(- 1

n=12 m=l {2m +(2n- 1)ci}2.+1 {2m-(2n- 1)ci}2s+1

where
oo 1 (2’rr)2s

$2 .=,Z -N 2(2s)’.
Bzs,

(13)
U2, .=Y (2n- 1)2s

1-

S* (--1)n-I ( 1 )2s Z ’2s 1--22s’1n=l n
s->l,

U2*
(_1)--1

+a ,,=aZ (2n-l)2s+1 2(2s)
s > O.

Bz and Ez are Bernoulli and Euler numbers, respectively. The first few values of
each are B2 1/6, B4 1/30, B6 1/42 and E0 1, E2 1, E4 5.

Similarly, we find from the third equation,

(14)

Is
(-1)*(2s-1)! { 1

71"2s n=l m=l (2m- 1 + 2nci)2
+

2(-1)*(2s 1)!
1 2s

I6

(Zm 1 2nci)z

[r( 1

n=l m--1 2m 1+(2n- 1)ci}2. - 1
{2m 1 (2n 1)ci}2s

(-1)(2s -1)’ { (-1)"
2s Y (2m 1 + 2nci)2

+
7]" n=l m=l

(-1)" }(2m 1 2nci)2
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II6
2i(-1)(2s)!

2s+l

E Y’. (-1)" (,-1)"
n-1 m=l {2m 1 +(2n 1)ci}2+1-{2m 1-(2n 1)ci}2+

Lastly, manipulate both sides of the fourth equation by the four kinds of
operations as before except that the differentiation now is 2s times in (i), (ii), and
(iii) and 2s- 1 times in (iv). We find after summation,

17 (-1)*(2s’22 { (-1) (-1) }r2*+- .=l ,,=1 (2m 1 + 2nci)2+1
+
(2m 1 2nci)2"+1

(- l)S (2s)!22s+I
II7 2s+i

(15)
[r{ (-1)

.=1 ,.=1 2m- 1 +(2n- 1)ci}2s+14
(- 1)" ]{2m 1-(2n 1)ci}s+l

(_l)S(2s)!22s {2s+l 2 Y (2m- 1 +2nci)2s+1
+

qT n=l m=l

i(-1)S(2s 1)!22s

(_1),-+-

2s

(- 1)’+" }(2m 1 2nci)2s+1

n=l m=l 2m- 1 +(2n- 1)ci}2s
(- 1,)"+" ]{2m 1-(2n 1)ci}2s

It is seen that the series in the two groups are each expanded into a double
series, together with a single series in the first eight cases. The order of summation
of the double series ig interchangeable if the exponent 2s or 2s + 1 of the terms is
not less than 3. It is no longer interchangeable if the exponent is 2 or 1. These
expansions hold for any real c in general.

3. Summation of double series. The four types of single series involved in the
first eight expansions of the series can be summed in closed form in terms of "rr by
(13). To sum the double series, we define for any real c,

o’*2s(ci) Y.’ 1

,.,,m=-oo (m + nci)2s’
s >--_ 2,

(16)
I,)’c’" + ._., a 1 zW1(z -I-+

z ,,,,,=-oo z-m--nci rn+nci (m+nci)2

1 Z’ 1 1Wz(z lci 7+
,.,,m=-oo (Z rn nci)2 (m + nci)z

Ws (z [ci = .,,,,Y’=-oo (z m nci) s>-3.

As before, the prime on the first three summation signs denotes the omission of
simultaneous zeros of rn and n. For s _-> 2, W. is an elliptic function of double
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periods 1 and ci and for s 1, W1 is a pseudo-elliptic function [9]. W1 and W2 are
known as Weierstrass zeta and elliptic functions, respectively. It appears that the
double series involved in the expansions of the series can be expressed in terms of
the coefficient o’2", and the function W at half and quarter periods.

By decomposing the double series in cr*2s, we find for s _-> 2,

(17) o-’s(ci)=2 1+ $2+2 Y’. Y.
(m+nci)2

+
,=lm=a (m -nci)2

If this expression is employed to define o’2", its validity can be extended to include
the case s 1 provided that in this case the order of summation of the double
series is restricted to be not interchangeable. By similarly decomposing the double
series in the function W2s at half periods, we find for s -> 1"

(18)

Y
(m +nci)2

+
n=l m=l

1 1 + (-1)/$2,,(m nci)2s } -’*(ci) {1 c2

Y Y
(2m--l+2nci)2 t(2m 1-2nci)2n=l m=l

ci) U2, + l,sO"(ci ),

[r{ 1

n=l m--I 2m +(2n- 1)ci}2
1

{2m--(2n- 1)ci}2" J
1 (1=22s+1W2s -ci ci) (-1)c2,

1
o-*(ci),U2s "JC’ll,s 2

[r{ 1

n=l m=l 2m 1 +(2n 1)ci}2s
+
{2m 1 (2n 1)ci}2s

1 1 cilci)+l ,
22s+, W2s(+ 11,s0"2 (ci),

where 6,,,, is Kronecker delta. Note that the case s 1 is in general a special case to
be considered separately. By decomposing the following double series into the
difference of two double series of positive terms, we further find, for s _-> 1,

Y" Y"
(m + nci)2sn=l m=l (m -nci)2

c

(m + nci) )m=l (m -nci

1 ,1 , 1 (-1) S,=2(2ci)-W2(ci2ci)-$2_ + cZ, 2-

== {2m +(2n 1)ci} {2m -(2n 1)ci}
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(19)

{ (-1)"Z Z (2m l+2nci)2
+

n=l m=l

(-1)" }(2m 1 2nci)2

1

Again, by decomposing the following double series into four double series, we
similarly find for s => 1,

Y’. 2 (m + nci)2
+

n=l ==1 (m -nci)2s

1 1 1
"Z (_+_cilci) 1 1

W:z, -\---: cr’,(ci)

+! 1 + (7- !)’1 1
(20) ’C2 j SsW-(l,sO’(ci),

Y
{2m 1 +(2n 1)ci} -{2m 1-(2n- 1)ci}n=l m=l

41--{W. (+ci Ici)- W:, (-ci ci).
Note that the first expression has been simplified to the present form with the aid
of the following relations:

W2(1/2[ci) + Wz(1/2cilci) + Wz(1/2 + 1/2cilci) O,
(21)

W2,(1/21ci)+ W2,(1/2cilci)+ W2,(1/2+1/2cilci)=(22- 1)r2**(ci), s _->2.

Likewise, we further find for s >_-O,

(2m 1 +2nci)/ - (2m 1-2nci)/n----1 m=l

1
+ 76o,,O" 2ci--4’2s’+1 W2s+l zi -t- Us

]Z (-1)" (-1)"
n=l m=l {2m +(2n 1)ci}2.+ {2m -(2n 1)ci}2s+1

1 (1=--2:ZS#I W2,+1 -ci
i(-1)* U* ci

2ci 2+] 2s+l + 6o,,O’*z(2ci),

[{ (- 1)" (- 1)" ].=a m=l 2m 1 +(2n 1)ci}2"+1 {2m 1-(2n 1)ci}z+l

1 ci4/ W2+ (+ + i’6" {ci
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(22)
y. (-1)"

.=a .,=a {2m 1 +(2n 1)ci}2+1 {2m 1-(2n 1)ci}2+a

22s’+’i’ W2s+l

{ (_I)-,+-Z Y.
(2m 1 +2nci)2s+1

+
n----1 m=l

l+ci
2ci +..

4
"6o,,cr’(2ci),

(- 1)’+"
(2m 1 2nci)2.+1

1 1. ci)-W2s+l ( ci) Us+l
ci

--42s+l {W2s+l (+-Cl }q- --6o.,Cr’(ci),

.=1 m=a {2m +(2n- 1)ci}z*+a {2m -(2n- 1)ci}2.+1

1 cici) W+l(cilci) i(-l)
:42s+l’ { W2s+ (+ cgf U2+1

1

Some of the summations of the double series were also found in the previous
papers [7], [ 10].

4. The results. With the foregoing summations, the following results are
obtained from (11), (12), (14) and (15):

(-1)S(2s- 1),
I 2(2,rr)2 "{o-’(ci)- 2S2},

I2
(-1)*(2s-I)!

2(2rr)2, {W2(cil2ci)-o"2(2ci)+2S2 + a,,o-(2ci)},

(-1)S(2s-1)’{tr* ()4(2r.)22, *i3 2ci
l ci) + (2zs+l 4)Szs l,so- ( ci) },

i4= (-1)(2S-1),{ (1 1 )ci

2s,-(2-- 1)o-(ci)+z o+,o-(ci)},
(23)

is=(-1)S(2s-1)’{ (1) 22s+1 }2(2)2, W2, ci U2, +61.(ci)

(-1)S(2s), 1 2ci) 22s+ gzs}
I7 (-1)*(2S)’{ ( 1 )42s+lu, 1 ()}=2(2)’+’ W2s+l ci 2s+1- 6o,, ci
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2(2rr)2,+ W2s+ +- ci ci

W2s+l ci + 42s+1 , ci
U2s+l +- o,s0-(ci)

and

(24)

111 (2,n.)2s W2, ci ci + 61,s0-’2(ci)

2ci) _,1 +c! ao,,0-2"(2ci)}2

It is seen that the two groups of series are thus expressed in terms of the
coefficient o’2** and the function W, at half and quarter periods, of double periods
(1, ci), (1, ci/2) or (1, 2ci). The relations hold for any real value of c. In particular,
when c 1, V3or 1/v, the values of the coefficients 0-4", o- and the functions Wa,
W2, W at half and quarter periods have been tabulated by the author in a recent
paper [11] for the three preceding double periods corresponding to the three
particular values of c. The values are expressed in closed form in terms of O"4 when
c 1 and in terms of 0"6 when c or 1/YES. It is also noted that the values of o’2*
and W3 are

(25)
*(ci) 2 Wl(1/2lci),0"2

W3(z Ici 1/2 W;(z Ici ).
Further values of 0"*2s can be found successively in terms of 0"4* and r6* from the
following recurrence relation, for s => 4:

(26) 1/2(s 3)(2s + 1)G2, G4G2s-4 -I- G6G2s-6 +" + G2s-4G4,

where, for s _-> 2,

(27) G2, (2s 1)0"2",(ci).
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The value of W4is given by

(28) Wa(z lci) W(z lci) 50-4"(ci).

A similar recurrence relation for W, with s >= 5 is

(29) (s 2)(s 3)F, FF,-2 +F3F,-3 +’" +F,-W,

where, for s -> 2,

(30) Fs =(s-1)Ws(zlci).

Hence with the values of 0-2"s and Ws so obtained, the two groups of series can
be expressed in closed form in terms of 0"4 when c 1 and in terms of 0"6
when c x/ or 1/x/. Note that some summations may not involve 0"4 or 0"6. The
summations of each series for s 1 and 2 are shown in Tables 1 and 2 (following

5), where the following notations are used for shortness"

(31) u ---(150"4) 1/2, --(350"6) 1/3.

The summations of the series 17 and 18 for s 0 are shown in Table 3.

TABLE 3

17 (s 0) 18 (s 0)

x/2u
4 4r

31/4/v
4 4r

31/443/)

4 4r

4 47r

31/421/2(x/-+- 1)x/
4 16r

31/421/2(3 x/)v/
4 16r

Those of series 112, II4, II6 and II7 for s 0 have been tabulated previously [10].
Note that when s 0, I14 117.

The results confirm two of Ramanujan’s summations in (3) namely, (i) and
the particular case of (v) when s 1. The summations (ii), (iii) and (iv) can be
confirmed without difficulty. To confirm those of (v), (vi) and (vii) in general, it is
necessary to show that in the expression of 118 in (24), the following relations hold
for s -> 1:

(32)
Was(+ 1/4ci [ci W4s (1/4 1/4ci [ci

W6s (1/4 + 1/4ci Ici W6s (1/4 1/4ci Ici

when c 1,

when c x/ or 1/x/-.
They can be proved readily by expanding the functions into series of their
arguments. Each such function is real.
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Besides, a summation analogous to the last three summations in (3) is given
by Sandham [5] as follows:

(_l)n-ln 4s+l

(33) Y =0, s=>l.
sinh nr

It is the series (iii) in (7), save s 0. By using the expression 115 in (24), the result
follows at once on account of the following relation when c 1"

(34) W2+(1/2+1/2cilci) O, s >=0.

5. Conclusiveness of list. In the foregoing, it is seen that there are altogether
eight kinds of operations which can be manipulated on the four equations in (10).
On the left of the equations, a total of 32 series can be developed, which contain
exponential or hyperbolic functions. Of them 16 are listed in (1) and (2). On the
right, a single series and a double series are developed in each case from the first
two equations. The single series can be summed in closed form in terms of r
whenever it belongs to the four types in (13). This immediately excludes eight of
the 16 single series. In the eight single series which can be so summed, it happens
that the accompanying double series can be summed in closed form too in terms of
tr4 or tr6 for the three particular values of c. The only exception is the particular
case in which the single series is of the form

(-1)
(35) 2 1.

n=l /l

Although it can be summed to In 2, yet the accompanying double series cannot be
summed in closed form in the preceding manner. On the other hand, a double
series only is developed on the right in each case from the last two equations. It is
found that besides the eight double series in (14) and (15), none of the other eight
double series can be so summed. These investigations lead us to conclude that the
list of the 16 series shown in (1) and (2) is indeed conclusive of its kind.

TABLE
Summations of series in Group Ifor s and 2

Series 2

2u
11 24 8r 240 t’807r’

x/ v 302
x/ 2--24,n" 32"n"2 240 256"n"4

x/ 3v 2702
1/’,/’

24 8"rr 32"n"2 240
-I

256,tr4

u 3u 2

24 16"tr 240 640,rr4

(2x/+ 1)v 3(4x/+ 1)v

24 64’n"2 240 2048"n"4
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TABLE 1 (cont.)

Series 2

3(2x/:-- 1)14- ---+
24 647r2

27(443-1)v
240 2048’n"4

U-24 8r

(243-1)v
24 32r

3(2x/+ 1)v
1// ---4

24 32r

7 3u 2

240 807r4

7 3(4/3-1)v2

240 256"n"4

7 27(4/3 + 1)o 2
+
240 256"tr4

I4

/)

24 167r

3v
l/x/3

24 16r2

7 3u 2

240 207r4

7 3v
+

240 32"n"4

7 27v 2

240 327r4

u
--+--+--
8 87r 8-/r

43 (x/3 + 1)v
/

8 24zr 16r2

U
2

16 871.4

3(2 +x/3)v
16 64r4

x/ 3(x/- 1)v 27(2-4)v2

/4 --+--
8 8"rr 16-n" 16 64r4

/u 34u2

8 8’n"2 16 327r4

x/(3 + x/)v 3/(%/+ 9)v
x/3 - 32r 1--+ 512r4

3x/(3-x/)v 27x/(7x/-9)v 2

1/x/" - 32r2 -1-+ 5124

/ 3/2 5 9/
/2

4 4,n.
U --+4r5 u

3/4(3+2x/) 5 3.3/4(39+204)
/)3/2 -----I-x/

4 16r 4 64r
5/2
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TABLE (cont.)

Series s=l s=2

1/x/3
9" 31/4(2-/)

3/2

16,tr3 v
5 81.31/4(13v/-20)
4 64r

5/2
/)

3/2

31/421/2(3+x/3),
___[.. /)3/2
4 167r

9" 31/421/2(x/ 1)

4 16r
3/2

5 3 5/2

4 r
u

5 3.31/421/2(3+2x/)
4 8r

5 81.31/421/2(2-/3)
4 8r

/)5/2

5/2

TABLE 2
Summations o.fseries in Group II ]’or s and 2

Series 2

111

1/x/3

u u
4qr 4"r/"2 4r4

x/ (x/- 1)v

12r 8r2

4q’r

3(43 + 1)v

3(2-x/3)v 2

32,n-4

27(2+/)v
327r4

112

1/43

x/2 3/2

8qr3 U

31/4(2/3- 3)
32qr

3/2u

9" 31/4(2 +/3) 3/2

32,n-3

%/2 5/2

32,n.Su

3 31/4(39- 20x/3)
/)5/2

512r

81" 31/4(13/+ 20)
/35/2

512r

II3
x/2u
2r

x/2(3 x/3)v

34’(3 +/)v

3/2U 2

27r4

3x/(7x/- 9)v
32qr4

2742(743+9)02
32r4
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TABLE 2 (cont.)

Series

u3/2 6 5/2II4 - - u

21/23/4(3-/) 3" 2/23/4(2/- 3)

871-3
/)3/2

4r5

9" 21/231/4(/3 + 1)
1/x/

8rr
/)3/2

81 21/231/4(2 +/3)
47r5

/)5/2

5/2

115
1

x/3 3v

4r 16r

8,g/-4

3/) 2

128,n-4

27/)

128,n-4

116 3/2

8zr3 u

31/42/2(3 /3)
/)3/2

128,n-3

9" 31/421/2(x/3 + 1)

128,tr
3/2

3
u 5/2

32,rr

3" 3/421/a(9 +x/3)
2048r

5/2

81.3/421/a(3/3 1)

2048r
/)
5/2

117

1/43y

3/2

2,it
u

3/421/2(3 + x/3)
32qr

/)3/2

9" 3/42/2(x/3 1)

327r
3/2

3 5/2

2r5 u

3" 31/421/2(9-- x/3)
/)5/2

81 3/421/2(3/3 1)
5/2

118
U

27r2

x/3v
87r

3x/3v
8qr2

3x/3v
16,rr4

27/3v 2

16,r/"4
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ON THE LINEAR THEORY OF HEAT CONDUCTION FOR
MATERIALS WITH MEMORY*

PAUL L. DAVISf

Abstract. The linear theory of rigid conductors of heat composed of materials with memory is
analyzed under assumptions consistent with the theory of Coleman and Gurtin. Under these
assumptions, the resulting integro-differential equation is shown to be parabolic modulo a trivial
hyperbolic part. An existence and uniqueness theorem follows.

1. Introduction. The linearized theory of rigid conductors of heat composed
of materials with memory is based [1], [5], [9] on the constitutive relations

and

e =cO+ a(t-s)O(s)ds

q=-KV0- (t-s)VO(s) ds

where 0 denotes the departure of the temperature from its reference value, e the
internal energy and q the heat flux. Together with the energy-balance law for a
rigid stationary heat conductor,

=-V.q+r,

where r is the heat supply, these relations imply

0_. cO(x, t)+ a(t-s)O(x,s) dsOt
(1.1)

= AO(x,t)+ (t-s)ZO(x,s)ds+r(x,t)

where x (x, x, x).
When : 0, (1.1) is, under appropriate assumptions on and, a hyperbolic

equation in the sense that signals propagate with finite speed [3], [4], [5]. Little is
known about (1.1) when : 0; uniqueness theorems are contained in [8] and [9].
It is believed by many that (1) with : 0 is, in some sense, parabolic. This is almost
true. We show in 3 that for an appropriate class of kernels and c: > 0, it is always
parabolic modulo a trivial hyperbolic part. These notions are defined in 2. They
are intrinsic classification definitions [6]; that is, a definition that classifies an
equation in accordance with the behavior of solutions of a certain type of problem.
Consequently, an existence and uniqueness theorem is a consequence of classifi-
cation. It is discussed in 3.

2. Background. For convenience we assume throughout that O(x, t) 0 for
t<tl<-_O and that 0 is known for tl <=t---0. Integrating (1.1) and isolating all

* Received by the editors March 15, 1976.
f Department of Mathematics, Manhattanville College, Purchase, New York 10577.
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known quantities, we have an equation of the form

(2.1)

O(x, t) -c- a(t-s)O(x, s) ds

+c -1
K + fl(z) d AO(x, s) ds + g(x, t).

This is a special case of the equation

(2.2) u(x, t)= Z k(t-z)Lu(x, z) dr + g(x, t)

when x (xl,..., x,) and L is a constant coefficient differential operator with
respect to these variables.

Let X be the space of continuous maps g(x, t) from [0, oo) to L2(R") and let
ycX be the subspace of C maps from (0, oo) to L2(R") fl Coo(R"). Let Z c y
be the subspace of Coo maps from (0, oo) to C(R "). Let Z1 be those elements of Z
which have their support in {x I-bi _-< xi -< b} for each t => 0.

DEFINITiOn. Equation (2.2) is parabolic modulo a hyperbolic part if
(a) for each g eZ1 there is a unique solution u S(g) of (2.2) contained in Y

and

and

(b) there is nonzero T: X Y such that

(i) T(X) f)Z {0}

(ii) for each g ZI, S(g) T(g) Z.

S- T is called the hyperbolic part of the solution.
DEFINITION. Equation (2.2) is parabolic if the hyperbolic part is identically

zero.
DEFINITION. The hyperbolic part is trivial if it maps Za and Za.
Example. Equation (2.2) being parabolic modulo a trivial hyperbolic part

means the nonparabolic part propagates with zero velocity. An elementary
example of this phenomenon is the Cauchy problem for the partial differential
equation

O-A Ot---u=O
which can be reduced to (2.2) by integrating (n + 1) times with respect to t.

We investigate (1.1) for a and/3 in the class consisting of those functions
having rational Laplace transforms c (w) and/3 (w) (degree of numerator less than
that of denominator). Following [3], we have the following formula for the Fourier
transform (sc, t) of the solution of (2.1) with respect to x"

(2.3) (, t)= , (, t)+ M(t-z, ), (, ’) dr,
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where
-c-’(w(w)+,,ll-+(w)ll)

(2.4) M(w, )
w +c- (w(w + c I,1z + (w )l12)"

Proceeding as in [2] or [3], we are led to the study of the singularities of//(w,
Indeed, 0(., t) is in LZ(R n) if the singularities wi(j) of/l/(w, :) have bounded
real part for all real :. (Since a and/3 are in s, M has only a finite number of
poles.)

Assume at least one of a and/3 is not identically zero. Let

(2.5) c(w) ajw’ bjw

and

(2.6) (w) ciw’ 4w
]=0

where bq and d,, are not zero. (Assume that common factors are divided out.) The
singularities of M are the zeros of the polynomial

q--1

P(w, Iscl)= Z bqdkWq+k+ + Z Y’. (bidk +c-ajdk)wi+k+a
k =o ]=o k =o

(e.7)
q ml q m--1

]+k+llc- y y baw/ +llc co
]=0 k=O ]=0 k=O

The behavior of the roots w(ll) of P<w, 1)= 0 as I1 can be investigated by
examining the roots of

(2.8) R (e.o, z oom+q+lz2p(-, -)
as Iz 1--> 0.

3. Analysis. We examine the polynomial

(3.1)
R(oo, z) Z

2 bqdkOom_k_t_z2q-12 Z (b]dk-.-c- )(.o rn+q-k-]
k--O j=O k--O

q q m--1

+ c-1 bjdkto +q+l-k- +C-1 y,, CkbO0 +q +l-k-j=O k =0 =0 k =0

given by (2.8). The roots ((.OI(Z), ", (.Ol(Z)) 2_-<1 _-<m +q + 1, satisfy
THEOREM 3.1. Only one root approaches zero as z--> O. That root can be

written as

(3.2) w(z) --CK-aZ + Z C,Z k+2.
k=l

Pro@ Since R (to, 0) is a polynomial with c-1Kbqdmto as lowest order term, the
first statement is a consequence of c-lrbqdm O. The series (3.2) can be computed
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by constructing a Newton’s diagram [7] for (3.1). We just present the analysis
determined by the diagram. Let z t and to t2u. Consider

R (t2u, t)= bqdmtZ(1 +-IKu)-" t2Gl(t, u)

and

G(t, u) R (t2u, t)/t2.

It satisfies G(0,-CK-1)=0 and G, (0, -cK -1) 0. By the implicit function
theorem, there is u(t), analytic in a neighborhood of the origin such that
u(0) =-cr -1 and G(t, u(t)) 0. Letting to(z)=z2u(z), we have R(to(z),z)=O
where to (z) satisfies (3.2).

An immediate consequence is
COROLLARY 3.1. Only one of the roots of (2.7), given by

(wi(Ifl),’", w,(ll))= ’,,,,(

satisfies [w (11)l-’ oo as I1- oo. Moreover, that root can be written as

/( )(3.3) wl(l l)=-I ’l C/’( -1- c,</l l’<

k=l

We can now exhibit the Fourier transform of Tg and the trivial hyperbolic
part using (2.3) and the representation of M(t, ) given in [2]; namely

1 w(e), IM(t, so)= e
]=1 C(0,8 (,j))

eWl(w + w(), ) dw

where C(0, 8) is a sufficiently small circle of radius 8 about 0. The Fourier
transform of Tg is

(3.4) Ml(t-z, ),(, r) dr

where

1 Wl()t fC tw](W + ()’ ) dw,(3.5) Ml(t, )=-i e e w1
(o, (, ))

The remainder of (2.3) is the Fourier transform of the trivial hyperbolic part; i.e.

(3.6) (tj, t)+ Mz(t-’, ,)(, ) dr

where M2 M-M1. The hyperbolic part is not zero, since if it were, we would
have (3.6) equal to zero. We could solve by successive approximations and deduce
that , and hence g, is zero. An application of the Paley Weiner theorem, as in [2],
together with the first part of Corollary 3.1, implies that (3.5) defines a hyperbolic
part that is trivial. Standard arguments imply that the conditions of the definition
of parabolic modulo a hyperbolic part are not satisfied. We summarize"
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THEOREM 3.2. ifa and [3 are in4and are not both zero, then (2.1) is parabolic
modulo a trivial hyperbolic part. Therefore, within the class X, there exists a unique
solution of (2.1) for each g Z1.
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SATURATION THEOREMS CONNECTED WITH THE
ABSTRACT WAVE EQUATION*

JOHN W. DETTMANt

Abstract. The study of certain well-posed Cauchy problems for the abstract heat equation leads to
the theory of Co semi-groups of operators. The relevant saturation theory for the semi-group as a
strong approximation process leads to many important results in approximation theory and differential
equations. In this paper, we consider a certain class of well-posed Cauchy problems for the abstract
wave equation and the solution of them as strong approximation processes for either the initial values
of the solution or its derivative. The saturation order for each of these processes is found to be and
the saturation class is characterized in each case.

1. Introduction. Let X be a Banach space. Consider the abstract Cauchy
problem for the heat equation in X: u’(t)= Au(t), u(O)=f, where A is a closed
linear operator, densely defined, and with nonvoid resolvent set. It is well-known
that this problem is uniformly well-posed in//= {tlO<=t <} (see [11]) if and
only if A is the infinitesimal generator of a Co semi-group f(t) and the solution is
u(t) fl(t)f, f D(A). The semi-;roup II(t) is a commutative strong approxima-
tion process since [ll(t)f-fll --> 0 as t --> 0/ for each f X. The process is saturated
with order t and the Favard class (saturation class)’s D(A)’---’x (the relative"
completion of D(A) in X) (see [7], [8]). These results are the basis for a wide
variety of saturation theorems in approximation theory. From the point of view of
differential equations the saturation theory gives information on the boundary
behavior of the solution, i.e., at what rate does the solution approach the initial
conditions.

The situation with the wave equation is not quite so clear. For one thing, the
well-posed Cauchy problem for the abstract wave equation u"(t) Au (t) has not
been completely characterized within the context of semi-group theory. Actually,
Fattorini [11], DaPrato-Guisti [9], and Sova [17] have shown that the Cauchy
problem for this equation is uniformly well-posed if and only if A generates a
strongly continuous cosine function. They also give necessary and sufficient
conditions on the resolvent of A for it to be the generator of a strongly continuous
cosine function. However, this approach precludes our use of the results of
semi-group theory in the study of the saturation problem.

In this paper, we shall consider the following problem u"(t) Au (t), u (0) b,
u’(0) =,. This problem is uniformly well-posed in R ={tl-c<t<} if A
Be+c2I, where B is the infinitesimal generator of a Co group and c 2 is a
nonnegative constant. Conversely, in many important cases (e.g. if X =Lp,
1 < p <, orX is a Hilbert space and A is a self-adjoint operator 11]) when the
Cauchy problem is uniformly well-posed A is necessarily of the form Be +caI
where B is a group generator. We discuss another case of this in 2. In 3 we
consider the relevant saturation theorems for the solution operators when A
Be, the square of a Co group generator. In 4 we deal with the corresponding

* Received by the editors February 19, 1976, and in revised form July, 28, 1976.
t Department of Mathematical Sciences, Oakland University, Rochester, Michigan 48063.
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theorems in the case where A B2+c2L This depends heavily on a represen-
tation of the solution operators in the case c 2 0 in terms of the corresponding
operators in the case c 0. These results have been derived using the methods of
related differential equations [4]-[6], [10]. Finally, in 5 we analyze the orders
of u (t) 4)11, Ilu’(t)- 4,11, and Ilt-[u (t)- (h]- @11 as 0.

Throughout this paper a very important concept will be that of relative
completion. LetX be a Banach space and Y a proper normalized Banach subspace
continuously imbedded in X. Let Sy(p)= {fX Ilfll then the completion
of Y relative to X, denoted by x, is defined by

In other words, ?x is the set of all elements f X which are in the closure in X of
some bounded sphere in Y. This concept was first introduced by Gagliardo [13]. It
is developed further by Aronszajn and Gagliardo 1] where it is proved that x is
a normalized Banach subspace of X under the norm

I ll x inf {p > Oil Sc(p)x}.
It is also shown that if Y is reflexive then Y and ?x are equal with equal norms.
The concept of relative completion has been used by Berens [3] and by Shapiro
[16]. (See also Butzer and Nessel [8].)

2. A well-posed Cauehy problem. Throughout this paper we shall take the
underlying space X to be a Banach space. We shall consider the abstract Cauchy
problem for the wave equation" u"(t)= Au(t), u(0)= b, u’(0)= if, where A is a
closed linear operator with nonvoid resolvent set defined on a domain D(A)
dense in X. We shall say, following Fattorini, that the problem is uniformly
well-posed in R if there exists a dense subspace D such that when th, D there
exists a unique solution depending continuously on the data. In this case, there
exists a strongly continuous bounded linear operator (t) such that the solution
can be expressed as

u(t) (t) + (t)ff,
where (t)=to(r)d-. This equation is interpreted in the strong operator
topology. Furthermore, S(t) is of type _-< to, i.e. there exists a positive constantM
such that Ilg(t)ll<-Mel’l.for some real number to. The operator A is called the
infinitesimal generator of S(t).

For the moment, let us assume that the Cauchy problem is uniformly
well-posed if 4 D(A) and 0. Then it can be shown that

1 I -s’2/(4’)(S)(v(t)= e ds

solves the abstract Cauchy problem for the heat equation (see [4], [11], [14])

v’(t)=Av(t),

v(0)=6.
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This means that A is the infinitesimal generator of a Co semi-group f(t),
holomorphic in the right half-plane Re (t) >0. If (t) is of type _-<o then l(t) is of
type < 2 2 2

=0 Therefore, for c ->_ o there is a positive constant K such that

and 2(t) e-C2t is an equibounded semi-group with infinitesimal generator A ceL
This means that we can take the square root of c2I-A (see [2]) and define

B=i(cZI-A)a/2

which will be a closed linear operator densely defined in X. Therefore, Ba=
A c1 andA Ba + c2L This shows the existence ofB and the desired represen-
tation A Ba + c2I but does not yet show that B is the infinitesimal generator of a
Co group.

We have seen, having assumed that the Cauchy problem for the wave
equation is uniformly well-posed for b D(A) and 0, that A is a semi-group
generator and A B2 +c2L We now assume further that the Cauchy problem has
a unique solution if b D(A) and D(B) f3 R (B) [R (B) is the range of B]. By
Theorem 5.9 and Lemma 6.1 of [11], the Cauchy problem u"(t) (A -caI)u(t)
B2u(t) has a unique solution for u(0)= b and u’(0)= Bb or -Bb. But then by
Theorem 23.9,5 of [15] B is the infinitesimal generator of a Co group.

We conclude this section with a statement 0f the representation of the
solution operators for the Cauchy problem u"(t)=(B2+c2I)u(t), u(0)=b,
u’(0) . Let

S(t) 1/2[ U(t) + U(- t)],

T(t) S(r) dr,

where U(t) is the Co group generated by B. Then

I1(c/t2- 0.2)g(t) S(t) + ct
x/t2, 0.2

S(0.) &r,

11(C x/t2 0.2)(t) T(t) + c /--t2,-,S 0.T(0.) do.,

where Ii(x) is the modified Bessel function of order 1 and the equations are to be
interpreted in the strong operator topology. These results were obtained in [ 10].
In terms of these operators the solution of the Cauchy problem is

u(t) (t)qb + (t)O.
3. Saturation theorems (c =0). In this section, we consider the relevant

saturation theorems for the solution operators in the case c 0. We first note that
the operators S(t) and T(t) have as domains the whole space X. Now consider the
approximation process S(t)f, f X. This is obviously commutative and is a strong
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approximation process since

as t O. Now let f e D(A) D(B). Then

u(tf=f+tf+ Io (-u(fa’
U(-t)=f-tBf+ Io (t-r)U(-’)Bf&r

and

s(t)f-f 1 I=- (t-o’)S(cr)BZf dtr,

s(t < sup IIS()BII

Therefore, for all f e D(B2), IIs(t)f-fll= o(F) as t-->0. Furthermore, for f
D(B2)

S(t)f-f B 2 1- f=- (t-r)[S(cr)-I]B2f&r.

For sufficiently small t, II(S()-I)BII<, and

][,S(t)f-f B e o’t -Tf 7 (t-)d=.
Since e is arbitrary

-f -->0 ast->0.

We shall want to use Theorem 13.4.1 of [8] and for this purpose we shall need
a regularization process

1/n

f
1/n

J"f n2 Io U(o" + rl f dcr drl,
.0

n 1, 2, 3,. . Clearly {J,,} is a family of bounded linear operators defined on X,
J,[X]c D(B2) for each n, II/ff-fll-, 0 as n -, for each rex, and J,, commutes
with S(t) for each n and each t.

An appeal to Theorem 13.4.1 of [8] now yields the following result.
THEOREM 1. (i) If f eX is such that IlS(t)-f, ll=o(t) then fD(B2) and

B2f O. (ii)Ils(t)f-[l[ O(t2) if and oonly iff D’2)x (the relative completion of
2 2X 2D(B) in X). IfX is reflexive then D(B) D(B).
The process T(t)[ is not an approximation process because T(t)f--> 0 as t --> 0.

However, closely related to it is the process

1 0’V(t)f t-lT(t)f -[ SO’)fdr
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and Ilv(t)-fll- o as 0. In fact, limt-o V(t)O gives the derivative u’(0) of the
solution of the Cauchy problem. V(t)f is a commutative strong approximation
process. If f sD(B2), then

V(t)f-f =-[ [S(z)f -f] d-

+
t

t2 lot f

For t sumciently small II(s(t)-z)n]l< e and

Since e is arbitrary

as 0 for each f D(B2). At this point we introduce the same regularization
process as in Theorem 1 and appealing to Theorem 13.4.1 of [8], we have

THEOREM 2. (i) If f eX is such that [[V(t)f -f_=,o(t2), then fD(B2) and
B0. (ii) [[V(t)f-f][ O(t2) if and only if f D-(-2)x. If X is reflexive then
D(B2)X=D(B2).

4. Saturation theorems (c 0). In the case c 0, we have since x-lll(X)=
1/2 +x/16+ 1/2 +O(x) as x -0,

Io’ I1(cx//2- ’2)
S(tr)fdtrS(t)f S(t)f +c2t c4t_tr

Then

2)
=S(t)f +cEt2 Ii(ct,/i-n

S(tn)fdnctx/1 --71
2

2/,2 fOS(t)f+-T S(trt)fdn +O(t4)

C 2t IOS(t)f+ S(cr)fd + O(t4).

c2t oS(t)f-f S(t)f -f+- S(o’)f dr + O(t4)
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and Ilg(t)/-fll-0 as t-->0 for each reX. Hence g(t)f is a commutative strong
approximation process. Furthermore, if f D(B 2),

and

(t)f f B+c 2

t
---’5---- 2 f

S(t)f-f B2
C
2

fott2 - f+- [S(tr)f-f] dtr + O(tE)

g(t)f-f B2+c2

t----T----------f 0
as t --> 0. This shows that IIg(t)f-fll- o(tE) when f D(B2).

Nextwe show that in case Ilg(t)/-1l o(t) thenf s D(BE) and (B E + c2)f O.
In fact, suppose

as t --> 0. Then

and therefore

S(t)f-f c_f cE(110’t2 -g++-\- S(tr)f dtr

s<t)r- 

tE

This shows (see the proof of Theorem 13.4.1 of [8]) that

B 2. 2 B2+2
fD(B2) and --f=g--f or "2 "’f= g.

But if g 0 then (B 2 + c2)f O.
Finally, if II-f][ O(t2) then I[S(t)f-fll O(t2) and by Theorem 1 this

implies that f D(B2)x. We have then proved
THEOREM 3. (i) If f X is such that IIg(t)f-fll %(t,) then f D(B2) and

(B2+c)f =O. (ii)[Ig(t)-ll o(t) if and Only iff sD(B2)x.
Finally, we consider a saturation theorem for the operator IT’(t) t-l’(t). We

have

Iot 11 (c x/’t’2 cr2)
T(t)f T(t)f+c 2

c4t2 r2 trT(tr)fdtr

T(t)f+cZt2 IO11a(ctx/1-7)cr,/, rl
rtT m fdn

c2t2 IOT(t)f+--- nT(trl)fdn "F O(t4),

c 2t fol9(t)f V(t)f+-- rIT(trl)fdrl + O(t3).
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Therefore, (t)f-f= V(t)f-f+O(t) and lllT"(t)f-fll-, 0 as t0, and (t)f is a
commutative strong approximation process. Furthermore,

C2 I0’(t)f Z(t)f+- rT(r)fdcr +O(/4)

T(t)f+[T(g o- S(gd +O(t4)

C 2/2 C
2 (t

T(t)f+T(t)f- Jo 2S()fd+O(t4)"

Hence,

r(t)f-f V(t)f-f+c c 2 1 Iott2 t2 - V(t)f-- cr2S(r)fdr + O(t).

Now (1/t3) I’ocrS(r)f&r of/3 as toO. In fact, (1/t3) I’orf&r=f/3 and for t
sufficiently small IIs(t)f-fll < . Therefore,

o’2[S (r)f -f] do, V o" dr .
if f eD(B2) then [V(t)f-f]/t)o(B/6)f and therefore we have shown that if
f e D(B),

][(t)f-f B2+c IIt-r------d--
, -,o

as toO. This shows that Ilf’(t)f-/ll O(t) for eachf D(BZ). Conversely, if
II(t)f-fll o(t) then Ilv(t)f-/ll = -= xO(t and f D(B Finally, suppose

IT"(t)f-f- 11
as t o 0. Then

as t o 0, which implies that]’ e D(B) and (B/6)f g- (c/6)f or [(B + c 2)/6]f
g. If g 0 then (B+c2)f 0. We have proved

THZOrZM 4. 6) ff f eX is such that I[(tg-fll=) then f eD(B) and
(B 2 +c2ff 0. (ii)IlQ(t)f-fl[ o(t2) g and only fff e D(2)X.

5. Orders o[ approxafion in the Cauchy problem. If e D(B2) and
0 D(B)R (B),then we can write the solution of the Cauchy problem as

u(t) g(t) + ’(t)O.

In fact, this expression makes perfectly good sense for any, , X. Therefore, we
shall refer to it as the generalized solution of the Cauchy problem. We now
consider the order of magnitude of Ilu(t)-ll as t-0.
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THEOREM 5. If ff_X is such that I[u(t)-4,[I o(te), then 0, 4’ 6D(B2),
(B2+c2) .C,0, and u (t) ck. Furthermore, []u (t) 4ll o(t) if and only
and rp D’-’-(B2)x.

Proof. If, 0 then u(t)-ck (t)b- and [l(t)4, -,11-Ilu (t)- 4,11- o(t2)
when q D(B2)x. Conversely, suppose that Ilu(t)4,-4,11 o(t); then

0= lim
u (t)-

lim
S(t),fi -4 +lim

t-o t t-o t t-o

Since, limt+o (t)O- w know that limt+o (S(t)d-d)/t exists. We shall show
that this limit is zero and, therefore, that tp O. For this purpos we introduce th
regularization process J defined by

/

J.f n U(t)f dt.

We know that limt_.o(S(t)f-f)/t=0 if fD(B), and therefore
limt_.o (S(t)J,4 -J,/t 0. But J, commutes with S(t) for each n and each t, and
therefore if g limt-,o (S(t) -)/t then J,g =0. However, lim,,_.oo J,,g g =0.
We have shown thgt q=0 and hence Ilu(t)-4ll=llg(t)4,-4,ll=o(t). By
Theorem 3, 4 /)(-2)x. If Ilu(t)-ll=o(t2), 4, D(B2) and (B2+c),b 0. In
this case, u"(t) (B e +ce)u(t) (B +c2)(t)b (t)(B +ce)4, 0. Therefore,
since u’(0)= q 0, u(t)= rp. This completes the proof.

In order to differentiate u(t) we must have that ,fi D(B), and in this case

1 1 c 2 f ct2
u’(t) =- U(t)Bq -- U(- t)B +- Jo S(r)dp dr+-S(t)rk + g(t)q + O(t3)"

If in addition, b D(B),
1 1- U(t)Br -- U(- t)B4 Jo S(r)Be4 dr

and
2 2ct ct

---S(t) -,b + O(t3)

c2 0’=- S(z)ck dr + O(t3).

Therefore, if b D(Be) and (B e +ce)b 0,

u’(t) q g(t)q g + O(t3).

Then if q D2)x, Ilu’(t)- ,11- o(t2). On the other hand, if Ilu’(t)- ,11- o(t2)
then

0 lim
u’(t)-=lim[U(t)Bdp-U(-t)Bdp+S(t)- -c2b]t-o t ,-,o 2t t

The regularization process J. introduced in the proof of Theorem 5 commutes
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with U(t), U(-t), and S(t). Therefore,

lim f U(t)J,,B U(- t)JnB
t-,o I_ 2t

S )Jnt J,l’] _c2j,.

But J,, 6D(B) and J,/, 6D(B) and hence

lim
t-,o 2t

U(t)J,,B U(- t)J,,B
BJ,Bdp,

S(t)J,,l,
lim 0.
t-+0

The operator B is closed, which implies that 6 D(B2) and

lim (BJ,B +c2j, (B 2 + c2) 0.

From this we have u’(t)-,=(t)-O +O(l’3) and Theorem 3 implies that
g, D’)’. If Ilu’(t)- Oil o(t) then ff D(B2 and (B 2 +c2) 0. In this case,

u"(t) (B +c)u (t) (t)(B +ce) + (t)(B +c) 0

and u (t)= +t.We have proved
THZOZM 6. ff eD(B) and are such that ]lu’(t)-]=o(t) then e

D(Be), eD(B), (Be+c) (Be+ce) =0, and u(t)= +t. Furthermore,
llu’(t)-ll= O(t) if and only if e D(Be), (B e+c) 0, and eB)x.

In order not to have to assume at the outset that e D(B), it is of interest to
consider the difference quotient t-[u(t)-] as an approximation process for
u’(0) ft. We therefore consider

u(t)-_ S(t)-+ Q(t) .
t

If &eD(B) and (B+c)=0, then a(t)=(t) is the unique solution of
"(t) A(t), (0)= , ’(0) 0. Then "(t) (B 2 + c)(t) (t)(B2 +c)
0. Hence a(t)= S(t) . This shows that

u (t)

_
(t) .

t

2)XTherefore, if D(B [[t) [[ O(t2) and
u(t)- 1 O(te)"

Conversely, suppose [[t-[u(t)-&]-l[ O(t); then

to ,o t

and

lim [S(t)-ck+ V(t)-] C
2

,-.o t --ck.
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At this point we introduce the regularization process

/n

IO
1/n

Jff n U(o" + o )fdo"

used in the proof of Theorem 1. J,, commutes with both S(t) and V(t) and
Jnf eD(B 2) for all f e X. Therefore,

lim [S(t)J -J"t-->O

V(t)J. -J.] c 2

t --J""
Since JnO D(B2), limt-,o (V(t)JnO-JnP)/t 0 and this implies that

lim
(S(t)Jn J.b) B c

,-o -J" --J"
or (B2+c2)J,=O. The operator B2 is closed and hence C eD(B2) and
(B2 +c2) 0. From this it follows that f’(t)q, q, -o(t2) and e D(B’;-2)x.
If ]lt-a[u(t)-]-oll=o(t2) then [If’(t)-oll=o(t2) and by Theorem 4,
beD(B2) and (B2+c2)ff=0. Then u"(t)=(B+c2)u(t)=g(t)(B2+c2)+
(t)(B + c)q 0 and u (t) + tff. We have proved

THEOREM 7. If and 0 are such that Ilt-a[u(t)-]-ll=o(t2) then
D(B2), qeD(B2), (B2 +c2)4 (B2 +c2)q O and u(t) + tq. Furthermore,
[[t-X[u.(t)-]-d/ll=O(t) if and only if eD(BZ), (B2Wc2)b=0, and $e
D(BZ)x.
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SOME COMBINATORIAL IDENTITIES OF BERNSTEIN*

L. CARLITZ?

Abstract. For g a rational integer such that A 4g + 27 is square-free, let w denote the real root
of u + gu 0 and put wn rn + sw + tw2, w x + ynw + zw2, n >- O. Making use of the
theory of units in an algebraic number field, Bernstein obtained quadratic relations involving the r,,
and x,, as well as explicit formulas. These lead to certain combinatorial identities. In the present paper
these and related identities are proved using only some elementary algebra.

1. Introduction. Let g be a rational integer such that A 4g3 / 27 is square-
free and let w denote the real root of the irreducible equation

(1.1) x3+gx-l=O (g> 1).

Clearly w is a unit of the cubic field Q(w). Put

(1.2) w"=r,+s,w+t,w2 (n _-->0)

and

(1.3) w-" x,, + y,w + z,w 2 (n >=0).

Makin use of the theory of units in an algebraic number field, Bernstein [2],
[3] has obtained certain combinatorial identities. He showed that

l + gu 2

(1.4) r,u" u3n=0 1 + gu 2

and

(1.5) Y x,u"= 3.
n=o 1 gu u

It follows from (1.4) and (1.5) that

(1.6)
rz, E (--1)"-k (n--k--1) g"-3k

3k<_n 2k-1

r2n+l"-’, (--1)"-k-X(n-k-l) n--3k--1

3k<n 2k
g

and

X3n (n + 2k g3k,
k=O 3k ]

(n+2k+l) g3k+l(1.7) x3.+
k=O 3k+1

(n+2k+2)3k+2X3n+2 2 g
k=0 3k +2

* Received by the editors April 30, 1976, and in revised form August 10, 1976.

" Department of Mathematics, Duke University, Durham, North Carolina 27706. This work was
supported in part by the National Science Foundation under Grant GP-37924X.
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Moreover, by (1.2) and (1.3),
2rn-- rn-lrn+l Xn-3

(1.8)
2

Xn Xn--lXn+l rn+3.

Substituting from (1.6) and (1.7) in (1.8), we obtain the combinatorial
identities. Since A =4g3+27 is squarefree for infinitely many values of g, the
identities are indeed polynomial identities.

The object of the present paper is to prove these and related identities using
only some elementary algebra. Let g denote an indeterminate and put

Put

(1.9) r an +/ +’
where n is an arbitrary positive or negative integer. Then

and

We shall show that

3 r,, + gr,,_ o’,, + go’,,_a (n _>- 2)

o’_,=3x,-2gx,,_x (n->_ 1).

2
O’2n O’n O’-n

and that generally O’kn, k _-> 1, is a polynomial in r,, r-n with integral coefficients;
see (3.14) for an explicit result. Moreover

(1.10) O.mO, O.m+ +" O’m nO’_ O’m 2

for arbitrary m, n. There are numerous formulas involving the products
x,r,. If we let p r,, or x_, according as n >-0 or n <= O, these formulas can be
included in a single identity:

(1.11) pmO’n Pm+n nt- Pm-nO’-n Pm-2n

and

(1.12)
2p,,,p,, p,,, +lPn- -Pm lPn +

O’m--30"n--3 O’m +3--6 O’m--3Pn--3 O’n--3Pm--3 + 2Pro+n--6
for arbitrary m,n. The latter formula contains (1.8) as a special case.

We also obtain an explicit formula for pk in terms of r,,, r_, p,, p_.
Corresponding to (1.6) and (1.7) we have

(1.13) r.= (-1)n-kn(n) 3u-"

,/3_-<_<-,/2 " n 2k
g (n > 0)

and

(1.14) or_,=
n (n-21) ,,-3i (n>O).

3<__,,n-2] ]
g
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The functions r,, x,, o-, tr_ are all polynomials in the indeterminate g and
may be thought of as analogues of the Chebyshev polynomials [4, Chap. 4]. For a
detailed discussion of the linearization of the product of two classical orthogonal
polynomial see Askey [1, Lecture 5].

2. In what follows g will denote an indeterminate. Put

(2.1) 1 +gx2-x3=(1-ax)(1-Bx)(1-yx),
so that a, fl, 3’ are the roots of

(2.2) z 3 + gz 1 O.

Let

l+gxz A B C
-t- +,(2.3) l+gxZ-x3 1-ax 1-Bx 1-yx

where A, B, C are independent of x. By (2.1)

a+fl+,=O,
(2.4)

fly + "),a + aft g,

and by (2.3)

It follows from (2.4) that

g+c2

( t)(a -)"

1
(2.5) A

3- 2ga

with similar formulas for B and C.
Comparing (1.4) with (2.3) we get

aBy= 1

(2.6) r,, Aa" =- Aa" +B" + Cy" (n >- 0).

It is easily verified that

(2.7)

Hence, by (2.6),

We define

(2.8)

A 4g3 + 27 I-I (3 2ga)= 1] A-1.

A. r, 2 (3 2g/3)(3-- 2gy)a"

E (9 + 6ga + 4g2/3V)a ".

(n 6Z).

Thus

(2.9) A r. 9tr + 6go’n+1 +4g2trn-1.
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In the next place, since

1 gu u 3 (1 ]/u )(1 Ta.u )(1 ozu ),

we may put

1 A’ B’ C’
(2 1 0)

1 gu u3 1 fl]/u 1 yau 1 aflu’
where A’, B’, C’ are independent of u. Then

For u a this reduces to

1 =.,A’(1-]/au)(1-au).

1 =A’(1-a2fl)(1-a2]/)
A’(1 a2(fl + ]/)+ O4]/)
A’(1 + 2a3) A’(3- 2ga),

so that

(2.11)

Hence (2.10) becomes

(2.12)
1

A’=A, B’=B, C’ =C.

A
1-gu-u3= 1-yu

Comparison with (1.5) gives

(2.13) Xn An]/n Aa-" (n >- 0).

It follows from (2:6) that

r,nrn E A 2a ,n+n +E BC(m]/n + ]/m[3n )"(2.14)

In particular
2 20 2n

]/r.=,A +2 EBC"
rn+ rn 2 a202n -I- E BCfl -1]/ fl 2 -j- ]/2).

Subtracting the second equation from the first, we get

-’(/-r.-- rn+lrn-1 __E BC[3n-1 )2
It is easily verified that

so that

(2.15)

Therefore, by (2.13),

(2.16)

BC(fl ]/)2 _Aa2,

r.- rn+lrn-1 ABn-3 n-3

2rn-- rn+lrn-1 Xn-3,
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in agreement with the first of (1.8).
Next, by (2.13),

(2.17) x,,.,x,, Y’. A2
Hence, exactly as above, we get

x 2,,_ x,,+lX,,-

E Aa2"+2B-r"- E Act n+3,
so that

(2.18) x 2
n Xn+lXn--1 rn+3

in agreement with the second of (1.8).
The coefficients A 2, BC in (2.14) suggest that it may be of interest to evaluate

We find that

A 2 BC A 2 BC
1- ax’ 1 ax’ 1 yx’ 1 yx"

A 2 1 a+bx+cx2

(2.19) Y"
1--OX A2 1 +gx2-x3’

where

a 243 + 144g2 + 16g6,
b 4(108- 81g2+4gS),
c 3g(135- 48g + 24g3 + 16g6);

BC 1 27 + 4g2x 3gx2

(2.20)
1 fix A 1 + gx2- x3

A 2 1 a+6g(27+16g2)x+bx2

(2.21) Z 1 yx------" A- 1 gx x 3

where a, b have the same meaning as in (2.19);

BC 1 27 3gx + 4g2x2

(2.22) 2 1- flyx S 1- gx x 3

3. We have defined

(3.1)

for all integral n. Thus

which reduces to

(3.2)

E o’.x"=2
.=o 1 ax

O’nX
n=0

(1-/x)(1- ,x)
1 at- gx2- X3

23+gx
2 3"l +gx -x
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Similarly we have

3-2gx
(3.3) Y. r_,x" 3.

,=0 1-gx-x

Comparing (3.2)with (1.4)and (3.3)with (1.5), we get

(3.4) 3r, + gr,-2 cr, + gcr,_2 (n >= 2)
and

(3.5) or_, 3x,- 2gx,-1 (n >= 1).

In the next place, it follows at once from (3.1) that
2

Since a/3y 1, this gives

(3.6) r2, r2, + 2r_,,

for both positive and negative n. Then
2 )2 2 2(0"n- O’2n (O’2n- O’4n ) 0"- O’-2n 20"n,

so that

(3.7) (r2,- r2,)z= 2(r,- r4,)+ 8r,.

We have, for arbitrary m and n,

Since

E t"," (t’-" + r’-") Y. t"," (.,-. -")

-.-. 2 ()"’-",
it follows that

(3.8) , =+, +-,-, -2,.

For m n, this reduces to (3.6).
Interchanging m, n in (3.8) and subtracting the result from (3.8), we get

(3.9)

A slightly more symmetrical form is obtained on replacing n by -n"

(3.10) =+,, =+2n --m--n--m --2m--n.

For m 2n, (3.8) reduces to

2nn 3 +n- 3.

Thus by (3.6)

3(3.11) 3, ,-3,_, +3.
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For m 3n, we get

so that

O’4n O’3nO’n O’2nO’-n "l- O’n

(3.12) 4 2 24o’.o’_. + 4tr,. + 20"-n.O’4n O’n

Similarly

(3.13) 5 3 2 2
trsn o’.- 5o’.tr_. + 5o’. + 5o’,.tr_.- 5o’_..

By an easy induction, O’kn is a polynomial in tr,, tr_,, of degree k in tr and of
degree [k/2] in o-_, and with leading term trk. Moreover one might guess that, for
k prime, all coefficients except the first are divisible by k.

Clearly, for arbitrary n, we have by (2.8)

2 =2
k=O 1

Y (1 -/3"x)(1 "x)
(1-a"x)(1-B"x)(1-y"x)

23 2cr,,x + o’_,,x
2 3"1 tr,x + tr_nx x

From this it is clear that O’kn is a polynomial in o-,,, o-_,, with integral
coefficients. Since

(1 .x + -.x2- x3)- y (r.x r_.x2 + x3)
r--O

2 (-1)
2(r+s+t)!

,..s.t=0

=Yx
k=O r+2s+3t=k

r+2s+3t
O’nO’_nX

(-lf(r+s+t)!
r!s!t!

O’nCr-,,

say. Thus

Cn,k
k=O

O’kn 3Cn,k 20"riCh,k-1 d- O’-nCn,k-2.

After some manipulation we find that

k
(3.14) trk, 2 (--1)"

r+2s+3t=k r + s +
(r + s + t)!

r!s!t!
O’nO’_

We have accordingly found an explicit formula for O’kn as a polynomial in trn,
tr_.. Moreover, for k prime, it is clear that all coefficients except for the term tr.

k

are indeed divisible by k.

4. It is convenient to define

(4.1)
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for all integral n. Thus

r,, (n _>- 0),
(4.2) p.

x_. (n -> 0).

By (3.1) and (4.1), for arbitrary m and n,

p"o’. Y. aa"

Z Aa +" +Z Aa (13 + 7")

p,.+. + ., Ate"-" (7-" +/3-")

p,,,+. + aa"-" (tr_. a-").

Hence we have, for all rn and n,

(4.3) p,.tr. p"+. + p"_.tr_. p,.-2..

In terms of r, and x,, (4.3) includes numerous formulas. In particular, we
have

(4.4) r"r. r"+. + r"_.tr_. rm-2n

(4.5) x"tr_. Xm+n + Xm-nO’n Xm-2n

We have also, using (4.1),

Since

and

we have

Y’. p,.x*= Z x k E Aa*"
k =0 k =0

(m >--2n >--_0)

(m >= 2n >= 0).

"x ) "x ) "r"x )"

(1-a"x)(1-"x)(1-y"x)= 1-tr.x + tr_.x2- x 3

EA(1-B"x)(1-y"x)=EA-x EA(o’.-a")+xZEAa
1- (o’. -p.)x -I’-p-nx2= 1 d"O’-nx2,

(4.6) E p,.x* 1-(tr.-p.)x+p_.xz

:2 :3
k=O 1 trnx + tr-nx x

Hence, as in the proof of (3.14),

(4.7)

where

Pkn Cn,k (On Pn)Cn,k-1 + P-riCh,k-2,

(4.8) C.k E (--1)s(r+s+t)! O-nO-_n"
r+Es+3t=k r!sttt

Thus we have an explicit formula for Pkn in terms of tr., tr_., p., p_..
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We shall now obtain a formula for

(4.9) R,,,,,, 2p,,,,pn Pm+lPn-l Pm--lPn+ l.

We have

This gives

Also as above

Hence

(4.10)

Since

BC( y)2 -Aa2.

t’r" + t"r" (t" + r’)(" + r")-("+" + r"+")
(-)(.- )-(+.-

m+nmn m n m+n +2
it follows that

(4.11)

Hence, by (4.9), (4.10) and (4.11), we have

2pmpn P,,+lPn--1 P-aPn+
(4.12)

O’m-3Crn-3 Crm+n-6- Crm--3Pn--3 Crn--3Pm--3 + 2Pro+n--6.
It can be verified that, for rn n, (4.12) reduces to (1.8).. By (3.2)we have

3+gx2

E O"nX 2 3
.=o l +gx -x

(3 + gx 2) Y (- 1)kx2k (g x)k
k=O

=(3+gx) E (-) E (-
k=O

(3 + gx 2) E x" Z (- 1)"+k 3k-,,

n=O n/3<--k<--n/2 n k
g
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It follows that

(5.1)
n/3<-k<-n/2

(-1)+n( _k2 )3--n k
g (n > 0).

Similarly, by (3.3),

Z O’_nX n’-

n--.O

3-2gx

=(3-2gx) Z x Z g
k =0 i=0 j

=(3-2gx) Y x" Y, n=2
n=0 3j<--n j

gn-3j

and we find that

(5.2) tr-n Y’, n (n- 21)n-3j
3jn n 2j j

g (n > 0).

We may now substitute from (5.1) and (5.2) in the formulas of 3 to obtain a
variety of combinatorial identities. In particular, substituting in (3.6) we get

(5.3)

n/3<=k<_n/2
(_1)n+kn (n _k2k)g3k-n}2

Z,,/3=k=,, 2n 2k

+2 Y’, n (n-21) g,,_3i
3i<-nn-2j j

(n >0)

and

(5.4)

3j<--n n -2j j

Z
n (2n-21) 2,,-3i

3i<_2nn --j j
g

+2 (--1)"+k n ( k2 ) 3k-" (n > 0).
,,/3<-k<-,,/2 - n-- k

g

In substituting in (3.8) or (3.9) there are a number of possibilities depending
on the relative sign of m and n. However we shall not take the space to write out
the resulting identities.
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6. Equating coefficients of powers of g in any of the polynomial identities
leads to certain binomial identities. For example (5.3) gives

(6.1)
r+s=k r n 2r s n 2s =- 2n 2k

+(_l)k 2n (2k-n]
2kn\ n-k ]

while (5.4) yields

(6.2)
r+s=k n 2r r n--2S

n-k k
+(--1)"+kn (n-k) (3k<2n).

n-k 2n-3k

Binomial coefficient summations such as (6.1) and (6.2) may, if we prefer, be
written in the notation of generalized hypergeometric functions. For example the
left hand side of (6.1) is equal to the well-poised sum

n n 1 n -n + 1 -n + 2
-k’--k’--k2’ 3’ 3 3

-n+2-n+l n+3 k,n+2
2 2 3 3

1
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PRODUCT FORMULAS AND NICHOLSON-TYPE
INTEGRALS FOR JACOBI FUNCTIONS.

I: SUMMARY OF RESULTS*

LOYAL DURAND

Abstract. Nicholson’s formula gives a generalization of the relation sin2x + cos2x to the case
of Bessel functions. We present a similar result which relates the sum of squares of the Jacobi functions
P’’t)(x) and Q"t)(x) to an integral over a single Jacobi function of the second kind, with the
integrand positive. The Nicholson-type formula is a special case of a general product formula for two
Jacobi functions of the second kind with different arguments, Q"t)(z 1)Q"’t)(zz). Various confluent
limits of these expressions give Nicholson-type integrals and product formulas for general Gegen-
bauer, Laguerre, Bessel, and Hermite functions. These results are summarized in the present paper.
Derivations and applications will be given elsewhere.

1. Introduction. In 1910, J. WI Nicholson [1] gave a generalization the
familiar relation eiXe -ix =sin2x +cos2x 1 for the case of Bessel functions.
Nicholson’s result expresses the sum --vt41)42)--v =j2+ y2 as an integral over a
hyperbolic Bessel function with the integrand positive,

(1.1) 2 2 8
2 f0J(x) + Y,(x)=-- Ko(2X sinh t) cosh 2ut dt.

Derivations of (1.1) and some related integrals are given in Watson [2]. Nichol-
son’s result has been of considerable importance in the theory of Bessel functions.
It was used by Nicholson [ 1] to obtain asymptotic expansions ofJ+ y2 for large x,
and by Watson [2] to derive bounds on the Bessel functions and to establish a
number of interesting monotonicity properties. It follows, for example, from the

2analysis given by Watson [2, 13.74] that the function x[J,,(x)+ Y2(x)] is a
completely monotonic function of x for u > 1/2, a result used by Lorch and Szego [3]
to prove a number of remarkable monotonicity properties of the nth differences of
the zeros of Bessel functions and the areas under successive arches.

One would expect expressions analogous to Nicholson’s integral to exist for
the classical orthogonal polynomials, as these reduce to Bessel functions in
appropriate confluent limits. However, despite the extensive literature on these
polynomials [4], [5], [6], no such results were known until 1971 when the author
[7] derived a Nicholson-type formula for Gegenbauer functions of arbitrary
degree and order. I have recently obtained the corresponding results for general
Jacobi functions.

Our basic result is a formula which expresses a product of two Jacobi
functions of the second kind, O(,’)(z 1}O(’’/3)(Z2),n as an integral involving a third
function Q(’)(Z) with a modified argument. The form of this expression was
suggested by the integrated form of Koornwinder’s addition theorem for the

* Received by the editors February 12, 1976.
t Department of Physics, University of Wisconsin, Madison, Wisconsin 53706. This work was

supported in part by the University of Wisconsin Research Committee with funds granted by the
Wisconsin Alumni Research Foundation, and in part by the U.S. Energy Research and Development
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Jacobi polynomials [8]. A special case of the product formula gives the Nicholson-
type integral for Jacobi functions. By considering various confluent limits of the
Jacobi functions, we obtain analogues of the product formula and Nicholson’s
integral for Gegenbauer, Laguerre, Bessel, and Hermite functions: These results
will be summarized here. Details of the derivations and some applications
involving bounds, addition theorems, asymptotic expansions, and higher
monotonicity properties of the functions will be presented in a series of papers in
preparation.

2. Results tor Jacobi functions.
2.1. Definitions. Let P’)(z) and O’’t)(z) be the Jacobi functions of the first

and second kind defined for arbitrary a,/3, n and complex z by [4, 4.21, 4.61]

(2.1) P’t)(z) F(n +a + 1)
r(n + 1)F(a + 1) 2Fl(-n,n+o +/3 +1" a + 1" 1-)2

(2.2)
O</,t)(z 2,++oF(n +a + 1)F(n +/3 + 1)(z

F(2n +c +/3 + 2)
1)-"--l(z + 1)-t

We define the Jacobi functions for real argument x "on the cut", 1 < x < 1, by

(2.3)
(t) x i’’(’’t)tx -i=’’’t)(x i0)]P,, t--[e + O) e

=P’’t)(x +iO), -1 <x <- 1,

(2.4)
(#’t(X) 1/2[ei(n’’t)(X + iO) + e-’=’O’’t(x --i0)],

--l<x<l.

P’’t)(x) and O(2’t)(x) are real for real n,

The definition of the (seldom-used) function O,,t)(x) given in (2.4) differs from that given in [6,
10.8(22)] and [4, 4.62.9],

lrQ(’,oO(2’t)(x) t )(x +iO)+Q(,,’’O)(x-iO)].

The latter definition destroys the analogy between P’a)(cos 0), O’’t)(cos 0), and the trigonometric
functions, and is not appropriate for our purposes. With our definition (2.4), the functions
O"t)(cos 0 +i0) are the analogues for Jacobi functions of the complex exponentials e +/-i. In fact, for
large n,

...1 r 1/2{ ----1/2{O"’t)(cosO+iO) (’) sin) cos)t31/Ze:’N:i’’+I/z’’/z, N n+t+
2 2 2
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2.2. The product formula. Our basic result is an expression for the product of
two Jacobi functions of the second kind,

-im/2[- (ct +2/+m,/3 (c +2/+m,/3[(Z1-- 1)(22-- 1)]l+m/2[(Z1 + 1) (Z2 + 1/j n-l-m +m)(z1)t.ln-l-m +m)(z2)

N:,,, dr dt,O(’)(Z)P-a-l"+m)(2r2- 1)

Cm(t)(t2-1)-1/2(r2_ 1),-/3-1r2/S+m+1"

Here C(t) is a Gegenbauer function of the first kind, defined in (3.1). The
argument of the Jacobi function Q,’)(Z) on the right hand side of (2.5) is given
by

(2.6) Z z,z2 +[(z- 1)(z- 1)]’/2rt +1/2(z,- 1)(z2-1)(r2-1),

and the normalization factor NlO, is given by

(2.7)

NO;fm 22+2,+2,, F(/3)F(n +/3-1 + 1)F(n +a +I + 1)
F(n-1-m + 1)F(n +/3 + 1)F(n +a +/3 +l +m + 1)

F(n +a +/3 + 1)F(m + 1)r(/+ 1)
F(m + 2/3)F(/+ a -/3)

The expression (2.5) holds for complex n, a, /3, l, m with Re a > Re/3 >-1/2,
Re(m+/3)=>0, Re(l+/2+m/2)>-O, Re(n-l-m+l)>O, and Re(n+a-
/3 m + 1) > 0. The Q’s are holomorphic in the complex plane cut from + 1 to -oo.
Equation (2.5) holds in the form given for larg (z1+ 1)
[arg (za- 1)(z2- 1) < 7r, [arg/z- i /- 11 < 7r, and can be continued elsewhere
by using the reflection symmetries of the Q’s for z -e+iz. For m 0, (2.5)
reduces to a relatively simple expression,

(2.8)

O(,,a)(z,)O(,,,t)(z2) 2/- F(n +a + 1)
r(n + )rq3 + 1/2)r(a t)

dr dt Q’O)(Z) (t2-1)t-1/2(r2-1)’-t-lr2tTM,

Re a > Re /3 > 1/2, Re (n +/3 + l > 0, Re (n +c -/3 + l) > 0.

The double integral in (2.8) can be converted to a single integral by making
the change of variables

(2.9)
e* cosh t3 cosh tl cosh t2 +sinh tl sinh t2r e 6,

e-* cosh t3 cosh t cosh t2 + sinh t sinh t2r e-6,
with z cosh 2t, z2 cosh 2t2, t cosh b, and integrating over . This gives an
expression analogous to the kernel form of the expression for the product of two



PRODUCT FORMULAS AND NICHOLSON-TYPE INTEGRALS 79

Jacobi polynomials derived by Gasper [9] and Koornwinder [ 10],

Q(ff’)(cosh 2tl)O’)(cosh 2t2)= x/2"-1/2 F(n + a + 1)
r(n + 1)r( + 1/2)

(sinh tl sinh t2)-2’ (cosh tl cosh t2)’-t3- O(fl:Z(cosh 2t3)

1 1-B)(cosh t3)+/ sinh t3 dt3(B- 1)"-1/22F1 +, a -; a +;T
where

(2.11) B
cosh2

tl + cosh2
t2 + cosh2 t3-1

2 cosh tl cosh t2 cosh t3

2.3. Nichoison-type integrals. We obtain Nicholson-type integrals for Jacobi
functions by letting z and z2 in (2.5) approach a real point x on opposite sides of
the cut, with -1 < x < 1. If we use the relation

2

(2.12) O(2")(x +iO)O’)(x-iO)=[Ofl’O’(x)]Z+--[Pfl’)(x)]2

which follows from (2.3) and (2.4), we find from (2.8), that
2 F(n +a + 1)fP(’(x)]=2[0’)]+ r(n + 1)r(

(2.13) fl dr fl d, Oa’’(x 2 +(1-x2)r, +(1-x)Z(r2-1))

(t2- 1)-/2(r2- 1)--ar2-a, -1 <x < 1.

The integrand is real and positive for a, B, n real. A more general result follows in
a similar fashion from (2.5),

2

(1--x)2l+m(l +X)m{f(a+2l+m, fO(+21+m,+m)[ }kn-l-m +m)(x)]2 +tn_l_ )]2

(2.14) =g;f dr dtQ’(x2+(1-xZ)rt+(1-x)Z(r2-1))

(-a-,+)(2r2_ 1)C(t)(t2 1)-/2(r2 1)-a-lrZa++l.

2.4. Laplace-type integral representation. We can also obtain an interesting
new integral representation for O"’t(z) from (2.8) by letting z z and taking
z2- oo. Comparison of the two sides of the equation gives

O(#’O)(z) 2,f- r(n +a + 1)
F(n + 1)F(/ + 1/2)F(a -/3 )

(2.15) 11 dr J, dt [z +(z2-1)’/2rt+(z- l)(r2- I>]-"-’--’

(t2- 1)/3-1/2(r2 1)a-t-r2t+l"
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This integral representation is similar in structure to the Laplace-type integral
representation for the Jacobi polynomials P’)(z), n =integer, derived by
Koornwinder [8].

3. Results for Gegenbauer functions.
3.1. Definitions. The Gegenbauer functions of the first kind, C(z), are

defined in [6, 3.15],

F(n+2a) 2Fl(-n,n+2a’a-tl--;l-z)C,(z)
F(2a)F(n + 1) 2 2

(3.1)
2_z +lvr--- F(n + 2a) p(n_/z,_/z)(z

F(a)F(n + a + 1/2) )"

The functions of the second kind, D(z), will be defined as in [7],2

D(z)=ei= F(n +2a)(2z)_n_2,2F1( tl 1 -2)F(a)F(n +a +1) +a,+a +; n +a + 1; z

(3.2)
=2-z+le

F(a)F(n+a +1)

The phase factor e i= is included in the definition of D(z) so that D and C
satisfy the same recurrence relations with respect to a [7] (P’o) and O(’t). as
usually defined satisfy different recurrence relations with respect to a).

We define the Gegenbauer functions for real argument x "on the cut",
-1 <x < 1, by

(3.3) C(x)=D(x +iO)+e-ZiD(x-iO)=C(x +iO), -1 <x <_ 1,

(3.4) D,(x)=-tD,(x +iO)+ie L,x--iO), --1 <X <1.

C(x) and D(x) are real for real n and a.

3.2. The product formula, The product formula for the Gegenbauer func-
tions of the second kind can be derived from (2.5) by converting the integral on r
into a contour integral on a contour around the segment of the real axis 1 _-<. r < o,
and then letting/3 equal a. The integrand has a first order pole at r 1 for a
and the integration over r is trivial. The result is nonzero only for 0. After using
the definition (3.2), we obtain the product formula [7]3

m/2 +m/ +m(Zl- 1)’/Z(z- 1) L,-m[Zl)D,-(Z2)

2_2_2m+ F(2a- 1)F(m + 1)F(n +2a +m)
(3.5) [F(a + m)]ZF(2a + m 1)F(n -m + 1)

e’=+2)I D(Z)C-I/2(t) (t2- 1)-1 dt,

2The functions D(z) defined above differ from those of Robin [5, 170(93)] by a factor
-1 e2i(o-1/4)7r which simplifies the connections between the C’s and D’s. The definition of D’(z)

given in [6, p. 175, corrections on p. 2] is inappropriate for our purposes.

The phase factor on the right hand side of (3.5) is given incorrectly in [7, Eq. (13)] as e i’’’’.
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where

(3.6) Z= zz2+(z- 1)/2(z2- 1)/2t.
This result holds for complex n, a, and m with Re a > 0, Re (a + m)>= 0, and
Re (n m + 1) > 0. The D’s are holomorphic in the complex plane cut from + 1 to
-. The expression in (3.5) is valid in the form given for larg (z + 1)1< 7r,

larg (Z2 "1- 1)l <Tr, larg4z- 14z- 11 <r, and can be continued to other regions
by the use of the reflection symmetry of the D’s for z e z,

ir(n(3.7) D,(z e +i=) e )D(z ).

An alternative derivation of (3.5) based on the addition formula for Gegenbauer
functions is given in [7].

For c 1/2 and m 0, (3.5) gives a product formula for the Legendre functions
O.(z).

(3.8) /2,,. tz)=-Q.(z).

(3.9) On(Zl)ln(Z2) I1 Qn(z1z2--(z21 1)1/2(z22- 1)l/2t)(t2- 1)-1/2 dt,

Ren >-1, larg [(z- 1)a/Z(z2- 1)a/z][ < ’rr.

3.3. Niehoison-lype integrals. We obtain Nicholson-type integrals for the
Gegenbauer functions by letting Z and z2 in (3.5) approach a real point, x,
-1 < x < 1, on opposite sides of the cut. If we use the relation

XD,( + iO)D(x iO) 1/4 eZria{[C(x)]2 +[D(x)]2}

which follows from (3.3) and (3.4), we find from (3.5) that

(-x) {[c7+_m(X)]2_.tLin_m(X)]2}

(3.11) 2_2_z,,+3 F(2a 1)F(m + 1)F(n +2a +m)
[F(a + m)]ZF(2a +m 1)F(n-m + 1)

--i J1e D(x+(1-x)t)C-/(t)(t 1)-1 dr, -l<x 1,

where the functions on the left hand side of the expression are the Gegenbauer
functions "on-the cut". For m 0 and a , we obtain a Nicholson-type formula
for the ordinary Legendre functions,

(3.12) [P,(x)lZ+[O,(x)]2= O,(x 2 +(1-xZ)t)(t2- 1)-1/2 dt,

-l<x<l.

3.4. Laplace-type integral representation. We obtain an integral representa-
tion for D(z) similar in structure to the Laplace integral for C(z) by letting
z z in (3.5) and taking z2 . Comparison of the asymptotic forms of the two
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sides of the equation gives

(Z 2 1)m/2D+m’n-ml,Z)’-- 2-m-2+1 F(2c 1)F(n + 2a)F(m + 1)
F(a)F(2a +m- 1)F(n-m + 1)F(a + m)

(3.13) e i=(+’) [z +(z2- 1)l/2t]-"-2C,-1/2(t)

(t2-1)"-1 dt,

Rea >0, Re (n-m + 1)>0.

This reduces to a known result for the associated Legendre functions for m 0 [6,
3.7(2)].

4. Results for Laguerre functions.
4.1. Definitions. The Laguerre functions L(z) for general values of n and a

are defined in terms of confluent hypergeometric functions [6, 6.9.2(37)],

F(n +a + 1)
L(z) dp(-n, a + 1, z)

r(n + )r( + )
(4.)

r(n+a+l)
1F(-n a + 1; z).

F(n + 1)F(a + 1)

A second solution to the Laguerre equation is given by [6, 6.7]

(4.2) N(z) F(n +a + 1) eZ(n + + 1, a + 1, -z).

We will define the principal branch of the many valued function Ng(z) by the
condition 0 < arg z < 2, with -z e-=z. With these choices for the functions of
the first and second kind, Lg(z) and Ng(z) are confluent limits of the Jacobi
functions,

lim P’) l+e(4.3) L(z) /,

lim O’) l+e 0<argz <2.(4.4) N(z) 1,
The Laguerre functions on the cut 0 N z <m will be defined as

(4.5) L(x) [eiN(x -iO)-e-iN(x + i0)],

(4.6) N(x) [e’=N(x -iO) +e-’=N(x + i0)],

and correspond to confluent limits of the Jacobi functions on the cut,

lim P’a’(1 2)(4.7) L(x)

lim O’)(1 2)(4.8) N.(x) 0<x<.
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4.2. A product formula. We obtain a product formula for the Laguerre
functions of the second kind from (2.10) by making a change of variables

cosh 2t3 cosh 2tl cosh 2t2 + sinh 2tl sinh 2t2 cosh t,(4.9)

replacing cosh 2tl and cosh 2t2 by l+e-i=(2Za/fl) and l+e-i(2z2/fl), and
considering the limit/3 c. Use of the confluence relation (4.4) gives the product
formula

..,,-/--- 2-a/2F(n +a + 1)
N’(Zl)N’(z2)

r(n + 1)

Z 1/22 1/2 --(Z1z2)l/2 cosh(4.10) N (z/2 + 2 + 4(z lZ2) sinh2 e

I_l/2((ZlZ2) /2 sinh t)[(ZlZ2)/2 sinh t]-+/(sinh t)2 dt,
30<argzl<27r, 0<argzz<27r, 7"rarg(zlzE)l/E’tr,

Rec >0, Re (n+l)>0,

where I-1/2(z) is a hyperbolic Bessel function [2, 3.7]. This result is the
analogue for the Laguerre functions of the second kind of the product formula for
L(zl)L(z2) derived by Watson [11].

4.3. Nichoison-tyle integral. We obtain a Nicholson-type integral for the
Laguerre functions by letting the variables z and z in (4.10) approach a real
point x, 0 < x < c, from opposite sides of the positive real axis. If we use the
relation

2

(4.11) N(x +iO)N(x -i0) [N(x)]z +--[L(x)]2

which follows from (4.5) and (4.6), we find that

"/7"2 (X2__.)
a-1/2 F(n +a+l)[N(x)]+-T[/-’(x)]=’ r(n + 1

(4.12) N -4x sinh2 e cosh,

/-1/2(X sinh t)(sinh t)a+1/2 dt, O<X < 0,

where the functions on the left hand side of (4.12) are the Laguerre functions "on
the cut". The integrand in (4.12) is real and positive for n and a real.

5. Results for Bessei functions.
5.1. Product formulaS. We can derive product formulas for the hyperbolic

Bessel functions K,,(z) [2, 3.7] from our product formula for the Gegenbauer
functions, (3.5), by using a confluent limit of the D’s [7],

( Z
2

) 1
)_, +I/_K,(5.1) lim n -2’+1 e-i=D 1+S (2z -1/2(z).

,-.o 2n ,F(c)
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Thus, if we let v =a -1/2 and =cosh b in (3.5), replace Z1 and Z2 by 1 +1/2(z1//’/)2
and 1 + 1/2(z2/n)2, and let n - oo, we find that [7]4

(5.2)

where

Kv+m(Z1) Kv+m(Z2) 2v_lr(V)r(m + 1)
F(m + 2v)Z1 Z2

w-K(o)C,(cosh b)(sinh &)2v db,

(5.3) to-’(z+z+2z1z2coshdp)1/2 larg ol < r/2.
This expression is similar in structure to the product formulas for ordinary Bessel
functions given by Gegenbauer [2, 11.42].

5.2. Niehoison-type integrals. We obtain a generalization of Nicholson’s
integral from (5.2) by replacing Z and z2 in (5.2) by x e i(’/2) and x e-/2,
0 <x < oo, and using the relations

(5.4) K,,(x e +’=/)) mi- e+i""/2[jv(x) :!:: iY,,(x)].

After a change of variables 4 --> 2t, we obtain

(5.5)

2 4 r()r(m + )(4x)J+,,,(x + Y,,+.,(x -7r F(m +2v)

Jo K(2x sinh t).C(cosh 2t)

(cosh t)2v (sinh t) dt.

We recover Nicholson’s formula (1.1) by taking the limit v-+0, m arbitrary, and
using the relation

F(v)F(m + 1)
(5.6) lim C(cosh 2t)= 2 cosh 2rot.

+o F(m +2v)

6. Results for Hermite functions.
6.1. Definitions. We define the Hermite functions H,(x) and G,(x) for

arbitrary complex n in terms of confluent hypergeometric functions [6, Chap. 6],

g. (x) 2"* -,,x
(6.1) --[cos nzr-/n-1’+)

1\(_, , x2)
nTr () ( n 1 3 )]+2x sin--I-’ +1 * ---[-,-,x

2

4 The factor 2=-1 on the right hand side of (5.2) is given incorrectly in [7, Eq. (44)] as 2v.
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(6.2)
2"[ nTr_/n 1) ( n 1 2)G,(x)==- -sin--l’+ q -,,x

+ 2x cos--Fk+ 1 * - 13

These functions are related to the standard parabolic cylinder functions D,, (+z)
[6, 8.2] by

(6.3) H,, (x) 2"/2 e =/2D,, (,/ x),

1
(6.4) G,, (x) 2"/2 e 2/2

sin rrn
[cos =nOa(4 x) o. x)].

As defined, G,(x) and H,(x) are simple confluent limits of the Gegenbauer
functions C andD "on the cut",

(6.5) H,, (x)= lim a-"/2F(n + 1)C(x/),

(6.6) G, (x)= lim a-"/r(n + 1)D(x/4a).

The result for H, (x) is well-known [4, 5.6(3)]; that for G, (x) is easily derived.

6.2. Nichoison-type integral. We obtain a Nicholson-type integral for the
Hermite functions by considering a confluent limit of (3.11). Let n-->n +m,
x --> x/’,/--m, and t cosh 24. The limit m --> m then gives

--x2r r2/ 7r-12n+le tn.x)+G2.(x)] F(n + 1) exp [-(2n + 1)4 +xZ tanh b]
(6.7) .o

(sinh 4 cosh 4)-a/2 d4.
It follows immediately from this result that the expression on the left is an
absolutely monotonic function of x.
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CALCULATION OF SOME EXTREMAL CONFORMAL MAPPINGS*
E. GRASSMANNf AND J. ROKNE"

Abstract. The following two extremum problems are treated:
(i) To find a continuum that connects n given points in the complex plane C and has minimal

capacity;
(ii) To find a doubly connected domain D that separates two given finite sets of points in the

complex plane and has maximum modulus.
In both cases the solution is constructed from the solution of a system of equations. This system is then
solved by the sequential secant method, which seems to outperform comparable methods in this case.
The computational procedure is then described with the particularities of this problem, e.g. how to
"teach" the concept of a Riemann surface to a computer. At the end the solutions of some particular
examples are displayed graphically.

Introduction. Many extremum problems have been attempted in theory and
conditions for the solutions have been found but only very few solutions have been
explicitly calculated. That is, however, often quite possible in our time of modern
computers as the Present paper shall show. We chose two particular problems
partly because they have applications outside mathematics and partly because the
pure mathematics involved is not too complicated. They can be considered typical
though because most extremal conformal mappings satisfy equations similar to
our equation (2).

Even specialists would be hard put to name five essentially distinct conformal
mappings that have any kind of extremum property. The experience of actually
seeing such mappings and the corresponding heuristic insight is therefore
extremely limited. Originally our only aim was to fill this gap. While doing so we
encountered several interesting problems and developed techniques which we
believe are interesting for their own sake.

To cite Hamming [7], discussing the impact of computers on mathematics:
"Much of mathematics has arisen from observation of special cases. Computers
now enable us to compute many more special cases than we could by hand, to see
much more detail in those we do examine, and consequently have led to many
more insights."

Since [6] we have mainly improved our numerical techniques and we have
replaced binary search by the sequential secant method. This method seems to
outperform the discretized Newton method in our case by about 2:1 and binary
search by a much larger factor. The fact that it does not necessarily converge even
locally (unless special provisions are made) did not matter to us since we were not
so much interested in proving that the method would work in every single case as
in solving as many problems as possible. It deserves to be pointed out that this
local nonconvergence never actually happened to us.

In i we describe the mathematical background of our problems; in 2 we
describe the sequential secant method and compare it with the discretized Newton
method, and 3 describes programming techniques and discusses some examples.

* Received by the editors August 15, 1975, and in revised form May 18, 1976.
]" Department of Mathematics, University of Calgary, Calgary, Alberta, Canada T2N 1N4. This

work was supported by the National Research Council of Canada.
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A reader mainly interested in pure mathematics can skip 2 and most of 3.
Sections 2 and 3 should also be understandable on their own. They provide
numerical techniques which we believe are interesting in their own right.

1. Mathematical background.
1.1. The extremum problems. Already in [6] we treated the following

extremum problem: Given n points ci in the complex plane C, find a continuum
that contains all the c and has minimal capacity. We showed there that the
solution can be obtained from the following system of 2n 4 real equations in the
n -2 unknown complex numbers i (i 1,. ., n- 2):

(1)

where

Re f,, /Q(Z) dz O,

i

Re fa 4"O(Z) dz O,

=2, n-2,

i=l,...,n-1,

O(z)= [I (z-a) (z-c).
j=l

We used the method of binary search but it converged so slowly that we could only
solve a limited number of cases. The sequential secant method converges much
faster and gives a drastically greater scope. We shall refer to this problem as
Problem 1.

In this paper we will mainly deal with a conformal invariant of a doubly
connected domain bounded by two continua C and D. Such a domain can be
mapped conformally onto an annulus {1 < 1’[ < r} where the number r is uniquely
determined by the domain. (See [1, pp. 246-247].)

log r is called the modulus of the domain and arises in many problems of
complex variables. It is also the reciprocal of the capacity of the two-dimensional
capacitor determined by the two complementary continua. It is connected with
the capacity of one continuum in the following way: If we leave C fixed and let
D {Izl --> R} then cap C limR_ [log r log R ] (see [8], [10]).

We now pose the following extremum problem: Given two clusters of points
{ca,"’, c,} and {dl,’’ ", d,,}, find continua C and D which contain all the c
(respectively d) such that the mutual capacity is minimal. We shall refer to this
problem as Problem 2. It should be pointed out that oo does not play the
distinguished role it played in Problem 1. It is therefore more convenient to use
the extended plane C.

There is always a solution to this problem but in general more than one. In
fact if the two clusters are {-1, +1} and {0, oo} then it is known that one solution is
the upper half of the unit circle-line plus the lower half of the imaginary axis, and
another solution is the lower half of the unit circle-line plus the upper half of the
imaginary axis. One observes that the resulting two doubly connected domains
cannot be deformed into each other within the four times punctured Riemann
sphere C\{+I, -1, 0, c}. This observation gives rise to the following definition"
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DEFINITION. TWO regions 1 and f2 in C\{ci, di} are called homotopic in
C\{ci, di} if there is a continuous mapping h" [0, 1]C\{cud} such that
h (z, 0)= z and h (z, 1) is a homeomorphism of fl onto

It is easy to show that this is an equivalence-relation. One can therefore speak
of homotopy-classes. We restate our problem in the following manner:

Problem 2: Given {ci} and {d} and a homotopy class H that separates the {c}
from the {di}, find continua C and D containing the c (respectively d) such that
fl= C\(CUD)H and that the capacity of fl is minimal.

It is known [5], [13] that this problem always has a unique solution.

1.2. The fundamental equations. We start with the known fact (see [5], [ 12])
that the mapping function which maps ft onto {1 < (I < r} satisfies an equation of
the form

(2) f f’I-I P(x)
log

(z ci) H (z di)
dz

where P(z) is a polynomial of degree n + rn -4. It has n 2 zeros on C and m 2
zeros on D (counting multiplicities). C and D consists of analytic arcs and their
limiting endpoints.

Those arcs are the trajectories of Q(z)dz2 >-0, where Q(z) is the rational
expression under the square root. The endpoints are the poles of Q where
precisely one arc ends. They are among the (but in singular cases not necessarily
all) ci and di.

On a zero order k precisely k + 2 arcs meet at equally spaced angles (see [8]).
We shall refer to such a point as branch point of multiplicity k. These conditions
are also sufficient for extremality. Furthermore C andD do not contain any closed
curves. For proofs of these statements see [5], [13].

We denote the zeros of P on C with ai and the zeros of P on D with bi. Since
Re (log ’) 0 on C and Re (log sr) log r const, on D it follows that there are
polygonal arcs 6j joining a with cj for 1 -<_ j -<_ n and a with ak (k ]-n + 1) for
n+l _-<j _-<2n -3 and polygonal arcs / joining bl with dj for 1 _-<j _-<m and bl with
bk (k -j-m q- 1) for m + 1 j_<--2m -3 and a real number a representing the
argument of the leading term of P(z) such that

(3)

where

Re Ij x/Q(z) dz O,

Re Iv x/Q(z)dz O,

]=1,...,2n-3,

j=l,...,2m-3, j#m,

Q(z)=e iot H (Z ai) I-I (z bi
H (Z C H (Z di)

and where the branch of the square root is followed continuously along the arcs.
It is to be observed that we dropped an equation corresponding to a path that

connects b with d,, thus getting 2(n + m)-7 real equations in as many real
unknowns. We shall show that this last equation is automatically satisfied.
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It should also be pointed out that the 6j and yj can be chosen such that
C\{ (.J 6, LJ y} H, or more explicitly that H is determined by these polygons.

1.3. Sufficiency of the fundamental equations. In this subsection we .shall
show the following:

THEOREM 1. Given a real number a and complex numbers ai and bi and
polygonal arcs and h as at the end ofthe last subsection such that no intersects a

h and such that equations (3) are satisfied. Then the missing equation

Re f,, /O() dz 0

holds and the ai and the b are the branch points of the extremal continua in the
homotopy class of C\{ U h, U 6}.

The proof follows essentially the lines of Theorem 1 of [6] but it is more
involved because the topology is more complicated.

It involves the concepts of a covering surface which is extensively discussed in
any text on Riemann surfaces.

We start the proof by constructing a simply connected covering surface of the
Riemann sphere on which I_Re 40(Z)azl is unique. We denote by R1 the
universal covering surface of C\{di, b}. R1 contains for each c and a infinitely
many ? and ij covering them. We choose one such copy for a 1" tl 1. Then we lift
all the 6 with initial point t11, this obtaining unique endpoints d and tli. We now
puncture R on all the remainin? and tli and denote by/ the universal covering
surface of this punctured R 1. R covers also the Riemann sphere and contains to
each c and a precisely one point tii and ? covering it and those are connected by
the

We show now that if c and/ are two arcs connecting il and/3 on/ then

IRe I, /O(z)dz IRe Is /O(z)dz

or, since we can change the sign of the square root all along if necessary

Re , 42(z) dz= O.

According to Cauchy’s integral theorem it is enough to show this for a set that
generates the homotopy-group of/\{12,’’’, tin-2, dl,"" ", dn}. But the gi fol-
lowed by a small circle along the endpoints and back along g[1 do generate this
homotopy-group and have according to our assumption the required property.
(See also the first Lemma of [6].) Therefore IRe Pal 4OiZ)dzl u(/3)is indeed
unique on /. u(/3) is harmonic except on the set C=]u(/3)=0}. ’is a closed set, contains all the ? and ti and consists of arcs covering the

trajectories of O(z)dz 2 <0, i.e. Re /O(z)dz =0 since those are precisely the
lines u(/) =const. It contains no interior points since then grad u) +/O(z)
0 on an open set, which is impossible. There are no closed curves contained on
since those divide/ into two components, one of which would have to have
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compact closure. According to the maximum principle u would have to be zero on
this component.

It is easy to show by induction onK that a connected set consisting of arcs and
not containing any closed curves has precisely K-2 branch-points (counting
multiplicity) if it has K endpoints. C has n endpoints and n- 2 branch points; it
can therefore containonly one component i.e., C is connected.

We can project C down to the Riemann-sphere and obtain a continuum C
that consists of finitely many trajectories of Q(z)dz2<=O. can not cover any
point of C twice since that would introduce new branch points. The only
branch-points available are the ai that are already taken and the bi which are not
even covered by/. C is homotopic in \{di}to the 8 since t ends on the same
endpoints on R and therefore on R1 as the 8.

21 C\C is again simply connected and contains all the b and d. Almost as
before we prove that v(z)= IRe, 4O(z) dzl is unique in fl, the only difference
being that we have no equation in the system (3) that corresponds to a pathjoining
b and d,,, i.e. we need one extra path to generate the fundamental group of FI.
We choose a path cr joining b with C, then once around on a path close to C and
then back to bl along cr-1. According to the argument principle, arg Q(z)
increases along C by 27r{(n-2)-n}---47r (or 2r{(m-2)-m} =-4r if do, C)
and therefore the branch of x/Q(z) remains unchanged so that integrals along cr
and cr-1 cancel each other. Since Re x/Q(z) dz 0 on C we get

40(z) dz O.Re

Thus we can conclude as before that v(z) is unique in ill. It is again harmonic
except on the set D {z Iv(z)= 0} plus possibly d,. But if d were not in D it
would be an isolated singularity of a harmonic function that is bounded in a
neighborhood of rim. This is not possible and therefore dm D. D contains as
before no closed curves and no interior points and connects all the b and di. It is
harmonic in fl=C\{CUD}, zero on D and constant on C. Let t be a (multi-
valued) conjugate harmonic function and X its period. Then

exp ({v(z) + i(zx)})
maps f conformally onto an annulus {1 < Izl< r}. This function obviously satisfies

log sr 4(2/X)O(x) dz

and therefore the extremal function according to (2).
For the discussion of this mapping we observe that the images of the

concentric circles around the origin are precisely the lines Re x/Q(z) dz v(z)
const, or Q(z) dz 2 < 0. Similarly the lines Q(z) dz2> 0 would be the images of the
radii. We added in some of our plots some of the lines of the first kind to give a
better impression of the mapping. Since v is the potential function if D is
charged with a charge x they are the equipotential lines. We will refer to

Re I x/Q(z) dz as total potential.
Remark 1. An interesting set of questions is of course the dependence on

H; especially which of the homotopy classes gives actually minimum capacity.
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Also interesting is to solve for a particular homotopy class. We avoided these
questions partly because we wanted to solve the easiest problem first; and that is to
start with straight lines, instead of complicated polygons. It is also not quite clear
whether H would switch or not during the iteration process described in 2 if we
would attempt such questions.

Remark 2. Even though Theorem 1 holds for multiple zeros without change
we rather avoided this case because we suspect that the Jacobian then is zero and
the iteration method becomes very inaccurate. For example, in case of Problem 1
for the square i.e. c + 1 :i: i, a shift of the points according to +(1 + e) + makes
the zeros shift along the real axes for e > 0 and along the imaginary axis for e < O,
indicative of a singular Jacobian. We solved Problem 1 numerically with the
method and found that the accuracy of the solution was of the order 10-4 even
though the function values were of the order 10-12

2. On the sequential secant method.
2.1. On problems and the known equation-solvers. We are faced with

problems of solving n nonlinear equations in n unknowns where the computing
costs for obtaining values of the integrals (3) for given approximations (in our
cases approximations to Re a, Im a, Re b, Im b, a) are high. In addition the
calculation of derivatives is very cumbersome so we had to look for methods that
involve no derivatives and require only one function-value at each step.

The discretized Newton method as it is described in Ortega and Rheinboldt
[11 is a possible candidate. If the discretization is as in [ 11, eq. (16), p. 186], then
it requires n + 1 function evaluations at each step. At the expense of speed of
convergence one may skip evaluation of some of the discretized Newton method
derivative matrices. It is not clear, however, that this will improve the total cost.

In the following we will discuss the sequential secant method by Wolfe [15].
This method requires only one function evaluation per iteration. Although it
converges slower than the discretized Newton method, the total cost seems to
be lower if it is measured by the number of function evaluations only.

For test purposes we applied the sequential secant method to Problem 1
where the assumption of the cost function is satisfied. (Each evaluation contains in
our case, approximately 5000. n multiplications). We then compared it to the
discretized Newton method. The results are given in 2.3. A convergence analysis
for the sequential secant method was given by Bittner [2].

2.2. The sequential secant method. We are given a system of n nonlinear
equations in n unknowns:

v(x) 0, v, xz

and n + 1 approximations Xl, Xn+l. Let v v (x), 1, 2, , n + 1. We
assume v 1," ", v,, is a complete set of vectors in ,, and can then write

(4) v,+i Z A,vi.
i=1
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We interpolate the function v linearly by v *(x) B(x b) where B is a linear
map, such that v*(x)= v(&) for 1,. ,’n + 1. In particular we have

(5) v,,+a=B(x,,+-b).

Using (4) we get

v,+a Z &v 2 B(x,&)-Z &B(b)= B(, Ax-b Z
from this we get (together with (5)), assuming that B is nonsingular,

(6) b= =X,+l+

For numerical reasons we use the right-hand side of (6) since we supposedly
compute a small correction at each step. Since b now is a zero of v*(x) we take it as
a new approximation to a zero of v(x) and replace the x’s as follows"

(k--l) 1 n,X .k) Xi+l
(k) b(k)

k 1, 2, 3, .
Xn+l

2.3. Numerical example. To compare the sequential secant method to the
discretized Newton method, we used our Problem 1 for 4 points ci. We chose

ca=l+i, c2=-1-i, c3=-1+i and c4 =l-ia,

where a is a real parameter to be varied. We computed the solutions shown in
Table 1, each time requiring the norm of the integrals to be less than 10-s.

TABLE

--1

--.75

--.5

--.25

The sequential

secant method

-.0003004- i.000001258
0003099 + i.000008233

Cost in

function

evaluations.

Sequential

secant method

11

--.1619+i.05818 10
.2210+ i.07559

.3573 +i. 1651 33
--.2399+i. 1071

-.2822+i.1603 9
.4589 + i.2966

Discretized

Newton

method

.001285-i.001419
-.001299+i.001439

No convergence

-.2316+i. 1129
.3510+i. 1727

-.2822+ i.1603
4589 + i.2966

Cost in

function

evaluations.

Discretized

Newton method

6O

No convergence

4O

2O

These values were obtained using the same starting points for both methods.
Although one may not conclude anything from such a small sample of

computed solutions, this, together with other experiments that we have made,
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suggests that the sequential secant method is about half as costly as the discretized
Newton method for the kind of equations arising out of Problems 1 and 2.

We therefore chose the sequential secant method for the equation-solving.

2.4. Initial values. In the easier cases like Problem I for n _<-4 or Problem 2
for n _-< 3, m _-< 3, it is generally not too hard to find suitable approximations. A
rough eyeball estimate and some perturbations thereof will usually be close
enough to produce convergence of the sequential secant method.

The following result is an example of a typical case. The clusters are

C-points" -3 / i2 D-points: 0/ i3
0+i 0-i

-2-i3 2-i3.

The input approximations to the sequential secant method were as in Table 2.

TABLE 2

approx,

-3
-3.01/i

-3.04+i.24
-2.998 +i2.41
-2.99987- i.002
-3.004 + i.00054

approx, b

2+i
2.01 + 1.02
2.035 +i 1.0245
2.0541 / i.9987
2.00354+ i.9874
2.004127 + 1.2415

approx.

.50

.55

.4687

.4987

.556

.55745

After 9 iterations the accuracy i5__ I/)’(b)l < 10-6 was reached. The solutions are
listed below:

al -2.540+ i.7214,

bl 2.111-il.510,

a .3491.

The following case is a case with 3 C-points and 4 D-points. In this case there
was a problem in finding convergent initial approximations. However, the follow-
ing procedure was used. An initial guess was made. The run of that guess would
give a sequence of nonconvergent approximations. The approximation with the
smallest norm was then chosen and a new set of input data consisting of
perturbations of this set was used as initial approximation were chosen. Two or
three repetitions of this procedure usually would suffice in order to find a
convergent set of input data. It is clear that this procedure may also be automated.
We chose not to automate it since the expense in programming effort would be
quite large. Such a procedure (automated) would of course greatly enhance the
success rate of the secant method. The following is a sample test run.

C-points: -3 +i2 D-points: 0+i3
0+i 0-i

-2-i3 2-i3
2+i2.
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The input approximations are listed in Table 3.

TABLE 3

approx,

-3.14 +i.00412
-3.0214+ i.0241
-2.998 + i.0241
-2.99987- i.002
-3.01 + i.01
-3.04+i.024
-3
-3.004 + i.00054

approx, b

2.14+1.42
2.014+il.42
2.0541 + i.9987
2.00354 + i.9874
2.01 + 1.02
2.035+i 1.0245
2.+i
2.004127 + 1.2415

approx, b2

.41+i.12

.241 -i.124

.214+.024
-.2 + i.2
.01 + i.5

-.02+i.02
0
.24-i.124

approx.

.02

.0214

.0257

.412

.5

.241

.5

.024

These input approximations converged after a sequence of 30 steps to

al -2.547 + i.7232,

bl 2.172+i2.128,

b2 2.063 1.448,

c .3306.

This procedure looks better than to just simply scan the space---in this case ff7.
3. The computational procedure. A program was written that accomplishes

the following tasks: 1) Solves equations (1) or (3) using the sequential secant
method of 2, 2) plots the minimal continuum and 3) plots equipotential lines
between the continua.

3.1. Flags. Throughout the program a difficulty arises from the fact that the
square root should be followed continuously, whereas computationally the square
root on the CDC 6400 is given by a subroutine CSQRT delivering the principal
value of the square root, i.e. with a discontinuity on the negative real axis. If W
crosses the negative axis the direction of CSQRT(W) changes b,_.g or, i.e. one winds
up on the other branch of the Riemann surface belonging to x/W. In this case one
must multiply by -1 to compensate for the jump. We therefore introduce flags
taking on values +1 or 1. The test for crossing is accomplished by remembering
the last value of a square root and then testing whether the new value is about r
out of direction. Since we have small changes and continuous functions this is a
reasonable test. An alternate test is to determine whether Re (new value/last
value) < 0, in which case CSQRT must have jumped between the branches.

Such flags were introduced along each path of integration since the square
root should be followed continuously. Since a change of the branch all along one
of the paths would change the sign of the corresponding integral and therefore
destroy the iteration-procedure---after all, our sequential secant method assumes
that the functions are C1--such flags were also introduced in the solution process.
One was attached to each integral between zeros and two to each integral between
a zero and a pole. The initial value and its flag was passed to the next solution step.
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The plotting of the continua between poles and zeros necessitated the use of a
separate reusable flag and the plotting of the equipotential lines another three
flags. In these cases a missing flag makes the plotter return to where it came from.
It deserves to be mentioned that this did indeed happen in our earlier attempts.

In the following we will assume that such flags have been introduced without
showing them explicitly.

3.2. Solution of equations (1) and (3). In order to evaluate the integrals of
both problems numerically we have to rewrite the improper ones that connect a
with c (resp. b with d) in the following manner:

dz 7;’---c- dz 2g(c,)x/aa- c,,
al al

where g(z) x/O(z)(z -ci), which is continuous at c. The integral on the right is
now a proper integral. The proper integrals that occurred were evaluated by
Simpson’s rule over 20 subintervals. Since the path of integration in all cases was
of order unity, the accuracy of the integral evaluation using the remainder term of
Simpson’s rule is of the order (o)= 10-6. One might use a quadrature rule
requiring less work for the same accuracy. We felt, however, that because of the
rather complex nature of the program otherwise we would rather stay with a
simple quadrature rule.

The results were used in the calculation of the increment of the sequential
secant method. It should be noted that the program is built up of a main program
(the sequential secant method) and function evaluation subroutines. The main
program then is a real equation solver and the complex evaluations are delegated
to subroutines and as such not known to the main part.

The accuracy of the equation solving is 10-, this being tested both against the
sum of the absolute values of the functions and the sum of the absolute values of
the change in function values. In view of the accuracy of Simpson’s rule this is a
reasonable and achievable tolerance.

3.3. Plotting C and D. The continua are now plotted starting from the zeros.
Let ai be simple zero, i.e. O(z)= (z- a)Oi(z) where Oi is analytic at a.

The trajectories satisfy, according to 1.2,

O(z)dz2<=O
or

or
arg O(z) + 2 arg dz

arg O (z) + arg (z a) + 2 arg dz -Tr 2n’rr.

Setting arg (z a) arg dz we get arg dz 1/2((2n + 1)Tr arg O(a)). This gives
three possible directions 2r/3 radians apart. Careful consideration also has to be
given to the choice of routine for computing arctan to ensure that the result is in
the range 0-2r in order that the computations proceed properly. Having com-
puted one of the directions, the other two are obtained by adding 2zr/3 to the
argument and looping.
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From the second step onwards the direction for the plot is given by
O(z) dz 2 < 0, which gives arg dz 1/2(-arg O(z) + 7r). It turns out that the plotting
of the continuum by this method gives sufficient accuracy.

The continua terminates either on a pole or on a zero. In either case a
tolerance less than the distance between any two zeros or poles in the continua is
used to determine if the continum is getting close to its terminating point. If that is
the case, a counter is set up that plots the exact number of segments necessary to
reach the terminating point before the procedure terminates.

This provides incidently a control for the procedure since the trajectories
would not hit their target if the ai would be grossly wrong.

3.4. Plotting the equipotential lines. The total potential P between the two
continua is now computed and divided into n equal parts corresponding to n 1
equipotential lines. In order to find the equipotential line with a given potential P,
we define an integral from a point c on C (c ci, 1 _-< _-< n) to z as

40(z) dzf(z)

With Zo=C we compute zi+=z-f(z)/f’(z), i=0, 1,2,..., i.e. Newton’s
iteration formula.

From then on, a first attempt was made to plot the potential lines in the same
manner as for the continum: i.e. direction given by

arg O(z) dz2=

We define the points of the potential surface to be z0, z 1, with increments
of uniform size along directions

arg dzi 1/2(7r arg O(zi)), O, 1," ..
That is, Idz,[ const.

It turns out that in this case the accumulated error is far too large and that a
closed potential line was not plotted as a closed curve but as a spiral. Therefore
one had to resort to predictor-corrector approximations of the following form:

z,*+, z,_3+4hz-, +-(Z’r--2Z;-I-[- Z t-2)

Zr+l,0 Zr+l,

h
Zr+l,n+ Zr_ +2hz;+-g(z;+,,,-2z’,+Z;_l)"

(predictor)

n=O, 1,2,....
(corrector)

Using only one iteration step in the corrector step, we found that the plotting was
more than accurate enough. The four initial approximations were computed by

Zo Zo,

Z Zo + Zo,

z2 Zo + (z + z )/2 + z ,
Z3=Zl +(Z +Z)/Z+z2,
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this scheme being a bit more. accurate than the simple stepping along the curve
each time.

3.5. Sleeifi examlfles. One would expect that the solutions of Problem 1 are
"very straight". The plots confirm this; the curvature of the arcs is indeed very
small. This is also the reason that the rough method of following the trajectories
proved to be sufficient for the plots. Puzzling is the fact that the trajectory in Fig. 1
that ends at 5 + i4 has an inflection point. This seems to be a luxury in view of its
being "very straight".

The input data for the configuration in Fig. 1 consisted of 5 points:

cl =0+i5, c4=-5-i3,

c2=-5+i4, c5=5-i5.
c3=5+i4,

With suitable input approximations we had convergence in three steps to

a1=.7552+il.447, a2=.1078+il.765, a3=-1.360+il.272
with an error in the integral evaluations of the order 10-.

-500 4,00 3,00 2 1.00 1:0,0 2.00 3.00 4.00 5.00

FIG. 1
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An interesting behavior is shown in Figs. 2 and 3. The point c5 is moved
slightly up and the configuration changes topologically. Between the two there
would be a double branch point but it seems reasonable to conjecture that in these
cases the Jacobian of (1) becomes 0, and our method accordingly very inaccurate.
(We can prove this fact in case of the square but not in general.)

The input data for Figs. 2 and 3 were

cl =-5+i4, C4=5--i5,

c2 -5- i3, f5 + i2.2 (Fig. 2),
C5

c3=i5, 5+i2.17 (Fig. 3).

The output was as shown in Table 4.

TABLE 4

al
a2
a3

Fig. 2

1.055 + 1.504
2.035 +i.1936
1.66 + 1.468

Fig.

--1.105+il.448
2.052 +il.734

--1.128+il.52

FIG. 2
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x axis
_

-500 -4;00 -3:00 -2z00.-l:00 ,.0.00 .1"00, -’2.00, 3.00 4.00 5.00

i’

FIG. 3

Figures 4, 5, 6 and 7 display solutions to Problem 2.
As mentioned earlier, the homotopy class H is determined in these cases by

the straight lines joining aa with ai and ci (respectively b with b and d).
In Fig. 4 the input data was two clusters, each containing 3 points:

ca=-3+i2, da =i3,

c3 1 + i, d2 -2,

c3=-2-i3, d3 =-2+i.
With suitable approximations we got the solutions

a1=-2.984-i.7671, ba=-.002794+i2.614, a =.9357.

The total potential between the two continua was calculated to be -.6472. Figure
4 shows the plotted continum and the potential lines. It should be noted that

[convex hull C] VI [convex hull D] .
The plot shows the distortion of the potential lines that one would expect in this
case.
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In Fig. 5 we display the case where C has three points and D 4 points"

cl =-3+i2, dl =i3,

ce i, de -1,

c3 =-2-i3, d3=2-i3,

d4=2+i2.

-5 00 4.00 3 00 -2.00
._l_ / x axis

-2.00 -1.00 .00 1.00 2.00 3.00 4.00 5.00 6.00

FIG. 4

Even with close input approximations it required about 30 iterations with the
sequential secant method before we were close enough to the solution. This
displays the fact that N7 is rather "roomy".

The solutions were

a=-2.547+i.7231, b=2.173+i2.129, b2=2.064-il.448, a=.3306.

Note that the "intrusion" of the point +i into the D-continuum forces that
continum into a rather unnatural shape. That is we now get a solution outside the
convex hull of the D-points.
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In Figs. 6 and 7 we display two solutions of the case when both continua have
4 points as follows"

ca =-3, dl= 1+i3,

c2=-1+i2, d2=2+i,

c3 -2- i3, d3 -i3,

Ca -1- i2, (3-i2
d4

-i2

The solutions were as shown in Table 5.

(Fig. 6),

(Fig. 7).

TABLE 5

al

bl
b2
O"

potential:

Fig. 6

-2.72-1.04296i
-1.952-1.94i
2.443+ 1.1351i
2.084-2.077
.006696
.5740

Fig. 7

-2.71- i.-4485
-1.945-il.941
2.49+i1.1173
2.897-i7.926
-.01622
.5629

X axis
3.00 4.00 5.00 6.00

FIG. 5
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It is interesting to note that even though the difference between the two sets
of continua is not substantial the value of the parameter a changes surprisingly
much. The parameter a has the following meaning: If/3 is the direction of the
equipotential line at infinity, then

#

Furthermore we note that the perturbation changed one zero from being in
the convex hull ofD to outside the convex hull. We also notice that the continuum
C did not change appreciably due to this perturbation.

In both cases the continuum C has several inflection points. This again is not
surprising since D can force C into almost any shape.

The procedure normally used for the solution of the equations did not
converge in the case of Fig. 7. We found that in this case, the approximation to the
integral between bl and b2 was not sufficiently accurate due to the proximity of a
zero to the path of integration. Halving the stepsize for this particular integral
solved that problem.

0.00 .00

FIG. 6
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x axis
2.00 3.00 4.00 5.00 6.00 7.00

FIG. 7
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LINEAR DIFFERENTIAL INEQUALITIES*

JAMES S. MULDOWNEY"

Abstract. A notion of generalized zero with respect to a linear differential operator L, for a
function f at a singular point of the operator was introduced by Levin and further considered by
Willett. This involved a comparison of [ with certain solutions of Lny 0 near the singular point. It is
shown that the role of these solutions may be fulfilled by certain solutions of inequalities L,y ->_ 0 (<-0)
introduced independently by Hartman and Levin. This result is applied via a generalization of the
P61ya mean value theorem to the problem of finding best possible relationships between bounds on
differential operators and a discussion of the extremals of these relationships. Second order operators
are considered in some detail; an analogue of Landau’s inequality is proved for second order operators
in which the coefficients need not be constant.

1. Introduction. Real differential operators of the form

L,,f=f()+a(t)f(-)+ +a(t)f, t(a,),

where -oo =< a </ =<, are considered. It will be assumed throughout that either
(A) fn) exists on (a,/3) and ai C(a, ), 1, n, or
(B) flocAC’-l(a,)and ailocLl(a,), i= 1,... n.

The results presented hold in both cases so these conditions will not usually be
repeated in the statements of results and proofs. The statement L,f >- 0 should be
interpreted as holding everywhere in case (A), almost everywhere in case (B), and
Lnf 0 means Lf(t) 0 for some (a, fl) in case (A) and Lf> 0 (or <0) on a
set of positive measure in case (B). An end point z =/3(a) is called singular if
Ir[ oo or at least one of the coefficients ai is not integrable on a neighborhood
(relative to [a,/]) of z.

Let Z(I) denote the number of zeros of f on an interval I counting
multiplicities and Z(t) the number of zeros at t. L is said to be discon]ugate on
Ic(a,) if Zy(I)<=n-1 for each nontrivial solution y of Ly=O. Levin [3]
introduced a concept of generalized zeros of a function f at an end point z which
permits an extension of the notion of disconjugacy of Ln to subintervals I of [a, fl
even if a and/ are singular. Willett 10] also gave a definition of generalized zeros
in a form convenient to the use of induction arguments for the extension of some
of the classical results on disconjugate operators. It can be shown that the
definitions of Levin and Willett are equivalent for functions f such that Lf does
not change sign in a neighborhood of r so they lead to the same concept of
disconjugacy. Both definitions are expressed in terms of asymptotic restrictions on
the behavior of f near r involving a comparison with the behavior of members of
certain solution sets (called principal systems) of Lny O. Thus a fairly intimate
knowledge of the null set of Ln is required for applications of these concepts to
specific differential operators. However, results of Hartman [2] and Levin [3]
show that the behavior of principal systems of solutions to Lny 0 is closely
related to the behavior of principal systems of solutions to differential inequalities
Lny => 0 (=<0)which are more readily accessible.

* Received by the editors May 21, 1976.
t Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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The object of this paper is to present some of the ramifications of the theory
of Hartman and Levin for results on singular differential operators developed by
Willett [10] and later considered byMuldowney [4]. A good discussion of the
results of Hartman and Levin may be found in Coppel’s book [1].

2. Results. An ordered set of functions S (u 1, un) is called a Descartes
system on an interval I if W(uil,"’, uik)>0 on I for each increasing set of
indices (il,’", ik) and W(ul,"’, u,) denotes the Wronskian determinant
det {u/-l)}, i, 1, n. S is called a principal system at " =/(a) if Uk >0 in a
neighborhood of - and

lim (Uk/Uk+l)= O, k 1, n 1

and is a fundamental principal system on (a,/3) if (u l, "’, u) is a principal
system at fl and (u, ..., u l) is a principal system at a. If (u l, "", u,,) is a
fundamental solution set for L,y 0 and a principal system at/3 Levin considers
Zr(/3) r if r max {k: lima- (f/Un-k+l)-" 0} and, if (un, ul) is a principal
system at a, Zr(a) r means r=max {k: lim,+ (f/Uk)=O},

PROPOSITION 1. (a) Suppose S (ul, u) satisfies
(i) (-1)n-kLuk >= 0 on a neighborhood of a,
(ii) (un, ul) is a principal system at a,
(iii) (u l, u) is a Descartes system on a neighborhood o]’ a.
Then

lim inf (ffu) _-< 0 _-< lim sup (ff u,)

implies Z(a)>-r for any function f such that Lf does not change sign on a
.neighborhood o[ a.

(b) Suppose S (Vl, v) satisfies
(i) (--1)-k-lLnVk >--0 on a neighborhood o’,
(ii) (vl, v) is a principal system at ,
(iii) (Vl, v) is a Descartes system on a neighborhood ot .
Then

lim inf (f/l)n--r+ ) --< 0 -< lim sup (f/I)n--r+ 1)
t3--

implies Zr()>-_ r for any function f such that L,]’ does not change sign on a
neighborhood ot .

If r < n in (a) [(b)] then u, Iv1] may be omitted in the hypotheses.
Proof of (b). It is shown by Levin [3] and is easily deduced from Hartman’s

results [2] (cf. Coppel [1, pp. 133-134]) that under the conditions stated there
exists a fundamental solution set (U1, U,) to Lny 0 which is a principal
system at/3 and, near t,

Vk O(Uk), k 1, n.

Thus, if (ffVk)(ti)-->O for some sequence of points {ti} converging to t,
(f/Uk)(ti)’->O. By a result of Hartman and Levin (cf. Coppel [1, p. 128]) L is
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disconjugate on a neighborhood of/3 and f/Uk is monotone near/3 (cf. 1, p. 132])
and thus lime_ (f/Uk)= O.

Simple examples of sets S and St can be found by considering expressions of
the form L,, (e x,) or more generally L,, (t’e ’). Suppose for instance that L,, (ex’)=
eXtP,, (A, t) and the polynomial P,, (A, t) has n real zeros A l(t), A,, (t) for
each and that there exist constants Ix0, Ix,, such that Ixo-<Al(t)<_- Ix1 _-<
A,, (t) <- Ix,,. Then S-o (e "lt, e""t), Soo (e "t, e ’’-It) satisfy the condi-
tions of Proposition 1 if
then the functions (e ’’t,e ’/’, e "’/’’) should be replaced by
(]tlr-le ’’’, ]tlr-Ze’", e ’’) in S-o and by (e ’’, te", t-Xe ’’’) in Soo.

All the applications of Proposition 1 presented here use the following
theorem. The reader is reminded that L, and f satisfy either condition (A) or
condition (B)of the Introduction.

THEOREM 1. Let
ff Zr(ti >-_ ri and ro + "+r, k <- n, then

L[ >- 0 :ff pkLn-kf >- 0

where pk(t)=l-Ii=o" cr(t-tf’, tr(t)=sgn t, -oo<= t<oo,= L0y y, L.-ky
W(b,...,b,,_k,y)/W(b,...,ck._k) and (bl,’’’,ckn-k) is a basis for
{b" L,,b =0, Z, ti ) >- ri }. Furthermore i" L.[ >- O then pkL.-kf ) > O at any point

ti such that L.f 0 on some interval (t, t) or (t, t) and r > O. In particular if
to<t.,,ro, r., >OandLfOon (to, t.,),thenpkL-kf>Oon (a, fl)--{to, t,.}.

This theorem, a multipoint generalization of Caplygin’s inequality, is due to
P61ya in the case (A) when the points t are nonsingular [5, Thm. V] although
P61ya’s formulation is somewhat different. Extensions to include singular points t
are given by Willett [10] and Muldowney [4]; these papers consider more general
boundary conditions than those given here. The conditions on L.f which imply
pkLn-kf> 0 are an improvement on those given in [4] but follow readily from a
closer scrutiny of the proof in that paper. There are also restrictions placed on the
asymptotic behavior of Ln-kf near t,/3 and t by the condition L/c_-> 0, Lf 0,
but these will not be discussed in detail. The following corollaries are used in the
applications.

COROLLARY 1.1. Under the conditions of Theorem 1, if L.f>- 0 and
L_kf(t)= 0 for some ti, then L.f 0 andLn-kf 0 on every interval oftheform
(ti, t) and (t, ti) for which ri > 0; i.e. f= clckl + + C-k&-k on the union ofthese
intervals.

Proof. It is clear that L.f 0 on every such interval since L.]’ 0 on any of
the intervals implies L.-k]’(t)# 0 by Theorem 1. Also Ln_kf(t) 0 implies the
existence of constants (c,..., C.-k) such that, if f-]’-Clb C.-k$.-k,
Z(t)>-n-k. Thus L.[= 0 and Z?(I)>-n where I is the union of intervals in
question and, since L. is disconjugate on I, fl=-0 on I.

COROLLARY 1.2. LetL and ti be as in Theorem 1. Suppose ]: and g are any
functions such that L.g >0, Zr(ti)>-ri, Zg(ti)>-ri, O<-_i <-m, to+ +r., k <-n.
Then

Pk [L.-kf+L-g[ILf/(Lg)t[] -> 0,
pk[L,-kf Ln-kgilLnf/(Lng)ll] <= O,
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and in particular,

the only functions f .for which equality holds at some point are f=
cg + c1hl + Cn-kChn-k on all intervals It, ti], [ti, t]. Here I1" denotes the
L(a, ) norm.

Proof. Consider  -f/gllz f/(Z g)ll; then Z(t,)>=ri and Ln/=
tnf+ t,gllt,ff(t,g)ll Lng[Znf/(tng)+ I[t,f/(tg)ll] >- 0 so that pkLn--kT>- 0 by
Theorem 1. The same procedure with f replaced by -f establishes the second
inequality. The statement about achievement of equality follows from Corollary
1.1.

Remark 1. It is clear that Corollary 1.2 requires only Zj(t) >- r for both of the
functions f considered in the preceding proof. This is slightly less restrictive than
the condition Zr(t) >- r, Zg(ti)>-r in the case of singular points t. For example if
.Zg (//) _-> r and f satisfies the asymptotic condition of part (b) of Proposition 1, then
f also satisfies this condition so Z(//)->_ r since Ln[ does not change sign.

THEOREM 2. Suppose an (the coefficient off in Lnf) is either strictly positive or
strictly negative on (a, fl) and S =(Ul, ’’’, un), Se =(vl, vn) satisfy the
conditions (i), (ii), (iii) of Proposition l(a), (b) respectively. Let r be an integer
0 <-<_ r <-_ n. In the cases r O, r n, 0 < r < n, it is assumed thatLn is disconjugate on
(a, fl], [ce, fl), [a, fl] respectively. Suppose further that

(2.1 a) lim ur oo, lim inf f < 0 < lim sup f--= --, if>0.r__
+ or+ U + U

and

(2.1b) limvr+l=CX:), liminf--f <_- 0 <_- lim sup --,f ifr<n.
B- B- )r+l /3- /)r+l

Then (- 1a"-’a > 0 and

(2.2) Ill -< II(1/an)t-fll.
The only ]’unctions ]’or which equality holds in (2.2) at some point are the constants.
The hypotheses on S may be omitted if r O, So may be omitted when r n and the
functions un, V are required only in the cases r n, r 0 respectively.

Proof. First the conditions imply (-1)"-’an >0. Suppose otherwise and
(-1)n-an <0; the function f=(-1)n-’-I satisfies (2.1) so, by Proposition 1,
Zt(a)>-r, Z(fl)>-n-r and Lnf=(-1)n--lan>O implies (-1)"-/>0 by
Theorem 1, i.e. -1 > 0. This contradiction shows (- 1)"-a, > 0. The rest of
Theorem 2 follows from Corollary 1.2 and Remark 1 with g (-1) since
Lng (-1)n-an > 0 and the functions

f= +f+ gl[L,f/(L,g)ll +/-f + (- 1)n-rl[(1/a,)L,fll
satisfy Zt’(a) r, Z() n r.

Inequality (2.2) implies

(2.3) Ilfll <= II(1 /an )Lnfll

The constants are not however the only extremals of (2.3). For example when
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L.y 0 has a fundamental principal system of solutions (U1, U.) which
satisfies

limU=0, i-1,...,r, limUi=0, i=r+l,...,n

then, if 3’ (a,/3), the function

jl-c,U (t)f(t)=
Cr+lWr+l(t)q- +c,W,(t)- 1, t< /,

where the constants ci are chosen so that f
II(X/a )t, ll= 1.

The conditions on L, required for Theorem 2 are satisfied by operators of the
form L,=(D-A1) (D-A,) provided AI<A2
the result also holds when A <- A2 =< Ar < 0 < A,+I <- A, although this
situation is not covered by the theorem except when r 0 and r n. More
generally if L, satisfies the appropriate disconjugacy requirements on [-, o]
and A A(t), 1, n are the zeros of P,(A, t)= e-XL,(ext) then the func-
tions u(t)= e "’t, v(t)= e ’’ satisfy the conditions of Theorem 2 provided

(t)< <x (t).. < (t)<A1 =/,1 2 =it/’n--1 ---/A,n, near -,
< ( )< < (t)_-<v. <A.(t) near/,]I---A /’]2 =An--1

/z /zj, v vj when /’, and /x, < 0 < v,+l.

The exponentials should be multiplied by appropriate polynomials if/x =/xi or
v vi. The constants z,, vi are not required except in the cases r n, r 0
respectively. Disconjugacy criteria may be found in the papers of Hartman [2],
Levin [3] and Willett [10] and in the monograph of Coppel [1] and its references.

While inequality (2.2) is best possible in the sense that equality may hold, it
can be qualitatively improved by using Theorem 1 for general k _<- n rather than
for k n as was done in Theorem 2. One can replace the estimate on f in (2.2) by
estimates on Mkf where Mk is any operator of order k <= n. These estimates may
be presented in terms of Wronskians of solutions of L,y 0 and expressions
whereL are factors of L,. However to reduce this to fairly concrete terms and still
aspire to achieve sharp inequalities requires good estimates on these Wronskians.
Such estimates are currently available in generality only for Wronskians of orders
1 and 2 from the work of Hartman and Levin. Thus a relatively complete picture
can be presented in this paper only for n 2. In situations such as L,
(D-A1)"" (D A, ) where A,..., A, are real constants a comprehensive
system of inequalities may be developed based on Theorem 1; however, good
results are already available in this case in the work of Sharma and Tzimbalario
[8].

Let al(Of’+ a (Of. While the following theorems may be formu-
lated in more general terms of systems S, So on any interval (, 3) it is more
appropriate for reasons of exposition to consider only the interval (-oo, oo) and

(2.4) L2(eX’) {A A (t)}(A A2(t)} e x’

where A l(t) and A2(t) are real.
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PROPOSITION 2. Suppose L2 is of the form (2.4) and

vx <_-A (t)<_-/ < O< v2 --< A2(t) <

If a are continuous [locally Lebesgue integrable] and f" exists [f’ is locally
absolutely continuous] on (-00, 00) with

lim inf e-’f(t) <- 0 <-lim sup e-’f(t)

-f( )< lim sup e-:/(liminfe =0=< t,

then there exist continuous real valued functions p l, P2 on (-oo, c) such that

Ul =< pl(t) -</J, ( 0 ( P2 p2(t) <

and if b and c are any real valued functions satisfying

1/Pl <- b <- 1/P2, Pl <- C <- P2
then

(2.6) Ibf’ fl <= [1(1 /a2)L2fll,

(2.7)

Equality can hoM only for certain functions. The constants lYl, 11,2 may be omitted
in the hypothesis and conclusion.

This result is proved by Sharma and Tzimbalario [8, Cor. 4] in the case of
constant coefficient operators. Although it is best possible in that equality can
hold, a qualitative improvement is given in (2.10), (2.11) and Theorem 3.

Remark 2. If A l(t) -A2(t)(i.e. aa(t) 0), then it is only necessary to assume
that a2(t)< 0 provided (2.5) is relaced by the conditions

1 1
(2.5)’ lim inf :if(t)<= 0 <= lim sup f(t)

and -,, [lall1/.
Proof of Proposition 2. The operator L2 is disconjugate on (-oo, oo] and on

[-oo, oo). Thus two positive solutions U1, Uz of L2y 0, unique to within positive
multiples, are determined by the conditions Zul(oo)= 1, Zu2(-oo)= 1. Let ui(t)=
e"", v(t) e ’’ 1, 2; then (-1 2--i,= ) L2ui>-O,(-1)-L2vi>=Oand(u,u2)isanS-
system while (vx, v2) is an S system. Since lim_ (v2/u)=lim_(u2/ul)=O,
Z2(-)->_ 1, Z:(-o) >= 1 and, from Theorem 1, L2v2 <= O, L2u2 >= 0 imply
W(U2, v2)-<0, W(U2, u2)_->0. Similarly W(U1, Vl)=<0, W(U, Ul)_->0. Thus

Pl Ulll --/./,10 P2’If f=f+ll(1/a2)L2fll. Then Z(+c)->l by Proposition 1, and therefore by
Corollary 2,
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Thus, if pl U’I/ UI, p2 U/ U2,

If y: (-, ) 0, 1 and b y(1 /p ) + 1 y)(1 /p2) then (2.6) follows from (2.8)
and the triangle inequality. Inequality (2.7) follows from

similarly.
To investigate the nature of the extremals of (2.6) observe that [(1/pff’-

1(/o) II(1/a)Lfll implies f= +c U1 on (to, ) where c and are constants,
by Corollary 1.2. Similarly [(1/p=)f-l(to)= II(I/a=)t=ll implies f= 8 + c:U: on
(-, to). If both inequalities hold simultaneously then 8 since
[l(1/ag)L:fl[, and the constants Cl, c must be chosen so that C(-, ). When
/[o(to)] < b(to) < 1/[=(/o)], Ib’-fl(to) II(1/a)t=[l can only hold if it holds in
both of the extreme cases b(to) 1/[p(to)], b(to) 1/[p:(to)] and also (bf’-f)(to)
must be of the same sign in these two cases. This rules out the possibility
8 - 0 and the only functions for which

p(to< b(to) < pz(to

are the constants. In (2.7) the same possibilities for equality as in (2.6) exist in the
extreme cases C(to) p(to), C(to) p2(to) and when p(to) < C(to)< p2(to) equality
is only achieved for f rt + cU on (to, oo), ]" -rt + c2U2 on (-oo, to) with the
appropriate choice of c l, c2.

To obtain an improvement on (2.6) consider

bl(r/, t)= [U(t)U’2(n)- U(t)U’x(?)]/[W(U, U)(r/)],

b2(r/, t)= [U2(t)U(rt)- U(t)U2(rl)]/[W(U, U2)(r/)],

i.e.L2$,(r, t)=0 and $’-(r, r)= 8!i, i, ]= 1, 2. If $(/)= $(0, t) and $2(t)=
$2(0, t) let

(t)=(t)-[(O)(t)-f’(O)4)a(t)+ L ((t)- 1);

since Z](0)_-> 2 and L)= a.[(1/a)L.F-II(/aL’ll] e o (recall a< 0) it follows
that (t) -> 0 and/(to) 0 for to > 0 (to < 0) if and only if/-- 0 on [0, to] ([to, 01). The
same remarks apply if f is replaced by -[ and therefore

(2.9)

Thus, if

u(o)
c(O)>----lim bl=U(O) 02(0)>0 or c(O)-->--lim bl

2 g2(0) -oo ,2 g2(0)
=o2(0)>0
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(2.9) implies

(2.10) If’(O)-c(O)f(O)[ <- G(c(O))

where G(c(0)) G(L2, f, c(0)) is defined by

and to is defined by l(to)/[2(to)] -c(0). Under the conditions of Proposition 2
it follows from (2.6) with b =0 that IIll<=ll(1/a,.)t=Zll and therefore (2.10)is an
improvement on (2.6). If Cl-<-pl and c2 => p2 then

(2.11) I/’(0)-c(0)f(0)l_<-[(c2(0)-c(0))O(Cl(0))+(c(0)-Cl(0))G(c2(0))]
[C2(0)-- cI(O)]

for all c, 171 17 172, which is (2.7) in the case 171--Pl, 172-" P2; however other
choices of Cl, c2 lead to better inequalities than (2.7) if IIf[[<l[(1/aE)LEfl[. In fact
the following construction shows that there exist pairs (c1, c2), c1 -< pl, c2 _->/92 for
which equality may hold in (2.11). For each ’010 there exists ’/’/2 0 such that

(2.12)
01(’02, 0)’-- -1(’01, 0).

Let C1(0) --1(’01)/[2(’01)],
fo(r/1, ’02, t) by

c(O) -,(n)/[(n)] and define fo(t)=

fo(t)
1(n2, t) ![l(T/1, 0)+ 1(n2, 0)],

-bl(r/1, t)+5[(r, 0)+(n, 0)1,

fo(t) fo(r 1), > r/1, fo(t) fo(r/2), <

so that f e loc AC1(_o0, oo) and

Ilfol’ al-[l(r/1, O)+ bl(r/2, 0)] -1

Since L2fo(t) (sgn t)a2(t)[l(1/a=)Z=foll, n -< r/l, it follows that

(sgn ni)llfdl= fo(n) fo(O)4,(n,)+f’o(O)4,:(n,)+ (sgn rli)ll2L2fo[l(Ckl(rli)- 1),

1, 2, and so equality holds for fo in (2.10) with c(0)=ci(0), i= 1, 2. Also
f(O)-cl(O)fo(O), f’o(O)-c2(O)fo(O) have the same sign so equality holds in (2.11)
for fo with cl =<c-<c2. In the case ,/1 =oo, r/2 =-oo, c1(0)= pl(0), c2(0)=p2(0)
existence of the extremals in (2.11) has already been discussed in Proposition 2 (in
this case Igoll- I1(1/a=)t=W011 and (2.11)is the inequality (2.7)). It remains to show
that these extremals of (2.11) are unique; more precisely it will be shown that if
equality holds in (2.11) for some c(0)e (c1(0), c2(0)) (pl(0), p2(0)) where ci(0)
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-$1(r/i)/[a(r/i)], i= 1, 2, then */1, r/a satisfy (2.12) and f is a multiple of fo on
[r/l, r/a]. If equality holds for some such c(0) then it holds for all c(0)s
[c1(0), ca(0)] and in particular (2.10) holds for c =Cl, ca; therefore from (2.9)
If(n,)[-llfl[ and f’(r/i)=0. It may be assumed without loss of generality that
f(n): I11[. Let [be as before so that Z(0) 2, Z(Wl) 1, Lfl0 imply fl0 on
[0, ] from Corollary 1.1. Thus (1/a2)Laf= II(1/a2)t2fl[ on (0, w) and similarly
(1/aa)Laf=ll(1/aa)Laf[I on (ha, 0). This together with the conditions that
(,)1: I111, f’(i) o and the continuity of f, f’ at 0 shows that f is a constant
multiple of fo(nl, 2, t) where n, n2 satisfy (2.12).

The difficulty with (2.10), (2.11) is that the null set of L2 is not always known
so the inequalities are difficult to compute for general operators. Theorem 3 shows
that the inequalities corresponding to (2.10), (2.11) for the operator (D-1)
(D 2) are, under the conditions of Proposition 2, also valid for the operator La.

THEOgEM 3. Under the conditions of Proposition 2

(2.13) If’-cfln(c)

ff c(t) v or c(t) 2, where H(c)= H(La, f, v, , c) is given by

If ci(t)v, c2(/)2 and c(t)6c(t)ca(t), then

(2,14)

Equality can hold in (2.13) and equality can hold in (2.14) whenever L2
(D vl)(D -/22) on any interval [to + r/a, to + r/], where

1
r/i log

and ci satisfy the constraint

(2.15) Itz2-cll2/(2-’l)lVl-Cl]-"l/’2-vl)-
Proof. Let

1 1
l(t) (ge’- e"’), (t) (e"’-e

2-v 2-v

and P2(A, t)= (h A(t))(h h2(t)). Consider

(t)-I );

L22

since a2 < 0,

1
L2 [P2(v, t)2e’ P2(2, t)ve "’] 0

2-v
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and

so that

LaCa(t) P2(/"1, t)e "it- P2(/x2, t)e
L2bl(t) P2(/,’1, t)Ee"’-PE(tX2, t)ple g2t

1 L2t2 1
and f(o)+f’(O)L+ L2f =>0

by (2.6). The same analysis holds with f replaced by -f and, since Z,(0) ->_ 2 in both
cases, Theorem 1 implies that (2.10), and hence (2.11), is satisfied with this choice
of 1, Ca. Inequality (2.10) is (2.13) in this case and (2.11) is (2.14) since if
--1/2 C then

I@ 1 c I-"’/c"’-l>ltz cl ’/"’-’>.

Also 1(’i)t)= bl(t-- r/), ba(/, t) a(t--r/) and the condition (2.12) is (2.15).
Equality holds in (2.13) if f is a constant; there are however other extremals when
La is a constant coefficient operator. If La (D Vl)(D --/xa) on [to + rta, to +
the extremals for (2.14) are of the form C/o(rtl, rta, to+ t), e [to+rta, to+rt]
discussed prior to the statement of Theorem 3; these are also extremals for (2.13).

For fixed values of IIll, II(1/a=)t=ll, c, the best inequality from (2.14) may be
obtained by minimizing the right hand side of (2.14) over all admissible pairs
(c, ca) such that c e [c, ca]. The exact minimum is difficult to determine for
general (Vl, tza). But if (v, tza) is replaced by (-tz, tz) where Ix =max {-vl, tza}
then (2.14) holds with H(c)= H(La, f, -tz, Ix, c) and this minimization procedure
leads to the following corollary, an analogue of Landau’s inequality.

COROLLAR 3.1. Under the conditions o[ Proposition 2

(2.16) If’- K(, L2)

Icl <- II(1/a)LfII[K(, L)]-
where K(f,L)=[IfII/(2[I(1/a)LfII-[[tII)/ and z=max{-vl,/Za}. Equality
can hoM in (2 16)/f

This result was proved by Sharma and Tzimbalario [8] for the operator
L2 D2 2

-/ it was also proved in that case for c 0 by Schoenberg [7] and
Muldowney [4]. The extremals for c 0 are given by Schoenberg [7] and these are
also extremals for all c permitted heremthe extremals found for (2.11) are those
of Schoenberg in this case.

Remark 3. If L2---DE+ a2(t) then (2.16) holds provided only that aE(t)< 0
and f satisfies (2.5)’, in which case/z []a2[[ x/2.

Remark 4. The present procedure also leads to a slight extension of Landau’s
inequality. If f is twice differentiable or if f’ is locally absolutely continuous on
(-oo, oo), then

(t) f(t)-f(O)- tf’(O) +
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satisfies/" -> 0 and Z,(0) -> 2. The same is true iff is replaced by -f and therefore

f(0)/ f(0) --<llfll/ IIf’ll, if t#0.

The right hand side has its minimum at t= +/-4ltftl/=llf’ll-/= and so

1
(2.17) If-cl_<-llfll/=llf"ll/=, if Icl-<llf’ll/=llll-/=,
The extremals for Landau’s inequality (i.e. c 0; cf. Schoenberg [6]) are also
extremals for (2.17).

Proposition 3 and Theorem 4 pertain to the situation when Lz is of the form
(2.4) and A l(t), Az(t) have the same sign.

PROPOSITION 3. Suppose L2 is of the form (2.4) with

o < <-_ x,(t) <- <= (t)

and f satisfies

(2.18) liminf e-ltf(t)<-O<=limsupe-l’f(t).

Then there is a continuous real valued function pl on (-oo, oo) such that

and if b and c are real valued functions satisfying

1
0<b < c<p

px

then

(2.19)

(2.20)
Ibf’- fl <- II(1/a2)Lzfll,

If’- cfl <- (2pl c)[l(1 /a2)Lzfll.
Equality can be achieved in (2.19) but cannot be achieved in (2.20) iff O.

Proof. From the results of Hartman and Levin the operator L2 is disconju-
gate on (-c, ] so that a positive solution Ux of L2y 0, unique to within a
positive multiple, is determined by the condition Ztq(oo)= 1. Let vi(t)=e ’,

1, 2; (Vl, 3z) is an Soo system for L2 and since Zv()-> 1,Lvl >= 0 it follows from
Theorem 1 that W(U1, Vl)-< 0. Also W(U1, vz)>= 0; this follows from the fact that
if Uz is any solution such that W(U1, Uz)> 0 then

W(U1, U2)[ W(U1,/22) it =< o

so that if W(Ux, v2)(to)<0 then W(U1, v2)(t)<0 (i.e. v’z/vz< U’I/U1) for all
>- to, which contradicts the minimality of U1 at oo since Hartman [2] shows there

is a positive solution U such that V’l/Vl<= U’/U<=v/v2. Therefore, since
W(U1, /21)0 W(U1, /22),

/)1 01 /2, if pl Utl/U1.
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If =f+ll(l/a2)L2f[[ then Z(oo)>_- 2 by Proposition 1 and by Corollary 1.2

[/1=< II1--L2fll, [W(Ux, f)]<= [W(U1, 1)l [[(1/a2)L2f[[.
Ila2

Therefore

Equality can hold in the first of these expressions if and only if f is a constant and in
the second if and only if f + yUI where and y are constants. Inequalities
(2.19), (2.20) follow from (2.21) by the triangle inequality; equality holds in
(2.19), 0 _-< b < 1/p, if and only if f is a constant. To see that equality can not hold
in (2.20) iff O, observe that if c < pl

and that

If’- cf[ <-If’- [91 fl + (i01 C )lfl (2pl- c )i1(1/a2)L2fl]

f’(to)- C(to)f(to) +/-(2p(to)- c (to))l[(l/a2)L2fll
if and only if

f’(to)- p(to)f(to)= +pl(to)ll(1 f(to)

with the sign + or chosen consistently throughout. Since p > 0 and from the
nature of the extremals discussed above the only function for which this holds is
f(t) 0, t[to, oo) and II(1/a=)t[l=O so that f0.

A better inequality than (2.20) is proved by Sharma and Tzimbalario [8, Cor.
5] when L2 is a constant coefficient operator. The analogue of (2.10) in this case
improves both (2.20) and the result of [8], but has the same difficulties of explicit
computation as (2.10). The following approximation of this analogue is also an
improvement on (2.20) and [8].

THEOREM 4. Suppose

O< u _-< h(t) -< 112-<_ A2(t) <_-/x2, /-/’2 > 112,

and f satisfies (2.18). Then

(2.22) lf’-cfi<=F(c)
where

F(c)=cll(1/a)Lfll, if c

Equality holds in (2.22) for certain functions when c >= 112 and when c < 112 equality
can hold only ifL2 (D 112)(O --/./2) on an interval.

Proof. Let

1 1
4)(t) =-------(/z2e h’- vze’’), 4)2(0 (e "=’- e ‘)

/-/,2 112 /-/,2 112
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and consider the function

(t) f(t)-f(O)qbl(t)-f’(O)qb2(t) + I1(1/a)tll(1 (t))

since a2 > 0,

so that

L2bl(t)
/d2 P2

[/x2P2(v2, t)e 2‘- v2P2(tx2, t)e‘] <--O,

L2b2(t)
L2bl(t)

P2(/z2, t)e2‘- P2(u2, t)e 2,

v2P2(/z2, t)e "2t-/z2P2(v2, t)e"=t

1Lzb2<_ and f(O)+f’(O)Lck],+ Lf >0

by Proposition 3. The same analysis is valid if f is replaced by -f and since
Zr(0) => 2 it follows as before that

(2.23) +bl(t)f(O)
2(t)

f(O) =1 [Ill[ + L2f -12(t)1 L2f

If --Cl(t)/[E(t)] c then

and (2.22) follows from (2.23) and (2.19). The discussion of extremals is similar to
that for preceding results.

If bi(t), 1, 2 are defined by L2bi =0, b-l)(0)= 8j then (2.23) holds
also--this is the analogue of (2.10) in this case. In the constant coefficient case
Corollary 5 of [8] gives a similar bound to (2.22) except that II ll is replaced by
II(1/a2)t=fll when c _-< v2. But, from (2.19)with b =0, Ilfll<-l[(1/a2)Z2fll, i.e. the
bound in (2.22) does not exceed that of [8] and is an improvement when c < v2 and
Ilfll < I1(1 /a2)L2fll.

The following example illustrates how bounds may be obtained for MEf if M2
is any second order differential operator, given some information about[ and LE.

Example. Let Lz=(D-Izx)(D-Ix2)where/zx,/xE are real constants. Sup-
pose Pl, P2 IOC L 1(-00, 00) and f loc ACI(-c, 0) or pl, p2 C(-oo, 00) and f is
twice differentiable.

(a) If/ < 0 </2 and f(t) o(e) (t -0), f(t) o(e "’) (t +0), then

(b) If 0 </z =< g2 and f(t) o(e "lt) (t - oo), then

]-/,2
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Proof. If Ln and M,, are any two differential operators of order n with leading
coefficient 1, thenL M,, if and only if Lui M,,ui, 1, n for some set of
functions (Ul, u,,) satisfying W(Ul, u,) O. Therefore if M2f is a
second order operator

W(u,f) W(u,f)W(ul, u2f) + Mzu+ MzuxM2f= Wen l, u2) (: u2) WCu2, u l)

if W(Ul, U2)0, and

W(Ul, u2, f) + M2uz UZMzux + MzulM t= Wu ,
if W(ua, u2)#0 and u #.0. Choosing M2f=f"+px(t)f’+p2(t)f, ux(t)=e’,
uz(t) e "’ and using Propositions 2, 3 to obtain bounds for ]W(u, f)], W(u2, f)],
Ill .yields the bounds given for

3. Concluding remarks. In [7] Schoenberg shows that if f satisfies f(t)=
o(e I’l) (ltl ), a > 0 and Lzf f"- a2f then

IIf’ll Ilfll/Z(Nllt2fll- Zllfll)/, if Ilfll <--Iltzfll.

However, as shown in the present paper and in [4] there are no real valued
functions f satisfying the asymptotic condition f(t)= o(e I’1) (Itl) and
(1/z)llt=/ll so the first inequality pertains only to those functions for which

Ilfll (a/ 2)llt2/ll and the first and second inequalities are the same in that case.
Therefore it is unnecessary to distinguish between the cases II/11<
I1[11 (1/ 2)11L2 !1, Schoenberg’s results are proved for complex valued functions
satisfying the asymptotic condition and the techniques of the present paper are not
applicable without a re-examination of the proof of Theorem 1 and its corollaries.
Nevertheless it can be seen that the foregoing remarks also apply in the situation
considered in [7]since such functions satisfy

and hence Ilfll(1/az)llLzf[I. Several of the results proved by Sharma and
Tzimbalario [8] also have an extra condition analogous to that of Schoenberg
which is unnecessary.

The technique developed in this paper and in [4], while it leads to good
inequalities without the necessity of constructing Green’s functions, seems to have
an undesirable element of guesswork in the discussion of extremals. In contrast,
the method of Schoenberg and its development by others features an elegant
treatment of extremals (of. [6]), the nature of which is evident from the sign of the
kernels involved.

The versions of Theorem 1 proved by Willett [10] and Muldowney [4] allow
more general conditions at the endpoints a, O than those presented here. A
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condition Zr(a)>= r may be replaced by

_,W(u, u, f)>_ 0lim.+sup (- 1)" -i Ui+l)

/" O, r- 1, if (un, Ul) is a principal system at a of solutions to Lny O.
Zr(/3) => r may be replaced by

W(u,, u,_/, f)
lim_sup (-1) ---u ’ ---.) -> O,

/" 0, r- 1, where (Ul, Un) is a principal system of solutions at/3. It is an
attractive conjecture that, for example, instead of requiring (u 1, u) to be a
principal system of solutions at/3 it would suffice if it were a system S satisfying
conditions (i), (ii), (iii) of Proposition 1 (b). This conjecture is unfortunately
true only for r=<2. Consider the operator Laf=f’’, f--t2+log t and S
(Ul, u2, u3)=(1, t, tE-logt); -f/u3, -W(ua, f)/[W(u3, u2)], -W(u3, UE, f)/
[W(u3, u2, Ul)] have limits 1, 0, 0 respectively at oo. A principal system at oo of
solutions to Lay 0 is (U1, U2, U3)- (1, t, t9) and the corresponding expressions
have limits 1, 0, -o; the elements in this triple are not all nonnegative while those
obtained from (ul, u2, u 3) are.
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INTEGRAL OPERATORS FOR FOURTH ORDER
LINEAR PARABOLIC EQUATIONS*

PATRICK M. BROWN-

Abstract. An integral operator is constructed that maps analytic functions of two complex
variables onto analytic solutions of fourth order linear parabolic equations of two space variables with
analytic coefficients. The operator reduces to Bergman’s operator for the fourth order elliptic equation
when the solution is independent of the time variable. In the case of radial coefficients, the kernel
functions of’ the operator are independent of the dimension and by a method of ascent, analytic
solutions of three or more dimensions may be represented by a simple modification of the operator.

1. Introduction. Integral operators in the sense of S. Bergman [2] and I. N.
Vekua [ 15] have been used extensively to represent and study analytic solutions of
elliptic partial differential equations. The corresponding tool for parabolic
equations would map analytic functions of two variables onto analytic solutions
and would be valuable for investigating the analytic behavior of these
solutions. Previous attempts by Bergman to construct an analogous theory for
parabolic equations resulted in operators which had a complicated structure and
did not yield an onto mapping [2, pp. 74-78]. Hill [ 11] also constructed an integral
operator for parabolic equations, but again his operator had the disadvantage of
constructing a very complicated kernel function. Recently Colton [4] has con-
structed an operator for second order parabolic equations in two variables which
overcomes the difficulties of earlier attempts. Not only is the operator an onto
mapping but its kernel is constructed through a straightforward method that is
suitable for numerical techniques. In this paper we construct a Colton-Bergman
operator which maps analytic functions of two variables to solutions of a fourth
order parabolic equation in two space variables, namely

A2u + aUxx + 2buxy + CUyy + dux + euy +fu + gut 0,(1.1)

where

02 02 Ou
+ UxA
0X 2 0y2, OX

We will assume that the coefficients are analytic in some polydisc in the space of
two complex variables. This operator generalizes Bergman’s operator for fourth
order elliptic equations in the sense that when the solution of (1.1) is independent
of t, the integral operator reduces precisely to Bergman’s operator. (See [1].) In
the second part of the paper we use the method of ascent developed by Gilbert (cf.
[8], [9]) to construct an integral operator for a class of fourth order equations in
p+2 independent variables. These operators can then be used to obtain a
complete family of solutions of equations in two space variables.
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A possible application for the complete family of solutions is in the area of
quasi-reversibility for non-well-posed problems (cf. [12]). In this technique a
non-well-posed problem is approximated by a well-posed problem. For example,
an initial boundary value problem for the backwards heat equation can be
approximated by a well-posed initial boundary value problem for a fourth order
parabolic equation which is then solved by a Fourier series expansion [13, p. 12].
Due to the difficulty of constructing the Fourier series for equations with variable
coefficients, our integral operator provides an alternative method of solution that
merits further investigation.

2. An integral operator for (1.1). We will now construct an integral operator
that maps analytic functions of two complex variables to complex valued solutions
of (1.1). Since it is convenient to work with complex notation we begin by
considering the equation

(2.1) Uzzz.z. +MUzz +LUzz. +NUz.z. +AUz +BUz. +CU DU,

where z x + iy and z* x- iy. We shall abbreviate the left side of (2.1) by the
notation L[U]. Since x and y are allowed to assume complex values, z and z* are
independent complex variables and z*= only when x and y are real. The
coefficients M, L,. , D are analytic functions of z and z* defined for Izl -< rl and
Iz*l_-<r=.

It should be noted that if U u + iv, then equation (2.1) is equivalent to a
system of two real fourth order equations. If C, D, and L are real valued when x
and y are real valued, and M N M1 + iMa, A B A t_ im2, then both
equations of the system have the form of (1.1) where

a 4L + 8M1, b 8M2, c 4L 8M1,
(2.2)

d=16A1, e=16A2, f=16C, g=16D.

Motivated by Colton and Bergman we look for solutions to equation (2.1) of
the form

(2.3) ’(Z, Z*, 7---t, S (l--s2), 7" (l_sa)l/2,U(z,z* t)
-tl=

where f(z, t) is an arbitrary analytic function of two complex variables defined in a
neighborhood of the origin in C-.

The first integral in equation (2.3) is a contour integral in the complex 7"-plane
in a counterclockwise direction around a circle with center t and radius 6 where
0 <o< 6 < 61. The second integral is over a path in the unit disc connecting the
points s 1 and s 1. The function E(z, z*, t, s) is required to. be an analytic
function of s for Isl--< a, t for o_-<ltl_-< and (z, z*)in some neighborhood of the
origin in Ca. By substituting (2.3) into (2.1) and integrating by parts with respect to
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s, it follows that E(z, z*, "-t, s) must satisfy the differential equation

(2.4)

Also, the expressions

(2.5) z-ls-ID(E).

and

(2.6) z-as-l[nl(-2Ez-z-aE-1/2z-ls-’Es +1/2z-isEs +1/2z-ls-2E)-AE-LEz.],

where DI(H)= Hz.z.+MH, must be continuous functions for sufficiently small
values of z and z*, Isl -< 1 and 6o-< It--I-<61. Details relevant to the derivation of
(2.4) are found in [1] and [2].

Solutions can also be represented by the integral operator

U(z, z*, t)=-i E(z, z* r- s)f (1-s), )/,-,1= (1-s

where Esatisfies an equation obtained from (2.4) by interchanging differentiation
with respect to z and z* and exchangingA with B, M with N, and vice versa. This
differential equation will be denoted by

T*(E) 0.

We now intend to construct two linearly independent solutions of (2.4),
and EI’2), having the form

(2.7) E(z, z*, t, s)
z*)

F Y s2nznp(2n)(z, Z*, t)
n=l

and satisfying the initial conditions

(2.8) E(’a)(z, O, t, s) l/t, z* tz, O,t,s)=O,

(2.9) E(’2)(z, O, t, s) O, E(z*2)(z, O, t, s) lit.

The functions p(2n) are to be determined. Substituting (2.7) into (2.4) we obtain
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the following system of differential recursion equations for the P(2n)(z, z*, t)"

(2.10a) Pz2z. +MP() O,

(2.10b) pz22z. +Mp(2) [ApO+LpzO2 + . oo_ *z. + 2MPzO],

r(2n +2)0(2n+4) +Mp(zn+4) 1
[(2n + i)rzz*z* +(n +1/2)rz*z* -n2+2n+3/4

(2.10c)
(Lp(22+2 +Ap2"+2)

/,r/(2n)+ (2n + 1)MP(2"+2 + 1,- z.z* +BP(22

+ CP2" +AP(zz" + ’zzz"2" .z + MP(zZz"
+ rzz" o(2-)_. Dp2-)].

(For n =0, p2,) is replaced in (2.10e) by -P()/t2). Setting O()(z,z*)=
P()(z, z*) and O(2")(z, z*, t) t"+lP(Z")(z, z*, t), n 1, 2,. ., in (2.10) yields
the recursion equations:

(2.1 la) O(z2z +MQ() O,

(2. llb) 0(2)z.z. +MQ(2) -2t[AQ(+LQz2+2(,.zz** +2MQz],
+4)

*z* +MQ(2"

-t

3/4[(2n --(2n+2) l/r /"1(2n+2) (2n+2))+1) +(n+- +AQzz*z 2),l-tznZ+2n+
/[ rg-(2n)+(2n + 1)MO"+z+,,z.z.+BO"

(2.1 lc)
(2n) (2n) (2n)+CO(2"+AO2"+zzz**+ +LOzz. DQ2"))

+(n + 1)DQ2].
It is clear from (2.11) that the Q2, are uniquely determined. To prove the
existence of the functions E’a and EI’2, it is necessary to show the convergence
of the series (2.7). Due to the complicated nature of the recursion equations, we
cannot directly apply the method of dominance to majorize the Q2, as done in
previous problems (cf. [5]). For the fourth order elliptic equation, Bergman
overcame this difficulty with two lemmas which have been modified due to the
time variable and are stated here without proof. Details of the proofs or the
properties of domination may be found in [1] or [2] respectively.

LEPTA 1 (Bergman). LetM, M1, R, R 1, be regular analytic functions ofz and
z* for Izl rl and ]z* r2. LetA l(Z) and Ba(z) be regular analytic functions of z
for Izl r. Let (z, z*) be a soluaon of the differenaal equation

(2 12)
02(49
Oz*2 -M0 R

satisfying the initial conditions

o(z, O) a (z) and z* Z*-----0
=B(z)
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and let ql(Z, z*) be a solution of the equation

02(4)
Oz 2 +Mq R1

satisfying the conditions

Ol(Z,O)=Aa(z) and
0Z*lz*=o Sl(Z).

If A(z)<< AI(Z), B(z)<< Bl(z), R(z)<< Rl(Z), and M(z)<< Ml(z), where "<<"
denotes domination, then

For the second lemma, assume M(z, z*) is regular for Izl --< R 1, R > rl, and
Iz*l =< r2. Let K and A, A < 1, be given positive numbers. Let {ix" } be a sequence
of nonnegative integers such that

(ix" +m 2)(ix" +m 1) >
A(RI-rl)

for m =0, 1, 2. .,
and ix,, 0 for m > mo where mo is sufficiently large.

LEMMA 2 (Bergman). Consider the differential equation

020(2.13) Oz.2 +Mq R (z, z*, t)

where

and

m<<
(1 z/R ,)(1 z */r2)2

R << C(1 z/r1)-" (1 z*/r2)-" .(1 t/261)-p =-- C{n, m, p},

If dp(z, z *, t) satisfies (2.17) and if
alp(z, O, t) dPz.(Z, O, t) O,

then (P(z,z*,t) is regularfor ]zl<=r, ]z*l_-<r2, It]<to and

(z, z*, t)<< (1-z/rl)-"+1)

(2.14)
(ix,. + m 2)(ix" +m- a)(-a)

(1 z */r2)-("+,. -2)(1 t261)-".
In the following, it will be convenient to use the notation

(1 -z/rl)-"(1-z*/r)-,.(1- t/26a)-P=-{n, m, p}

and

{n, m, 0}---{n, m},

where m, n, and p are integers. Using these lemmas we can now dominate the
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Q(2n) and show convergence of the series (2.7). Since Q(m is a regular solution of
equation (2.11 a) there is a constant C() such that

(2.15) O((z, z*)<< C({1, 1}.

Now, let K be the maximum of the coefficients of (2.1) for Izl =<rl and Iz*l r2.
Then the coefficients will be dominated by K{1, 1}. Since M(z, z*) is assumed to
be regular for IzI<-_R , Iz*l<-r2, there is a constant, also denoted by K,
such that

M<< K(1-z/R1)-I(1-z*/r2)-1
(2.16)

<< K(1-z/R1)-(1-z*/r2)-2.
Let R 2) represent the right side of (2.11b). Then using the properties of
dominance, (2.15) and (2.16), and the fact

<< 261(1- t/(261))-,
we obtain

o(o 2MO(m]R(2) -2t[AQ() +LQ{z*) + tZzz*z* +
<< 461Cm[Kr71{3, 3}+ 2r71r2{2, 3}+ 1/2Kr] 1{2, 3} + 1/2K{2, 2.}](1 t/(261))-1

where

1661 + {3, 3, 1},

rior min {rl r2, m, n 0, 1, 2}.

Q(2)<<

Thus by Lemma 2,

1661C(m[1/(rlr22)+K/r]r{4,/*3 + 1, 1}
(/.3+ 1)(/.3 + 2)(1 -A)

C(2){4, t/3 - 1, 1}.

Let p max {61, 1} and we obtain the bound

C(___ C(Z(/*3 + 1)(/.3 + 2)(1-a) <C2
rl 16011 +Krlr2/r] 16"

We will now show by induction that

o(2k) << c(2k){3k q_ 3, k + v(k)+ 3, 2k- 1}(2.17)

and

C(2k-2) 1 c(2k)(2.18)
rl -16

where the sequence of numbers v(k) is defined by v(0)=0, v(1)=/*3, v(n)=
v(n 1) +/*,., and e, n + 4 + v(n 1). We define

mo
O’n /*k and

k =0 k =0
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Clearly ,(n)<-v(n + 1) and u(n) <o-, =<o’. It is easy to see that (2.17) and (2.18)
hold for k 0, 1, and next we assume they are valid for k n and n + 1. Let
R (2n+4) be the right side of (2.1 lc). The induction hypothesis and the properties of
dominance imply that

R (2n +4)
(( 2

261 [ (2n +2)(2?
n +2n7+3/4 C + 1)(3n +6)(n +4+u(n + 1))

(n +5+u(n + 1))r?lrZ{3n +7, n +6+u(n + 1),2n +2}

+261C2")(3n + 3)(3n +4)(n +3 + u(n))

(n +4+v(n))(rlrz)-Z{3n +5, n +5 +u(n), 2n + 1}]
261K r..(2,+4), +4+u(n + 1))(n + 1/2)+(n + 1/2)C(2"+2)

7" (/’/2 -" 2n + 3/4)tc tn

+(2n + 1)(3n +6)C

+261C2"(n +3+u(n))(n +4+u(n))

+ 26C2")(n + u(n) + 3) + 26aC2")

+ 26(3n + 3)C(2n) + 261(3n + 3)(3n + 4)C

+ 261(3n + 3)(n + 3 + u(n))C

+(2n 1)C(2" +(n + 1)C(2")]
{3n +8, n +6+v(n +1), 2n +2}

Using (2.18) for k n + 1, we find that

R2"+4) << C2"+z)(4nP)-[(3n + 6)2(n +5 +u(n + 1))2r]-ar2

+(3n +6+ u(n + 1))2

{3n + 8, n +6+ v(n + 1), 2n + 2}.

Applying Lemma 2, we obtain

(2n +4) <<
4p2C(2n+2)

ra(1-A)nZ(n +4 + u(n + 1) + Ix.+2)(n + 5+ u(n + 1) + Ix.+2

2rrlK(3n+6)-.(n+5+,(n+l))2+ (3n+6+u(n+l))2]

{3n + 9, n +4 + u(n + 1) + tx.+2, 2n + 2}

4p2c(Zn+2)[9(n + 5 + o’)2 + 2rrlK(3n-6+)2]ra(1-A)n " n+2

{3n + 9, n + 5 + u(n + 2), 2n + 3}.
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Thus,

and

O(2n+4) (( c(e’;+4){3n + 9, n + 5 + v(n + 2), 2n + 3)

C(e" +2> n 2(1 A)C(2n +4)

r 4pe[9(n + 5 + r)2 + (2rzrK/r)[(3n + 6 + o’)/(n + 2)]e]
n 2(1-A)C(2n+4) C(2n +4)

=< 4p219(n + 5 +)2] <1"
This completes the induction proof.

We now prove the convergence of the series (2.7). Let Isl where So 1,
o<ltl< where 6o>0 and 6a is arbitrarily large, and p =max(6, 1). From
(2.17) it is seen that the series expansion for Ez’), k 1, 2, is majorized by the
series

C0{1, 1}+
= - C:">{3n+3, n+3+m2n-1}.

Since Itl < and I1 -t/(2l)l-= < 4, an application of the ratio test shows the series
converges absolutely and uniformly for

Z z, -3
Z
$ -1 (1-A)6o

r ra 144ps

We summarize this result in the following lemma.
LEMMA 3. ere exist two sequences offunctions,

{P(I’i’)(z, z*), P(I’i’2n)(z, z*, t), n 1, 2,. }, i=1,2

satisfying the differential equations (2.10 a, b, c) such that

P(x’a’)(z, 0)= 1, P(zI,l’m(z, O)= O,

(2.19) P ("l’:"(z, 0, t)= 0, Pz(J’l’2"(z, O, t)= O, n=1,2,...

and

p(I, 2, O)(z O) O,
(2.20) P(I’2"2n)(z, O, t) O,

P(I;.’)(z, O)= 1,

z* tz, O, t) O, n=l, 2,...

and such that for ao <----Itl -< al, Isl So, and

Izfrll o
I1- Zlrll311- z*lrl 144p 2s2’0

the series

E(I’tC)(z, z*, t, s)=
P("k’m(z, z*)

-t- E s2nznp(I’k’2n)(Z, Z*, t),
n=l

k=l,2,

converges uniformly and absolutely.
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Remark. Similarly for z and z* sufficiently small there exist two linearly
independent solutions of T*(E) 0, and these will be denoted by E(It’l)(z, z*, t, s)
and EU1"2)(z, z*, t, s). The form of their series expansion is

E(z, z*, t, s)
e()(z, z*) + s2nz*np(2n)(Z, Z*, t)

and the corresponding p(Zn) satisfy the conditions

(2.21)
P(H’’)(0, Z*)= 1,

P(n’l’2n)(0, Z*, t) 0,

P(zZI’l")(O, z*) O,

P(zH’l’2n)(0, z*,t) O,

and

(2.22)
P(’:’)(O, z*) O,

p(lI’2’2n)(o, Z*, t) 0,

H3 *)w,z 1,

P(I1’2’2n)(1 z*, t) O.

The existence of four generating functions will imply that the integral operator

(2.23)
27ri k=l --,rl=8

E(I’k)(z’ Z*, 7" t, S)fk (1

+E(H’(Z,Z*., r--t,s)g - (l--s2), (l_s)/

is a solution of (2.1). Finally it should be noted that if the coefficients in (2.1) are
entire functions of z and z*, then Et’k) and E(H’k), k 1, 2, are entire functions of
z, z*, s, and except for an essential singularity at t 0.

For the existence of the integral operator, it is necessary that the generating
functions satisfy the continuity conditions given by (2.5) and (2.6). Using (2.7) and
(2.10a) we see that the first condition has the form

z-ls-aDa(E) S Z sZnZnDl(P(2n))
n=O

This is clearly a continuous function of s, z, z*, and t for Is =< 1, z and z* in a
neighborhood of the origin and 6o < Itl <, 0> 0. Equation (2.6) takes the form

1 Mp(o))Z 2,o(O) +Mp(zO>) + (p(zO.)z +

1/n(2, Mp(2>)__ !_ (p(zO.)z +Mp(o))_lAp(o) Lp(zO2]+(...),--trz*z* + 2tzs 2 -where (. .) represents a continuous function. Equation (2.10a) implies the second
and fourth terms equal zero. Equation (2.10b) implies the remaining terms in the
bracket equal zero, leaving only a function continuous in the required region. We
can now conclude that the integral operator defined by (2.23) exists and maps
functions analytic in some neighborhood of the origin in Ca into the class of
complex valued solutions of (2.1).
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3. Invertibility ot the integral operator and the time-independent case. In
this section we will show that the integral operator (2.23) is an onto map for
regular complex valued solutions. Next we will demonstrate that for solutions
which are independent of t, equation (2.23) reduces to the solution given by
Bergman.[1].

Let U(z, z*, t) be a solution of (2.1) which is analytic for z and z* sufficiently
small and t in a neighborhood of the origin in C1. And let U(z, z*, t) be a solution
of (2.1) derived from the integral operator (2.23). We shall establish that fk and gk
can be chosen in (2.23) in such a way that U, Uz, and Uz. assume preassigned
analytic data on z 0 and z* 0, namely the values of/) and its derivative there.
Knowing the form of the E functions, using the initial conditions (2.19) and (2.20),
and adding the assumption

(3.1) gk (0, t)
Ogk (0, t...___.) O, k 1, 2,

Ot

we may represent U(z, O, t), U.(z, O, t), U(O, z*, t), and U (0, z*, t) in terms offk
and gk, k 1, 2. We obtain

o a’s
(3.2) U(z, 0, t)= I (1-s), s)/,(1-

(3.3)
II____. (Z* t) ds (i,l,O)(o,,)U(O,O,t)U(O,z*,t)-- gl --(1 s2), $2)1/2

+p Z
(1--

+ P(I’2’)(O, z *) Uz*(O, O, t).

Similarly, expressions for U.(z, 0, t) and U(0, z*, t) can be obtained. The
transformation

(3.4) g(z, t)= if [1-s (1-$2)1/2
and its inverse

ds(3.5)
f(z/2, t)=-- s

g(z[1 s2], t)-,

(see [10, p. 114]) allow one to solve integral equations (3.2) and (3.3) for/1 and
Also the equations for Uz.(Z, O, t) and Uz (0, z*, t) could be solved for f2 and g2.

With these ideas in mind, we are motivated to define four analytic functions from
the given solution O(z, z*, t).

Define

(3.6)

(3.7)

1 [1 ) ,ds,O(z(1-s ,O,t)-fl(Z/2, t)----

1 [l)(O,z,(l_s2),tgl(z*/2, t)=-----
-P("l’)(O, z*(1-s:))t(O, O, t)

ds-P("2’)(O, z*(1-sZ))z.(O, O, t)]-
S
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withf2 and g2 defined in a similar manner. Clearly these functions are analytic and
gl and g2 satisfy (3.1).

Let U(z, z*, t) be the solution obtained from the integral operator (2.23)
u.sing the analytic functions fk, gk defined above. We claim that U(z, z*, t)=
U(z, z*, t). The definition of fl, equation (3.6) and the transformation (3.4)
imply

0(z, 0, t)= lf (l-s2), (1_s211/2.
Hence U(z, 0, t)= U(z, 0, t). Similarly it may be shown that

(3.8)

Uz.(Z, O, t)= lz.(Z, O, t),

U(O, z*, t)= 0(0, z*, t),

Uz (0, z*, t)= 1) (0, z*, t).

Since both and U are analytic solutions in a neighborhood of the origin, they
have a power series expansion say,

U(z, z*, t) _.,amnpZmZ*ntp, O(z, z*, t) bmnpZmz*ntp

where sums are taken from m, n, p 0 to oo. Thus the conditions (3.8) imply

(3.9) amop bmop, ao,p bonp rn, n,p=O, 1,2,...
a,,, lp b, lp, a 1rip b lnp

Since U satisfies equation (2.1) we substitute the series expansion into this
equation and set the coefficients of like powers of zmz*ntp equal to zero. This
yields a relationship on the coefficients by which all the coefficients amnp.can be
uniquely expressed in terms of ao,p, a 1,p, a,op, and a, lp. Replacing U by U in the
above argument, we find that the coefficients bmnp satisfy the same relationship
and can be uniquely expressed in terms of bomp, blnp, bmop, bmlp. Hence by (3.9),
U U. We summarize our results in the following theorem.

THEOREM 1. For Ill and Iz*[ sufficiently small, Is[ _-< 1 and 60 < It[ < 61, where
60>0 and 61 is arbitrarily large, there exist four functions E(J’k)(z,z*, t,s), ]
I, II, k 1, 2, such that in some neighborhood of the origin

1 1. [E(l’g’(z’z*’z-t’s)fk((X-s2)’z)U(z, z*, t) /k=l -t[=8

+ Em’(z,z *, z-t,s)g 1-s

ds dr
(1 --S2) 1/2

is an analytic solution of (2.1) where fk and gk are arbitrary analytic functions
defined in a neighborhood ofthe origin in C. Conversely, g U(z, z *, t) is a complex
valued analytic solution of (2.1) defined in some neighborhood of the origin, then U
can be represented by (2.23) where the functionsf and g are given by (3.6)-(3.7)
and are analytic in some neighborhood of the origin in C.
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Since the operator defined by (2.23) is based upon the work of Bergman, it is
not surprising that it reduces to Bergman’s operator [1, p. 620] when U(z, z*, t)
U(z, z*) is independent of t. Equation (2.1) becomes

Uzzz.z.+MUzz +LUzz.+NUz.z.+AUz +BU.+CU=O

and (3.6) and (3.7) imply that the associate functions fl and gl are independent of
t. This is also true for f2 and g2. Thus it is possible to integrate termwise in (2.3)
with respect to r. We define/6(2")(z, z*) as

l p(2n)(z, z*, r-t) dr.z*) =-

We find that/3(0) satisfies (2.10a), and/3(--) are defined recursively by

(3.10) ff(z22z + M/(2) -2[AP() +L(z2 + /-,-’-5(O).z + 2MP(z)]

and

+4) q.. Mff(2n +4)
Z’Z*

(3.11)

-1
F/2 .+. 2n + 3/4

5(2n +2)[(2n + .)*zz*z* + (n + 1/2)(L/5(z22 +2) +al5(2"+2))
+(2n + 1)Mffz(2n+2) -v+/- rS(2n)- z’z* -1- Bfi(z2.’) + Cp(2n)

(2n) ]lAr(2n) ,,%(2n)1"+’A(z2n)+Fzzz*z + +LFzz* 1, n =0, 1, 2,...

The representation for U becomes

)(1 s
U(Z, Z*) E(z, z*, s)f (1-s 2)1/2

where

E(z, z*, s) P()(z, z*) + Z s:"z"P(:")(z, z*)
n=l

with the p(Zn), n 0, 1," satisfying equations (2.10a), (3.10) and (3.11) respec-
tively. A comparison of these equations with Bergman’s operator for fourth order
elliptic equations shows that they are identical.

4. Fourth order radial equations in two space variables. We will now use the
theorem of the previous section to construct an integral operator that maps
harmonic functions with a complex parameter onto real solutions of the differen-
tial equation

(4.1) Ap2+2u (x, t) +A (r2)Ap+2u (X, t) +B(r2)u (x, t) C(r2)ut(x, t)

where x= (Xl,. ., Xp+2) r2 x2 +x22-1-" -[-X+2, U is the partial derivative with
respect to t, and A (r2), B(r2), C(r2) are real valued analytic functions of r2 for
It] _--< R. We first consider the case when p 0. In terms of the complex variables z
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and z*, the equation takes the form

(4.2) 16 Uzzz.z. + 4A (zz *) Uz. +B(zz *) U- C(zz *) U, 0

where U(z, z*, t) u((z + z*)/2, (z z*)/(2i), t) u(x, y, t) and the coefficients
are analytic in some neighborhood of the origin in C2. This is a special case of (2.1)
in which the coefficients are real valued when z* 2 and the coefficients M, N, A,
B equal zero. Complex valued solutions are provided by (2.23), but the generating
functions E(I’k)(z, Z*, t, s), k 1, 2, now satisfy the equation

z-is-l(1 s2)[Ezz.z.s +1/2A (zz*)Esz.] + 1/4z-2s-2(1 2)2Ez.z.ss
Z IS X[Ez *z* +-A (zz *)Ez*] 1/4z -2s -3 1 s 4)E,z

(4.3)
+z-s-4Ez*z +Ezzz*z* + 1/4a (zz *)Ez* +6B(zz*)E

C(zz *)Et O.

The form of E(I’(z, z*, t, s) is given in (2.7), but the recursion equations for the
p(2")(z, z*, t) are simpler. These equations become

(4.4a) :().. 0,

(4"4b) ()[ *)P:2 "’() ]z*z* A(zz + /’--

(4.4c)

(2n +4)
Z*Z* n +2n+3/4

(2n+rzz.. + n+ A(zz

1 ]1 (n + A(zz*(’ C(zz*)P+-B(zz*)P(2n) +rzzz*z* rzz*

n=0, 1, 2,....

The initial conditions (2.19)-(2.21) imply that p’(z,z*)/t=l/t
p(’)(z, z*)/t z*/t.

It should be noted that when z* 2 and s and t are real valued then

and

(4.5) E(H’)(z, 2, t, s) E(’)(z, 2, t, s) =- ff.(’)(2, z, t, s), k 1, 2,

since the complex conjugate of (4.3) becomes precisely the equation that E
(z, z *, t, s) satisfies. Not only the form of the power series for/(t,k is the same as
that for E(u’ but their initial conditions also agree. Thus P(H’’an(z, 2, t) and
16(z’’an)(2, z, t) must satisfy the same recursion equations and (4.5) follows.
Furthermore, it is easily verified that the generating function E(1’a is a real
function of r2 z2, t, and s, and we define the function E(l(r2, t, s) by

(4.6) E()(r2, t, s) E("l)(z, z*, t, s).

Also E(t’2)(z, 2, t, s) is of the form

(4.7) E(m)(z, z*, t, s) z*/(2)(r2, t, s)

where/(2)(r2, t, s) is a real function of r2, t and s (cf. [3] or [6, p. 64]). The function
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E(1)(rz, t, s) has a series expansion of the form

(4.8)

with

1 )(r, t)E(1)(r2, t, s) 7+ Z s2"e

e m’,h,o t)
Oe, (0, t)(4.9)

Or2
O, n 1 2,...

From the results of {} 2, it follows that this series converges absolutely and
uniformly for r in some neighborhood of the origin, 6o < t < 6 where 6o > 0 and 6
is arbitrarily large, and Is _-< 1. The second generating function converges in the
same region and has the expansion

(4.10)
1 _2n(2)/_2/(2)(r2, t, s) 7+ 2 a e, t, t)

n=l

with

O (0, t)
=0, n 1 2,...(4.11) y(,2 (0, t)

Or2

THEOREM 2. LetH(1)(X l, X2, 7.), H{2)(x 1, X2, 7") be arbitrary harmonicfunctions
with a complex parameter 7", defined for (x 1, x2) in a starlike domain with respect to
the origin and 7" in a neighborhood of the origin in C1. Then in some neighborhood of
the origin, the function defined by

(4.12)

U (X l’ X2’ t) I [E{1)(r2, r-t, s)H(1)(x(1-sZ), r)
t[=8

+E<2(r2, 7" t, s)

ds dT"H(2)(x(l-s2), 7")](1 _$2)1/2
is a real valued solution of (4.1) ]:or p =0. The function E(1)(r2, t, s) has the
expansion given by (4.8) while E(Z)(r2, t, s) has the uniformly convergentexpansion

1 SZn.(n2)(r2 t)E(2)(r2, t, s)= r211--Sz] 7+,21=
(4.13)

r2
=

t n=l

Furthermore, every real valued analytic solution of (4.1) or p =0) in a
neighborhood of the origin can be represented by (4.12).

Proof. In (2.23), let gl(z*/2, t) f(z*/2, t), g2(z*/2, t) f(z*/2, t), and
z* .enby using (4.5), it can be shown that the integral operator (2.23) equals
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the expression

2Re(/,_,,= f_l [E(’l)(z,z*,’-t,s)fl((1-s2),")
(4.14)

+EZ’2)(z,z* r-t,s)f2((l-s2) r)] dsdr )(1-sb
where "Re" denotes "take the real part.’" Thus, pairs of analytic functions are
mapped onto real valued solutions. On the other hand, using the facts (4.5)-(4.7),
equation (2.23) equals (4.12) if we set

1 [fl(, t)-]-f’l(’H(1)(Xl, x2, t)

1. z f--2(, 0]"r2H(2)(X l, X2, t) -[2f2(-, t) + z

(Recall from (3.1) that we may assume/2(0, t) 0). Finally if fl(z, t) has the series
expansion

f amn t

then

H()(xl, x2, t) , Re amn
m,n 0

Therefore H(l(x 1, x2, t) is a harmonic function in (x 1, x.) with a complex param-
eter and the theorem follows.

The differential equation (4.3) which E(z, z*, t, s) satisfies is now trans-
formed for both functions E(1)(r2, t,s) and E(2)(r2, t,s) into the differential
equation

2E,.,.,. 2E,, 2
E. 2)E,.-- .+A(r

rs r r- -g rs-’5 r
(4.15)

_3(ls3r-s4)[,-U] +[3N -1E,] +N+Ur
-E+E+A(r)[E +E]+B(r2)E C(r2)E,=O

and the initial conditions

(4.16)
E(1)(0, t, s)= 1/t,

E(2)(0, t, s)= 0,

(1)Er2(O,t,s)=O,
E(r2)(0, t, s)= (1-s2)/t.

These equations follow from (4.9) and (4.11).
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There is one more representation for solutions in two variables which will
prove valuable in our attempt to represent solutions with n variables. This type of
representation was originally used by Gilbert in [9] for the elliptic equation
A2u +c(r2)u =0 and later extended by Colton and Gilbert in [6] to Au +
A (r2)Au +B(r2)u 0.

THEOREM 3. Let h(1)(xl, x2, 7.) and h(E)(x1, x2, 7.) be arbitrary harmonic
functions, with a complex parameter 7., defined for (x 1, xE) in some disk centered at
the origin and 7. in a neighborhood of the origin. Then the function

(4.17)

where

u(xl, x2, t)= h(1)(Xl, x2, t)+r2h(2)(Xl, x2, t)

1Io[0-G(1)(r2, 7" t, 1 0-2)h (1)(x O-2, x20-2, 7.)+-
d- 0-G(Z)(r2, 7. t, 1 0-2)

h (2)(x 10-2, x20-2, 7.)] do" dT.

(4.18) G(X)(r2, t, u)=
,=1 F(1/2)r(n) u 1, 2,

is a solution to (4.1) for p O. Furthermore, every real valued analytic solution of
(4.1) for p 0 has a representation of the form (4.17).

Proof. The harmonic functions defined in Theorem 2, H(1)(Xl, x2, 7.) and
H(2)(xl, x2, 7.) can be expanded in some disk about the origin in the following
form"

(4.19) H(Xl, x2, 7.)= Y, Z b,,,rl’l eimr"
n=0

where b-,,,, b_,,,. Define the harmonic functions h (1)(x 1, X2, 7.) and h (2)(X 1, X2, 7.)
by

ds
(4.20) h(k)(xl, x2, 7.)= H(k)(xl(1--s2),x2(1--S2), 7.)(1_s2)1/2, k 1,2.

A standard formula for the beta function together with (4.19) implies that in a disk
about the origin, h()(xa, x2, 7.) and h(2)(x 1, x2, 7.) have expansions of the form

!11!
(4.21) h(Xl, X2 7.) E , branrlml e

’F()F(m+)
=0 r(Im l+ 1)

We substitute the series expansions for E() and E(2) into (4.12) and integrate
termwise with respect to s. Also we perform termwise integration of the kernel
function expansion in (4.17). e theorem now follows by making use of (4.21)
and comparing the terms of the series expansions.

Remark. We note that an important consequence of an invertible integral
operator which acts on analytic or harmonic functions is that it can be used to
obtain complete families of solutions. This, in turn, has been a useful tool for
approximating solutions to standard boundary value problems (see [8]). In the
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present context, a complete family of solutions to (4.1) in a compact starlike
domain can be obtained from the integral operator (4.17) by using Runge’s
theorem [7, p. 47] and the completeness of the harmonic polynomials [14]. In
particular, we let {h, (Xl, x)},o denote the set of harmonic polynomials and in
(4.17) set h(xa, x2, t)=hm(Xl, X2)t where .m,n=0,1,2,.... Also it can be
shown that the integral operator (4.14) yields a complete family of real valued
solutions to (1.1) in a starlike domain by settingf(z, t) z "t", m, n O, 1, 2, .

5. The method of ascent to p + 2 space variables. We now consider (4.1)
for p >0. The remarkable fact about the method of ascent to solutions for
higher dimensions is that the kernels in the n-dimensional case are the same as
G(a)(r, t, u) and G(2)(r2, t, u) in the two dimensional case. The integral operator is
merely modified by a factor of o"p and the harmonic functions are functions of
p + 3 variables, x 1, x2, ., Xp/2, t. This result is analogous to the results for elliptic
equations (cf. [6], [9]). The coefficients of (4.1) are assumed to be analytic
functions for r < R.

THEOREM 4.LetE()(r2, t, s; p) andE()(r2, t, s; p) be solutions ofthe differen-
tial equation

1-s2[ (2-2p)2(p-1) ]2Er,rs + Errs + r----T-- Ers +a (rZ)Ers
rs r

(l-s2)2 1
E +p,1 2Errr+-Er- Er+A(r2)Er+ -s’ Err r rs 2 r

(2p-3)(1-s4) [Err lets]-7 + (P 3)(p -1) [Err -Er] +
2 1 +1 [ 1]+A (r2) Err +- E, +B (r2)E C(r2)Et 0

which are regular for r in some neighborhood of the origin, Is IN 1, and 6o < <6
where 6o is positive and 6 is arbitrarily large. Suppose they satis[y the boundary
conditions

1 ’()’n
:,rz tu, t, s; p)’-O,(5.2) E(a)(0, t, s; p)= t’

(5.3) E(2)(0, t, s; p) 0, E2l(O, t, s p) 7 1 p+ ’1
Let H(a(x, r) and H((x, r) be harmonic functions of x= (x a,..., x,) with a
complex parameter r definedfor x in a starlike region with respect to the origin and r
in a neighborhood of the origin in C1. Then for 0< <,

sP[E((r2, r-t, s; p)H(1)(x(1-s2), r)u(x,t) i -tl=a
(5.4)

+ E(2)(r2, r t, s; p)

H(2(x(1 s 2) r)](
ds dr

1 -s2)1/2

is a solution of (4.1) in a neighborhood of the origin.
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Proof. The differential equation for the E function can be verified directly by
substituting the integral operator (5.4) into (4.1) and integrating by parts. The
choice of these boundary conditions is for the purpose of normalization in the
method of ascent. We observe that for p--0, the differential equation and
boundary conditions reduce to (4.15) and (4.16).

THEOREM 5. There exist functions E(1)(r2, t, s; p) and E(E)(r2, t, s; p) which
satisfy the differential equation (5.1) and boundary conditions (5.2) and (5.3). They
have the expansions

2n..(1)/_2(5.5) El)(r2, t, s" 7+ E s en ,- t’, p),
n=l

r2
(5.6) E2)(r2, t, s; p) 7+ sE"e)(r2, t’, p),

n=l

which converge uniformly and absolutely for r in a neighborhood of the origin,
o< t < where o> 0 and is arbitrarily large, and ls 1.

Proof. Setting el)(r2, t; p) lit and eE)(r2, t; p) r2/t and substituting the
series (5.5) and (5.6) into (5.1) we find that both e)(r2, t; p) and e2)(r2, t; p) for
n 0 satisfy the recursion equation:

e 2 1 re"(2n+p+3)(2n+p+l) e,+2 +2(2n+p+ ,+1

(5.7)
(r)e/l(4n+2)(2n+p+l) e+l +(2n+p+l)rA 2

2+ r e, + r(2 4n)e’, + (4n 2 1) e

+r2A(r)( 1-2n ,) )t"= 0,e+ e + r2B (r2)en r2C(r2

r

with

cgen(O, t; p)
(5.8) e, (0, t; p)

Or2
0, n 2, 3,. ..

Here denotes differentiation with respect to r. The functions e 11 and el2 must
satisfy the equations

(5.9) e1’’-e’--0
and

(5.10) e 2,, e 12’ -2r
-A(r2)

r (p/ 1)t

respectively. For e1, we choose the boundary conditions

(5.11) el(0, t" p) -Oea(O’ t; p)
0

Or2
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which implies that

(5.12) el(r2, t; p)=0.

In solving for e2, it will be desirable to choose constants in such a way that the
term 1/(p+ 1) may be factored and the boundary condition (5.3) reduces to
equation (4.16) when p 0. The appropriate conditions are

(5.13) e2(O,t;p)=O, Oee(O,t;p) 1
Or2 (p + 1)t

and thus

1 [r2(5.14) e(2(r2, t; p)=
(p + 1)----- +r2I :A(:2) d:-I :3A(:2)d:].

For n _>-2, e(r2, t; p), 1, 2, are defined recursively by (5.7) and (5.8) and
then the series (5.5) and (5.6) formally satisfy (5.1) and the boundary conditions
(5.2) and (5.3) respectively. In order to show that the series (5.5) and (5.6)
converge, observe that E(i (r2, t, s) and E(i(r, t, s; 0), 1, 2, satisfy the same
differential equation and boundary conditions. Since their expansions have the
same form, it follows that e(r2, t; O)= ei(r2, t), 1, 2. Thus, the series (5.5)
and (5.6) converge for r in a neighborhood of the origin, 60 < t < 61, 8o > 0, and

..(i)[_2]s -< 1 when p 0. Next we define new functions ,:,, t, t; p), 1, 2, n
0, 1, 2,. , by the formulas

(5.15)
c(ol)(r2, t; p)= l/t, Co2)(r2, t; p)= r2/t,

c(i(r2, t" p)=
2e)(r2’ t; p)F(n +p/2 + 1/2)

r(n)r(p/2 + 1/2)
n 1, 2, .

Using (5.12) and (5.14), and the values of eo1) and eo2) in (5.7) with n =0, we
determine that c and c Cj are given by the following formulas"

(5.16) C l)(re, t; p)--0,

c]2)(r2, t; p) (p + 1)eC12>(r2, t; p)

[ ior ior(5.17)
1 r2 +r2 A(2) d- 3A(e)
t

c’"-c1’’ {LC(r) B ),r 2kt -t (r)

)--c? +rc Cl c? r (r)c?,
r r

(5.18) r f r r
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For n 1, 2, c)(r2, t; p), 2, 2c tr t; p) both satisfy

4n(n+l c",+2 c,+2 +4rnc,’+a-4n(2n + 1) c"n+l Cn+l

(5.19) ....+ .._c_,q,+a+r2c,_(2 4n)rc": +(4n2-1

)( 1-2n+rZA(r2
Cn Cn) +?’2B(t’2) ’2C(F2)tn 0

with

Oc,(O,t;p)
(5.20) c, (0, t; p)= 2 0, n 2, 3,-..

Or

Since (5.16)-(5.20) do not involve p, they imply that the c(in)(r 2, t; p) are in fact
independent of p. This result, together with the fact that the series (5.5) and (5.6)
converge for p 0 implies from (5.15) that these series converge for any positive
integer p in the domain stated above. This concludes the theorem.

THEOREM 6. Let h (1)(X, "/’) and h (2) (x, 7") be arbitrary harmonic functions of
x (x 1, ",Xp+2) with complex parameter , defined for x in some sphere centered
at the origin and " in a neighborhood of the origin in Ca. Then for 6o < t3 < 6a,

u(x, t)= hl)(x, t)+rZh2)(x, t),

o’P+a[G(1)(r2, "r-t, 1- 0"2)h (a(xtr2, "r)
(5.21)

+-7/
+ G(Z(r2, r-t, 1-o’2)h(2)(xo’2, ’)]do’dr

is a solution of (4.1). The functions G1) and G(z are independent of p, have
expansions of the form

G(k)(r2, t, U)= Z c, (r2, t)u "-,
n=l

with ck) defined in (5.15), and satisfy the boundary conditions

.,-(1_)(5.22) G(a(0, t, u)= 0, Crr (0, t, u)= 0,

(5.23) G2)(0, t, u)= 0, G(r22(O, t, u)=-lit.

Proof. After substituting (5.5) and (5.6) into (5.4) and defining

ioh((x,r)= sPH() x(1-s2)’
(1-s a/2, k=l,2,

the calculations follow exactly as in Theorem 3. A comparison of the expansions
for the G functions above with those in Theorem 3 equation (4.18), shows that
they are identical since c, (r2, t; p) are independent of p. The boundary conditions
follow from (5.20), (5.16) and (5.17).

In conclusion we wish to point out that it remains to be shown that the integral
representation of Theorem 6 is invertible and yields a complete family of solutions

k=1,2
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for p >0. Also it should be noted that if the coefficients of (4.1) are entire
functions then the kernel functions will be entire functions of r2.
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ON AN ELLIPTIC BOUNDARY VALUE PROBLEM
WITH MIXED BOUNDARY CONDITIONS,

ARISING IN SUSPENDED SEDIMENT TRANSPORT THEORY*

GUNNAR ARONSSON" AND BENGT WINZELL

Abstract. In this paper we prove the existence of an equilibrium distribution in the three-
dimensional diffusion model for suspended sediment transport. Mathematically, this means that we
solve an elliptic boundary value problem with mixed boundary conditions in a domain with
corners. We use Riesz-Schauder theory and some of the classical Agmon-Douglis-Nirenberg
estimates, among other things.

Introduction. The problem of suspended sediment transport in a turbulent
water stream has attracted very much attention, both theoretically and
experimentally. One attempt to treat the problem mathematically is given by the
so-called diffusion model with all its variations. See, for instance, [3, pp. 164-202
and pp. 398-419], or [9].

An equilibrium distribution is, roughly speaking, a distribution which is
independent of the coordinate along the channel, independent of time, and
satisfies certain boundary conditions. If one neglects the influence of the lateral
coordinate, then the equilibrium distribution only depends on the vertical coordi-
nate and is easily determined mathematically. This case has been known for a long
time; see [3, pp. 172-173], and references given there.

If the influence of the lateral coordinate is not neglected, then the question of
the equilibrium distribution leads to a boundary value problem for an elliptic
differential equation in two variables under mixed boundary conditions. Further-
more, the boundary has corners. It is this problem that is treated in this paper.

We have proved that this boundary value problem has a unique solution.
Thus an equilibrium distribution exists and is unique. Physically, we have in mind a
waterflow or a channel with a fixed cross-section and a bottom which is not too
steep. (A very steep bottom makes the boundary condition questionable.)

The paper is divided into a physical and a mathematical part, which can be
read separately. The first part is mathematically elementary, whereas the second
part requires knowledge of the theory of partial differential equations.

1. Physical assumptions for the diffusion model. We shall consider sediment
transported in suspension by a turbulent water stream in an infinite channel. A
number of simplifying assumptions must be made. To begin with, we consider the
channel as being horizontal with a fixed cross-section o. We introduce a
horizontal lateral coordinate x, a vertical coordinate y and a horizontal longitudi-
nal coordinate z. The geometry of the problem is shown by Fig. 1.

We assume that the influence of the sediment on the water flow conditions
can be neglected. This is reasonable, if the sediment concentration is not too high.

* Received by the editors November 26, 1975, and in revised form June 15, 1976.
Department of Mathematics, Chalmers University of Technology and G6teborg University,

S-402 20 G6teborg, Sweden.
Department of Mathematics, Link6ping University, S-581 83 Link6ping, Sweden.
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FIG.

We assume that the sediment has a well-defined settling velocity (the terminal
fall velocity for a single particle in stagnant water).

We assume that the water flow conditions depend only on (x, y)12o.
This means that the intensity of turbulence, and therefore the diffusion coefficient,
and also the (mean) flow-velocity of the water, do not depend on the longitudinal.
coordinate z, or on time.

We introduce the following notations"
time,

u (x, y, z, t) concentration of sediment,
0 (x, y) diffusion coefficient,
w settling velocity of sediment,
(x, y)= horizontal velocity of water, when turbulent variations have been

"averaged out".
It is now part of our approach that the motion of sediment can be divided into

the following three parts, which are superposed upon each other:
a) Isotropic turbulence of water gives a flux with direction

-(u/ox, u/oy, u/oz)

and magnitude

, (x, y ,/(Ou/ox) + (ou/Oy) + (ou/oz );

b) the settling of particles causes a vertical flux with the magnitude
w u(x, y, z, t);

c) the horizontal mean velocity of water causes a flux in the positive
z-direction with the magnitude q(x, y). u(x, y, z, t).

2. The basic differential equation. By expressing mathematically the con-
servation of mass it follows from the above assumptions that the concentration of
sediment u satisfies the parabolic equation

On
=o (x, y) Au + Uxqx + urqy + wuy- d/Uz,

Ot
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which is natural since it describes a diffusionlike process. Consequently, a
stationary solution u u (x, y, z) must satisfy

q(x, y) Au + uxqx + uyqy + wuy OUz O,

which is an elliptic equation. The reader will find in [3, Chap. 8] a more physically
oriented presentation of this model, as well as further references.

3. Requirements on an equilibrium distribution. A boundary value prob-
lem. An equilibrium distribution of sediment is a stationary solution to our
differential equation, which is independent of the longitudinal coordinate z, and
which also satisfies certain boundary conditions. The boundary condition for the
surface states the fact that the net vertical transport at the surface is zero, and the
boundary condition for the bottom expresses a balance between the suspended
load and the bottom load.

The net vertical flux is wu + q (x, y)u/y, so the condition at the surface C2 is
simply wu + q(x, O)Ou/Oy 0 there. See Fig.. 2.

As for the bottom condition, we reason as follows. Consider an arbitrary
vertical line L, where the depth is h. It is usually agreed as a convention that the
transport at greater depth than 0.95h is dominated by the bottom transport. It is
further assumed that, in a state of equilibrium, the suspended load must be
adapted to the bottom load. Now we suppose that the bottom processes do not
depend on z. It therefore seems reasonable to assume that the equilibrium
distribution at P C1 must be equal to a concentration g(sC), which is exactly the
concentration that can be maintained by the bottom processes close to P. We
therefore have, along C1, a boundary condition of the form u g(x).

Summing up, we find that the question of the existence of an equilibrium
distribution leads to the following boundary value problem:

Find a solution of the differential equation

q (x, y) Au + Uxqx + Uyy "- WUy 0

in the domain I1, which satisfies the boundary conditions

u g(x) onC1

t

FIG. 2
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and

Ou=0 onC2.wu + o (x, O)
Oy

Here the function q (x, y) is positive and smooth in 1, w is a positive constant and
the function g(x) is nonnegative and smooth. Further C2 is a segment of the x-axis
and C1, the rest of dO, is a smooth curve which can be represented by y h (x).

It will follow from the subsequent analysis that this boundary value problem
has a unique solution and hence there is a unique equilibrium distribution.

The mathematical investigation which follows will require some further
conditions on q(x, y), h(x) and g(x). But these conditions must be considered to
be physically reasonable and will not be discussed further here.

4. Exact mathematical formulation of the boundary value problem. A
uniqueness result. We are thus led to consider a problem of the form

Ou
b
OU

Au +a+ +cu O inf,,
Ox Oy

(P) u g on F,

0U+yu=0 onL.
0y

Here f is a bounded domain in the xy-plane, the boundary of which consists of the
closed segment L on the x-axis and the curve F in the lower half-plane. F is given
by x -- (x, h (x)), x L, where h 6 C2/ (L). L is the relative interior of L, and
h(x) <0 for x L.

For the coefficients of (P) we require
(i) a, b Ca+ (1), 0 < a < 1,
(ii) c _-< 0 belongs to C (fl),
(iii) 3’ > 0 belongs to C2+ (L).
As a tool for uniqueness proofs we employ the Hopf maximum principles.

See M. Protter and H. Weinberger [4, Thm. 6, p. 64, and Thm. 8, p. 67]. These
theorems imply

LEMMA 4.1. Let u C(()f3 C(lUL) (3 C2(fl) be a solution of (P). Then a
nonnegative maximum (or a nonpositive minimum) is taken on at F. Ifin particular
g -> 0, then u >-_ 0 in 1 and we get

max u max g.
fi r

COROLLARY. A solution of the problem (P) is unique in the class C()
C (fl LI L o) 71C2(fl).

Remark. If g > 0 on F, it follows that mina u > 0, which seems physically
satisfactory.

5. Transformations of the boundary value problem. We intend to derive
existence results for (P) by a reflection method, similar to the classical Schwarz’
reflection principle. Our present condition for u on L 0 is inconvenient for this, so
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we have to make a simple transformation into a problem with the condition
Ou/Oy 0 on L.

Having assumed that F is given by the graph of a function, it follows that the
projection of l on the x-axis coincides with L. Thus, by the formula

F(x, y) y y(x)

we have defined a function F C2+’ () satisfying

bE(x, 0) y(x) on L.(5.1)

LEMMA 5.1. U

the function
(5.2) v eF. u,

having the same regularity, satisfies

Av +A OV+B O--V-V+ cv =0 infLOx Oy

(P’) v=G onF,

Or= 0 onLo

Oy
where

OF OF
2 o---F B=b-2

OF C=c+lVFl2-z-a---b and G:eg.A=a- Ox’ Oy’ Ox Oy

Remark. A, B Ca+ ((’1), C C (().
COROLLARY. A solution of the problem (P’) is unique within the class

C(fi) n C (fl UL o) r Cu(I).
The reflection technique. Denote by 1" the reflection of in L, i.e.

fi ((x, -y)l(x, y) e sa}.

Put D f ULU. Then D is a bounded domain in R 2. It is symmetric with
respect to the x-axis. See Fig. 3. D has corners at the endpoints of L. The angles

FIG. 3
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are less than 7r. Denote by " the reflection of F. Then OD FU ’. Define the
symme.tric extension of’ A +A O/Ox +B O/Oy + C to a differential operator in
D by A+ O/Ox + O/Oy + (7 where and (7 are even and/ is odd in y. We
also extend G evenly in y to .

The new problem to be investigated is a Dirichlet problem with a side
condition"

(P)

A5 + 0----+/0--+ tt7 0 inD\L,
8x y
on D,

is even in the variable y,

C(D) C(D) C2(DL),

where we assume that tlr G C+(F).
Remark. , is a Lipschitz function in/ and restricted to 1 or fl it is of class

C +. C" (/) but/ is in general discontinuous at L. However, the restriction
of/ to 1 has a continuous extension to which is in C1+’.

We immediately get
LEMMA 5.2. A solution of (’) is unique within C() f3 CI(D) f’) CZ(D\L). For

given Gon F, the problem (P’) has a solution v 6 C() C1(2 UL) f"l C2(") ifand
only i,f the problem () has an even in y solution COO) fq CI(D) 71C2(D\L) with

G on OD, and in that case is the even (in y) extension of v.
Remark. We may replace 1 by any domain with boundary consisting of one

segment of the x-axis and a bounded curve in the lower half-plane.

6. Existence results tor a modified problem. Since the domain in problem
(’) has corners we will approximate (’) by problems in smooth domains.

In the sequel we will use the following convention: the functions a, b and c of
problem (P) are extended (see [5, Th. 4, p. 177]) to all of R 2 as a’, b’ and c’ with
c’ -< 0 and with preserved regularity’. Then. A ’,. B’ and C’ are analogously defined
in the lower half-plane. We get A, B and C on all of R 2 with symmetry and
regularity as in 5.

The following result is proved by standard arguments. (See also [ 10].)
LEMMA 6.1. Assume that E is a bounded domain of R 2, symmetric with

respect to the x-axis. Further, assume that OE is of class C2+’. Let Y[(x, y; , rt be
the Green’s function for the Laplacian in Z.

Letw C2+" (5) fq C1+" (), and let( C + (OE) be even in y. Then w satisfies

Aw + fi, O--w +t ---W +w O inZ,
Ox Oy

(0) w on

w is even iny
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if and only if

w (x, y)= d(, n) 0,,, (x, y;:, n) ds,
(6.1)

+ f (.,Ow+O-w+(yw)(, .)C(x, y; , ,)ddn
8x 8y

in and w is even in y.
LEMMA 6.2. E is as in the previous lemma. e integral equaon (6.1) has a

soluon w C2+(E) C+() which is even in y for every even (in y)
C(oE).

Pro& Consider the linear operator

+ ox + -+

aenea on x :{(w>)C’() x cl+:(o), w ana are even in y).
1) TmapsX into X. The only fact that needs a proof is that the integral over

the domain in the first component of r() is in C1, is, however, follows from an
application of Theorem 9.3 of [1} and we have the result that in fact the map
[is continuous from L() to Cl+: () for every a [0, 1[. For the aetaiis
we refer to our paper [10]., -,:. is<o.,aton X. We a.reay ,now ,,at. -u wit,

t /0
v, u C1+<" (). Since v Cl+: () and Av 0 in , Theorem 9.3 of [ 1] gives

I111+: < c. I111"l+a.
and the argument of 1) shows that

IlullD: c. IIw
Introduce the norm

in X. We have shown that T-I K is compact by the Arzela-Ascoli theorem.
3) The null space of Tis trivial. Assume that (w, t) W(T), the kernel of T.

By definition of T it follows that G 0 and that

w(x, y)= I (/ O--w+J O--w+’w) (’ "O) ?l(x, y; s, rl) d, drl.
Ox Oy

Since w C() and ,, /, L(), it follows from [6] that w C+(,).
Furthermore, w is even in y, so Ow/Oy(x, 0)= 0. By the C+ regular.ity of the
restrictions of / to the components .of \{.x-axi.s} it follows that A Ow/Ox /
OwlOy +w sC’(,) and thus Aw +Aw +Bw +Cw =0 in E and w C2+a(,).
This is a minor modification of the result in [2, p. 250]. Since w has zero data it
follows that w is identically zero.
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4) The range R (T) of Tis all ofXaccording to the Riesz-Schauder theory (see
[8, Chap. X]). Thus the theorem is proved except for some regularity results which
however are of standard type. Q.E.D.

7. An existence theorem tor the basic boundary value problem. The nota-
tions F, f etc. now mean the same things as in 4.

MAIN EXISTENCE THEOREM (Theorem 7.1). For every g C1+ (F) there is a
unique solution u C() f’) C1+’ (\(F f’) L)) f’) C2(f) to the problem (P).

Remark. By u e C I+"(\(F fq L)) it is meant that for every compact set K in
l\(r CI L), u lr e C’+ (K).

Proof. The uniqueness was proved in 4. It remains to prove the existence.
The full details of this proof are given in [10] (available from the authors). The
main difficulty is due to the fact that D 1212 LI..J 1 is not of class C2+. To
circumvent this, we construct a sequence of C+-domains D,, XaD and a corres-
ponding sequence { V, } of solutions to problems similar to () in D,,. Finally, we
show that a subsequence of {V,} converges to a solution a of (P).

All that can be done by arguments based on a priori estimates from Theorem
9.3 of [1]. Such estimates also show that the limit function ti has the regularity
stated in the theorem except possibly at the corners and that the function u which
is the solution of (P) corresponding to t2 satisfies the boundary conditions. To
prove the continuity of u up to the corners we employ the theorem on bounded
convergence and the estimates for Green’s function in [6] and [7] to see that u
satisfies the integral identity

Now the continuity follows in the same way as for smooth boundaries by the
estimates in [6] and [7]. Q.E.D.

Remark. This main existence theorem can be generalized in various ways.
For instance, we may allow F to have a finite number of convex corners. Widman’s
estimates for the Green’s function still hold and our smoothing process can still be
applied. Naturally, it is assumed that the sections of F connecting these corners are
of class C2/. We obtain a solution u to our boundary value problem in the class

U C2+a (’) I’ C(fi) C +c (\all corners).

Mathematically, this would enable us to include the case of an artificial channel
with a convex, polygonal cross-section, for instance a rectangle. However, it is far
from clear what the physical boundary conditions should be then, so it seems
advisable to refrain from any physical statement in that case.
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THE ENERGY APPROACH TO THE KARMAN-FPPL
EQUATIONS*

MELVIN MULLIN’f

Abstract. It is shown that the energy of a nonlinear elastic plate, subject to an infinite set of
constraints, attains its minimum. These constraints are equivalent to the stress-strain relations. It is

also shown that the minimizing functions w, b satisfy the Karman-F6ppl equations:

N/X2w 4xxwyy 4ywx +24w p,

A2t _l. E(WxxW,y Wy) O.

Introduction. An energy method is used to prove the existence of solutions
to the nonlinear system of Karman-F6ppl equations:

(1) NA2w bxxwyy byywxx + 2bywy p,

+ O.

The function w gives the deflection of an elastic plate occupying a plane region f
and subject to a normal load p(x, y); b is the stress function; N and E are positive
constants. The equation (1) may be formally derived as a necessary condition for
the existence of minimum potential energy E(w, qb) subject to the constraining
equation of compatibility (2). A basic difficulty in proving the existence of a
minimizing pair (w, b) is due to the fact that E(w, qb) contains only derivatives up
to second order. This implies that the minimizing functions should be sought in a
space of functions with square integrable second derivatives. The fourth order
compatibility equation is not meaningful for such functions. In 1 it will be shown
how the constraint (2) can be replaced by an infinite set of integral constraints
containing only second derivatives of b and first derivatives of w. It will be shown
in 2 that if there is a smooth pair of functions (w, b) that minimizes E(w, b) over
all pairs that satisfy the infinite set of constraints, then w and <b solve the
Karman-F6ppl equations (1), (2). The existence of such a pair will be established
in3.

When no forces are applied at the boundary, the energy is given by

(3)
where

1
E(w, b)= (w)+-q,(w)-(w, p),

(4) B(w)= Ia I(Aw)2-2(1-’)(wxxwy-w2’)’
(5) q,(w)= Ia I cw2+c’yw2-2b’wwy’,

(6) (w, p)= Ia l wp,
and the Poisson ratio satisfies 0 < < 1.

* Received by the editors December 11, 1975, and in revised form September 14, 1976.
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A problem arises in trying to find a lower bound for q, (w), the quadratic form
in w defined by (5). If the plate is under tension at a point (x, y), then the integrand
in q, (w) is positive there. It will be shown that q, (w) is positive without the a priori
assumption that the plate is under tension.

Previous existence theorems have been based on the Schauder fixed point
theorem (Knightly [7]), or have been established for small loads by perturbation
techniques (Fife [4]). The energy approach presented here is somewhat more
constructive than the use of fixed point theorems and is not restricted to small
loads.

1. The set of constraints. The compatibility condition results from the
elimination of the displacements u and v, in the x and y directions respectively,
from the stress-strain relations:

(7)

(8)

1 1+ (. ),

+5
2(1 + u),y.(9) u, + v,, + w,,wy ---------2 2This is accomplished by applying 0y to (7), 0 to (8), -00y to (9) and adding. To

avoid the fourth order equation (2), the following approach is taken here" Taking
an arbitrary function O e C(f), equation (7) is multiplied by Oyy, (8) by 0, and
(.9) by -Oy. The sum is integrated over f, yielding

e

or from the definition (5)"

(10) qo(w)= A Aft, V0 Co (1).

This is the weak form of the differential equation (2).

2. Necessary conditions. For simplicity we consider in detail only the case of
a clamped plate to which no forces are applied at the boundary. It will be shown
that if (if, ) is a pair of smooth functions that minimizes E(w, ) over all
functions (w, $) that satisfy (10) and the boundary conditions

(11) w O, w,, 0 on af,

(12) =0, .=0 on af,

then (if, ) is a solution of the Karman-F6ppl equations (1), (2).
Let v C(II) and set

(13) w ff + ev.
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Denote by b(e) the solution of the differential equation

() a.=-E(w,w.- w),
subject to the boundary conditions (12). If we multiply (2) by any q s C(f) and
integrate by parts, we find that the pair (w, b(e)) satisfies (10). Since the
differential equation (2) has a unique solution b satisfying (12) for a given w, we
conclude that b(0) b and that the pair (if, b) is a solution of (2). Furthermore,
because b(O) , E(ff + ev, b(e)) has a minimum at e 0 and therefore

d
E( + v, ())= 0.(14) d- =o

From the definitions (3)-(6), this is equivalent to

NB(ff,, v ) +q$ v ) + -q,. ( ff,, ) (x, p)=0,(15)

where

(16)

(17)

(18)

B(w, v)= Ia IAw
q,(w, v)= Ia I4,,v,w, +4,,v,wx-4,x,(w,v, + w,v,),

We will show that

(19) q,, ()=2q(, v)

and therefore (15) may be written as

Nn(, v)+q(, v)-(v, e)=0.

Integration by parts yields

Since v is arbitrary, we obtain the equation (1):

It remains to prove (19). We differentiate the constraint (10) for 6(e),
w ff + ev with respect to e to obtain

(o) =q,,()+(, ).

If we multiply (2) with e 0 by and integrate by parts, we obtain

(21) f q.().
Equations (20) and (21) yield the result (19).
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3. Existence of a minimizing pair. We consider functions in the space H2(f)
and Ho2(l)). These are the completions of C(I)) and C’(I)) in the norm:

(22) Ilul122= In Iu2+In I(vu)z+ In I (uz +uz +2u2y)yy

For functions w in Hg(f) we have

(23)
1
 llw I1= n (w)1/2 =< Kllw II ..

THEOREM. There is a pair of functions (, ), with and HEo(f), that
minimizes E(w, b) over all such pairs (w, b) restricted by the infinite set of
constraints (10).

Proof. The set of pairs (w, b), with w, b Ho2(I), that satisfy (10) for all
C(12) will be denoted by . We observe that ’ is not empty; for if w C(),

then we may find a b H(f) by solving (2), (12). Multiplying (2) by tk s C(f)
and integrating by parts, we obtain (10).

Since (0, 0) , we find that

(24) m inf E(w, )

satisfies

m <=E(O, 0)=0.

It follows that we may find a sequence {(wj, b.)} in such that

E(w , <- 0, Vj

and

(26) lim E(wi, $i)= m.

We will show that the sequences {wi} and {$.} are bounded in Ho2(l).
Definition (3) of the energy together with inequality (25) yields

(27)
N
-B(wj)+qg,(wi)<= (wi, P).

Since both sides of (10) are continuous linear functionals on Ho(f), we may
take p $i to find

Thus

q4j(wj) (Abj)2 _--> 0.

N
2
B(wi)<= (wi, P) <- IIw lk=llplk ,

From the definition (22) of the norm in H(f) and inequality (23), we conclude
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2K2

(28) IIw ll=--<

Thus the sequence {wj} is bounded in H2o(f).
It is well known [5] that

(29)

thus it suffices to show that {A4j} is a bounded sequence in L2. Equations (10) with
bj imply

IIA  II2  1[  1111 2 <g Ella  llL2 2 Wj 1,4= L WI ,4

or

(3O)

where

(31)
It can be shown [5] that

+ Uy.

(32) IlUlll.4 g=llull= for u H o(a).
Thus inequalities (28)and (30)yield

i.e., {AOi} is a bounded sequence in L2.
Since a Hilbert space is weakly compact [2], we can find a subsequence

{(wi, &i)} such that {wi} converges weakly in H() to a function if, and {O}
converges weakly to in H(fl). We will show that (if, ) and

(33) E(ff,)m.

This means that (if, ) minimizes E(w, ) on .
For convenience, we rename our subsequence {(wi, i)}. Note that

]q6(wi)-q()] ]q6(w , wi + if) + q6-(ff)]

The first term on the right above tends to zero because {wi} converges to ff weakly
in H() and consequently in the norm (31) [5]. The second term tends to zero
because {&} converges to weakly in H(). Therefore

(34) lim q(wi)= q(ff).
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Since a norm is weakly lower semi-continuous [2],

(35) lim B(wi)>=B().

It follows from (26), (34) and (35) that

m lim E(wj, 4j)>=E(ff, )

It remains to show that (rP, 4)) ; i.e., ()P, 4)) satisfies (10):

1
v4, Co

This is true because the left side is a continuous function of w in the norm (31), the
right side is a continuous function of 4) in H)(f), and (w, 4)) for every/’:

q,(rP) lim q,(w)= lim
1 1

i-, J-, (A, hO) (h(, h0). Q.E.D.

The minimizing pair (if, ) is a "weak solution" to the Karman-FSppl
equations. It has been shown that such solutions are smooth [3]. In fact if the load
p is HSlder continuous with exponent a, then ff e Ca+‘’ and ( e C6+’. The proof is
based upon the well known "boot strap" method [5] for proving regularity of
weak solutions of elliptic partial differential equations together with results of
Agmon [1] on L’ solutions to the Dirichlet problem.

Acknowledgment. The author would like to thank Fritz John for many
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ON CONVEXITY PRESERVING OPERATORS*

RIVKA SENDEROVIZH’["

Abstract. LetK f denote a convolution type operator, defined for periodic functions with period
2r; we present a characterization of the class of such operators preserving the set of odd functions
which are concave on 27r. The paper concludes with some necessary conditions on the Fourier
coefficients of functions of those classes.

1. Introduction. Let P be the class of odd functions f(x) with period 27r
which are L-integrable and nonnegative for O-<x

Let C be the subclass of P consisting of all functions f(x) of P which are
concave in the interval 0-<x =<

Finally let the integral operator"

(1 1) 1__ K(x-y)f(y) dy =K * f(x)
2r

where K(x) is a real periodic function of bounded variation, be defined on P. The
question is: under which condition does the operator (1.1) preserve the class C?

In [3], S. Karlin gives sufficient conditions for a kernel K which is twice
continuously ditterentiable. He proves that if K is cyclic totally positive of order 3,
and. if all its Fourier coefficients are positive, then the suitable operator (1.1)
preserves the class C and K f satisfies the inequality K f-<_f on [0,-].

In a way similar to that used by G. Pdlya and I. J. Schoenberg in [4] for the de
la Vallee-Poussin means, it can be proved that, if K(x) _,, Ix,, e

inx is in SC1 and
SC3 and has two continuous derivatives, and if/z > 0, then K solves problem.

In the sequel we use M. Fekete’s [1] conclusions to find necessary and
sufficient conditions for the above problem.

2. Necessary and sufficient conditions for a kernel to preserve the classes C
and P.

DEFINITION 1. A periodic function is a bellfunction if it is nondecreasing on
(-Tr, 0) and nonincreasing on (0, 7r).

LEMMA 1. IfK(x) is an even bellfunction, then for each x and Xo in [0, 7r] the
inequality K(x Xo) K(x +Xo) >- 0 holds.

This property of an even bell function leads to the following theorem:
THEOREM 1. Let K(x) be a continuous even function ofperiod 2zr. Then, for

each f of P, K f given by (1.1) belongs to P if and only ifK is a bell function.
Proof. If K(x) -o txn e

inx is an even function, and f(x) ---= b, sin nx,
then

g(x)=K f(x)= K(x-y)f(y) dy

1
[K(x y) K(x +y)]f(y) dy

2"
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whenever f belongs to P if and only if [K(x-y)-K(x +y)]->0 or equivalently
K(x) is a bell function.

Integration by parts yields

g(")(x) - K(x- y)f(2,,)(y) dy

which leads us to:
THEOREM 2. Let f be an odd function satisfying f(2")->0 on [0, r]. Then

g(x) K f(x) satisfies g >= 0 on [0, r] ifand only ifKis an even bellfunction.
For n 1 Theorem 2 gives us the condition under whichK preserves the class

C.
Remark 1. Using Theorems 1, 2 and the definition given by M. Fekete [ 1, p.

110] we find that a sequence of Fourier coefficients of an even bell function is one
which preserves the classes P and C as well as the class of all odd functions
satisfying f(2n) 0 on [0, 7r].

3. Some inequalities for the Fourier coefficients of a function of C and an
even bell function. The class C is a cone, and its extreme rays are the family

]’(a,b,x)=

b

b(r x)

0

[o,

? if a e (0, r);
x e (a, r],

r]’

l
]

if a =0;

(0,x

x=0,

[0, / if a

x

O
with b > 0.

Using their Fourier series we get"
TI-IEOZ 3. Iff(x),l b, sin nx belongs to C, then"
(a) Y,k,__ 1rib. >_0, k 1, 2,"’.
(b) lb. 1--> k Ib,[, n 1, 2,... k 1, 2,. .

Moreover, by Remark 1, we have
THEOREM 4. If K(x)= ,-oo tz, e

i" is a continuous even bell function, then"
(a) k.= IX.---->0, k-- 1, 2,"’.
(b) I ,.I => I, n 1, 2,... k 1, 2,. .
Acknowledgment. The author wishes to express her deep gratitude to
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SINGULAR PERTURBATION OF AN EXTERIOR DIRICHLET
PROBLEM

GEORGE C. HSIAO"

Abstract. This paper discusses a class of singular perturbation problems such as those of slow
viscous flow past a cylinder. A semilinear second-order elliptic equation with a small parameter is used
as a model to illustrate the correlation between a regular perturbation procedure and the method of
matched asymptotic expansions. Some justification of the formal inner and outer expansions is
established. It is found that the use of integral equations of the first kind for treating such a class of
singular perturbation problems seems most desirable.

1. Introduction. In [8] we discuss the validity of the method of inner and
outer expansions for treating singular perturbation problems such as those of slow
viscous flow past a cylinder. The particular model we studied there is an ordinary
differential equation problem:

ly,y"+- -eyy’=O
x

onx> 1,

y=0 atx=l; y-a asx,

where e is a small positive parameter and a is a positive constant independent of e.
Based on a regulal 19erturbation procedure developed by Finn and Smith [4], [5],
it is shown that the formal asymptotic expansions constructed by the method of
inner and outer expansions are indeed in some sense the asymptotic expansions
for the exact solution of the problem (P).

The purpose of this paper is to see how the ideas used for (P) might be
extended and applied to similar problems for partial differential equations as a
first step towards establishing the validity of the formal procedure for obtaining
the inner and outer expansions in the case of full nonlinear Navier-Stokes
equations. As a genuinely two-dimensional model, we consider an exterior
Dirichlet problem in the plane for the semilinear elliptic partial differential
equation,

(E) Au euu,l O,

in an exterior domain f with a smooth boundary consisting of a simple closed
curve. Here points in the plane E2 are denoted by x (Xl, x2); u u (x; e) and
Uxl Ou/Oxl. The boundary condition and condition at infinity are respectively,

(B) u=f onOO

* Received by the editors September 24, 1974, and in final revised form August 17, 1976.
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Notice that () might be considered to represent a problem for the two-dimensional Laplace
equation in an axially symmetric situation.
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and

(C) u -a as [xl o.

For simplicity, we assume that the given function f is sufficiently smooth and
independent of e. Throuhgout the paper, we denote by (P) the above problem.

Problems () and (P) belong to the special class of singular perturbation
problems, a class whose prototype is the problem of the stationary incompressible
flow of a viscous fluid past a cylinder [9], [11], [17]. Singular perturbation
problems of this kind often arise in fluid mechanics, elasticity as well as in other
fields of mathematical physics 10]. In this class of singular perturbation problems,
the differential equations considered in general are of the form

(1.1) Lu =- Lou + eNu O,

where Lo is a linear elliptic operator, and N is an operator which may or may not
be linear but whose order is less than that of the operator Lo. The equation (1.1) is
to hold in a region which is in some sense infinite. Solutions of (1.1) are to be
subject to a boundary condition of the form (B) and a condition at infinity such as
(C). The problems are singular in the sense that the degenerate problem (Po),

(1.2) Lou =0

together with the conditions (B) and (C), has no solution2. This is the analogue of
the Stokes paradox in fluid flow [20], and thus, the degenerate equation, (1.2), is
often referred to as the Stokes equation. In contrast to the usual singular
perturbation problems considered in [23], [16], [3], neither the order nor the type
of the degenerate equation, (1.2), has been changed from the original one,
and the region of nonuniformity (or the boundary layer) in this case is the
neighborhood of the point at infinity, rather than of the boundary [20, p. 153].

The degenerate problem (Po), of course, will have solutions if the condition at
infinity is relaxed. There will, in fact, be many solutions of (1.2) satisfying (B).
More and more can be obtained by allowing increasingly singular behavior at
infinity. Among them, there will be certain ones with the weakest possible
singularities at infinity. We make use of what might be called the weak singularity
principle (WSP) which states that only these weakest singular solutions should
enter into the problem (compare [20, p. 53]). In problem (P) we consider here, as
one will see in 2, WSP implies that the condition at infinity (C) should be
replaced by the modified condition

(C’) u A log [xl + O(1) as Ixl
where A is any arbitrary constant. The question arises as to whether or not we can
choose A so that the problem, Lou 0 together with (B) and (C’), will give a
meaningful result. It is here that one needs the matching principle in the singular
perturbation theory. We will discuss this in 3.

2 Throughout this paper, unless otherwise specified, by a solution of the problem we always mean
a solution in the classical sense. (e.g. u is a classical solution of (P) if u C2(I) ") C() and satisfies

(E), (a)and (C)).
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On the other hand, for the nonlinear operator N, there is a different kind of
linearization which emphasizes the behavior at infinity. If we let u -a + v, then v
will satisfy an equation of the form

(1.1’) v .v + eVv.

Here is a linear operator depending on e and hence different from L0, while the
operatorVmay or may not be the same as N. That there exists a unique solution to
the linearized problem,

(1.2’) v 0

together with conditions that v g on 0f and v tends to zero at infinity, is the basis
for the procedure of Finn and Smith [4]. Here g may be any given smooth
function. In particular, one may set g equal to a +f in view of the boundary
condition (B). In fluid flow, (1.2’) is referred to as theOseen equation [20], and the
corresponding linearized problem as the Oseen problem. The solution of the full
nonlinear problem is then sought as a regular perturbation of the solution of the
Oseen problem (see 5). This regular perturbation procedure, in fact, gives us a
kind of asymptotic development for the solution of (P,) (see 6).

For the nonlinear problem (P), the main results can be summarized in the
following two theorems.

THEOREM 1. There exists a solution u(x; e) of the problem (P) defined by
(E), (B), C)for e sufficiently small.

THEOREM 2. Let be any compact subset of fl and let denote the region
E= :1 1 -> where i > 0 is a parameter. Then there existfunctions qo, ql defined

for x , and Q1 defined for 0 such that

u(x; e)=qo(x)+q(x)(log e)- +O(log e)-2 as e -->0+

uniformly on , and

>_I >-,u e =-a + Ol()(log e + O(log e as e -
uniformly on for any t > d, where d sup {Ix[ x 0 f}. Moreover, functions qo,
q and Q can be constructed by the matching principle.

Remark. In view of standard results of singular perturbation theory [22],
13], and [21], one might expect that the solution of (P) has a uniform representa-
tion of the form

(.) (a solution of Lou 0)+ (boundary layer terms)/ (terms which
tend to zero uniformly with e).

Indeed, one will have the form (*) by constructing a composite expansion of the
solution. This will be indicated in 2 and 6.

We recall that the results for (P) are similar to those for (), although
Theorem 2 here is not as complete as the one obtained in [8]. In recent years, there
has been an increasing effort to apply the method of matched asymptotic
expansions to Dirichlet problems for elliptic equations with small parameters. In
surveying the literature, we see that either the degenerate equations are of lower
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order than the original ones or the domains under consideration are bounded. In
sharp contrast to these, much less attention has been paid to the kind of problems
considered here from the viewpoint of the rigorous justification of the formal
procedure. A pertinent reference with respect to this aspect seems to be [6], where
a fourth order ordinary differential equation problem has been used as a model to
discuss the validity of the asymptotic matching principle developed there. As
indicated in [8] for (P), the matching principle in 3 is a simplified version of the
one in [6]. Some partial justification of formal procedures for the Lagerstrom
model, a variational form of (), has been given in [2], [12] and recently in [18].
There are, of course, many papers concerning primarily the construction of the
formal procedures in this connection. To mention a few, the special case of flow
past a cylinder has been treated in detail in [11], [17], and [1]. It is our hope that
the present investigation including [8] may shed some light on the validity of the
method of matched asymptotic expansions for such a class of singular perturba-
tion problems, in particular for problems concerning the viscous flow past
obstacles.

The proof of Theorem 1 is given in 5 and uses estimates for solutions of
linear problems. These estimates are obtained in 4. Theorem 2 is established in
6 based on the asymptotic development for the linear problem (the Oseen

problem) in 2 and the matching principle formulated in 3.

2. The linear lroblems. In this section, we would like to devote our attention
to the linear problem (the Oseen problem for our model (P))

v Av +av 0 in f,

(P) v g on

v-0 as [xl,
where a eat and g is a given smooth function.3 We note that the linear problem
(P) is singular according to our definition, if 0n g(x)dS,, rs O. Hence in order to
gain some insight of the singular nature of the nonlinear problem (P), it is natural
to begin with a study of the asymptotic behavior of the solution of (P). Our
approach here is based on a method of integral equations of the first kind
developed in [9]. It is found that the use of single layer potential for treating
singular perturbation problems of this kind is particularly desirable from the
viewpoint of constructing asymptotic expansions.

In this connection, we also consider the modified degenerate problem

Au=0 in

(P) u g on

u A log Ixl / o(x) as Ixl
for a given constant A. It was mentioned in the Introduction that the solution of
(P) does exist and is unique for every fixed A. We will explore this idea here again
by the use of single layer potential (see [9]).

In what follows, it suffices to assume that g is of class Cl+x (011), the class of H/51der continuously
differentiable functions on Of/with exponent 0 < A < 1.
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In what follows we write v (x; a; g) for the solution of (P) (which exists as we
will see), and write UA(X; g) for the unique solution of (P). We recall that the
fundamental singularity of the equation v 0 is

1 e_<,/2>_y> / c Ix- Yl)(2.1) S(x-y; a)= --- ,,,o\
Here Ko(r) is the zeroth order modified Bessel function of the second kind which
decays to zero as r--> oo in contrast to the logarithmic singularity of the Laplace
equation. For x, y in a compact set, the series development of Ko takes the form

(2.2)1 go lx-yl =-log Ix-y[+(Fo-log a)+L(x; y; a)

where Fo is a constant and the series L(x; y; c),

(2.2). L(x; y; a)= Y’, {a(x, y) log a + b(x, y)Ia,
k=l

converges uniformly on compact subsets. Here

a(x, y) Flx-yl, b(x, y) (3, +F log Ix -yl)lx-yl2

with constants F and ,.
We now formulate the fundamental theorem on the asymptotic representa-

tion of v(v; a; g):
THEOREM 3. Let be a compact subset of f and let o denote the region

{x e E2" Ix[-> 80}, where io > 0 is a parameter. Then we have

(2.3) v(x; a; g)=uo(x; g)+u_,.(x; 0)(log a)-lwO(loga)-2 asa->O+,
uniformly on and

-(a/2)x [ a ) )-2(2.4) v(x;a;g)=rne 0,lx[ (loga)- +O(loga asa-+O+,

uniformly on o for any 8o > d/a, where d sup {Ixl" x 011} and m is a linear
functional of g.

Remark. Expansions (2.3) and (2.4) are usually referred to respectively as
the inner and outer expansions, which will be discussed in 3.

This theorem needs some explanation. It yields a kind of asymptotic expan-
sion for the solution but reflects the nonuniformity of the expansion. One can form
a composite expansion from (2.3) and (2.4), which is uniformly valid for all x f.
This can be done by introducing a mollifier 4’o, an infinitely differentiable function
of x E2 defined by

l for Ixl>r+e2’
(x)

0 for Ixl=<r 2’

where p is a small positive number such that 0 < p < r- d, and 2r is the diameter of
a compact set containingc E2\fl. Then, the solution v(x; a; g)of problem (P)
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has the uniform asymptotic representation:

(2.6) v(x; a; g)= w(x; v (ax; a)+z(x; a)

where

w(x; a) (1 o(ax)){Uo(X; g)+ u_,, (x; 0)(log a)-l},

-o\ lxl (log a)-x

z (x; a) O(log a)-z as a 0+

uniformly on 1. Note that in this case, the boundary layer is the neighborhood of
the point at infinity. Hence the term v,,(a(x; a) in (2.6) corresponds to the
boundary layer term according to [21].

The proof of Theorem 3 is based on the following two lemmas:
LEMMA 2.1. For given A and g, the provlem (P) has a unique solution in the

form"

(2.7) ua (x; g)= U(tr; x)- rag,

where mg is a fixed constant depending on g; tr satisfies the integral equation,
U(tr; x)= g(x)+ mg, x Of, and U(tr; x) is defined by

(2.8) U(r; x) =- f r(y) log Ix-y[

LEMMA 2.2. For given g, theproblem (P) has a unique solution in theform:

(2.9) v(x; a; g)= U(b; x; a),

where satisfies the integral solution, U($; x; a) g(x), x 0fl, and U(b; x; a) is
defined by

(2.10) U(t; x; ot)-e-(a/2)xl loa d(y)Ko(lx-y}) dS,.

Remark. The function e (’/2)xl U is a solution of the equation Aw -(az/4)w
0 for any smooth function b (e.g. b Cx

A proof of Lemma 2.1 is essentially contained in [9]. We will, however,
repeat the proof here so that we have enough information about the density
function tr to see how the asymptotic developments (2.3) and (2.4) are derived.
The proof of Lemma 2.2 will be omitted, since the proof is similar to that of
Lemma 2.1., and the property of the density function b can be obtained from that
of r.

Proof of Lemma 2.1. We begin the proof by seeking a solution of the
problem (P) in the form (2.8). For any r continuous on OD,, U(r; x) is harmonic
in 12. We determine r by requiring that

(2.11) U(o’; x)= g(x)+ mg, x

Differentiating (2.11) with respect to the arc length S,, along (912, we obtain the
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integral equation

(2.12) (x) r(y)--g-o log [x-yl dS, =- M(r).

Here the dot indicates differentiation with respect to Sx. Equation (2.12) is a
singular integral equation of first kind. For the theory of such equations see 15].
The homogeneous equation adjoint to (2.12) can be shown to have the unique
linearly independent solution & I. The condition of solvability of (2.12) is hence
fulfilled. The general solution of (2.12) has the form

(2.13) o-(y) M-’()+
where O0(y), Oo(y) dS, # O, is a fixed, nontrivial solution of the homogeneous
equation corresponding to (2.12), Bg is an arbitrary constant, and M-() has the
resolvent form

(2.14) M-()= (y)+ [ (x)T@; x) dS

with a continuous resolvent T. We choose Bg so that

(2.15) Io or(y) dS,= A,

and set

(2.16) /A (; g)=

Then aa(x, g) is harmonic in f and equal to g(x)+ mg on 0, where mg is a
constant defined by

(2.17) mg= U(M-(); x)- g(x),

Here we have used the fact that

(2.18) U(Oo;X)=-0 on0f/,

which can be proved by an argument similar to that in [9]. Furthermore, we have

ua(x; g) A log Ixl+O(--
Hence

(2.19) UA (; g) A(X; g)- mg

is the unique solution of (P).
We return now to the proof of Theorem 3. From Lemma 2.2., the solution of

(P)) has the form (2.10),

v(x; a; g)=- x; a),

where 4) satisfies the integral equation of the first kind,

(2.20) U(b; x; a) g(x), x Ofl.
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By the series development of Ko in (2.2), equation (2.20) can then be written in the
form,

g(x)+ E g,,(x)a (y) log Ix-yl dSy-(Fo-log a) 4,(y) dS
n=l 12

(2.21)

Ion L(x-y; a)&O’) dS,

with g, (x) (1/n !)(Xl/2)"g(x). Differentiating (2.21) with respect to arc length
along 0f and rearranging terms, we obtain

(2.22) $ + E $,,a" +
0

L(x; y; a)(y) dS= M(),
n=l

with M() as in (2.12). Since the left hand side of (2.22) is orthogonal (in the L2
sense) to solutions (that is, constants) of the homogeneous adjoint equation, we
can invert it. The inverse can be written as a resolvent term plus an arbitrary
constant times o as in (2.13). When the resolvent is applied to the terms in (2.22)
involving L(x; y; a) and the order of integration is interchanged, we obtain an
equation of the form

(2.23) =M-a($)+ E M-a($,)a"+/3’Po+ K(x;y;a)(y)dS,,
n=l l’l

where the linear transformation K(x; y; a) is O(a2 log a) and/ is some constant
to be determined.

We can solve (2.23), by successive approximations, in the form

(2,24) M-I() +,t,o +X,
where X O(a). We set/3 fig +/30, where/3g is defined by (2.15)with A 0, and
/3o is to be determined. Then,

(2.25) as,=o Io o(r) as,+ o()

and

(2.26) I0n (y) log Ix-yl dS,= ao(x; g)+BoU(o; x)+ O(a)

(cf. (2.8)and (2.16)). By making use of (2.17), (2.18), (2.24), and (2.25), we obtain

mg
(2.27) flo + O(a ).(m o(Y) dSy)(Fo- log a)

Consequently, for x in a compact subset of fl, it follows easily from
(2.25)-(2.27) that if one uses the series (2.2)1, then

m 1 Fo ( 1 )}+ ,,---------+ ov(x; a, g) to(X, g) m, Im o(Y) dS, log a (log a iog a 3

(2.28)
U(o;x)+O(a loga) asa->0+,
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uniformly on . Now let

(2.29) m m.
Then if we compare (2.28) with (2.19) (A 0), we see that the first two terms are
just Uo(X; g) and the coefficient of 1/loga is precisely u_,(x; 0). Moreover,
Iml <= const. Ilglll, where

I[gll max ]d]’.0a
O<-k<--n’

and S is the arc length. This proves the first part of Theorem 3.
To prove (2.4), we see that the representation (2.10) implies

(2.30) v(x; a; g)=- b(y) dS, ,o\lxl +(x; a),

where (x; a)=O(a) as a 0+ uniformly for Ixl>d/, d=sup{Ixl: x on}.
Then the result (2.4) follows easily from (2.25), (2.27), and (2.29). This completes
the proof of Theorem 3.

3. Inner and outer expansions. With the help of the preliminary analysis in
2, we now propose a formal procedure for obtaining what are usually called the

inner and outer expansions of the solution to the nonlinear problem (P). This
procedure is based on a matching principle similar to the one used in [8]. To
illustrate the idea, we shall describe the procedure (matching principle) by
computing the first few terms of the former inner and outer expansions. Then, we
show that this procedure can, in principle, be continued to be used for obtaining
higher order terms. We believe that it will be true this actually yields an asymptotic
expansion for the exact solution of (P), although we can only carry out the
verification up to the term of order (log e)-2 (see 6).

We begin with the formal inner expansion,

(3.1) UA (X; 0)
u (X; )-- Uo(X; f) + X

=1 (loge
Here Uo(X; f) and UAk (X; 0) are solutions of the problem (P) with A, g replaced by
0, f and Ak, O, respectively; that is, these are solutions of the Laplace equation
subject to the conditions:

Uo(X; f)=f on 01"l, Uo(X; f)-" 0(1) as
(3.2)

UAk (X 0) 0 on 01, UA (X; 0) Ak log

The Ak’S, k _>- 1, are constants to be determined by the matching principle which
will be stated later.

Remark. To be more precise, in general one requires the inner expansion to
satisfy the equation (E) and the condition (B) but not (C). Instead, the condition
(C) is replaced by the condition (C’). It is here that one needs the matching
principle to choose a unique constant A. Thus, we refer to (C’) as the matching
condition.
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Despite the undetermined constants Ak, k

_
1, we have here the representa-

tions

(3.3)

and

Uo(X; f)= I0a o-(y)log Ix-yl dSy-mr; r(y) M-1(]) +/3to

Ak I0 o(Y)log Ix-yl dS,, k >-_ 1.(3.4) UA, (X; 0)= I0a o(Y) dS, a

The functions o, M-l(/) and the constant fit are defined in the same way as in 2.
We note that from (3.3) and (3.4) the matching conditions read

Uo(X /e) _rnt+O(xl)
(3.5)

uA(x;f) ak lo t t ot l) as Ixl-" oo,

Next we shall construct the outer expansion. To this end, we introduce the outer
variable4 t ex and set U(t; e)= u(fi,/e; e ). We denote the domain f by lie and
adapt the similar convention for other notations in connection with the ,outer

variable.
Observe that, in terms of the outer variable, the equation (E) becomes

(E’) AeU=UUe inIle

and conditions (B) and (C) become, respectively

(B’) U F(Ij) on 0fe

and

(C") U-->-a as

The outer expansion is of the form

u(l"(3.6) U(I; e)----a + k=12 (log e

This expansion is required to satisfy the equation (E’) and the condition (C") but
not (B’). For.mally substituting (3.6) into (E’), (C") and equating coefficients of like
powers of (log e)-, one obtains the conditions for the functions Uk(tj); that is,

u =- aeg +a-l g g, 0,

(3,7)
U -, 0 as I1-’

4To be consistent, the original variable x may be referred to as the inner variable. The
transformation from inner variable to outer variable is a contracting rather than a stretching
transformation.
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where

k-1 O Uk-uR=0, R=a Y: U--------, k_->2.

Remark. The region 1)= E2\I)t depends on e and shrinks to a point as e
tends to zero. Thus, it might be expected that Uk satisfies the equation in (3.7)
everywhere except at t 0. If one considers lj as the original variable, then the
boundary layer is the neighborhood of the origin (indeed, the neighborhood of the
boundary

Solutions of (3.7) are clearly not unique. Hence in order to account t:or the
nonuniqueness, we need some kind of matching condition in the neighborhood of
1 0. This can best be described from the construction of the term Ux.

For k 1, the general solution of (3.7) is of the lorm:

.,-(a/2)!xe" (a )(3.8) U:() -al

for arbitrary constant al. From (2.2) we have

(3.9) UI() al log + + o(1 1 log I 1) as

where

b a (F0- log a).

To determine bl, we first substitute (3.9) into the outer expansion (3.6) and obtain
asymptotically,

U(I; e) -a + {al log [tl + bl + o(1 1 log It:jl)}(log e)-: + O(log e )--2) as

(3.10)

Next we write (3.1)in the form

(3.11) u(; E) Uo(’ f)’t-k__ UA(’ 0)}(log
Now let e tend to zero, with 1 fixed. Then the argument x 1/e becomes large and
we substitute into (3.11) the asymptotic expansion (3.5). This yields

(3.12) u(; e)-..(-mt-A1)+{A1 log [[-A2}(log e)-l+ O(log

The matching principle requires that coefficients of like powers of (log e) should
agree in (3.10) and (3.12), provided one neglects terms which tend .to zero as
Iljl--> 0+. This yields

(3.13) -mf-A1 =-a, A1 al, and -A2 bl.

Thus, we obtain ual(x; 0) and UI(I). Now it is not difficult to see how the general

(a/2)t:a a 2The general solution contains also multiples of terms such as e- Kn / )111), where the
are modified Bessel functions of the second kind. Since K,, (a/2)]l) o(11-") as -,, these terms will
be automatically rejected. This will be made clear when the matching principle is introduced.
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matching principle can be formulated, provided one knows the behavior of the
general solutions of (3.7) as tends to zero.

The general solution of (3.7) admits the representation

(3.14) Uk() --ak e-(a/2)XKol[[) +Dk(), k >-_ 1,

where Dl(j) 0 and

Dk(t)= a S(-I; 1)u,.(n)-z-- u-,.(n) dn, k >-2.
n=l

Here S(-I; 1) is the fundamental singularity ofU 0 (see (2.1)); the ak’S are
constants to be determined by the matching principle. In order to see that Dk
indeed decays to zero at infinity, we need some estimates of Dg; furthermore, we
also need some information about the singular behavior of Dk in the neighbor-
hood of 0.

To this end, we introduce the function h hl(ll) defined by

1
0<[[__< 1,

(3.15) h

Remark. It is easy to verify that ther exists a constant such that

0 __(1:l/2),1[/. [a <=lhl( ’)
LEMMA 3.1. For f E2, let

(3"16’1 J(’= e-(/2)e IIKo([t-*ql)Ko([’ql)hl(]’q[)d.
Ez

Then, Jis continuous at O. Moreover, there existconstantsH1 andH2 such that

(3.16)2 H1 [ a ) -(a/2)$

and

(3.16)3 "lJ() <-H2 hl Ia

The proof of the estimates (3.16)2 and (3.16)3 is tedious but straightforward and
will, therefore, be omitted here. To establish the continuity, one can assume
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(a/2)ll < 1. Then consider the integral (3.16)1 over the region (a/2)ll[ -< 1. By
setting f= Kohl, we see that f is integrable for (a/2)[l[ <=1. Hence the result
fllows immediately from the continuity of the integral

With the help of Lemma 3.1 and the remark below (3.15) it can be shown
that D2() is continuous at 0, and tends to zero as I1 c. Hence by induction,
it follows that Dk() is continuous at 0 and tends to zero as Il c. Thus, the
solutions Uk of (3.7)satisfy

(3.17) Uk()=ak log[l+bk +O(ll log[l) as0

where

bk ak (r0- log a)+Dk (0).

We are now in a position to formulate the matching principle for the higher
order terms.

MATCHtNG PRtNCtPLE. Determine the constants Ak of (3.11) and ak Of (3.17)
SO that the coefficients of log I1 and the constant terms for corresponding powers of
(log e)-1 are equal.

Comment. it was shown in [8] that for the model (), the matching principle
presented here may be considered as a simplified version of what is called the
asymptotic matching principle in [6]. The same conclusion holds in the present
case.

The matching principle gives a procedure for constructing formal inner and
outer expansions. To establish the validity of this formal procedure is, in general, a
difficult task, For the model problem of the ordinary differential equation (,), we
have shown that the validity of the procedure can be completely verified. In the
present case, because of technical difficulty, only partial justification is obtained.
In 6, we shall show that the process produces the correct first two terms in the
expansions.

4. A lriori estimates. We now consider the inhomogeneous problem

(4.1)

w a(4ff)x in l),

w 0 on 0f,

w 0 as Ixl ,
where a ea and b and ff are functions of x satisfying certain conditions which
will be specified later. We intend to majorize the solution of (4.1) in terms of
something like the solution of the linear problem (P) in 2. These estimates will
be needed to establish the existence of a solution to the nonlinear problem (P).
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In view of the asymptotic behavior of the solutions of (P), we introduce two
auxiliary functions, ho ho(r) and ho ho(r), defined by"

ho(r)

(4.2)

log
2
-, 0<r <- 1,

1

r’ r>l,

[log 2, 0<r_-<1,
ho(r)

ho(r), r > l.

One can easily see that there exist constants la and lz such that

(4.3) 11 e-rho(r)<- Ko(r)<= la e-rho(r).

We now state the results as follows:
THEOREM 4. Let b(x; a) and if(x; a) be functions of class C2 in f and of

class C in such that, for x ,
(4.4) and

Iff(x; a)]-< Boho([xl)
I(x; a)]

whereBo andBa are constants. Then them exist an ao (0, 1), a constantH H(lq),
and a solution w(x; a) of (4.1) such that

(4.5) [w(x; a )[ <- HBoBah-o(lxl), x e l,

for all 0 < a <= ao.
Remark. The proof of this theorem would be greatly facilitated by a know-

ledge of bounds for the derivatives of the Green’s function. We were not able to
obtain sufficiently sharp bounds and thus were forced into the rather complicated
procedure of this section. However, for later use, a bound for the derivative of the
Green’s function will be given by Lemma 4.2 at the end of this section.

Our first observation is that

wP(x; a)=a f fS(x-y; a)(4)y dy

is a particular solution of the equation in (4.1) provided that (4’if)y1 is suitably
restricted at infinity. An integration by parts yields

(4.6) wP(x;a)=a S(x-y; a)cos (n; yl)bOdSy-a (x-r; a)bdy.
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Assume that (4.6) does indeed give a solution of the equation and let w h (x; a)
be the solution of the problem (P) with g(x) replaced by -wP; the latter can be
obtained as in 2. Then the function w wP+ wh is a solution of (4.1). To
establish the inequality (4.5) it is necessary to estimate the solution of the problem
(P). We need a kind of maximum principle:

LEMMA 4.1. Suppose 0 < a < 1. Then there exists a constantMdepending on
the geometry of such that the solution v(x; g; a) of (P) satisfies the inequality:

(4.7.) Iv(x; g; c)l MIIgll

uniformly on f, where

h0(a/2lxl)
flog

dkg
=max k <

S is the,arc-length.
The proof of Lemma 4.1 follows easily from the construction of v(x; g; a).

We omit the details. It is clear from (4.7) that w h satisfies (4.5). Thus to complete
the proof of Theorem 4, we need only show that wp satisfies (4.5). The proof is
technical and will be deferred to the Appendix. We remark, however, that the
analysis is complicated by the existence of a region where the fundamental
solution $(x-y; c)in (2.1)decays slowly. This is analogous to the Navier-Stokes
equation [19] and represents a kind of wake region phenomenon.

To conclude the section, we state a lemma on an estimate of derivatives of the
Green’s function with respect to the domain fl. This lemma will be needed for the
existence proof.

LEMMA 4.2. Let G be the Green’s function ofv 0 for domain fl. Then
there exists a geometrical constant C such that for all x, y fl,

(4.8)

Remark. The Green’s function G can be written in the form

G(x-y; a)= S(x-y; t)+e-("/2)(xl-yl)h(x-y; a)

while an explicit form for the regular function h is given in [14]. The result (4.8)
then follows easily with some manipulations. The details will be omitted here.

5. Existence theorem. In this section, we prove that there exists a solution to
the problem (P,) for e sufficiently small. Our approach is a variation of a technique
due to Finn and Smith [5]. The idea here is to seek a solution of (P,) as the value at
infinity, -a, plus a small perturbation. This leads to the consideration of the
perturbed system for which the value at infinity tends to zero. Then it reduces the
effect of the nonlinearity in the original equation and facilitates the construction of
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a solution. To be more specific, we consider the family of problems

(5.1)

v aZVVxl in fl, a ea,

v=l+f on 012,
a

v --> 0 as [xl-
Here - is a small parameter, 0 <= - <- 1. Note that if v(x; a ’) is a solution of (5.1),
then

(5.2) u(x; e)=-a +av(x; a; 1)

is a solution of (P,). Hence, our object is to prove the existence of a solution of
(5.1). At this point, it should be remarked that other methods can also be used for
the existence proof but it should be constructive in order to study the asymptotic
behavior of the solution in detail. We now state the results as follows:

THEOREM 5. Forte sufficiently small, there exists a solution v(x; a; "r) of (5.1)
for " [0, 1]. This solution can be represented by an absolutely and uniformly
convergent series

where each v, (x; a) satisfies

n=O

v,, 4’,, in fl,

(5.3)2 v0 1 +--,f v, 0, n >= 1, on OIL
a

with

v, --> 0 as Ixl --> oo for all n >-_ 0

n-1 t9
t0 O, t O

=0
Vk

OXl
Vn-l-k, n >-- 1.

COROLLARY 5.1. For e sufficiently small, there exists a solution u(x; e) of
(P), which can be represented as

(5.4) u(x; e)=-a + a v,,(x; ea).
n=0

The first step in the proof is to construct the series (5.3). Vo can be constructed
by the method in 2, and hence by Lemma 4.1 we have

(5.5) [Vol <= Coho Ix for x E ll,

where Co Mo/llog a [, Mo a constant. We note that

.-1 O1)n-l-k 1 t n--1

E Vk VkVn-l-k.
k =0 OX 2 tgX k=O
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Thus if we use Theorem 4 and the fact that/((a/2)lxl)< ho((a/2)[xl), we readily
verify, by induction, that all the v,’s exist.

Our next step is to establish the convergence of the series (5.3) under the
hypothesis of the theorem. This is based on (5,5) and the following lemma, which
is an immediate consequence of Theorem 4.

LEMMA 5.1. Let the sequence {C,} of constants be defined by

Mo(5.6) C,+1 H
k=O

Then

uniformly on l.
It follows from Lemma 5.1 that the series

n=>l,

(5.7) C(r; a)=(llvo[I-Co)+ Ckrk

k=0

will dominate (5.3), since /o((a/2)lx[) is bounded and less than one. Here
llvoll-sup  .l o( ; which is bounded by the maximum principle. By an
analysis analogous to that in [8], we can show that

y.+,(2HCo)
(5.8) C, <= Co, n => 0,

(n + 1)!

where

1,
n+l

1"[n+l (2k 3),1 lk=2 n_>l.

Moreover the series (5.7) converges for - < (4HCo)-1. From the definition of Co,
this latter holds for all -e [0, 1], provided e is sufficiently small. Consequently,
(5.3) converges uniformly and absolutely.

Our final step is to demonstrate that the sum (5.3), v(x; a; z), satisfies the
differential equation in (5.1). This can be facilitated by considering the corres-
ponding integral equation. Our main task here is to establish the result:

LEMMA 5.2. The function v defined by (5.3) is a solution of the integral
equation

(5.9) all 2 0___G(x_y; a)dyv
0rl

for the Green’s function G.
Using (5.9), we find that it is straightforward to verify that v(x; a; z) has the

required differentiability and that it satisfies (5.1).
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To complete the proof of Theorem 5, we establish the result (5.9). First,
observe that the v,’s can be written in the form

(5.10) a cgG
VkV,,-1-k dy,

Hence, if we write

(5.11) 13 E VnT"n

then (5.10) implies that

n>l

(5.12)

and

v"=vo-- E (vv._)-" dr,
n=O k=O

m>-l,

VkV,,-k 7"" dy.

Thus, to verify (5.9), it suces to show that the last two terms on the right hand
side can be made arbitrarily small for m suciently large. This is clear for the first
term, v v, from the uniform convergence of the series. However for the second
term, we need a more involved procedure. This will proceed as follows.

Let m V2 m--1-,=0 (k=o VkV,-k)r". For any fixed x, we write

(5.13)
y [m[ dy +

I) D (x

where Do(x) is a disc with x as center and radius p. If we choose p small enough,
then for y Do(x), IOG/Oyll will be dominated by some constant times
Hence for any given/z > 0, there exists a p so small that

(5.14)
dY< .

D (x)

Now for this fixed p, by Lemma 4.2, it is possible to choose a number R so large
that for all lYl--> R and Ix- yl -> o,

(5.15) OGyx <__ OS(x-y- a) + C] OS(-y;
where C is a constant depending only on the geometry of fl. Then with p and R
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fixed, we have

l\Do(x)

In the region where p -<_ ly- xl and [Yl =< R, since OG/Oyx is regular, we obtain

a Yl dy <-_M(p; R)
p-<ly-xl
lYI--R

for some constant M. Then given any/x > 0, there exists a number Nl(/Z) such that
for all rn _> Nx(g), we have

(5.17)
3M(0; R)"

This is so because of the uniform convergence of the series n=o (Y.--o VkV,,-k)7’’.
Therefore, we have from (5.16)and (5.17)

oly-xl
lYIR

3

In the region where p ly-xl and lY] > R, we obtain by (5.15) and (5.6)

(5.19)

Now both terms in the square brackets are bounded independently of x, say byM
(see (A.1)). Moreover, the series ,=0 (--0 CkC,-k)’r" converges for - [0, 1],
for sufficiently small a. Hence given/z > 0 there exists a number N2(/z) such that
for all m _-> N2,

(5.20) , CkC,- ’" < tz
k=O 6Mx

Consequently, it follows from (5.14), (5.18), (5.19), and (5.20) that for any given
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Ix > 0, there exists an N max {N1, N2} such that

a v Y VkV,,-k dy <Ix
n=0 k=0

for all m => N. This completes the proof of Lemma 5.2.

6. Asymptotic properties. From the constructed solution u(x; e), one can
now study the asymptotic behavior of the solution as e tends to zero. We shall
concentrate on the leading term v0 of the series (5.3). In particular, we attempt to
make some justification of the formal inner and outer expansions constructed in

3. We begin with the following basic result.
LEMMA 6.1. For e sufficiently small and for any fixed integer m O, the

solution u(x; e) defined by (5.4) satisfies the inequality:

(6.1) u(x; e)- -a + a i=02 vi(x; ca) =< [(logdm)l+2le x

uniformly on It, where d,,+l < is a constant independent of e and x.
The proof follows easily from Lemma 5.1. We omit the details.
Lemma 6.1 yields a kind of asymptotic development for the exact solution

u(x; e) of (P). We see that since o((ea/2)lxl) is bounded and less than one, we
have

(6.2) u(x; e)=-a +a vi(x; ea)+O(log e)-(m+2) as e 0+

uniformly on 11. In particular, for m 0 we have shown that

)av0(x; ea)=-e-a/z)xl

n b(y)K0(--lx-yl as,,

where b can be determined by the method in 2. Then from Theorem 3, we arrive
at two expansions. More precisely we have proved the following results"

THEOREM 6. Let be any compact subset of f and let denote the region
{x E2 "lxl--> } for any 6 > die with d sup {Ixl" x 01"}. Then we have,

(6.3)

uniformly on and

u (x; e) -a (a mr) e )-1 )-2
(6.4)

uniformly on .
COrOLLArY 6.1. The solution u(x; e) has the representation for x ,

u(x; w(x; z(x;

u(x; e)= u0(x; f)+ u,,-,,t(x; 0)(log e)-I + O(log e as e -
as e - 0+



180 GEORGE C. HSIAO

where

w(x; )= (- (x)){uo(x;/)+ u_,,,(x; 0)(log )-},

v(ex; e)= d/o(ex){a (a- mr)e-(/2)aXlKo(e_[xl)(loge)-l},
z (x; e) O(log e)-2 as e 0+

uniformly on II.
The proof of Theorem 2 then follows immediately from (6.3)-(6.4).

Appendix. Proof of Theorem 4. From Lemma 4.1, it is easy to see that the
solution, w h, of the corresponding homogeneous problem will satisfy the
inequality

Iw(,,; )lM’llw"lllho Ix

in 12 for some constant M’. Hence it suffices to consider the particular solution
in (4.6). To this end, we need the following two lemmas.

LEMMA A. 1. Suppose 0 < a < 1. Then there exists a constant H1, depending
only on 1), such that

IJl(x;a)l =- a S(x-y;a) ho lyl
(A.1)

<= Hlho x for x .
Proof. Without loss of generality we may assume that (a/2)lyl--< 1 for y

Then the function Jl(X; a) is dominated by

(A.2) (log a )2

For (c/2)[xl> 1, clearly ](x;a)can be made less than some constant times
h-0@/)lxl), since y e 01). For (/2)lxl _-< the integral in (A.2) will be dominated
by Ilog a I, and since a (log a)3 is bounded, the result still follows.

LEMMA A.2. Suppose 0 < < 1. Then there exists a constant H2, depending
only on [I, such that

(A.3)

Jr.(x; a)[ =-[a If yS(x-y; a ){ ho(lY[)}2dy

Before starting our proof, we record a lemma which we will need in the
following. A proof of this lemma can be found in [6, p. 198].
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LEMMA. Let the numbers p and cr be such that p < 2, r < 2, p + r > 2. Then
there exists a constant C1 depending on p and r such that

(A.4) dz
< C

for all x, y Ez and x y.
Throughout the proof, we denote constants by Ak. These constants may

depend on the domain ll and their values may change.
ProofofLemma A.2. We split the domain f into subregions fl’ and f" where

f’= {y: (a/2)lyl--> 1} and f"= {y: (a/2)lyl < 1}. The corresponding parts of J2 in
(A.3) are then denoted respectively by J’ J"z and 2. To facilitate the proof, we first
observe that for 1,

e’ Ko(Inl) <=const.

which implies that (O/Orll){e’lKo([[)} vanishes exponentially with 1 except in the
region (the so-called "wake region" in fluid mechanics):

(
However, in this region, we have

1- --[- 0

Hence we can conclude that for I11--> 1,

(A.5) 0
--z--{e const.

whether it is in the wake region or not.
Now let us consider J’z. By changing variables,

(A.6)

where Il (a/2)[x[. We now consider two cases according to the location of :
Case 1. 0 < 1, Equation (A.6)implies that

<=A2 <A3ho x
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Case 2. Il--> 1. We can write, from (A.6),

J2( ,a)[-<_ + 7-7{e-{e-’)Ko(ll-l[)}i- dl
Inl---1 Inl---1

I/i (; ) +i(; 11
Here both J’=l(X; a) and J2(x; a) are dominated by the integral

1

I1>_-1

This follows easily from (A.5) and the fact that

Hence an application of (A.4) yields the desired result that

Next we consider J"2. From the definition of ho, we see that

(k.7) IJ’(x; ’1 II Ie-’-’(l-t)l (lg])2

d

where Il (/2)lxl. Similarly, we consider two cases according to the location
of " Case 1. ]] 2. Condition (A.7) implies that

d ,1 (log ll)2 d}
Inll Ill

This is clearly bounded, and we have

IJ2(x, a)l =< A2 Ix
since for (a/Z)[x[ =<2,/0((a/Z)lx[) is bounded by a nonzero constant.

Case 2. I[ > 2. Condition (A.7) implies that

2 a)l----<A 7-7n,{e-(e’-’)Ko(l- 1)} (1 + log 111)2 d
Inl_-<l

1 1

<--A2- ff +log [ql)2 dq,/1_ i1/1[(1
MI<I

NA3ho
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Now if we collect all the estimates, we find that the proof of Lemma A.2 is
complete.

Lemmas A.1 and A.2 and condition (4.6) yield the estimate

By a similar argument one can show that there exists a constant H3 such that
[IwPlII<-BoB1H3. Consequently, the result (4.5) follows if we let H=HI+
H2 +MH3. This completes the proof of Theorem 4.
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EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS
OF AN ABSTRACT INTEGRODIFFERENTIAL EQUATION

WITH APPLICATIONS TO VISCOELASTICITY*

SARP ADALIf

Abstract. By using certain energy estimates, the existence of a unique solution for an abstract
integrodifferential equation in function space is established. Then, the asymptotic behavior of
solutions of the equation, which represents the abstract form of the dynamical equations of viscoelas-
ticity theory, is investigated under conditions which are mechanically realistic in the framework of the
theory of viscoelasticity. The recently developed theory of compact processes seems the most
appropriate in this respect. The use of the invariance principle for the compact process generated by
the equation under investigation, combined with the existence of a Lyapunov functional, leads to the
proof that the solutions tend to zero as time goes to infinity. In the last part of the paper, the results are
applied to the equations of viscoelasticity and the mechanical interpretation of the assumptions is
given.

1. Introduction. In this paper we study the problems of existence,
uniqueness and asymptotic stability for a class of abstract integrodifferential
equations in function space. The results are then applied to viscoelasticity
equations.

Let Ho, H1 and Hz be real Hilbert spaces with norms II" [Io, II" II1 and I1" 112,
respectively, and such that H2 c H1 c Ho algebraically and topologically. We
define another space H_ as the dual ofH via the inner product (., .) of Ho. Thus,
H_ will be the completion of Ho under the norm

(1 1) Ilwll_l sup
I(W,

and (., .) is extended onto H-1 x H1 as a continuous bilinear form. We will assume
further that the injection of Hi into Hi-t, 0, 1, 2, is compact.

We consider the following history value problem:

(1.2) d--(O(t)ti(t))+ C(t)u(t)+ G(t--, t)u(-) d- f(t)

for s [s, o), where s is a given parameter, with the history

(.3) u( + s)= v(), (-o, 0].

Here p(t) is a self-adjoint operator in Ho for every s (-, +oo); C(t), for
fixed t, and G(, t), for fixed and t, are bounded linear operators from H1 to H-1.
We note that equation (1.2) represents the abstract form of the dynamical
equations of viscoelasticity theory with (1.3) specifying the history and the
independent variable denoting the time. The viscoelastic body considered here
has the property that C(t), G(, t) and p(t) approach time-independent limiting

* Received by the editors May 24, 1973, and in final revised form September 16, 1976.
"1" Department of Mathematics, Middle East Technical University, Ankara, Turkey. Now at

Council for Scientific and industrial Research, National Research Institute for Mathematical
Sciences, Pretoria, Republic of South Africa.

a(t) denotes the first derivative of u(t).
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values at large times as in the cases of many polymers. In this paper we are
interested in the existence and asymptotic behavior of solutions of (1.2), (1.3)
under conditions which are realistic in the framework of the theory of viscoelastic-
ity and preferably have definite mechanistic interpretations,. Theinvestigation will
answer the question of whether a Boltzmann type dependence of the stress on the
history of deformation, when this history is specified up to a certain time, will
induce a damping mechanism with the solutions uniquely determined.

Previously, the invariance principle has been exploited successfully in the
investigation of the asymptotic behavior of solutions of evolutionary equations
which generate dynamical systems [11], [5] or compact processes [6]. A similar
approach seems to be the most appropriate for the abovementioned problem from
the viewpoint of mechanics. Similar problems in viscoelasticity have been consi-
dered by Dafermos [5] and by MacCamy [13] for the case where C(t), G(, t) and
the density were time-independent, and they proved that solutions decay to zero
as time goes to infinity under suitable conditions. Dafermos [4] has also investi-
gated a similar initial value problem in function space and established a set of
sufficient conditions for the asymptotic stability of its solutions. The methods in [5]
and [13] for establishing the asymptotic stability fail in our case for the reason that
both depend on kernels of convolution type.

In this paper, we investigate the asymptotic behavior of solutions of the
equation (1.2) in the framework of the theory of compact processes developed by
Dafermos [3]. The observation that (1.2), (1.3) generate a compact process which
is, in the terminology of [3], asymptotically a dynamical system and the use of
invariance principle combined with the existence of a Lyapunov functional for this
process enable us to prove the asymptotic stability of the solutions of (1.2), (1.3)
under a set of sufficient conditions which is different from, and in some applica-
tions [5] weaker than the corresponding set in [4]. For example, the assumption of
convexity of G(:, t) in [4] which does not admit a mechanistic interpretation is
dropped and so is the positive-definiteness of OG/Ot. Nevertheless, the results
differ in form rather than in essence from their counterparts in [4]. Another
advantage of the new method is that it emphasizes the history rather than the
initial value problem, and consequently it leads in a natural way to function spaces
of fading memory type. This is important from the viewpoint of mechanics
since these spaces constitute a natural setting of viscoelasticity theory [2].

We first prove the existence of a unique solution u(t) for the history value
problem (1.2), (1.3) in 2 by using certain energy estimates. Edelstein and Gurtin
[10] and Odeh and Tadjbakhsh [14] studied the uniqueness problem for the
classical viscoelasticity equations similar in form to (1.2) assuming the positivity of
a constant density and the definiteness of the elastic modulus C(t). We give the
proof of an existence theorem for equation (1.2) essentially under the same
conditions; however our guidance here will be the work of Dafermos [4], where he
discusses the existence and uniqueness questions for an abstract Volterra equa-
tion taken as an initial value problem. Indeed, in establishing our results we adapt
an existence theorem from [4].

The compact process generated by (1.2), (1.3) is studied in 3. After
constructing a Lyapunov functional for this process, we give our main result about
the asymptotic stability of zero solutions in 4.
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In the last section we apply our results to the equations of linear
viscoelasticity;

OS p (x, t) Cqkl (X, t)
Ot

(a.4)
+ Gq,(, t-,, t)

Ou(, z)
d +(, t).

The reduction of equation (1.4)to the form (1.2)will be postponed to 5. In this
form, equations (1.4) represent the dynamical equations for a viscoelastic material
when small deformations are superposed on a large deformation history and/or
when there is an aging process taking place in the material. The asymptotic
behavior of the solutions of (1.4) is considered when the initial deformation path
tends to a stationary state and/or the aging process tends to stop as time goes to
infinity. In 5, after applying the results of the previous sections to viscoelasticity
equations (1.4), we give the mechanical interpretation of various assumptions
made in the paper.

2. Existence and uniqueness ol solutions. Throughout this work we will
assume that

C(t), d’(t) L((-o, co); (H1; H-l)),3

C(t), d’(t)e L((-oo, 00); f(H2; Ho)).

Moreover

(2.1)

(2.2)

2.

(C(t)w, v) (C(t)v, w) for all v, w H1, and e (-oo, oo),

<C(t)w,w>>=gllwll forallwnl, andt(-oo,

a(:, t)e C([0, eo)x(-ee, oo); (n2; no)) f’) L([0,
x(-oo, oo); (H2; Ho)),

G(, t), Ge(, t), G,(, t) C([0, oo)x(-oo, oo); ’(H; H-I))
(’l t([0, oo)x(-oo, oo); o’(nl; H-)).4

Furthermore, for fixed s and t,

(2.3)

(2.4)

(G(j, t)w, v)= (G(, t)v, w) for all v, w e H1,

(G(, t)w, w)<=O for all w H1.

3. p(t), 6(t), (t), ’(t) C((-oo, oo); S(Ho; Ho)) (’1L((-oo, oo); (Ho, Ho)),

(2.5) <o(t)w,w)pollw[lo, po>0, forallweHo, te[0, oo),

x denotes a point in the threesdimensional Euclidean space E3. The summation convention is
employed throughout the paper and i, j, k, take the values 1, 2, 3.

,’(Hx; H-x) stands for the space of bounded linear operators from H1 to H-I.
4 The subscripts denote differentiation with respect to that independent variable.
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(2.6) (tk(t)w, w) >= 0 for all w Ho, [0, oo),

(2.7) (fi(t)w, w) >= 0 for all w Ho, [0, oo).

(2.8) (iS(t)w, w) >= 0 for all w

4. f(t), (t)s L((-oo, oo); no), f(t), j(t) s L 1([0, oo); no).

We first state a lemma from Dafermos [5].
LEMMA 2.1. Let f(t)6Ll(O, oo). Then them exists an increasing function

p(t) C[0, oo) with p(0)- 1, p(t)- oo as t-oo, such that f(t)p(t) L 1(0,
It follows that we can assume the existence of a decreasing "influence

function" h(t) C[0, oo) with the following properties:

(2.9)
h(0)= 1,

h(0)0 ast,

(2.10) fo [lla(’ t)llen;n-) +llae(#’ t)ll’n;n-)]h-Z() d# <M<

for every t(-oo, oo). After fixing some influence function h(t) with the above
properties, we proceed to the definition of some Banach spaces:

DEFINITION 2.1. By CCk, k 0, 1, we denote the Banach space of functions
W(’) ck((--O0, 0]; H1) f-I ck+l((-00, 0]; Ho) such that

k k+l
(2.11) IIIw[ll  -- sup [h(-r)[lo-)[lx]/ Y sup [h(-r)l[O-)llo]<O.

0 (--oo,0] 0 (--oo,0]

It is clear that the above norm attaches greater weight to the recent than the
6distant past, in accordance with the ideas of fading memory.

DEFImTION 2.2. By Ydk, k 0, 1, we denote the Banach space of functions

w()s c((-oo, 0]; H)n C+((-oo, 0]; H1) (’] ck+2((-o0, 01; Ho)

such that

(2.12)
k k+l k+2

Illwlll--- E sup 11()112/ E sup II()llx/ E sup I1()11o
i=O (--oo,0] i=0 (--oo,0] i=O (--cx3,0]

With these definitions we have 1 c Ydo c 1 c (o algebraically and topologically.
We also have the following lemma from Dafermos [5].

LEMMA 2.2, For k O, 1, the injection of Ydk into qgk is compact.
Next we state two theorems which will be used later in the proof of existence

and uniqueness of solutions.
Consider the initial value problem

(2.13) d---;(o(t)tJ(t))= C(t)u(t)- O(t-r, t)u(r) dr +f(t)

By (0")we denote the ith derivative of w(r). For simplicity we will write b(r)for ()0")and if(z)
eor )(,).

6 An account of the theories of fading memory in viscoelasticity can be found in [2] and [16].
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for t => s and with the initial values

(2.14) u(s)= uonl, t(s) ao no.
Here s is some fixed real number. Let f(t)=fl)(t)+f2)(t) and

(2.15) f)(t)sLl([s, oo); Ho), 2)s Ll([s, oo); n_x).
THEOREM 2.1. There exists a unique solution u(t) of (2.13), (2.14) and

(2.16) u(t) C([s, oo); Hi), a(t) C([s, oo); Ho).
Furthermore,

(2.17) Ilu (t)llx / II/i (t)llo -< 4c /llollo

/
c

Proof. We form the (., .) product of (2.13) with fi(t) and integrate over (s, t)
and observe the following relation:

rr (p(r)ti(r)), ti(r) dr =-<O(t)ti(t), fi(t))--<p(s)ti(s),
(2.18)

+ (tS(r)f(r), ti(r)) dr.

Recalling (2.6), we can complete the rest of the proof along the same lines as
that of Theorem 2.3 in [4].

Now we impose additional smoothness assumptions on the initial conditions,
namely,

(2.19) u(s)= Uo e H2, /i(s) t2o Ha.
Let//(s) Ho be defined by

ii (s) p-(s)[- (s)a (s) + C(s)uo +f(s)].

We also define

(2.20)

(2.21)

GO)(t-r,t) Gt(t-e,t)d+G(O,t)-(t),

f(t)=-/(t) G(t-, t)u(s)d-G(O, t)u(s)+d’(t)u(t).

Let f1(t)=f1)(t)+f{12)(t) and

g)(t) e L ([s, oo); no),(2.22) 2)(t),/alZ) L l([s, oo); H-x).

With these definitions, differentiation of (2.13) gives

(2.23) --(tJ(t)zi(t)+o(t)ii(t))= C(t)ti(t)- G)(t-r, t)fi(r) dr +f(t).
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Now we are ready to state
THEOREM 2.2. There is a unique solution u(t) of (2.13), (2.19) and

(2.24) a(t)e C’([s, ); H,), a(t)e c([s, oo); Ho),

(2.25)

[111)0-)1lo + IIN)()II_] d-}.
Proof. We form the (., .) product of (2.23) with//(t) and integrate over (s, t).

We observe the following relation:

((-),(-)+o(-)aO-)), aO-) d-

(2.26)
1 1 1

=-(p(t)ii(t), ii(t))+-(iJ(t)fc(t), fi(t))--(p(s)ii(s), ii(s))

1
--((s)a(s), a(s)) +- (()a(), ())d- (h()a(), ()) d.

Recalling (2.6), (2.7), (2.8) we observe that the rest of the proof follows the same
lines as that of Theorem 2.3 in Dafermos [4].

Now we state and prove two theorems about the existence and uniqueness of
the solutions of (1.2), (1.3).

THEOREM 2.3. For v k, k O, 1, and T> s, there exists a unique u(t) such
that u(t) ck((--, 7]; HI)fq ck+l((--o, I]; Ho) which satisfies (1.3) on (-, s]
and (1.2)on [s, T]. Furthermore,

(2.27)
k k+l k (i)

sup I]%)(t)l[1 + Y, sup 11%)(011o -< cllllvlll / c2 E sup f(t)llo
i---0 [s,T] i=0 [s,T] i=O [s,o)

where C1 and C2 are independent of v.
Proof. Let us set

(2.28) F(t)=-f(t) O(t-z, t)vO’-s) dr.

With this definition we can rewrite the equation (1.2) in the following form;

(2.29) d--(p(t)ft(t))+ C(t)u(t)+

With the initial data specified as

G(t-r, t)u(r) dr F(t).

(2.30) u(s)= v(O), ti(s) t)(O)
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we have the same initial value problem as considered in Theorem 2.1. We have the
following obvious bounds for u (s), ti (s) and//(s);

(2.31) Ilu(s)llx -IIv(0)ll-<- sup [h(-r)llv(’)lla],
(-,o1

(2.32) II(s)ll -I1)(o)111--< sup [h(-)ll(’)llx],
(-,Ol

(2.33) II//(s)llo II/i (o)llo <= sup
(-,o1

Consider now the decomposition;

(2.34) F(t) F(X)(t) + F(2)(t),
(2.35) F(1)(t)-=f(t)6 L((-, co); Ho),

(2.36) f() a(- r, t)v(r-s) dr.

We have the following bounds for F((t) and F((t):
(2.37) IIF()(t)lio- Iif(t)llo--< sup IIf(t)llo,

[s,)

IIf()(t)ll_ G(t-z, t)v(r-s)dz
--1

(2.38)
<-_ ( JIG(t-r, t)lle(n,;._,)h-l(-r + s) d

\

sup [h (--)llv (r)ll].
(-,o)

If we set t-r =: and note that t-s >-0 and h-l(c)>-_h-l(c-t+s), after a
simple computation we obtain

sup Ilf(=)(t)ll_l <_- Io sup I1(, t)l[.(H;g-1)h-l() d
[s,T] te(--oo,oo)

(2.39)
.sup [h- (-"r)l[v (’r)lll].
(-oo,o]

In the same way, we can obtain bounds on/(1)(t) and J-’(2)(t);

(2.40)

(2.41)

tl(1)(t)l[o--Ilflt)llo sup
[s,)

[s,T]
sup

t(-o,oo)

"sup
(-oo,o1
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Now using (2.17) and (2.25) we obtain the estimate (2.27). Assertion of the
theorem thus follows from Theorems 2.1 and 2.2.

THEOgEM 2.4. For v o and T> s, there exists a unique u(t) such that

u(t)e C((-o, 7]; Hu)fq C((-, T], H1)n C((-o, T]; Ho)

which satisfies (1.3) on (-00, s] and (1.2) on [s, T]. Furthermore,

(2.42)
sup Ilu(t)[Iz + sup II()(t)lll+ sup
[s,T] i=0 [s,T] i=0 [s,T]

(i)

--< Cxlllvll]o / c= E sup f (t)llo.
i=0 [s,)

Proof. Since oc (1 we have v (/1. Then we can deduce the following
results from Theorem 2.3:

1. u(t) cl((--O0, r]; H1) ("l C((-oo, T]; Ho),
2. u(t) is the unique solution of (1.2) on [s, T] and satisfies equation (1.3) on

(-oo, s].
There remains to show u(t)s C([s, T]; H). First we establish the following

estimate by using the inequality (2.27) for k 1;

(2.43)
-(p(t)ft (t) <= II//(t)llollp(t)llo+ [l(t)llo[l(t)llo

o

=<sup (l[p(t)l]o+[[(t)llo){Cl[[lvl[lo+ C, sup [[(>(t)l[o].
[s,) i=0 [s,)

Since this estimate is good for any Is, T], we can conclude

sup (p(t)f(t)) -<sup (llp(t)llo / ll(t)llo)
[s,T] 0

(2.44)
[’)

[Cl[[I/)][[o---C2 sup
i=0 [s,oo)

Now we obtain an estimate for F(t), defined by (2.28), in Ho; that is, we
visualize G(C, t) as a linear operator from H2 to Ho. Using the fact that

(2.45) [sup
(-oo,o]

we have

(2.46)
Is, T] [s,eO) t[s,oo)

To complete the proof we shall need the following lemma"
LEMMA 2.3. For g(t)C([s,T];Ho) there exists a solution w(t)

C([s, t]; HE) of the integral equation

(2.47) C(t)w(t)+ G(t-z, t)wO’) dr g(t)
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on Is, T]. Furthermore

(2.48) sup [[w(t)ll2 <- C sup
Is, T] Is, T]

where C is independent of g(t).
Proo]’. We set Wo 0 and apply the standard Volterra iteration scheme to

obtain the following expression for w,(t):

(2.49) w,,(t)--C-(t)g(t)-C-(t) G(t-’, t)w,_(r)d’,

for n 1, 2,. .
By taking the difference w,+(t)-w,(t) and noting the assumption (2.2),

after a simple computation we obtain the following estimate"

(2.50) Ilwn+l(:)- wn (s)112 <M-sup IIw()- w-1()112
[s,2]

where : [s, T] and

(2.51) Me =- IIG(-,, )11<,=;,o

Since Me supt,,e Me, we have

M:(2.52) sup ][w.+t(t)- w. (/)112----- sup [Iw.()-
[s,] [s,]

From (2.49) and (2.2) we deduce

1
(2.53) sup IIw(t)ll < sup

[s,5] [s,]

From this result and (2.25) it follows that

(2.54) sup IIw,+(t)- w,,(t)llz
ts,el

sup Ilg(t)llo.
[s,5]

If we choose : sufficiently small so that Me/K < 1, {w(t)} becomes a Cauchy
sequence in C([s, :]; H2), and thus converges to some w(t)e C([s, :];/-/2) as
n and w(t) is a solution of the integral equation (2.47) on [s, :]. We also have
the following estimate for w(t):

(2.55) sup IIw(t)ll2 < E sup [Iw.+x(t) w.(t)ll= <
1

sup I[F(t)llo.

To obtain the estimate (2.48), we extend w(t) onto [s, T] by a step by step
argument.

Proofof Theorem 2.4 (continued). We have already established by (2.44)and
(2.46) that ]l(d/dt)(p(t)tJ(t))[[o and IIV(t)[Io are uniformly bounded, and their sum
gives g(t). This implies that [u(t)[[2 is also uniformly bounded due to the estimate
(2.48) of Lemma 2.3 and this establishes (2.42). The assertion of the theorem then
follows from Lemma 2.3 and Theorem 2.3.
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Remark 2.1. Suppose that

g(t)e C([s, o); Ho)f’lL([s, oo); Ho)

and define Mo(:)in the following way:

(2.56) Mo(s) IIG(’, :)llen_; no asr.

IfMoo()/K < 1 for " (-oo, oo), then the sequence {w,(t)} given by (2.49) will
converge to w(t) uniformly on [s, ) and in place of (2.55) we have

1
=...(2.57) sup IIw(t)ll <

Moo(C)
K

3. The process generated by equation (1.2). In this section we make some
additional assumptions;

(3.1) (t) L([0, oo); (Ho; Ho)),

(3.2) (t) L 1([0, 0(3); (H1; H-l)).

These conditions are related to the assumed time-independent behavior of p(t)
and C(t) at large times. Indeed, as consequences of (3.1) and (3.2) we have

o
(3.3) p(t) p,

(3.4) C(t) C, t- oo.

For the relaxation function G(:, t), we assume that for each fixed

(3.5) G(., t) Z1([0, 0(3); ,,(H1; H-l)).

Also in agreement with the ideas of fading memory, we require that for each
fixed (-oo, )

(3.6) Ge(.,t), G,(.,t)LI([o, ); (nl; H_)).

Furthermore, it is assumed that

(3.7) [IG(, t)[[eCu; _,)d <- k <.
The last two conditions on G(, t) express the assumption that G(, t) approaches
a steady state as oo. Indeed, as a consequence of (3.6) and (3.7) we have

(3.8) I1(, t)- 0 as t -
where G(:) is the limiting value of G(:, t) as oo. It is clear that p, C and G(:)
satisfy (2.1), (2.2), (2.3), (2.4)and (2.5).

We now consider the mapping7

(3.9) to x o x [!+-’) o
We employ the notation (-oo, oo), +=_ [0, ).
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which sends (s, v, s), s R, v o, : R+, onto we(v, ) qo defined by

(3. o) ,o (v, ’)() u (s + + ), e (-oo, Ol,

where u(t) satisfies (1.2) on Is, se] and (1.3) on (-oo, s]. Theorem 2.3 implies that w
is well defined.

TrIEOREM 3.1. The map w: x ’oX R+- which sends (s, v, ) to oo(v, )
is a process on C#o (see [3, Definition 2.1]).

Proof. (i) We have by (3.10) and (1.3)

(3.11) w(v, O)(r)=u(s+r)=v(r) forallteN,

(3.12) to s(v, 0)= v for all v o, s N.

(ii) From the definition of the map to it follows that

(3.13) s+l., (v. ’ + 00")= u (s + ’ + " + -)=., (., (v. ).

for all v e o, s e R; s, sr e N+.
(iii) In the proof of Theorem 2.3 we have obtained uniform bounds for F(1)(t)

and/l)(t) in Ho and for F(2(t) and/(2(t) in H-1 such that the constants C1 and C
in the estimate (2.27) are independent of s. Then using (2.27) we obtain

II1o (v, ’)0-)111o sup
r(-oo,Ol

(3.14) + sup
i=0 (-o,01

[h(-r)n((s + Sj + r)llol

< Cllllvlllo / c. sup IIf(t)llo.
[s,o)

Since (1.2) is linear, (3.14) implies that for any fixed s e l+, the one-parameter
family of maps toS( s): o--> o, with parameter s, is equicontinuous. This
completes the proof.

On account of Theorem 2.4 the restriction of to to N xo x N+ is also a map

(3.15) to" lt x o x I+ ---> No.

THEOREM 3.2. The mapw" NXoX N+Ydo whichsends (s, u, )tow’(v, )
with s , v o, / is a process on o.

Proof. It is the same as the proof of Theorem 3.1, except we use estimate
(2.42) instead of (2.27)for establishing equicontinuity.

Consider now the map a3" o x R/o which sends (v, st), v e o, sr e N/,
onto o3(v, sr) o defined by

(3.16) o3(v, :)(r)-- y( + r),

where y(t) satisfies

(3.17) d-(p(t))+ Cy(t)+ G(t- z)y0") dr 0

r e (-oo, 0],
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on [0, 1 and

(3.18) y(r)= v(z) on (-c, 01.
Here O, Cand G(s) are defined by (3.3), (3.4)and (3.8), respectively; that is, they
are the limits of O(t), C(t) and G(, t) as goes to infinity. It can be shown that the
map 03 is a dynamical system ([3, Definition 4.1]). For a proof we refer to [5, p.
304]. The connection between to and 03 is established by the following theorem"

THEOREM 3.3. The process to is asymptotically a dynamical system with
asymptotic hull {03} (see [3, Definitions 2.7 and 4.4]).

Proof. We have to show that for any fixed v e o and s N/,

o(3.19) to’(v, )-----> a3(v, ), ass -->c.

Forming the difference to(v, :)- a3 (v, ) we observe that

(3.20) to(v, )(r)-o3(v, sc)(r) W(s ++z)

with

(3.21) W(s++r)=u(s++r)-y(+r)

where u (t) is the solution of (1.2), (1.3) and y (t) is the solution of (3.17), (3.18). By
subtracting (3.17) from (1.2) we deduce that W(r) satisfies

d---(o(r)(r))+ C(r)W(r)+ G(r-r, r)W(r) dr

=/’(r) [o (r)- oIf (r s)- (r) (r s) C(r) C]y (r s)(3.

I: [G(r-r,r)-G(r,)]yO’-s)d"

on [s, o) and

(3.23) W(z) 0 for r e (-c, s].

We now define foX(r) and f o2(r) by
(3.24) ol(r)=f(r)-[p(r)-p](r-s)-l)(r)y,(r-s),

I:(3.25) (r)---[C(r)-C]y(r-s)- [G(r-z, r)-G(r-r)lY(r-s) dr.

By using (2.17), (3.23) and the fact that llu(011 Ilu(llo for all
we deduce

W(r)[Io / W(r)lll / (r)l[o

(3.26)

/ [[0(r)f(r-s)llodn/ II[c(n)-f]y(n-s)ll-1

+ [G(n-r,n)-a(n-r)ly(n-s)dr dn
-1
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By noting that (3.17), (3.18) is a special case of (1.2), (1.3) we apply Theorem
2.3 and obtain the estimate

(3.27) sup [ly(t)]ll+ Y sup I[)(t)llo Clllllll%
[0,j] i=0 [0,]

where is any fixed positive number.
We now let r s + t5 + ’, r/= s + tr and s ’1 -’2 and take the supremum of

both sides of the inequality (3.26) over r s (-o, 0] to obtain

sup
e(-o,0]

IIf(s /)11o do-/ IIo(s +,)-ollollP’(,)[Io do-

(3.28)

When we pass to the limit as s , the right-hand side of this inequality goes to
zero on account of the integrability of f, and conditions (3.3), (3.4), (3.8) on p(t),
C(t) and G(, t). Recalling (3.20), we see that this result implies that

(3.29) lim IIl (v, )()-a (v, )()11o 0,

that is, we obtain (3.19).

that
4. Asymptotic behavior of solutions. Throughout this section we will assume

(4.3)

(4.1) (Gt(,t)w,w)>-O forallwsH1, t(-oo,),

(4.2) (Ge(,t)w,w)>-O forallwsH1, ts(-oo,), :[0, oo),

IIG(:, t)lle(,;,o)d: < 1 for s (-oo, oo),

(4.4) (m(t)w,w)>-ao[lwl[l forao>0, forallwnl, t(-o,o),

(4.5) ((?(t)+fo Gt(lj, t) d)w, w)<-O forall wH, t (-oo, oo),

where K is the same constant as in inequality (2.2) and A is defined by the
following identity:

(4.6) A(t)=-C(t)+ G(t-r, t)dr.

We note that (4.1) is weaker than the corresponding assumption (3.6) of [4].
Furthermore, convexity condition (3.8) on G(s, t) of [4] is not present here. On
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the other hand, assumption (4.3) made here has no counterpart in [4]. But we
remark that (4.3) and (4.4) are in the same spirit and in some applications these
two conditions coincide as shown in 5 and [5].

In this section we will prove the stability theorem for the solutions of (1.2),
(1.3).

Let a functional W(v)on % x R be defined by

(4.7) VS(v) po+ (v) exp + 11/()11o d

where v e o, s R and

(4.8)

1ES(v)--(p(s))(O), )(O)) +-(A (s)v(O), v(O))

2
(G(-, s)(v(Ol-v()), (v(O)- v()))

The functional W(v) was constructed for the classical Volterra equation by Levin
[12]; he attributes the motivation to Volterra [15].

Due to (2.5), (4.4), (2.4) and the integrability of f(t),

1 1 1
(4.9) V’(vl>-oo+-poll(Oll[g+-ao[lv(O)ll >-_ o.

Next we compute

(4.10) f"(v) lim supl(w+(w(v, e))- W(v))
eO E

by temporarily assuming that /)(1. We add and subtract the term
[1/(2po)+E+(w(v, e))] exp (+[[f(’r)[[od’r) to the right-hand side of (4.10)
and after grouping terms together we obtain

+ (,,, (v, ))
0

(4.11, [exp (+ Is+ [’f(’r)[l dT-)-exp (+ Is Ilf(7")[[o d’r)]
+ [Es+’w’v, e))-E’,v,] exp (+ foo [[f(r)llo do }.

On account of (2.5), (4.4) and (2.4), we have

(4.12) E(v) e 1/2ooll(o)[Ig + aollv(o)ll.

From (1.3), (2.6), (4.1), (4.2), (4.5), (4.12) and the inequality

(f(s), a (s)> (oo/Tlla(s)llg) Ilf(s)ll
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we conclude that

(4.13) (v)= (v)-po+E(v)II[(s)llo exp II[(,)llod _-<0,

where

()= lim sup l-[E/ (to (v, e ))-E(v )]
e->O E

-"--(/(S)l(S), l (S )) + (zz (S )U (S ),

+([(s), (s))- (a(s -,, s)(u(s)- u()), u(s)- u())

Since 1 is dense in o and we have bounds on u(t) by (2.27), the validity of
(4.13) is established in the case v o.

We now establish the equicontinuity of the one-parameter family of maps
V’ (.): o , with parameter s , by observing that

{1lVS(01) gs(02){ [(p(S)l(0), 1(0))-(p(s)2(0), 2(0))[

1
+-I(A (s)v(O), Vl(O))-(A (s)v2(O), v2(O))l

(4.14)

(4.15)

(4.16)

I(p(S)tl(O), /1(0))" (p($)/)2(0), 2(0))

< lip ()llo(l[ 1(0)11o / I1=(0)11o)111 =111%,
t(A (S)vx(O), Vl(0))- (A (s)v2(0), v2(0))

--< IIa (s)ll<,; ,_)(llv l(O)ll / IIv=(O)ll)lllv-

(4.17)

0

If_ [(G(-: s)(Ul(0)-/)1()), Ul(0)- Ul()

-O(-, s)(v(O)-v()), v(O)- v()>] d.]
<-- aM(lily ll[lo + lllvzllio)lllv v=lllo.

The last inequality follows from (2.10).
It is clear that for every e > 0 there exists a 6 (u1, )2, 8) such that

(4.18) IW(v)-W(vz)l<e foralls
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whenever Illv -v=lll o < This proves the equicontinuity of V (v).
From this property and (4.9) and (4.13) we conclude that V (v) is a Lyapunov

functional for o (see [3, Definition 5.1]).
We now state and prove the asymptotic stability theorem:
THEOREM 4.1. Suppose that for every eigensolution q, of the eigenvalue

problem 8

(4.19) Cq-hpp =0

there is at least one [0, o) such that

(4.20) t(SC,)n 0.9
Let u(t) be the solution of (1.2), (1.3) with v qgo. Then

(4.21) u(t) , O,

(4.22) a(t) Ho O, c.

Proofi Consider the motion

(4.23) o(v, ): R/- o
of the process w which originates at the point (s, v). To prove (4.21) and (4.22)it is
sufficient to show that

co
(4.24) w(v, )---- 0 as : c.

For this purpose we first establish a bound for
From (4.13) we see that for any => s

(4.25) W(w(v, t-s))<= W(v)

and note that E, as given by (4.8), can be rewritten in the form

1
E’(toS(v, t-s))=-(p(t)fc(t), ti(t))+ (A(t)u(t), u(t))

(4.26) -- (G(t-z, t)(u(t)-u(’)), (u(t)-u(’))) dr.

From (2.5), (4.4), (4.25), (4.26) and the fact that lllu(t)ll->llu(t)[o for all
(-c, oo), we obtain

(4.27) ts.)suplla(t)’l<-(o W(v))x/z’
(0 )1/2(4.28) sup Ilu(t)ll <-- 2

w(v)
[s,)

Since C-x (Ho; H2) is a positive compact operator on Ho,(4.19) possesses a sequence {h,} of
real positive eigenvalues and the corresponding sequence {o,} of eigensolutions is complete in Ho.

9 Unless G() is of a very special type, this assumption will be satisfied.
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(4.29) sup Ilu(t)llol
2

VS(v )
[s,)

Now we assume temporarily that v Y3o. This will allow us to establish a
bound for I[1o (v,  :)111 o. Let

(4..30) G(1)(t--, t)-- G(t-, t) d +G(O, t)+d’(t),

(4.31) ]’(t)--- G(t ’, t)u(-oe) d-G(O, t)u(-c)-((t)u(-m).

The differentiation of (1.2)will give

(4.32)

By combining the term

(4.33) G(t-r, t)(r) dr

with fl(t) we obtain

d d( ) G(’(t t)ti(r) dr [(t)+f(t)(4.34) - -(p(t)u(t)) +C(t)ft(t)+ -r,

where f(t) represents the new term after the addition of (4.33) to f(t). We define
a functional O(v)(t) by

(4.35) O(v)(t) -Oo+J(v)(t) exp (-
for v 3o, where

J(v)(t)=--{ii(t)i(t), i(t)) +-{O(t)ii(t), ii(t)) + (A ((t)(t),
(4.36)

__1 (G(1)(t-r, t)(ft(t)-t;(r)), dr(t)-dr(r)) dr,
2

(4.37) A((t)=-C(t)+ G((t-r, t)dr.

We make the additional assumptions,

(4.38) (A ()(t)w, w) >-_ all[will for all w H, (-oo, oo),

(4.39) (G((,t)w,w)<-_O forallwH, [O, eo), t(-oo, eo),

(4.40) (G(t-r,t)w,w)>-_O forall wH1, r(-cx3, t], t(-oo, oo),

(4.41) (A()(t)w, w)<=O forall weH, te(-c,),
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where

(4.42) ,xi(a)(t) (?(t) + G(1)(0, t)+ Gl)(t-’r, t) dr.

With these assumptions we can easily prove the following inequalities:

(4.43) O(v)(t)>-_O,

d
(4.44) d- Q(v)(t) <- O,

and hence

(4.45) O(v)(s) >- O(v)(t) for Is, oo).

On account of (2.5), (4.38) and (4.45) we establish

(4.46)

(4.47)

[00 )]112sup II//(t)[Io <-- 2
O(v)(s

[s,o)

sup Ilti(t)l[1 =< 2
O(v)(s

[s,oo)

exp d

exp (21- I. (II/(T)IIO + [’f(T)ll--1)d’T).
From (4.3), (4.46) and remark 2.1 we deduce that [lu(t)ll . is also uniformly

bounded on Is, o). Then the motion toS(v, .)of o through (s, v)is uniformly
continuous on Is, ) and its orbit is bounded in o and precompact in o by
Lemma 2.2. From Proposition 3.2 of [3] it follows that the w-limit set ws (v)of the
motion is nonempty, compact and

c
(4.48) w(v, )-----* oaf(v) as:-.

Now we are ready to use the invariance principle for compact processes.
Actually in our case, the existence of a Lyapunov functional will enable us to use
even a more powerful stability theorem which results from the combination of the
invariance principle with the Lyapunov functional.

Let/)1 tos(/)). Using Prop. 5.1 of [3] and the fact that to(v, ) is asymptoti-
cally a dynamical system with asymptotic hull {o3} we deduce that

(4.49) 03(Vl, :) o*(v) for all R+.
Next we proceed to show that oS(v) is the set {0}. We observe that Z: o

defined by

Z(v)-(p:(t), :(t)) + C+ G() y(t), y(t)

(4.50)

2
(G(t-r)(y(t)- y (r)), y(t)- y(r)) dr

is a Lyapunov functional for the dynamical system 03. Here y(t) denotes the
solution of (3.17), (3.18). Since vl w(v), by Prop. 5.1 of [3], we have (vx) 0.
This, in turn, gives

(4.51) d(t-z)(y(t)- y(r))= 0, t (-, ), r(-, t),
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This implies that y(t) 0 for y (-oo, oo) as shown in [5, pp. 305-306]. Thus we
have

(4.52) td(v) {0}.

The result follows from (4.48).
Now we can remove the assumption v eo and establish the theorem for

v go by using an argument similar to the one given in [5, p. 306].

5. Applications to linear viscoelasticity. Let f be a bounded domain in E3. In
this section we consider the equations of linear viscoelasticity (1.4), in the cylinder
f(-oo, oo), together with homogeneous boundary conditions

(5.1) u(x, t)=0, xs01), t(-oo, o).’
The history of u(x, t) up to a given time s is assigned for the entire body:

(5.2) u(x, t)= v(x, t), x , t (-oo, s].

Let C(II) denote the set of three-dimensional vector fields with compact
support in lq and components in C(D,). We obtain Hilbert spaces Ho, H1 and H2,
respectively, by completion of C(12) under the norms induced by the inner
products

(5.3) (w, v)-- In wivi dV,

O w__ Or._.2 dV,(5.4) (w, V}l
cxi gxi

O2Wi 02
{w, vh  x-7 dr.

The space H_I will now be defined as the completion of C(II) ny means of
the norm

(5.6) Ilvll-x - sup

and (., .) is extended onto H_ xH as a continuous bilinear form. Obviously
H2 c H1 c H_, algebraically and topologically. Moreover, by Rellich’s theorem,
the injection of Hi into Hi-, 0, 1, 2, is compact.

It is clear that the mixed history boundary value problem for (1.4) can be
reduced to an abstract history value problem of the type (1.2) and (1.3) for the
above selection of H2, H1, Ho and H_, provided that p(x, t), Ciaikl(X, t) (for fixed t)
and Giikl(X, , t) (for fixed sc and t) are Lebesgue measurable functions essentially
bounded on I1. The conditions imposed in 2, 3 and 4 on the operators p(t), C(t)
and G(:, t) can easily be formulated in terms of p(x, t), Ciik(X, t) and Giikl(X, , t).
For example, equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7) will be

lo More general classes of homogeneous boundary conditions can be considered alternatively
with slight modifications.
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satisfied if and only if

(5.7) t)= t)

(5.8)

for x l) and (-, ),

(5.9)

(5.10)

fl Ci]kl(X OW_._j. OWk dV>-K f Ow Owit)
Ox Ox .In Oxi Ox

Gijk(X, , t)= Gk,j(x, , t) for x f,

In G(x, , t) Ow--2 0W.__k dV 0
OX]

---dV

for all w e H, e (-, ),

(5.11) p(x,t)>--_po>O

(5.12) OO(x’t)>--O,
Ot

00(x, t)
0,(5.13)

Ot2

s e [0, ) and te(-, ),

for all w e H1, e [0, ), te(-, ),

for x e fl, e (-, c),

xel, te(-, c),

xefl, te(-,).

Under the conditions (5.7)--(5.13) and some mild smoothness restrictions on
the time behavior of p(x, t), Ciikl(X, t), Giikt(x, tj, t) and fi(x, t), Theorem 2.3
establishes the existence of a unique solution of equations (1.4), (5.1), (5.2). We
note that the solution obtained is not necessarily smooth in x. Additional
hypotheses should be made in order to establish the existence of a classical
solution. We refer to Edelstein [9] about the necessary hypotheses for classical
solutions of quasistatic viscoelasticity equations.

Similarly, the asymptotic behavior of solutions of equations (1.4), (5.1), (5.2)
can be investigated through Theorem 4.1. The assumptions required in order to
apply this theorem can be easily formulated. For example equations (4.1), (4.2),
(4.4), (4.5) will be satisfied, if and only if, for all w H1,

(5.14) Ia OGikl(X’’t) Ow--jOw---dV<--O’ [0, c), te(-o,o),
Ot Oxj OXl

(5 15)
r
|

OGiikl(X, , t) OW_. OW___. dV <- O, [0, ), ts(-c, ),

(5.16)
Aiikl(X, t) Owi OWk dV>_ ao dV

Oxi Ox Ox Ox

for ao > O,

(5.17)
OAiikt(x’ O, (-c, o),

t) Ow_.._j. O w._._ dV
Ot Oxi OXl

where

(5.18) Aiikl(X, t)=--- Cqk/(X, t)-- Gi]kl(X t-z, t) dr.
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The remaining assumptions can be formulated in terms of p(x, t), Ciikl(X, t) and
Gjkt(X, , t) in a similar way. Under these conditions and assuming that p, Cjkt and
Giikt approach time-independent values at large times, Theorem 4.1 proves the
asymptotic stability of solutions of (1.4), (5.1), (5.2).

The mechanical interpretation of some of these assumptions is quite clear.
For example (5.7) implies a hyperelastic behavior and (5.8) expresses the sta-
bility criterion for the instantaneous elastic response of the viscoelastic material.
Similarly (5.16) gives the condition for static stability. Equation (5.9) expresses
the symmetry of the relaxation function and has been given a mechanistic
characterization by Day [7]. Assumptions (5.10) and (5.15) have their origins in
experiments with one-dimensional viscoelastic material, for which it was observed
that the relaxation function is nonnegative and monotonically decreasing with
time. In fact, these properties were interpreted by Day [8] by a characterization in
terms of the work done on the material, p(x, t), being the density of the material, is
a positive quantity as shown in (5.11). Equations (5.12), (5.13), (5.14) and (5.17)
express the assumption that the change in the material response with time is
monotone in a certain sense which is compatible with the requirement that the
viscoelastic material under consideration approaches a steady state at large times.

To give a mechanical interpretation of (4.3) we consider the one-dimensional
viscoelasticity equations:

O2U(X, t) o2u(x, y) ff 02t (oXx r)(5.19) p
Ot2

C
Ox 2 g(t-r) dr +f(x, t),

where p and c are constants and g is independent of x. In this case

(5.20) [[G(:, t)lln2;o g(),

and noting that c->K, we observe that (4.3) becomes

(5.21) C-lo g(:) dsC > O.

This is the static stability condition for one-dimensional viscoelasticity equations,
that is, the one-dimensional analogue of (5.16). Although in the multidimensional
case, (4.3)is not equivalent to (5.16), it is in the same spirit. By observing that (3.5)
is a similar condition to (4.3), we establish its relation to static stability. We also
observe that in this case (4.4) reduces to (5.21), hence coincides with (4.3). In the
one-dimensional model, the remaining assumptions can be given mechanistic
interpretations. In terms of c and g(t-z), the inequalities (4.38), (4.39), (4.40)
and (4.41) reduce to the one-dimensional analogues of (4.4), (2.4), (4.2) and (2.4),
respectively, which have been formulated above to be the inequalities (5.16),
(5.10), (5.15)and (5.10).

Finally, we would like to remark about the general character of some of the
assumptions made in 2, 3 and 4. It will be remembered that we have
interpreted (5.12)-(5.14), (5.17) in terms of the monotonicity of the material
response and (3.5), (4.3), (4.4), (4.38)-(4.41) in terms of their one-dimensional
analogues. All these assumptions are rather stringent and they were, in
fact, necessitated for the proofs of various results in the investigation of the
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asymptotic stability of the viscoelastic material under consideration. Neverthe-
less, these assumptions are easily satisfied in the applications. For example,
(5.12) and (5.13) are satisfied if the material has a constant density. As yet, there
do not seem to be any different mechanical interpretations of the abovemen-
tioned assumptions which are based on exact mathematical arguments of the
physical phenomena such as the case in [1], [7], [8] and [16]. On the other hand,
it is interesting to note that (5.8) has been given a new meaning in [1] after this
paper had been first sent for publication. Also another condition in [-1, eq. (13)]
is in the same sense as (4.39), both of these assumptions being necessary for the
asymptotic decay of accel.eration waves in the viscoelastic materials of the type
considered in this paper. This situation gives reason to hope that similarly some
of the hypotheses now needed in this paper will be given a firmer foundation in
rational mechanics as the research in this area advances.
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GREEN’S FUNCTIONS FOR LINEAR SECOND ORDER SYSTEMS*

K. A. HEIMES’I"

Abstract. A representation is obtained for the.Green’s function associated with the two point
boundary problem y" Ay’+By +f, y(0)= y(T)= 0, where y and f are vector valued, A and B are
closed linear operators. Certain results are applied to solving nonhomogeneous partial differential
equations.

1. Introduction. The purpose of this paper is to obtain a representation for
the Green’s function, or kernel, G(t, s) so that

T

(1) y(t)= | G(t, s)f(s)ds
o

solves the linear boundary value problem

(2) y"(t)=A(t)y’(t)+B(t)y(t)+f(t), y(0) y(T) 0.

The function f is continuous from the real interval 0 -< -< T into a real or complex
Banach space X. A and B will be either (i) constant, closed linear operators
defined on a dense subset ofX or (ii) strongly continuous from 0 -< T intoB(X),
the algebra of bounded linear operators from X to X, endowed with the operator
norm topology. A solution y(t) to (2) will be a twice continuously ditterentiable
function on 0<-t-< Twith y(t)in the domain of B(t), y’(t)in the domain of A(t)
and (2) is satisfied for 0 < < T.

When X is the real numbers, A (t) and B(t) are real valued functions so
variation of parameters yields the representation

(3)
G(t, s) {u(s)[u(t)v(T)-u(T)v(t)]/(u(T)D(s)), O<=s<=t,

u(t)[u(s)v(T)- u(T)v(s)]/(u(T)D(s)), <-_ s <-_ T,
D(s)=- u’(s)v(s)-v’(s)u(s),

in terms of solutions u(t), v(t) to the homogeneous equation y" Ay’ + By with
initial conditions u(0)= v’(0)= 0, u’(0)= v(0)= 1. We can compute u and v for
the case A and B constant to obtain

1[ (t,.2s)A] {C(t+s- T)-C(T+s-t), 0<s < T,(4) G(t, s)= exp [C’(T)]-1
C(s+t-T)-C(T+t-s), t<=s<-T,

where C(t)is cosh Q1/2t or cos IQla/2t or tz/2 according as Q=1/4A2+B is
positive, negative, or zero. (We assume, of course, that C’(T) 0).

Our principal result is the generalization of the representation in (4) to the
case where A, B are constant, densely defined, closed linear operators on X. Basic
assurnptations are that 1/2A generates a Co group and that Q generate a cosine
operator function ([2]-[5], [8], [9], [11], [12], [14]). This extends results of Krein
and Laptev with A 0, the zero operator on X, and B p2 where the Green’s
function is expressed in terms of the analytic Co semigroup generated by -P. See

* Received by the editors December 10, 1974, and in final revised form September 29, 1976.
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[10, pp. 247-270]. We also give a representation for G(t, s) as a series in powers of
A and B with scalar valued coefficients; convergence places strong demands on
the forcing function f(t).

Section 2 concerns nonconstant bounded coefficient operators. A represen-
tation analogous to (3) is obtained.

We avoid reducing the second order equation in (2) to a first order system as
one finds in Conti [1] and Reid [13].

2. Bounded coefficient operators. We assume throughout this section that
A (t) and B (t) are strongly continuous from 0 <_- -< T into B(X). An operator P in
B(X) is invertible or regular in case P is one-one and onto with P- in B (X).

It follows from the Banach-Steinhaus theorem that IIA (t)ll-< m, IIB(t)ll-<- m on
O<-t<-_T for some constant m>0 and that A(t)W(t), B(t)W(t) are norm
continuous from 0 =< _-< T into B(X) when W(t) has that property. Consequently,
the Picard iteration scheme shows that the Cauchy problem for

(5) Y"(t) A (t) Y’(t)+ B(t) Y(t)

in B(X) has a unique solution which is twice continuously ditterentiable in norm
and exists on 0 < < T.

THEOREM 1. For strongly continuous bounded operators A(t), B(t) on
O<=t <-_ T, let U(t) and V(t) solve (5) with

U(O) V’(O)= 0 zero operawr

U’(O) V(O)= I identity operator.

If U(t) is invertible on 0< t<= Tthen (1) solves (2) ]’or every continuous function ]"
where

O= s<-t,
G(t, s)= U(t)[R(T)-R(t)]H-I(s), O<s<=t,

U(t)[R(T)-R(s)]H-X(s), t<=s<-_ T,(6)
R(t)= U-a(t)V(t), n(t)=-U(t)R’(t)

Proof. Since U(t) is differentiable and U-a(t) exists, U-(t) is differentiable
on 0 < t-< T. Thus R (t) is defined and differentiable on 0 < t-< T.

From the initial conditions on U, we have

lim U(t)- liml.1-- [U’(r)-I] dr =0.
t-,0 t-,0+ll

Since the inverse map is continuous on the invertible operators of B(X),
limt.0+ tU-(t) L Thus limt-,o/ tH(t)= L Now the invertible operators form an
open set in B(X) so tH(t) and H(t) are invertible on some interval 0 < < 8. But
H(t) solves the differential equation H’= (A- U’U-)H on 0< t_<-T so H is
invertible on 0<t<_-T. In fact, limt_o+(1/t)H-l(t)=I so H- is continuous on
0< -< T by taking H-(O) O.

We have established thus far that G(t, s) is norm continuous from the square
[0, T]x[0, T] into B(X). Clearly G(O,s)=G(T,s)=O. Since U(t)R(t)= V(t),
we see that, for fixed s, G(t, s) is a linear combination of U(t) and V(t) for 0 < < s
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and s < < T. Consequently, G(t, s) is class C2 and solves (5) as a function of for
fixed s in the indicated regions. Note also that

O--G-G (t + h, s)-O_G(t- k, s)= U’(t + h)- U’(t- k)]R (T)n-X(s)
Ot

+H(t + h)H-l(s)+[U’(t + h)R(t + h)

U’(t k)R (s)]H-l(s)
for t-k<s<t+h. This expression has limit I as h,k0. Thus
limh-,0/ (1/h)tt+h [(OG/Ot)(t+h, s)-(G/Ot)(t, s)]f(s) ds =f(t). Using these
facts, one now shows by direct calculation that the function y(t) defined in (1)
does indeed solve (2).

COROLLARY. When the independent solutions U(t), V(t) to equation (5) are
related by U(t)= tV(t), the Green’s ]’unction in (6) reduces to

(7) G(t, s)=

Example. Let X--R2,

_t
A(t)= 4t l_t4

s(t- T)
T

t(s- T)
T

V(t)V-l(s), O<-s<-t,

V(t) V-l(s), -<_ s -<__ T.

1] I-lOtB(t)=l_2_lOt
Then independent solutions to (5) are

V(t)= [ 1 t2 ]2 lq-t4
and U(t)= tV(t).

The solution to the two dimensional system (2) is then easily computed for any
forcing vector f(t) using G(t, s) from (7) in (1).

Notice that we can generate a class of problems whose Green’s matrix is given
by the above corollary. Take any C2 matrix V(t) with V(0)= I and V’(0)= 0.
Then V(t) and U(t)= tV(t) are fundamental solutions to (5) when A 2 V’ V
and B V"V-1-1/2A 2.

3. Unbounded coefficients. Henceforth we use the notation D(Q)for the
domain of the operator Q.

DEFINITION. Let Q be a closed linear operator whose domain D(Q) is dense
in X. We say that Q generates a "cosine operator function" in case there is a
strongly continuous function C(t) from -< <c to B(X) with

(i) C(t)x D(Q) for every x D(Q) and all t,
(ii) x D(Q) if and only if C(t)x is twice continuously differentiable in norm

with C"(t)x C(t)Qx QC(t)x on -o < <c and with C(O)x x,
c’(o)x =0.

Da Prato and Giusti [2], Fattorini [3], and Sova [14] have given conditions on
the resolvent of Q which are necessary and sufficient in order that Q generate a
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cosine function. Their result is analogous to the Hille-Yosida generation theorem
for semigroups of operators.

Starting with this definition one can show that the cosine operator satisfies
C(t + s)/ C(t- s)= 2C(t)C(s), C(O)= I, C(t)- C(-t), and C(t)C(s)- C(s)C(t)
for all real s, t. (cf. [9, p. 95]). Moreover, the bounded operator S(t) defined by
$(t)x to C(s)x ds is continuously differentiable in for all x X, twice continu-
ously differentiable for x D(Q), commutes with C(t), commutes with Q on D(Q)
and solves

S"(t)x QS(t)x S(t)Qx, S(O)x O, S’(O)x x

for fixed x D(Q). Notice that for x D(Q),

T T

c’ T)x Jo ds Jo ds

We use this in our first generalization of equation (4).
THEOREM 2. Let Q generate a cosine function C(t) and let S(T)= C(s) ds.

Assume each of Q and S(T) has a bounded inverse. Then for every continuous

function F(t) from 0 <- <- T into X, the function
T

(8) y(t) | G(t, s)F(s) as
Jo

solves

(9) y"(t) Oy (t) + F(t), y(0) y(T)= 0

where

(10) G(t,s)=-{[C(s+t-T)-C(s+T-t)]Q-1S-I(T)’ O<-s<-t’
1/2[C(t + s T)- C(t + T- s)]Q-IS-(T), <-_ s <-_ T.

Proof. Put k(s)= Q-S-(T)F(s). Since C(t) is strongly class C2 on D(Q)
and F(s) is continuous on 0 -< s =< T, it follows that k (s) is continuous on 0 <- s -< T
to D(Q) and C(s + T)k(s) is class C2 in uniformly in s on 0 -< s <- T. Thus,
differentiating (8) gives

(11)
y’(t) [C’(s + t- T)+ C’(s + T- t)]k(s) ds

+- [C’(t + s T)- C’(t + T- s)lk(s) ds

and

y"(t) C’(T)k(t)+ IoT QG(t, s)F(s) ds

=F(t)+QY(t).

The end conditions are easily checked.
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THEOREM 3. LetA, B be constant closed linear operators densely defined onX
with D(Q)= D(B)c D(A 2) where Q=1/4A2+B. Assume that 1/2A generates a Co
group U(t), that BU(t)x U(t)Bx for x D(B), that O generates a cosine function
C(t) and that 0-1 and S-I(T) exists. Then for every continuously differentiable
function f(t) on 0 <= <-_ T into D(A ), equation (2) has a solution given by

T

y(t)= U(t) J0 G(t, s)U(-sff(s) ds

where G(t, s) is as in (10).
Proof. Let w(t) solve (9) with F(t)= U(-t)f(t). Put y(t)= U(t)w(t). Now

w(t) is class C2 into D(O)c D(A 2) so y(t) is at least class C with

(12) y’(t) U’(t)w(t)+ U(t)w’(t).

The first term on the right in (12) is again differentiable because w(t)D(A2).
Integrating (11)by parts (w’(t)is given by (11))shows that w’(t)maps 0=<t -< T
into D(O) D(A) so that U(t)w’(t) is in D(A) and ditterentiable. Thus y’(t) is in
D(A) and ditterentiable with

y"= U"w + U’w’+ U’w’+ Uw"

=1/4A2Uw +AUw’ + U(t)[Qw(t)+ U(-tff(t)].

From (12) we get AUw’=Ay’-AU’w=Ay’-1/2A2Uw and this substitution
above gives y"=Ay’+By+f where we have also used UQ=QU since U
commutes with B. Q.E.D.

If 1/2A generates a Co group and if B is closed with D(B)=D(A), then
necessarily Q generates a cosine function [5, p. 250]. In this case the conclusion of
Theorem 3 is valid if either f is continuous with value in D(A2) or if f is
continuously differentiable with value in X.

When D(A)=X in Theorem 3, it suffices to have f continuous with value in
X.

THEOREM 4. Let Q generate a cosine function C(t) and put S(t)= ’o C(s) ds.
Assume S-(T) exists. IfF(t) is continuous on 0 <- < T into D(Q), then (9) has a
solution given by (8) with

S(t- T)S(s)S-I(T), 0<= s <= t,(13) G(t, s)
S(s- T)S(t)S-I(T), t<=s < T.

Proof. Since S’(t)x C(t)x for all x X,
T

y(t)= Io S(t- T)S(s)S-I(T)F(s) ds + f, S(t)S(s- T)S-’(T)F(s) ds

is clearly class C with

y’(t) Io C(t- T)S(s)S-I(T)F(s) ds + It C(t)S(s- T)S-I(T)F(s) ds.

Now D(O) is invariant under both the cosine operator C(t) and the sine operator
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S(t) so with F(s) continuous into D(O) we have

y"(t) [C(t- T)S(t)-C(t)S(t- T)]S-(T)F(t)

+ C’(t- T)S(s)S-I(T)F(s) ds + C’(t)S(s- T)S-I(T)F(s) ds.

Setting P(t) C(t- T)S(t)- C(t)S(t- T) gives P(T) $(T) and P’(t)x 0 for all
x D(Q)so that e(t)= $(T)on 0-<t -< T. Also C’(t)x QS(t)x for x D(Q).
Thus the above expression reduces to y"(t)= F(t)+ Qy(t). Q.E.D.

The requirement that Q-1 and/or S-(T) exist seems difficult to verify in
examples. For a particular forcing function F(t), however, it is clear that the
theorems and formulas are correct provided there is a function g(t) into D(Q) so
that QS(T)g(t)=F(t) (or S(T)g(t) in Theorem 4). Moreover, by the cosine
function generation theorem [2, p. 358], Q- automatically exists as a bounded
operator on X if we replace Q by Q- ZI for A > 0 sufficiently large. This simply
involves perturbing B by a scalar.

Example. Let Q=d2/dx2 and let X denote the uniformity continuous
bounded functions on -c < x < c with supremum norm. Q generates the cosine
operator C(t) defined by C(t)q(x)=1/2[q(x + t)+ q(x t)]. Let g(x, s) D(Q) for
0 <- s =< T. Replacing Q-*S-(T)F(s)in (8) of Theorem 2 by g(x, s)we have that

(14)

solves

U(t, x)=- [g(x + s + t- T, s)+ g(x s + T, s)

-g(x + s + T-t, s)-g(x -s- T+ t, s)] ds

+- [g(x + s + t- T, s)+ g(x s + T, s)

-g(x +t+ T-s,s)-g(x-t- T+s,s)] ds

0zu
Ot---- xZ +f(x, t),

u(O,x)=u(T,x)=O for all x

where f(x, t)=1/2(O/Ox){g(x + T, t)-g(x- T, t)}. (The variables and x are inter-
changed from their usual role in the wave equation).

Equation (14) is good for generating explicit solutions for a reasonable class
of problems.

Our final result gives a series representation for the solution to (2).
For integers n => 1 define the functions

[(s + t- T)z" -(s + T)Z"]/(2n)!,
h,,(t,s)= [(t+s_T)Z,,_(t_s+T)Z,]/(2n)!
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and

hl(t, s), n 1,
n-1

T2i/gn(t, s)=
h,,(t, s)- E g,-i(t, s) (2j + 1)t n > 1.

Note that all these functions vanish at 0 and t- T.
One verifies directly that (02h,/Ot2)(t, s) h,_l(t, s) for < s or > s and, by

induction, we find that (02g,/Ot2) (t, s)= gn-l(t, s) in the same regions.
Since

lim Oh----"(t, s)- lim+Oh"(t, s) T("-l)/(2n 1)!
s-.t- Ot s-,t Ot

for n => 1, we obtain inductively

lim t"(t, s)-lim Og-----"(t, s)= {1, n 1,
-t- -t Ot O, n > 1.

With these facts, the following lemma is easily verified.
LEMMA. Let 1/2A generate a Co group U(t) and let f(t) be continuous on

O<=t<= Tinto D(A:). Put yo(t) =[(t) and y.(t) U(t) g.(t, s)U(-s)f(s) ds.
Then/’or n => 1, y.(t) solves

y=Ay’,-1/4A2y,,+y,_l, y,,(0) y,,(T) 0.

THEOREM 5. Let Q 1/4A 2 _1_ B whereA andB commute on a dense subset ofX
and A generates a Co group. With. f(t), y,,(t) as in the lemma, suppose y(t)2

E Q- C2y,(t) is class from 0 <= <-_ T into X. Then y(t) solves (2).
Proof.

y"= Qn-X[Ay’ 1/4A 2,- Y,, + Y,,-1]
rt=l

=Ay’-1/4A2y+ Okyk
k=O

=Ay’-1/4A2y+[+O .,
=Ay’+(O-1/4A2)y+f,

where we have used the convention 0= I and the fact that A commutes with O"
for every n-> O.

Although this result is formal, it offers a prospect of computability in certain
cases. For example, consider

02u 02u
2

02u
+[(t, x )-+0-

on the rectangle 0_-< T, a < x < b with u(O, x)= u(T, x)= O. If we take A
2(O/Ox) and B =-02/OxaO =0 so u(t,x)=Jgl(t,s)f(s,x +t-s) ds is a solution
when f(t, x) is continuous in and class C2 in x.
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Examples can also be constructed with differential operators where
Qn-lyn (t)= 0 for all n _>-N. Polynomial forcing functions fall in this class and the
formal series then provides a means of obtaining the exact solution.
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SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE

PROBLEMS VIA DIFFERENTIAL INEQUALITIES*
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Abstract. The singular perturbation problem ey" =[(t, y, y’), 0<t < 1, y(0, e), y(1, e) given, is

studied under the principal assumption that fy,y, is never zero in the domain of interest. Solutions are
shown to exhibit essentially two types of asymptotic behavior: (i) boundary layer behavior and/or (ii)
smooth transition from one stable reduced root to another. In addition, an algorithm for the exact
determination of conditions guaranteeing such behavior as well as several illustrative examples are
discussed. The results are established by applying an extension of the classical Nagumo theory of
differential inequalities.

1. Introduction. In this paper we consider the existence and the qualitative
behavior of solutions of the singularly perturbed boundary value problem

(1.1) ey" =f(t, y, y’), 0<t< 1,

(1.2) y(0, e)=A, y(l, e)=B,

for small, positive values of the parameter e. The principal assumptions regarding
the function f are that [ O(ly’12), as ly’l--’ oo, and that the partial derivative fy,y, is
never zero in the region of interest. Under additional smoothness and stability
restrictions on f, we are able to discuss the asymptotic behavior as e-0+ of
solutions of (1.1), (1.2) for all values of the boundary conditions A and B. In
addition, we present an algorithm for the determination of such behavior which
follows in a straightforward manner from the sign restrictions on fy,y, and the
properties of solutions of appropriate reduced problems. This algorithm will be
seen to apply to related problems not explicitly treated here as well as to other
classes of nonlinear second-order singularly perturbed boundary value problems.

Although there are several ways of proving the theorems presented below,
we choose to employ a method involving the use of differential inequalities which
was first introduced by N. I. Brig [2]. Using a result of M. Nagumo [15], Brig was
able to study the existence and the asymptotic behavior of solutions of (1.1), (1.2)
under the principal assumptions that fy,y, O(1), as lY ’l oo, and that fy,-_< -k < 0
in a suitable tube around the solution u of the reduced problem, 0 f(t, u, u’),
u(1)=B. In essence, he showed that for all sufficiently small values of
e>0, there exists a solution y=y(t,e) of (1.1), (1.2) satisfying y=
u +O(IA-u(0)] exp[-kte-1])+O(e), for t in [0, 1].

In the present paper we wish to modify these two basic assumptions in such a
way as to study a related class of problems. In so doingwe will touch upon the work

* Received by the editors January 28, 1976, and in revised form August 5, 1976.
5" School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. This

research was conducted while the author was a Visiting Member, Courant Institute of Mathematical
Sciences, New York University, under National Science Foundation Grant NSF-GP-37069X. The
final revision was performed at University of Wisconsin--Madison under National Science Foun-
dation Grant MCS 76-05979.
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of several authors in the area of singularly perturbed boundary value problems.
Most notably, the results of S. Haber and N. Levinson [6] will be employed
frequently in the discussion of solutions of (1.1), (1.2) for certain values of A and
B. Their theorem, which also applies to nonlinear functions f more general than
those considered here, becomes even more natural when placed in the context of
the algorithm to be outlined below. Later generalizations of this basic result may
be found in the survey article of A. B. Vasil’eva [19, Chap. 2] and in the paper of
R, E. O’Malley [ 16]. This article of Vasil’eva also contains an account of the major
work done on nonlinear problems of the form (1.1),. (1.2) up to 1963.

Together with the previously mentioned paper of Bri [2], the recent paper of
F. Dorr, S. Parter and L. Shampine [4, 5] serves as the motivation for our study
of the problem (1.1), (1.2) under the assumption that f--O(ly’[Z), as ly’[-.
Specifically, these authors considered the following special case of (1.1), (1.2):

(1.3) ey"=p(t, y)(y’f + g(t, y)y’- b(t, y)y +F(t, y), 0<t< 1,

(1.4) y(0, e)=a, y(1, e)=B,

where p(t, y)-< -p0 < 0 and A < B, B > 0. Using a priori estimates derived from
maximum principle arguments, they were able to prove the existence of solutions
of (1.3), (1.4) for all e > 0, under suitable restructions on the functions g, b and F.
However, based solely on the estimates given in [4, 5], it is less clear how one
should proceed to study the asymptotic behavior of these solutions as e 0/. In
the course of the present treatment we will indicate an approach to the study of the
asymptotic behavior of solutions of the general problem (1.1), (1.2) which is
conceptually simpler than that given by Dorr, Parter and Shampine for (1.3), (1.4)
and which is more readily verifiable in concrete applications of the theory.

Other interesting discussions of nonlinear problems of the form (1.1), (1.2)
can be found in the paper of W. Wasow [21] and the book of O’Malley [17, Chap.
5]. This book and that of Wasow [20, Chap. 10] contain a wealth of information on
the general theory of singular perturbations as well as extensive references to the
mathematical and scientific literature. More recently, D. Cohen [3] has studied
initial and boundary value problems involving the nonlinear equation (1.1) and he
has found solutions which possess unexpected oscillatory properties.

Before considering the various phenomena which solutions of (1.1), (1.2) can
display, we discuss in the next two sections the mathematical theory of differential
inequalities basic to our approach and also the properties of solutions of reduced
problems which play a central role in all that follows.

2. Mathematical preliminaries. The main mathematical tool we employ is a
theorem on differential inequalities which was first proved by Nagumo [15] and
later refined by L. K. Jackson [13, 7]. In the context of problems of the form
(1.1),. (1.2), it may be stated as follows.

THEOREM 2.1. Assume that the function f=f(t, y, y’) is continuous on
[0, 1] and grows no faster than (y,)2, as ly’l- , for in [0, 1] and y bounded,
i.e., f= O(ly’lz), as ly’l -. Assume also that there existfunctions and fl of class
C2)[0, 1] which satisfy the following inequalities:

re <=, re(O, e)<-A -<fl(O, e), re(l, e)-<B-</3(1, e),
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and [or in (0, 1),

Then ]:or all such e >0, the boundary value problem (1.1), (1.2),

ey" =/(t, y, y’), 0< < 1,

y(0, e)=A, y(1, e)=B,

has a solution y y (t, e ) with a (t, e)<- y (t, e )<- (t, e ), for in [0, 1 ].
This theorem, in the form originally stated by Nagumo [15], was the basis of

Brig’s treatment of the problem (1.1), (1.2). For more recent applications, see [1],
[7] and [8]. In the present discussion of (1.1), (1.2) we will likewise make extensive
use of this theorem; however, it will also be necessary to use the following
extension of Theorem 2.1 due to P. Habets and M. Laloy [7].

THEOREM 2.2. Make the same assumptions as in Theorem 2.1 with the
exception that the functions a and are assumed to be continuous and piecewise-
C(z) on [0, 1 ], i.e., there is a finite partition of [0, 1 ], 0 to < tl <" < t, 1, and in
each subinterval (ti, ti+), a and are of class C2). Furthermore, for in (ti, ti+),

e/z" <- f(t, [, /’);

and at the partition points ti, Dta(ti)<--Da(ti), Dt(ti)>=Dr(ti), where Dl, Dr de-
note the lefthand, respectively, righthand derivative. Then the conclusion of
Theorem 2.1 is valid

The bounding solutions a and/3 are thus allowed to have finitely many
"corners", with the stipulation that the one-sided derivatives at the corner points
satisfy the correct inequalities. Theorem 2.2 will be used in studying solutions of
the problem (1.1), (1.2) which possess interior nonuniformities in their deriva-
tives.

Since the function f appearing in (1.1) is assumed to satisfy f= O([y’[2), as
[Y.’I-->, our study of the existence and the asymptotic behavior of solutions of
(1.1), (1.2) for small e > 0 is reduced via Theorems 2.1 and 2.2 to the construction
of sufficiently accurate bounding functions a and/3. In verifying that such a,/3 (to
be given below) do in fact satisfy the correct differential inequalities, we require
the following form of Taylor’s theorem for expanding the function f around a
given function u. In particular, let r r(t, e) and u u(t) be given, differentiable
functions; then

f(t, r, o") f(t, u, u’)+{f(t, r, u’)-f(t, u, u’)}+{f(t, o’, o")-f(t, er, u’)}

NI ) 1 )=f(t, U, U’)+
i=

.Oirf(t, u, u’)(cr-u +-. Oyf(t, U+el(cr-u), u’)(cr-u

oy (t, u’ + u’)+ O’f(t IT, U’)(Od- U’)

where 0 < tl, t2 < 1 and N, M >_- 1. We will be interested in the caseM 2; and as
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will become clear later, we require the following further expansion of fy,(t, r, u’):

fy,(t, or, u’) fy,(t, u + (r u), u’)

fy,(t, u, u’) +fyy,(t, u + 3(o" u ), u’)(o" u).

Thus the final expansion takes the form

: I
f(t, r, o")= f(t, u, u’)+ Of(t, u, u’)(r- u

+-.O’(t, u -1- {ffl(O’- u), u)N

+ {f,,(t, u, u’) +f,,,(t, u +(r- u), u’)(cr- u)I(r’- u’)

1 ,)2+fy,y,(t, o’, u’ + ff2(o"- u’))(o"- u

for 0 < if1, if2, 3 < 1 and N->_ 1.

3. The reflueefl lroblem. The starting point for our investigation of the
nonlinear problem (1.1), (1.2) is the study of the reduced equation obtained by
formally setting e 0 in equation (1.1), i.e.,

(3.1) 0 f(t, u, u’).

In what follows, we will assume that f is continuous in (t, u, u’) and of class C
with respect to u, u’ for all u of interest. Equation (3.1) possesses essentially two
types of solutions which are termed regular and singular. A solution u u(t) of
(3.1) is called a regular solution if f.y,(t, u (t), u’ (t)) . 0, for t-values in the interval of
existence, while a solution u is called singular if fy,(t, u(t), u’(t))=- 0, for such t. In
this context the term "singular" is classical and refers to the fact that along
singular roots, the equation f(t, u, u’)- 0 cannot be solved for u’ as a function of
and u. Consequently, it is not possible to prescribe arbitrary initial or terminal
conditions for singular solutions of (3.1). On the other hand, regular solutions of
(3.1) usually contain a constant of integration, and thus one boundary condition
may be imposed upon these solutions, under suitable circumstances. With this as
background, we are thus first of all interested in regular solutions u of (3.1) which
satisfy one of the boundary conditions, u(0)-A or u(1)=B. Let us denote
regular solutions u of (3.1)which satisfy u(0)= A and exist on [0, tL], O< tL <- 1,
by the subscript "L", i.e., u UL; similarly, regular solutions u of (3.1) with
u(1)= B which exist on [tR, 1], 0=< tR < 1, are denoted by UR. Singular solutions of
(3.1) will be denoted by the subscript "s", u us.

From among this class of reduced solutions or roots (i.e., solutions of the
reduced equation (3.1)), we next wish to select those which are stable in the
following sense. For roots UL, we require

fy,[UL(t)]=fy,(t, UL(t), UL(t))>----O, O<----t<----tL;

while for roots uR, we require

f,[uR(t)]<-O, tl <-t<-l.
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These restrictions are simply that, in the terminology of Vasil’eva [19, Chap. 1],
roots UL are negatively stable and roots UR are positively stable. In the case of
singular roots us, we impose stability in the form of conditions on the partial
derivatives with respect to y, 0f[us]; recall that, by definition, fy,[us] 0. Briefly
we require that

y flUs] >= O, j O, 1," , N, for all A and B;

while if us(O)< A, us(l)< B and fy,y, > O,

2’f[us >= O, ] O, 1,..., N.

If us(0)> A, us(l)> B, and fy,y, < 0, stability of us is translated into the condition
cgf[us] <= O. These conditions, which will be discussed more fully later, are related
to those given by Yu. P. Boglaev [1] and the author [9] in the case of the problem

e2y"=h(t, y), a<t<b,

y (a, e), y (b, e) prescribed.

In summary, then, one of our basic assumptions is that the reduced equation
(3.1) possesses regular and/or singular solutions with the stability properties
outlined above. Indeed, the next three sections will be concerned with demon-
strating under what conditions these reduced solutions can be used to approxi-
mate solutions of the full problem (1.1), (1.2) for all sufficiently small values of
e>O.

4. Boundary layer phenomena. In this section we use the stable regular and
singular reduced solutions introduced above to study solutions of the boundary
value problem

(4.1) ey"= f(t, y, y’), 0 < < 1,

(4.2) y(0, e)=A, y(1, e)=B,

which possess boundary layers at 0, 1 or both endpoints, for small values of
e > 0. We assume, for definiteness, that fy,y, < 0 in a region defined below; at the
end of this section we indicate the modifications required to handle the analogous
case f,, > 0.

Consider first the stable regular roots of the reduced equation, f(t, u, u’)= O,
which we generically denote as UL and uR. In order for these roots to generate
solutions of (4.1), (4.2) which possess boundary layers at 0 or 1, we first
require these functions to exist on all of [0, 1] and to satisfy the correct stability
conditions there, i.e., fy’[UL] >= 0 and fy’[UR] <= O. More fundamental, however, is
that we require the following sign restrictions on ut and UR; namely, u(1)=> B
and UR(O)>=A. The naturalness of these conditions can be demonstrated as
follows: if a solution y of (4.1), (4.2) possesses a boundary layer, for example, at

1, then in the boundary layer region adjacent to 1, the derivative of y is
unbounded as a function of e. (See [19, Chap. 2] for a precise estimate of y’(1, e).)
Consequently, the "curvature" of y, y", is represented approximately by ey"’-.
1/2/,,(y,)2, i.e., for small e > 0, y"(1) is large and negative. That is to say, inside the
boundary layer region near 1, the solution is concave (y"< 0). Therefore, if
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such a solution is, to be approximated, on [0, 1] by the reduced solution uL, it must
be the case that uL(1) =>B. (If uL(1) B, then there is no boundary layer at 1.)
A similar argument shows why we must also require UR (O) >--_ A, in case the
boundary layer occurs at 0. These heuristic considerations are made precise in
the following theorem, stated for the case of a boundary layer at 0.

THEOREM 4.1. Assume
1) the reduced problem, f(t, u, u’)= 0, u(1)= B, has a solution u UR(t) Of

class C(2[0, 1 which satisfies UR (0) >= A
2) the function f is continuous in (t, y, y’) and of class C2 with respect to y, y’

in : 0 <-_ <- 1, lY uR(t)l <- d, d >= IA UR (0)[, [y’[ < o0; also, fy,y, O(1) in ;
3) there are positive constants k and po such that fy,(t, UR(t), U’R(t))<=-k <

O, 0 <= <- 1, and fy,y, <= -po < 0 in .
Then for each e > O, e sufficiently small, the problem (4.1), (4.2) has a solution

y y (t, e). Moreover, for in [0, 1],

UR (t)- (UR (0)-- A ) exp [(c ke -x)t] -e/ <- y (t, e ) <- UR (t) + e/

where c and / are positive constants independent of e.

Proof. The theorem is proved by constructing suitable bounding functions c
and/3, and then applying the result of Nagumo-Jackson, Theorem 2.1. For in
[0, 1] and e > 0, define

a(t, e) UR(t)--(UR(O)--A)exp [Alt]-eyl-l(exp [A2(t- 1)1- 1),

/3(t, e) UR(t)+ eyl-l(exp [A2(t-- 1)]-- 1),

where 11 i1(8)( 0 (Of order O(e-1)), 12 12(e)< 0 (of order O(1)), and y >0
are quantities to be determined, and [fy(t, y, u’(t))l<-_ l, ly--uR(t)l<--d. Clearly,
a N/3, a (0, e) -< A -</3 (0, e) and a (1, e) -< B <-/3 (1, e ). To verify that a satisfies
the correct differential inequality, i.e., ea"-f(t, a, a’)>=O, we calculate f(t, a, a’)
via the Taylor expansion given at the end of 2, with N 1, to obtain

e,"-f(t, ,, ’)
2 -1eu[--e,(UR(O)--A)exp [Zt]--eZ2e/l exp [,2(t-- 1)]--f[un]

+f (t, u + ( u,,), u)

((UR(O)-A)exp [,t] + eel-x exp [,X:(t- 1)]- 1))

+fy,[UR](Al(uR(O)--A)exp [hlt]+h2ey1-1 exp [12(t- 1)])

+ fyy,(t, UR + 3(C- UR), U’R)

((UR(O)--A) exp [A t] + er/-X(exp [,).(t 1)]- 1))

(--11(UR(O)--A)exp [11t]--A2eyl- exp [12(t-- 1)])

-.fy,y,(t, a, U’R + e2(a’- u))

(11(UR(O)--A)exp [11t]+A2eyl- exp [12(t- 1)])2
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> eM-eh(us(O)-A)exp [hltl-eh EEeyl- exp [h E(t 1)]
-l(us(O)-A)exp [AIt]-eT exp [hE(t-- 1)] +ey

kh x(Us (0)-A) exp [h it]

-khzey1-1 exp [A2(t- 1)]+Lhx(us(O)-A)z exp [2hit]
+LA2e’y/-1 exp [hE(t-- 1)]

(us(0)-A) exp [hlt]+Lheyl-l(exp [hE(t-- 1)]-- 1)

(us (0)--A exp [hl t]

+LA2(eyl-1)E exp [h2(t- 1)](exp [h2(t- 1)]- 1)

+-A21(UR(0)-A)2 exp [2Air]

+poAhzey1-1 exp [AE(t- 1)](UR(O)--A)exp [Alt]
Po 2 1)2+--h2(ey exp [2h2(t-1)]

where [u[<-M and [fyy,(t, y, u’)l<-L, [y uR (t)[ <= d. Clearly, for 0<e << 1, since
Al=O(e-x), (po/2)A2a=>-LAx and poAIAE>--LA2. Consequently, we continue
with the inequality

ea"-f(t, a, a’)>--eM+ ey

(cA + (k eyl-lL(exp [hE(t 1)] 1 ))/1 -[- l)

(Us (0)-- A) exp lax t]
-(cA + khE + l)eT1-1 exp [h2(t- 1)]- K(y)e 2.

where
[(po/2)h y21-2 exp [2h2(t- 1)] + Lh2y21-2 exp [hz(t- 1)l

(exp [h2(t- 1)]- 1)1-< K(y).
Now choose h 2 < 0 as the O(1)-root of eh 2 ._ k - 0, i.e., h 2 -lk-1 -[- O(E ).
Next, pick 3’ M+ 1; and take e so small that (i) k
k-eyl-lL(exp [A2(t-1)]-1) is positive and of order ,O(1), and (ii) eK(y)< 1.
Finally, choose h l<0 as the O(e-l)-root of ehE+klA +/=0, i.e., A
-kle -l+O(lk-l)+O(e). Such prescriptions of the quantities satisfying these
estimates can always be made for 0 < e ( 1. We thus have the desired inequality
ca"-f(t, a, a’) >- O. The verification that f(t, fl, fl’)- eft" >-_ 0 proceeds similarly
and we conclude, via Theorem 2.1, that for all sufficiently small e > 0, the problem
(4.1), (4.2)possesses a solution y y(t, e)witha(t, e)<-_ y(t, e)<-fl(t, e), O<-t <- 1.

We remark that the device of using the roots of the characteristic equation
e)t 2 + kh + 0 to construct bounding functions is due to Bri [2]. It is also clear
that the theorem is valid if the function f and the boundary data A, B depend in a
sufficiently smooth manner on e. Finally we note that if the function fy satisfies the
positivity assumption, f (t, y, u) >_- > 0, then the estimate of Theorem 4.1 is valid
with c 0 and k replaced by k 1. This follows most easily by defining the functions
a(t, e)= UR(t)--(us(O)--A)exp [-kte-1]-e3d-1, fl(t, e) UR(t)+eyl-, and
proceeding as above.



222 F.A. HOWES

In the case when the boundary layer occurs at 1, the theorem carries over
verbatim with UR replaced by uL (uL (1) => B and with the inequality in assumption
(3) replaced by/y,[u] -> k > 0. Of course, we still assume that ]’y,y,
The proof of this follows by setting -= 1- and applying Theorem 4.1 to the
transformed problem.

We next consider the possibility that the stable singular solutions us of the
reduced equation, ]’(t, u, u’)= 0, may be used to construct solutions of the full
problem (4.1), (4.2) which possess boundary layers. As in the case of the regular
reduced roots, we require the functions us to exist on [0, 1] and to be stable there.
(The precise meaning of "stable" will be given below.) However, unlike the case
just discussed, since us in general satisfies neither boundary condition, we
anticipate boundary layer behavior at each end-point, and we must impose the
two sign restrictions: us(O)>=A, us(1)=>B. The following theorems make these
ideas precise.

THEOREM 4.2. Assume
1) the reduced equation, ](t, u, u’)= 0, has a singular solution u us(t) olclass

C(2)[0, 1] with us(O)>-A, us(1)_->B;
2) the function f is continuous in (t, y, y’), ofclass C2) with respect to y’, and of

class C2+)(q_->0) with respect to y in D: 0_-<t-<l, [y-us(t)l<-d,d>-_
max {IA u(0)l, IB u(1)l}, lY’I < oo; also,/,,-- O(1) in D, with fy,y,-< -po
O, for po a positive constant;

2q+l3) for tin [0, 1], Oiyf[us(t)]=--O,]=O, 1,...,2q; Oy f(t,y,u’s(t))>--_m>O,
lY us(t)l <---- d, for m a positive constant.

Then for each e > O, e sufficiently small, the problem (4.1), (4.2) has a solution
y y (t, e). Moreover, for in [0, 1],

us(t)-(us(O)-A ) exp [-(me-a)/Et]- (us(1)-B) exp [-(me-)x/2(1 t)]-

-<y(t, e)<-us(t)+e/, /]’q=0;

us(t)-(us(O)-A )(1 + rl(q)e-1/2t)-q-’-(us(1)-B)(1 + tr2(q)e-I/2(1 t))--’
(sSv)(.+

_<-- y(t, e)_-< us(t)+(e/)(2+)-1 if q > 1

Here /is a positive constant and

trl(q) mq((q + 1)(2q + 1)!)-/21A u(0)l",
0-2(q) mq((q + 1)(2q + 1)!)-a/2lB us(1)l.

Proof. The theorem is proved by again constructing suitable bounding
functions a and/3. Define for in [0, 1] and e > 0,

a(t, e)= us(t)-(us(O)-A)exp [-(me-)l/2t]
-(us(1)-B) exp [-(me-)l/2(1 t)]- e,m -1, if q =0;

a(t, e)= us(t)-(us(O)-A)(1 +tr(q)e-1/2t)---(us(1)-B)(1 +r2(q)e-/2(1-t))---(eym-1)2q+l)-l, if q-> 1;

/3(t, e)= u(t)+(e,/m-X)2+-, if q =>0.
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The constant y is to be chosen sufficiently large and positive. Then to show that
these functions satisfy the required inequalities, we proceed as in the proof of
Theorem 4.1 with the exception that in the Taylor expansion of f along a and/3,
we take N 2q + 1. The details are straightforward and are omitted; we note,
however, that in this case fy,[us]--0, by definition.

Assumption 3) in Theorem 4.2 provides us with a definition of stability of the
singular reduced solution us. In the following two theorems we impose slightly
weaker stability restrictions on us and achieve essentially the same result as in
Theorem 4.2.

THEOREM 4.3. Assume
1) the reduced equation, f(t, u, u’) O, has a singularsolution u us(t) ofclass

C(z)[O, 1], with us(O)>-A, us(1)_->B and u 5-0;
2) the function f is continuous in (t, y, y’), ofclass C(2) with respect to y’ and of

class C(")(n>=2) with respect to y in 5:O<-_t<-l, lY-Us(t)l <-d, d>-_

max {Ia u(0)], IB u(1)l}, lY’I < m; also, f,, O(1) in @ andf,, <= -po < O, for
po a positive constant;

3) ]’or tin [0, 1],
2j+10, f[-s(t)] --> 0,

2]O,f[us(t)]<--O,
and

21Oyf(t,y,u’(t))<--m<O, ly-us(t)l<-d, 21<-n,

for m a positive constant.
Then for each e > O, e sufficiently small, the problem (4.1), (4.2) has a solution

y y (t, e). Moreover,

u(t)-(us(O)-A )(1 + o’1(l)8-1/2t)-2(21-1)-a-(us(X)-B )
(1 + 0"2(/)8-1/2(1 t))-2(2/-1)-1

-ez(+)-<_ y(t, e)<__us(t) O__<t__<l,

where /> 0 is a constant and

o-1(/) rn a/2(2/- 1)(2(2/+ 1)!)-1/2[A us (0)](2t-)/2,
o-2(/) m/2(21 1)(2(2/+ 1)!)-1/2[B us(l)[(2-a)/2.

This theorem is proved in the same manner as Theorem 4.1 (with N 2/). We
note that the conclusion of Theorem 4.3 is valid if assumption 3)is replaced by 3’):

2]+10, f[Us]_->0, ]=O,1,...,l-1;

of[usl <-_ O, 1=0, 1,..., l- 1;

and

21+lf(t y, u’s)> m >0,y

for m a positive constant and lY- us(t)l <- d.
In the two previous theorems the strict positivity or negativity of the

respective partial derivatives was assumed to hold along the path (t, y, u’s) for
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lY- us(t)l <----d. In the next theorem we require this nonvanishing to occur only
along the reduced path (t, us, u’s).

THEOREM 4.4. Assume 1) and 2) as in Theorem 4.3. Assume also 31): ]’or
in [0, 1],

2iOy +If[us(t)]---O, ] O, 1,..., l- 1;

O7[u(t)] <- O, / O, 1,..., l- 1;
21Oy f[us(t)] <- -m < O, for m a positive constant,

and
2lOy +if(t, y, us( ))>=0,

Then the conclusion of Theorem 4.3 is valid.

ly-u(t)ld.

We note that the conclusion of this theorem is valid if assumption 31) is
replaced by 3):

O2j+ 2]:[U .,2/+1
y /[u]>_-0, 0,. ]<0, 0y rtu]->m>0,

for m a positive constant, and

21Or +2f(t, y, u’s) <-- O, ly-u(t)ld.

In the case 0, the boundary layer terms are, of course, exponential functions of
1/2and e

Before passing to a brief discussion of the case in which fy,y, > 0, we consider a
situation which, in a sense, is intermediate between the two cases discussed in the
theorems above. Namely, it may happen that the regular roots UL and un do not
satisfy the strict inequalities fy’[UL >- k > O, fy’[UR -< -k < 0, respectively; instead,
only the inequalities fy,[Ut >= O, fy,[UR <= 0 may hold. The stability of such roots is
then, as in the case of singular roots, determined by the signs of the partial
derivatives, Oiyf[Ut or Of[UR ], for some range of => 1. Indeed, Theorems 4.2, 4.3,
and 4.4 (and the remarks following them) apply directly to the case of regular
roots UL, UR which satisfy fy’[Ut] >= O, fy,[UR =< 0, respectively. Note that there is
now only one boundary layer (at 1, if u UL at 0, if u UR). Finally it may
happen that for the regular roots UL, UR none of the stability assumptions in
Theorems 4.1-4.4 applies; an example is given in 8. In this case, it does not seem
possible to make any general statements, and one is forced to treat such problems
on an individual basis.

We conclude this section with some remarks on the case when fr,y, is strictly
positive in the regions or introduced above. Quite obviously, in order that the
reduced solutions u UL, UR or us generate solutions of the full problem (4.1),
(4.2) which possess boundary layers at the endpoints, we must have u(0)=<A and
u(1)=<B. Put geometrically, solutions of (4.1), (4.2) which possess boundary
layers are, for small e > 0, convex in the boundary layer regions, and the reduced
solutions must reflect this convexity near the appropriate endpoint. Clearly,

>po>0, provided UL(1)<B or UR(O)<ATheorem 4.1 is valid in this case, fy,y,=
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Simply. define, for example in the case u UR,

a(t, e)= uR(t)--eyl-(exp [A2(t-- 1)]-- 1),

/3(t, e)= UR(t)--(UR(O)--A)exp [At]+eyl-X(exp [A2(t- 1)]-1)
and proceed as in the proof of Theorem 4.1. Similarly the results of Theorems 4.2,
4.3, and 4.4 are valid if]’r,y, =>po > 0, provided u(O)<=A and u(1)-< B. However,
in the statement of these theorems we must require that partial derivatives of even

"> 0. These analogous results areorder be nonnegative or positive, and that u
proved most efficiently by making the change of dependent variable y -y, and
applying Theorems 4.2, 4.3 and 4.4 to the transformed problem.

In the next two sections we investigate the possibility that solutions of (4.1),
(4.2) possess interior nonuniformities associated with exchanges of stability
between reduced solutions.

5. -Haber-Levinson crossings. In this section we present a fundamental result
of Haber and Levinson [6] and examine some of its implications for our study of
the boundary value problem

(5.1) ey" =f(t, y, y’), 0< < 1,

(5.2) y(0, e)=A, y(1, e)=B.

The assumptions of Haber and Levinson involve the stability and algebraic
properties of solutions of the corresponding reduced equation

(5.3) 0 =)e(t, u, u’).

Namely they assumed that (5.3) has two solutions u UL (t) and u UR (t), which
exist on [0, to] and [to, 1], respectively, for some to in (0, 1), and which satisfy
u(0)= A and UR(1)= B. In addition, these roots are stable in the sense intro-
duced above, i.e., for in [0, to],fy,[UL(t)]>=k >0, and for in [to, 1], fy’[UR(t)] <=
-k < 0, for some positive constant k. Finally these roots are assumed to intersect
at to, i.e., u(to) UR(to), with u[(to) u(to); and at the crossing point to,

{ ,t>0, u(o)<,o<u(to),
[(to, u(to), o) < 0, uk(to)< o < U’L(to).

Under the usual smoothness assumptions on f (i.e., ]" is continuous in (t, y, y’) and
of class Cx) with respect to y and y’), Haber and Levinson proved that for all
sufficiently small e > 0, the problem (5.1), (5.2)has a solution y y(t, e )satisfying

UL(t), O<--t<=to,
lim y(t,e)= < <-o Ul(t), t0=t=l

Also, the obtained an estimate for y’; namely,
UL(), 0<t<to 6,

lim y’(t, e)= U’R(t), to + 6 < t < 10-4-

for 3 > 0 independent of e. Finally this solution was shown to be unique in the
sense that there is no other solution of (5.1), (5.2) which satisfies the above
estimates for sufficiently small e > 0.
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This result says essentially that to the left of the crossing point, to, the solution
y of (5.1), (5.2) follows the stable root u uL, while to the right of to, y follows
u uR. In an order O(e )-neighborhood of to, the solution undergoes a transition
from u to u; however, since u(to)= ug.(to), the nonuniformity in the transition
appears first in y’(t, e). The exact order estimates for this transition, as well as
complete asymptotic expansions of the solution, are given in [19, Chap. 2] and
[16].

If we now specialize this result to the problem considered here, i.e., to
functions [ appearing in (5.1) satisfying fy,y,= O(1), then an interesting fact
emerges. For the stable regular reduced solutions uL and uR considered in the
previous section, we were interested in obtaining conditions under which these
functions generated solutions of the full problem which possessed boundary layers
at 0 or t 1. The crucial assumption, in the case fy,y, < 0, was that UL (1)>=B or
ug (0)>= A. However, the question naturally arises as to what happens if UL (1)< B
and Ul (0) < A, i.e., if neither UL nor ug can generate a boundary layer solution of
(5.1), (5.2). This question is answered, in most cases, by the theorem of Haber and
Levinson. Namely, since UL(1)<B and u(0)<A, it is clear that UL and uR
intersect at least once at a point in (0, 1). (Recall that by assumption UL (0) A and
un(1) B.) At a point of intersection to, u’(to) U’R(tO), unless UL U, since
UL and u are regular roots of f(t, u, u’)= 0. Consequently, the assumed stability
properties of UL and un allow us to apply the Haber-Levinson result provided the
crossing condition,

>0,
f(to, u(to), to) < O,

u ’(to) < to < u ’R(to),
u(t0) < to < U’(to),

is satisfied. If uL and UR intersect at several points in (0, 1), then this crossing
condition serves to determine at which intersection point the solution of the full
problem (for small e > 0) actually transfers from one root to the other.

Up to this point we have assumed that the regular roots, u and UR, existed
and were stable on all of [0, 1]. However, it frequently happens that regular
solutions of the equation, f(t, u, u’)=0, which satisfy an initial or terminal
condition, exist and are stable only on [0, tL] or [tR, 1], 0 < t, tR < 1. Obviously
such solutions cannot generate solutions of the full problem which possess
boundary layers, since these roots either do not exist or are unstable in a
neighborhood of the end-point of interest. It may nevertheless be possible to
apply the Haber-Levinson theorem in such cases. To be specific, suppose that u
exists and is stable on [0, t], 0< t < 1, and that UR exists and is stable on
[tR, 1], O<tR < 1. Then if tL >=tR and if u intersects UR at a point in (tR, t) (or at
tL, if t tR), it is only necessary to verify that the crossing condition is satisfied in
order to apply the theorem of Haber and Levinson.

This discussion leads naturally to the question of what happens in the case
that t < tR, i.e., the domains of existence and/or stability of the regular roots u
and UR do not overlap, and there is no possibility of a Haber-Levinson crossing.
The resolution of this problem, at least for some cases of interest, is the subject of
the next section.
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6. Crossings between regular and singular reduced solutions. In this section
we consider the case in which stable regular reduced solutions intersect stable
singular reduced solutions at one or more points in (0, 1). Under appropriate
assumptions, we will see that there exist solutions of the full problem which (for
small e > 0) follow the solution path formed from the intersection of the regular
and singular roots. In addition, it is possible to have boundary layer solutions
branching off of the singular roots if suitable sign restrictions are satisfied. A basic
fact which must be noted here is that if u(tl) us(tl), t in (0, 1), where us is a
singular solution of f(t, u, u’)= 0 and u is any other solution (regular or singular)
of this equation, then u’(q)= u’s(t). The precise result is contained in the
following lemma.

LEMMA 6.1. Let us us(t) be a singular solution of f(t, u, u’)=0, .and let
u u(t) be any other solution of this equation. Assume that for tl in (0, 1),
u(ta) us(q) and fy,y,[tl] O, where It1] (tl, Us(tl)+ (U(tl)-- Us(tl)),
u’s(q)+(u’(t)-u’s(tl)))(O< < 1), then u’(t) u’s(tl).

Proof. The lemma follows trivially from the fact that, by definition, fy,[us]-
0. Indeed,

0 f[u (t)] f[us (ta )]

fy[u(tl)](u(ta)- us(t))+fy’[us(ta)](u’(q)- u’s(tl))+ fyy[tl](U(tx)- u (tl))2

’[q](u’(tl) u’s(ta))2,+fyy’[tl](U(tl)-- Us(tl))(U’(tl)-- U’s(tl))+ f,,y

i.e., u’(tl) u’s(tl).
The lemma asserts that crossings between singular solutions and regular

solutions, unlike Haber-Levinson crossings between regular solutions, are
smooth up to first derivatives, provided fy,y,[tl] is not zero at the crossing point, t.
Such smooth joins facilitate the construction of appropriate bounding functions a
and/, as will be seen below.

We turn now to a consideration of the question raised at the end of the last
section; namely, what types of solutions of the problem

(6.1) ey"=f(t, y, y’), 0< < 1,

(6.2) y(0, e)=A, y(1, e)=B,

can exist when the domains of existence and/or stability of the regular solutions
UL, UR do not overlap in [0, 1]. To be specific, suppose that UL exists on [0, tL],
0 < tL < 1, with

(6.3)
>0, 0_-< t< t,

fy’[UL(t)] O, tl,

<=0, t <t<--tL;

while UR exists on [tR, 1], 0 < tR < 1, with

(6.4) i0’ tz<t=<l,
fr’[uR(t)] O, t= t2,

O, tR <- < t2,
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and that t. < tR. Then it may happen that there is a stable singular solution u us
such that us(q)= u.(tl)and us(t2) UR(t2). If this is the ease, we anticipate that for
sufficiently small e >0, there exists a solution y y(t, e) of (6.1), (6.2) such that

u. (t), 0=<t<=tl,

lim y(t,e)= us(t), tl <=t<=t2,

UR(t), t2 <= <= 1.

A verification that this does occur for several cases of interest is the content of the
following theorems.

THEOREM 6.1. Assume
1) there are reduced solutions uL, UR Of class C(2)[0, 1] as described above

satisfying (6.3), (6.4), respectively, with u’, u>-0; there is a singular reduced
solution us o]’ class C(z)[0, 1] with u>-O such that uL(tl)=us(t) and uR(tz)
us(t2), tx <- t < tR <-

2) the function f is continuous in (t, y, y’), ofclass C2 with respect to y’ and of
class C(")(n_-> 1) with respect to y in @: 0=<t<_-l, [y-u(t)l<-d, 0-<t<-tl, ly
u,(t)l _<- d, tl <-- <- tz, lY Ul(t)l <- d, t2 <- <-_ 1, d > 0 and possibly small, [y’[
]y,y, O(1) in , fy,y, >- po > O, forpo a positive constant; and ifn >-2, (po/2)(-A)>-
L(exp [-hq]- 1), (po/2)(-h)>-L(exp f-A/z]- 1), where t in and h <0
is specified in the proof below;

3) for in t 6, tz + 6], and

UL(t), t--a <=t<=ta
u (t)= us(t), t <= <-_ t2,

uR(t), tz<=t<--tz+6,

Oiy]’[u(t)] >- O, ] 1,. , n-l, ]’or 6>0 a small constant; moreover,
O’]’(t, y, u’(t))>=m >0, ly-u(t)l<-_d, [or a positive constant m.

Then ]:or each e > O, e sufficiently small, the problem (6.1), (6.2) has a solution
y y(t, e) with

u(t)<- y(t, e)<-u(t)+en-l/, O<=t<-_t,

us(t)<- y(t, e)<-us(t)+e"-l/, q <-t<-t2,

UR(t)<-- y(t, e)<--UR(t)+e"-/, t2 <--t<-- l,

where /> 0 is a constant independent 0]’ e.

Proof. The theorem is proved by using the Hab+ts-Laloy extension of
Nagumo’s theorem, Theorem 2.2. We first make some preliminary observations.
Since u(tl) us(q) and hence, u[(t) u’s(tx) by Lemma 6.1, the function u(t) is
continuously differentiable on [tl 6, t2 + 6]. By assumption 1), there is a constant
k > 0 such that ]’y,[uL(t)] >-k > 0, for in [0, tl-6]; similarly, there is a constant
k2 > 0 such that ]’y,[UR(t)] <-- -k2 < 0, for in [t2 + 6, 1]. Set k min {kl, k2}. Finally
let A < 0 be the O(1)-root of eA 2 + kA + 0, where [fy(t, y, U’.R(t))[ <- 1, lY
Uz.R(t)l<--d, i.e., A =-Ik-.+O(e). We are now able to define the following
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functions a and/3, for e > O:

UL (t), O<=t<=tl,
(t, ) u(t), t <- <- t,

UR(t), tz <-- <= l,

0 < < tl,

tl < < t2,

t2 <--t <- 1.

for ’)/1 M+ 1 and 6 sufficiently small. Next, on the subinterval [h 6, tl], we use
the assumption that of[UL ----> 0, 1 _--< _--< n 1, and Oyf(t, y, u[) _-> m > 0. Again,
using the Taylor expansion of f[fl] we have, for in [h-6, tl],

"__ nl 1 .-1]’(t,/3,/3’) 8/3 ]’luLl+ Oiff[UL](6 yl/-l(exp [-At]- 1))
i=l].

n-1+Orf(t, y, uk)(e ’]/1/-l(exp [-/t]- 1))" +/,,lull

-A6n-’ ]/1 1-1 exp [-At])

+fry’[" ](-h)e"-’yll- exp [-ht]e "-yl/-l(exp [-At]- 1)

1
+fy,y,[" ](h6"-yl/- exp [-At])Z-6u[

6A 26n-yll-1 exp [-At]

The constants yi>0 are first chosen so that /3 is well defined, i.e.,
yll-l(exp [-Ah]- 1)= y3/-l(exp [A(t2-1)]- 1)= (y2m-1)"-. Next we observe

u[(tl)that Dta(ti)= Dra(ti), 1, 2, since us(h), uR(t2) U s(t2); while D(ti)>
Drfl(t),i=l, 2, since A <0. It is trivial to show that ea"-f[a]>=O on the

’u" "subintervals (0, tl), (tl, tz) and (t2, 1), since L, us, u =>0 on these respective
intervals. In the case of/3, we first examine the subinterval [0, tl]; in particular,
look at [0, tl- 6], where 6 > 0 is the constant introduced above. Clearly,

f(t, [3, B’)-6B"= f[uL]+fy(t, y, u’)6"-lyll-l(exp [-At]- 1)

+L,[u](-xe"-rl- exp [-At])
n- n-1-fyy,[ ]e Vl/-l(exp [-At]- 1)A6 yll- exp [-At]

1-1+f,y,[’](he"3,1 exp[-Xt]) eu

EA 2 n-1 -1
6 yll exp [-At]

n--1 ,--1 1--1----> --e Yl exp [--At] + e YI khe" 171 exp [-At]
n-1 1-1eM- eh 28 Yl exp I-A/] K1(y1)6 2n-1

where ]/yy,[ ]A/- exp [-At](exp [-At]- 1)ya21 _-< KI(Vl)and 0 _-< u[-< M. Since A is
a root of eA 2 .+. kA + 0, we conclude that

n--1 2n-1f[l-eC">--eM+e TI-K(’Y1)6 >_--0,
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m
1 exp [-At]>e.Tl-n(exp[-h(tx-t)]-l)n-eM-eh2en-x -

_->0, if yl /"(exp [-A(h-)l- 1)-"(M+ 1)

and e is sufficiently small. Thus, f[/3]-e/3"->_0, for in [0, h]. For [h, t2] the
verification follows in a straightforward manner:

n,11f(t ’)-- f[Us]t" ]=1-. Of[u]((eYzm-X)n-) +n! ’f(t, y, u’)

.((zm-)-)-u

>- / < M,
n

M, where 0-< u

=>0, forTz ->n!M.
The verification tsar satisfies rSe same inequality on [tz, 1] is similar to that
for [0, t] and is omitted. We note tsar tSere is a slight technicality reardin
the specification of the constants T, in the definition of . They were first
chosen so tsar was well defined and tSen they were cSosen to be larger tSan
certain constants. To be precise, we required tsar ’1
max {M+ 1, ((n!/m)l"(exp [-,(-)]- 1)-"(M+ 1)),,-1} and z>-n!M. How-
ever, and z may also be chosen so tsar /x/-(exp [-At]-1)= (yzm-X)’-;
these are the "Yx T2 tO be used in the definition of . A similar statement
applies to .

The case in whic5 {u [, u, u} <_- 0 can be treated in the same way by requirin
that f,,- -po < 0 in and by making te appropriate sign chanes in assumption
3). That is, partial derivatives of even order must be nonpositive, and if n >_-
must be sufficiently negative to balance the term arising from t’,’ in re expansion
of f. ,, ,u} 0 nor {u., u, u < 0, a result analog-In the event tsar neitSer
ous to Theorem 5.1 appears to be provable only under the assumption that
f(t, y, u;)>_-m>0, ly-u(t)l=<d. It also seems tat for the examples we have
considered (some of wSic5 are iven in 8), isis is the only assumption regardin
/ which guarantees that u., u, u,-crossings do in fact occur. The precise result is
the followin theorem.

THEOREM 6.2. Assume 1) and 2) a n Theorem 5.1 #h the exception that
, u and u are not required to be nonnegaave alo suppose n 1 in 2). Assume

finally that f(t, y, u’)_-> m >0, ]’or a positive constant m, th (t, ) n and
u’= u,, u, un, a ranges over [0, 1], [tl t2] [t2 1], respecavely.

Then tor each e > 0, ufficiently small, the roblem (5.1), (5.2) has a solution
y y(t, e) with

m.(t)-eq/<- y(t, e)<-uL(t)+e/, O<=t<-h,

us(t)- eq/<- y(t, e)<_- us(t)+ e/, tl <- <- t2,

UR(t)--eq/<-- y(t, e)<=UR(t)+eq/, t2 <--t<-- l,

where q is a positive constant.
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Proof. The theorem is proved by defining for e > 0 the functions

sym-a

uL(t)-eym_

0 <- <- tl,

a(t, e)= u(t)- t <-_t<-_t2,
UR(t)--eym -1 tz < < 1

UL(t)+eym -1, O<--_t<--_tl,
/3(t,e)= us(t)+eym-, t <--t<--t2,

uR(t)+ e’m- t2 < <- 1

and verifying that the hypotheses of Theorem 2.2 are satisfied. We omit the
details.

Although we will not prove it here, it is true that since uk(h) u’s(h) and
u(t2)-- U;(t2) whenever UL(ta)-" Us(h) and UR(t2) Us(t2), the derivative y’(t, e)
converges uniformly to u[, u’s and u on the respective intervals [0, tl], [tl, t2] and

11.
The next type of crossing between stable regular and singular reduced

solutions which we examine involves the case in which a regular solution, uL or uR,
crosses a singular solution u, and u generates a solution of (6.1), (6.2)possessing
a boundary layer branching from us. A typical example of this is the following.
Assume fy,y, < 0 and that for the left-hand boundary value A, a regular solution uc
either does not exist or is unstable to the right of 0; suppose also that a stable
root u exists on a subinterval [t, 1], t > 0. Then if there exists a stable singular
root us which crosses UR at t2, tR < t2 < 1, and if u(O)>-A and us has compatible
stability properties (cf. 4), we anticipate that for sufficiently small e >0, a
solution y y(t, e) of (6.1), (6.2) exists and satisfies

lim y(t, e)= { u(t), 0 < <= t2,

-o UR (t), t2 <---- <-- 1.

The following theorems examine precisely under what conditions such behavior
does in fact occur. We will assume, for definiteness, that fy,y,< 0 in the region
defined below; also, we examine crossings between UR and us. Extensions to the
other cases of interest will be indicated below.

THEOREM 6.3. Assume
1) the reduced equation ’(t, u, u’)= 0 has solutions u Us(t)ofclass C(2)[0, t2]

and u UR(t) olclass C(2)[t2, 1], 0< t2 < 1, with u, u’ <= O, and such that Us(t2)
UR(tz), UR(1)= B and us(0)>_-a;

2) the functionfis continuous in (t, y, y’), o]’class C2) with respect to y’, and
class C(2q+a) (q >= O) with respect to y in @" 0-< -< 1, lY u(t)[-<_ dx, 0 -<_ <-_ t2,
ly--uR(t)l<--d2, t2<--t<=l, ly’l<oe, with dl>=Us(O)-a; also, fy,y,=O(1) in ,
/’,y,<--po<0, for po a positive constant, and if q>-_l, (p0/2)(-A) ->

L(exp [A(t2-1)]- 1), where ILy,I<-_L in and A <0 is a quantity defined in the
proof below;

3) for tin It2, 1],

h,[u(t)l{<O’ t < t<= l,
=0, t= t2;
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and

4) for in [0, tz],
2i+1Or f[us(t)]>--O,

<-o,

’tn2q+lf(t, y, us( ))>m >0,vy [y-u(t)ld,

for a positive constant m.
The for each e > O, e sufficiently small the problem (6.1), (6.2) has a solution

y y (t, e). Moreover,

us(t)-(us(O)-A)exp[-(me-1)l/2t]-ec/<-y(t,e)<-_us(t), O<-t<-t2, ifq=O;

us(t)-(us(O)-A )(1 + tr(q)e-I/2t)--1- e (2+1)-13 _<- y(t, e)_-< us(t),
O<-t<-t2,

UR(t)--e 9.+a)-/_< y(t, e)_-< UR(t), t2_--<t--< 1,

ifq>-l;

ifq>-_O,

the required inequalities. Namely, for q 0 and e > 0, set

us(t)-(us(O)-A ) exp [-(me-X)I/2t]
t(us(O)-A )(me-l)a/2 exp [-(me-1)l/2t2] eym

a(t, e)=
uR(t)-(us(O)-A)exp [-(me-a)x/2tz]

t2(Us(O)--A)(mE-l)1/2 exp [--(me-)/2t2]
-eTz/-X(exp [h (t- 1)]- 1),

-1 O<=t<--t2,

t2_--<t<=l;

a(t, e)=

while for q >-1, set

"us(t)-(us(O)-A )(1 + tr(q)e-/2t)--t(us(O)- A)tr(q)e-1/2(1 + r(q)e-1/2t2)-----(eq/lm-1)(2q+1)-, 0 <= <= t2;

un(t)-(us(O)-A )(1 + o,(q)e-x/2t2)--t2(us(O)-A)tr(q)e-1/2(1 + tr(q)e-a/2t2)--1-
(2q+l)e y21- (exp [h(t 1)] 1), t2 <-_ --< 1;

and for q >= O,

us(t), O<=t<-
(t, E

ug (t), t2 --< t _-< 1.

Here h < 0 is the O(1)-root of eh2 + kh + - 0, where Ify(t, y, u’(t))l <- and
fy,[uR(t)] <_-- -k < 0 on It2 + 8, 1], 8 > 0. The constants y, 72 > 0 are chosen to be

where o-(q)= trx(q) of Theorem 4.2 and /> 0 is a constant.
Proof. The proof follows essentially as that of Theorem 6.1 by verifying that

on the subintervals [0, t2] and [t2, 1], the functions a and/3 defined below satisfy
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sufficiently large and to make a well-defined, i.e.,

(ylm-1)2q+1)-1 yz/-l(exp [A (t2-1)]- 1).

We omit the details of the proof.
An analogous result is obviously true in the case that a stable root u. crosses a

singular solution us at a point t in (0, 1). The assumptions are that

fY’[u(t)]{ >=0’0, O<-t<tx’t ta,

and that u(1)->B. We also remark that this theorem is valid if for some integer
> 1, ,q21e<_ 2j

y,= m<0, i.e., Oi+]’[u]->_0 and Oyf[u,]<-O,]=l,...,l-1; and
21 v!Oy f(t, y, u’s) <- -m < O, ]y us(t)] <= d, in [0, t2]. Finally in the case that u (or ut)
and u’ are nonnegative and ]’y,y, > 0 in the region , the result corresponding to
Theorem 6.3 can also be proved.

We next consider crossings between roots uL or UR, and singular roots us in, "} > 0 holds. As discussedthe case that neither {u., u, us}_-<0 nor {uL, u us
prior to the statement of Theorem 6.2, for such reduced solutions, the only
reasonable assumption is that fy(t, y, u’) >- m >0, in the appropriate domains.
The precise resUlt is the following.

THEOREM 6.4. Assume 1), 2) (with q O) and 3) as in Theorem 6.3 with the
exception that u’[, u are not required to be nonpositive. Assume also that
fy(t, y, u’(t))>-m >0, ]’or a positive constant m, where (t, y) belongs to and
u’= u’, u’s for in [t2, 1], [0, t2], respectively.

Then ]’or each e > O, e sufficiently small, the problem (6.1), (6.2) has a solution
y y(t, e) with

us(t)-(us(O)-A)exp [-(tre-)/zt]-e/<= y(t, e)<-_us(t)+e/, O<-t<-_tz;

uR(t)-ec/<-y(t,e)<=u(t)+e/, tz<=t<=l,

where 0 < o" < rn and / > 0 is a constant.

Proof. Simply define, for e > 0,

us(t)- (us(0)- A) exp [-(o,e-a)/2t]
a(t, e)= -t(us(O)-A)(o’e-1)1/2 exp [-(te-1)l/2tz]-eym -, 0-< t2,

uR(t)-- t2(us(O)--A )(tre-)a/2 exp [--(o-e-)/Et2]-- eTm-, tE <-- <- 1;

I us(t)+ eym -1, 0 <= <= tz,
(t, )

u(t)+ eym-, t2 <= <- 1,

and verify that these functions satisfy the inequalities of Theorem 2.2.
Clearly, if [y,y, > 0, an analogous result holds (essentially with the roles of a

and/3 interchanged) provided us(0) -< A. Similarly, the case when uL crosses us
can be treated by making the change of variable -= 1- and applying Theorem
6.4 to the transformed problem.

With this discussion we end our consideration of the various types of
asymptotic behavior which solutions of the full problem can exhibit for small
values of e. In the next section we summarize the results obtained thus far in the
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form of an algorithm which clarifies how the phenomena observed above arise in
studying a specific problem. This algorithm can also serve as a means of studying
related problems not explicitly treated here by any of the various asymptotic
methods currently available.

7. A solution algorithm. In this section we present an algorithm for the
asymptotic solution (as e 0/) of the boundary value problem we have been
considering

(7.1) ey"= f(t, y, y’), 0 < < 1,

(7.2) y(0, e)=A, y(1, e)=B,

where f is a smooth function of its arguments and f,r, O(1),.f,r, # 0, in the
domain of interest. The algorithm consists of a sequence of steps which selectively
determines the various roots of the reduced equation f(t, u, u’)= 0 having the
properties which generate solutions of (7.1), (7.2) behaving in a definite manner as
e 0+. Indeed, 4-6 above contain justifications of the implications of the
algorithm for a class of problems of the form (7.1), (7.2) which is especially
amenable to treatment by the method of differential inequalities. We anticipate
that the algorithm will also be of use in studying broader classes of such problems,
for example, by formal methods like matched expansions or two-variable tech-
niques. The conditions imposed below not surprisingly share an affinity with
various types of matching relations which form the basis of these more formal
techniques.

A solution algorithm.
Step 1. Find all solutions of the reduced equation

(7.3) f(t, u, u’)= 0.

For the regular solutions u of (7.3), i.e., those satisfying fy,[u] 0, impose the
boundary data (7.2) at 0 and 1. Denote the regular solutions u of (7.3)
which satisfy u(0)= A by u, i.e., f[u (t)] =- O, fy,[u(t)] O, O<-t<-_t, 0<t _-< 1,
and u(0)=A. Similarly, denote the regular solutions u of (7.3) satisfying
u(1)=B by un, i.e.,f[ul(t)]=O, fy,[un(t)]O, tn _-<t_-<l, 0_-<tn <1, and un(1)
B. Finally denote the singular solutions of (7.3) by u, i.e., f[u] =- 0 and fy,[u] =- 0
on the interval of existence of u. In general, it is not possible to prescribe any
initial or terminal conditions for u.

Step 2. Determine the stability of the reduced solutions u, un and u.
Namely, roots UL are stable iff,[u] => 0 in a t-interval including 0; roots un are
stable if fy,[un]<-_ 0 in a t-interval including t- 1. In the case of singular roots u,
stability is determined by the sign of fr,y,. If fy,y, > 0 in the domain of interest, u is

2j+lstable if Oy f[,] -> 0 and Oif[u] >= O, j O, 1,. ., N, N depending on the prob-
lem. If fy,y’< 0, Us is stable if ,q2j+ 2j

vy lf[us]>=O and 0yf[us]<=0,j=0, 1,...,N.
Consider from now on only stable roots UL, UR and

Step 3. Determine what roots uL, UR or us generate, for small e > 0, solutions
y y(t, e)of (7.1), (7.2)which possess boundary layers at the end-points, i.e.,
solutions such that lim_,0/ y (t, e) UL (t), 0 -< < 1, lim_0/ y (t, e) UR (t), 0 < <--
1,.or lim-o/ y(t, e)= us(t)0< < 1. (Of course, these roots must necessarily exist
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on [0, 1].) Namely, if ]’y,y,> 0, it is required that UL(1)<--B, UR(O)<=A, us(O)<--_A
and us(1)<-B. Note that if one of these inequalities is actually an equality, then
there is no boundary layer at that endpoint. Similarly, if ’y,y, < 0, it is required that
UL(1)>=B, UR(O)>=A, us(O)>-A and us(1)->B.

Step 4. Determine the Haber-Levinson crossings, i.e., determine if the
Haber-Levinson theorem quoted in 5 can be applied. This is always necessary in
the case of roots UL and UR in Step 3 which satisfy neither sign condition relative to
the boundary data. Namely if ’y,y, > 0 and UL(I)> B, uR(O)> A, then there exists
at least one point to in (0, 1) at which Ut(to) UR(tO) and u[(to) # u’(to). It is then
only necessary to verify that the crossing condition is satisfied, i.e., that

/ > 0, u [(t0) < to < u R(to),f(to, UL (to), to) < O, U’R(tO) < to < U to).

Similarly, if ]’y,y,<0 and UL(1)<B, UR(O)<A, the occurrence of a Haber-
Levinson crossing must be investigated.

Haber-Levinson crossings can also occur in the case that the domains of
stability of UL and UR, say [0, tL], [tR, 1], respectively, 0< tL, tR < 1, overlap, i.e.,
tL >=IR. Then if UL(tO)=UR(tO), to in (tR, tL) (or UL(tO=tL--tR)--UR(tO)), the
crossing condition must be checked.

Step 5. Determine whether crossings between regular and singular solutions
occur. In particular, such crossings are likely when the intervals of stability of
and UR do not overlap, i.e., tL < tR, where

fy,[UL(t)]
>0, O<=t <tL,

and fy,[UR(t)] ]
<0, tR <t <- 1,

=0, tL, =0, tR.

Then if there are points t in (0, tL] and t2 in [tR, 1) at which UL(tx)= us(tl) and
UR(t2)-- Us(t2), where us is a stable singular reduced solution, it is likely that for
small e > 0, the full problem (7.1), (7.2) has a solution y y (t, e ) which follows the
path formed by UL, Us and UR, i.e.,

u(t), O_-<t-<t,

lim y(t,e)= us(t), tl <=t<--t2.
e-0

uR(t), tz<--t <-1.
Another type of crossing which can occur involves a regular root, say UR, and a
singular root us; in particular, suppose UL either does not exist or is unstable to the
right of t=0. Suppose also that UR loses stability at tR, O<tR < 1, and that
Ug(t2) Us(t2), t2 >= tR. Then if the stability of us is compatible with the sign of
it is likely that there.exists a solution of (7.1), (7.2) for small e > 0 which follows
the path formed by us and UR, with a boundary layer occurring at 0. To be

2i+1precise, if/y,y,>0, it is required that 0y ]’[us]--0, 02yJ/e[ us => 0, and us(0)-<A;
while if ]’y,y, < 0, it is required that z2j+ 2i

vy l’[us _>- 0, 0yf[us]-<0, and us(O)>-_A, for
appropriate ranges of/" => 0. Similarly, if UR does not exist or is unstable to the left
of 1, the possibility of crossings between UL and a stable singular solution
should be investigated. Finally, in more complicated problems, crossings between
UL, UR and more than one singular solution may occur.
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This concludes our outline of the algorithm for the solution of the problem
(7.1), (7.2), for small e >0, under the assumptions that fy,y,= O(1) and fr,, is
never zero. We remark that a similar algorithm for the analytical solution of
singularly perturbed nth order linear and second-order quasilinear boundary
value problems was given recently by O’Malley [18]. His algorithm has also been
implemented to solve such problems numerically; some computational results are
summarized in [5].

$. Some examples. We present now some examples which illustrate the
theory of 4-6 and the application of the algorithm given in 7.

Example 8.1. The boundary value problem

(8.1) ey"= 1- (y’), O< < 1,

(8.2) y(0, e)=A, y(1, e)=B,

was cited by Haber and Levinson [6] as an illustration of their theorem quoted in
5, for values of A and B satisfying 0< IA-BI< 1. It was also considered by
Dorr, Parter and Shampine [4, 5] for such A and B, and also for B-A -> 1.
Forgetting that this problem can be solved by quadratures for all A and B, we
apply the algorithm of the previous section. We begin by solving the reduced
problems

(8.3) 0=!-(u’)z, u(0)=A or u(1)=B,

and find that, in our terminology, uL(t) A + t, UR(t) B 1 + t. Clearly (8.3) has
no singular solutions. Setting f(t, y, y’)= 1-(y’)2, we calculate fy,=-2y’, and
easily determine that uL(t)= A- and UR(t) q-B- 1 are the stable roots of
(8.3), for allA and B. If we now apply the boundary layer criteria of Step 3 which
in this case are that uL(1) A 1 _->B and UR(0) B 1 _->A, we can conclude by
Theorem 4.1 that for such A and B, the problem (8.1), (8.2) has, for e >0
sufficiently small, solutions y y (t, e) satisfying (i) lim_0 y (t, e) A t, 0 _-<
t(<-)l, ifA-l(>-)B, and(ii)lim,_,o y(t, e)=t+B-1, O(<--)t<-_l, ifB-l(>-_)A.
Indeed, for (i)we have the estimate

A-t-(A-1-B)exp [-2e-l(1-t)]<= y(t, e)<-A-t, O_-<t_-<l;

while, for (ii),

+ B l -(B -1-A ) exp [-2te-] <-_ y(t, e)<- +B -1, 0_<t_<l.

Next we examine (8.1), (8.2) for A,B-values leading to a Haber-Levinson
crossing. In particular, suppose u(1)= A 1 < B and UR(0)= B 1 <A, then
there exists in this case a single point to in (0, 1) at which u(to) UR(to), i.e.,
to =1/2(1-(B-A)). It is also clear that the crossing condition is satisfied, i.e.,
f(to, uL(to), to)= 1-to2>0 for u(to) -1 <to < 1 U’R(to). For such A and B,
which are characterized by the inequality IA-BI < 1, there is then a Haber-
Levinson crossing at to 1/2(1- (B-A)). Thus the asymptotic behavior of solu-
tions of (8.1), (8.2) has been determined for all choices of A and B, as may be seen
from the following boundary value portrait. (See Fig. 1.) For example, in Figure 1,
the notation "UR + B.L.(0, e)" in the region B =>A + 1 is a shorthand statement
that for such A and B, the solution of (8.1), (8.2) is described asymptotically by
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B
B=A+I

B =A-1
UR + B.L.(0, e

u_ + UR(H--

0

FIG.

the function UR(t)= +B 1 plus a boundary layer function of e near 0. The
letters "H-L" denote that a Haber-Levinson crossing occurs for A and B in the
region indicated.

Example 8.2. We consider next the problem

(8.4) ey"= -yy’- (y,)2, 0 < < 1,

(8.5) y(O, e)=A, y(1, e)=B,

which was discussed by Dorr, Parter and Shampine [4, 5] in the case that A < B.
Our first step is naturally to determine the roots of the reduced equation

(8.6) 0 uu’ + (u’)z,
and we find that ut(t)=A, aL(t)=Ae-’,UR(t)=B,a(t)=Be -’. Again the
reduced equation has no singular solutions. Setting f(t, y, y’)=-yy’-(y’)Z, we
find that L,=-y-2y’; consequently, L,[UL]=--A, L,[a]=ae-’, [,[u] =-B,
and fy,[a] Be -’. Thus the stability of these reduced solutions, unlike those of
(8.3), depends critically on the signs of A and B.

Case 1. A, B > 0. Clearly for such A and B, tiL (t) Ae-’ and u (t) B are
the stable roots of (8.6). We first check the sign restrictions necessary for boundary
layer behavior, i.e., aL(1) Ae- >-B and u(0) B _->A. For these A and B, we
conclude by Theorem 4.1 that for sufficiently small e > 0, there exists a solution
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y y(t, e)of (8.4), (8.5) such that B-(B-A)exp [-Bte-1]<= y(t, e)<-_B, O<-t <
1, if B _-> A; and if Ae-1 >-B,

Ae-t-(Ae-l-B)exp[-Ae-l(1-t)e-ll<__y(t,e)<_Ae-t+ey, 0_<_t_<_l,

for a known positive constant 3’. We next check for the occurrence of a Haber-
Levinson crossing, i.e., we consider values of A, B > 0 such that aL(1) Ae- < Band UR(O)=B<A. Then it is easy to see that aL(to)= UR(tO)=B, for to=
In (AB-)e (0, 1), with ak(to)=-B < u(to)= 0. It only remains to observe that
the crossing condition f(to, aL(to), 0)=-Bo-to2= -o (to + B)> 0 is satisfied for
o in (-B, 0). By the theorem of Haber and Levinson, for sufficiently small e > 0,
(8.4), (8.5) has a unique solution y y(t, e) satisfying

lim y(t,e)={Ae-t’ O<-t<--ln(AB-1)’
-,o B, In (AB- ) <-_ 1.

Case 2. A >0, B =<0. For these A andB, i(t) Ae- and fir (t) Be 1- are
the stable roots of (8.6). Applying our boundary layer sign restrictions, i.e.,
u-(1) Ae-1 >-_B and tiR (0) Be >-A, we find, since B N0<A, that the inequal-
ity ti(1)_>B is always satisfied, while the inequality R(O)>=A never holds.
Consequently, by Theorem 4.1, for each e > 0 sufficiently small, the problem
(8.4), (8.5) has a solution y y(t, e) such that

Ae-t-(Ae-l-B)exp[-Ae-(1-t)e-]<_y(t,e)<=Ae-+e% 0=<t__<l,

that is,

lim y(t, e)= Ae-’, 0 <- < 1.
0

In this case there are no internal crossings.
Case 3. A <_- 0, B > 0. The stable roots of (8.6) are uL (t) A and UR (t) B.

Since B > A, Theorem 4.1 implies that for each sufficiently small e > 0, (8.4), (8.5)
has a solution y y (t, e) with

B-(B-A)exp [-Bte-]<- y(t, e)<-B, 0<_-t<_-l,

that is,

lim y(t,e)=B, 0<t=<l.
0

Again there are no internal crossings in this case.
Case 4. A < 0, B < 0. The stable roots of (8.6) are uL (t)= A and tiR (t)=

Be-. In the case that A-B, we apply Theorem 4.1 to see that a solution
y y(t, e) of (8.4), (8.5) exists and satisfies, for small e > 0,

A -(A -B) exp [A(1-t)e-l < y(t, e)<=A,

Similarly, if tiR (0)= Be >= A, we have

Be-t-(Be-A)exp [Bte-1]-e3, <- y(t, e)<=Be

0<t<l

Finally if ut. (1) A <B and fir (0) Be < A, a Haber-Levinson crossing occurs at
to ln(BA e).

0__<t__<l.
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It remains for us to determine the asymptotic behavior of solutions for the
two cases: (i) A < 0, B 0 and (ii) A 0, B < 0. In the first case Uc (t)= A is a
stable root of (8.6); however, since B 0, UR fir 0 and/y,[0] =/y [0] 0. Since
Uc(1)= A < B and since uc is never zero (i.e., does not intersect uR =tiR), this
function does not determine the asymptotic behavior of solutions of (8.4), (8.5).
We thus examine UR 0 more closely. It is clear that/3 0 is an upper solution of
(8.4), (8.5), and a short computation shows that

(A re-l-x yte x/z,
a(t)=

(a_l_(l_,r(e))e_X/El_X_,i,(l_r(e))ex/2
0-< t=< 1-r(e),

1-r(e)<=t=< 1,

is a lower solution, provided that 3’ > 0 is appropriately chosen. Here r(e) > 0 is of
order O(eX/). Applying Theorem 2.2 we conclude that for A < 0, B 0, (8.4),
(8.5) has a solution y =y(t, e) for each e >0 sufficiently small such that
(A -1- te-1/2)--/ex/<-_ y(t, e)=<0, 0=< t=< 1. In case (ii)one observes that the
unction z(t, e)=’(B-l-(2e)-(1-t))-x satisfies z(0, e)=<0, z(1, e)=B, and
ez" -zz’, 0 < < 1. Therefore, z is a lower solution, and fl 0 is again an upper
solution, and we deduce from Theorem 2.1 the existence of a solution y y (t, e)
satisfying

(B-l-(2e)-X(1-t))-l<__y(t,e)<-O, 0__<t__<l.

These two cases illustrate the difficulty alluded to in 4 regarding the determina-
tion of boundary layer behavior when appropriate partial derivatives are not
strictly positive or strictly negative. One must treat such problems individually
without recourse to a general theory.

Our results for Example 8.2 are summarized in the following boundary value
portrait. (See Fig. 2.)

Example 8.3. The next example is chosen to illustrate how the existence of a
singular solution of the reduced equation affects the asymptotic nature of solu-
tions of the full problem for certain values of the boundary data. Consider the
problem

(8.7) ey"= y -(y,)2, 0 < < 1,

(8.8) y(0, e)=A, y(1, e)=B.

The reduced equation is

(8.9) 0 u (u’)2

which has the regular solutions, defined for A, B => 0,

uc(t)=1/4(2AX/2-t)2, UR(t)=1/4(t+2BX/2--1)2,
and

ac(t)=1/2(2Al/E+t)2, aR(t)=1/4(2B1/E+l--t)2,
as well as the singular solution u--0. To check the stability of these roots, set
f(t, y, y’)-y_(y,)2, then/y,=-2y’ and fy--1. It follows that tic and tiR are
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UR + B.L.(0, e

B=A

UL -t"/R(
u+B.L.(1, e)

tr + B.L.(1, e

B =Ae -1

FIG. 2

unstable, while

>0, <2A1/2
fy,[UL(t)] 2A 1/2_

<0, t>2A1/2,
_-< 0, > 1 2B 1/2

f,[ug (t)] 1 2B 1/2-
>0, t<l-2B 1/2.

Consequently, uL and UR are globally stable if A 1/2 21_ and B 1/2 >=1/2, respectively.
If 0<A 1/2 B1/2 <1/2, then these roots lose stability at tl 2A /2, t2- 1-2B/2

respectively. Finally u -= 0 is globally stable since fy =- 1.
Case 1. A 1/2, B1/2>1/2. We check first for boundary layer behavior. Since

/y,y,---2, we require uc(1)=1/4(2Al/E-1)E>-B and uR(O)=1/4(2B1/E-1)2>-_A.
For such A and B we apply Theorem 4.1 to conclude that for each e >0
sufficiently small, (8.7), (8.8) has a solution y y(t, e) such that

1(2A1/2 t)2 (1 )2 B) y(t,e)(231/2 1 exp [-(231/2 1)(1-t)e-ll<--_
1 1/2 e

<_-(2A t)2+, 0_--< t_--< l,
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if 1/4(2A 1/2_ 1)2__>B; while if 1/4(2B 1/2 -1)2 _-> A,

l(t+2B1/2 1)2 (1(2B1/2- 1)2-A exp [-(2B 1/2-1)te-x] < y(t, e)

1 1/2-4-<-(t+2B -1)+, 0<t<l=

Next, if urn(l)= 1/4(2A 1/2_ 1)Z<B and Ul(O)=1/4(2B l/z- 1)2<A, it is easy to see
that a Haber-Levinson crossing occurs at to=A 1/2-B1/ +1/2 (0, 1).

Case 2. A, B <= O. For such A and B there are no regular solutions of (8.9)
which satisfy either of the boundary conditions at 0 or 1. However, since
us--0 is stable on [0, 1] (with/y=l) and us(O)>-A, u(1)->B, we can apply
Theorem 4.2 (with q- 0) to conclude that for all e > 0, there exists a solution
y y(t, e) of (8.7), (8.8) satisfying

A exp[-te-1/2]+B exp[-(1-t)e-1/2l<-_y(t,e)<-O, 0-<_t-<_ 1.

Case 3. B>0, A-<0. In this case, UR(t)=1/4(t+2BX/2--1)2 exists on [0, 1];
however, there is no regular solution of (8.9) satisfying the boundary condition at

0. As noted above, if B1/2 >1/2, then UR is stable on [0, 1], and since uR(O)>=A,
we can apply Theorem 4.1 to conclude that for all sufficiently small e > 0, (8.7),
(8.8) has a solution y y(t, e) with

1 )2 ( / 1-A)exp[-(2B -1)te(t+2B 1/2 1 (2B )2 1/2 -11
1 e

<-_y(t, el<--(t+2B1/2-1)2+-, 0-<t-<l.

If, on the other hand, 0<B1/2<1/2, we know that ug becomes unstable at
t= 1-2B1/2 (0, 1). However, at this point, u(t2) 0= us(t2), i.e., un crosses
the singular solution us 0. Since A-< 0 and therefore us(O)>=A, we can apply
Theorem 6.4 to conclude that for such A and B (and e sufficiently small), (8.7),
(8.8) has a solution y y(t, e) satisfying

0, O < <- l 2B 1/2,
lim+ y(t, e)= 1/4(t+ZB/2 1)2 1/2
-,o 1-2B =<t<_-l.

Finally if B 1/2 1/2, then ]’y,[u (t)] =< 0, 0 _-< 1; however, since fy =- 1, we apply the
appropriate modification of Theorem 4.2 to conclude that for sufficiently small
e > 0, (8.7), (8.8) has a solution satisfying

lt2_lt2+a exp[-te-1/Z]<y(t,e)<-= +, 0<t<l=
4

Case 4. A > O, B <- O. This case is the reflection of Case 3; consequently, the
statements made in Case 3 apply with B replaced by A, u replaced by UL, and
replaced by 1- t. We omit the details, except to note that a regular-singular
crossing occurs for 0 <A 1/2 < 1/2 between UL and us -= 0 at the point tl 2A 1/2.

Case 5. 0 <A /z B1/2< 1/2. This is the final combination of A and B left to
consider. As noted above, UL becomes unstable at tl= 2A1/Z (0, 1) and un
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becomes unstable at t2 1-2B/2 (0, 1). in addition, u(0)<A and u(1)<B;
thus, there can be no solutions of (8.7), (8.8) for such A, B which possess boundary
layers. We distinguish however two types of interior crossings:

(i) A1/Z+B1/2<1/2. In this case tl<t2, but UL(tl)=O and UR(t2)=O. By
Theorem 6.1, for all sufficiently small e >0, we conclude that (8.7), (8.8) has a
solution y y (t, e) satisfying

1/4(2A /2-t)2, O<=t<=2A x/2,

lim+ y(t,e)= 0, 2AX/2<=t<-1-2B/2,
+o

1/4(t + 2B a/2- 1)2 1 2B 1/2 < < 1

(ii) A1/2+Ba/2>1/2. For these A and B, t12>t2 and it is easy to see that a
Haber-Levinson crossing occurs at the point to A 1/2-B1/2--1/2 . (t2, tl).

Finally if A /2 +B1/2 1/2, then uL =- UR. We summarize our discussion of this
example in the form of a boundary value portrait. (See Fig. 3.)

u + B.L.(0, e)

uR+O+B.L.(O,e 1/2)

u. + B.L.(0, e ,/2) + B.L.(1, e ,/2)

B/2=A /Z+1/2

B

u,.+O+u

A

+
0 uL + B.L.(1, e

+
B.L.(1, e /-

Fx. 3
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Example 8.4. The final example of this section possesses solutions with
algebraic boundary layer terms of the form discussed in Theorem 4.2. Also it
illustrates why we restricted ourselves in Theorem 6,4 to functions [ (t, y, y’)
satisfying fy [us] > 0.

Consider the problem

(8.10) ey"= y3_ (y,)2, 0<t < 1,

(8.11) y(0, e)=A, y(1, e)=B.

The corresponding reduced equation

(8.12) 0 u 3 (u ,)2

has regular solutions of the form u (t) 4(t + c)-2 and the singular solution us 0.
Clearly the functions UL(t) 4(t + 2A-1/2)-2 and UR(t) 4(2B-1/2 + 1 0-2 are
stable roots of (8.12) for all positive A and B.

Checking first for boundary layer behavior, we require, since fy,y,=
-2(f(t, y, y,)=y3_(y,)2), UL(1)>B and uR(O)A, i.e., 1/2+A-1/2<=B-1/2 and

-1/2 -1/2+B <-A respectively. For such A, B >0, we apply Theorem 4.1 to
conclude that for all sufficiently small e > 0, (8.10), (8.11) has a solution y y (t, e )
such that

4(t + 23-1/2)-2-(4(1 + 2A-1/E)-E-B) exp [-kl(1 t)e -1] =< y(t, e)
_<- 4(t + 2A-1/2)-2 + ey, 0 <= <- 1,

if 1/2 +A -1/2 <B-1/2" while if 1/2 +B-/2 <A-/2

4(2B-1/2 + 1 t)-2- (4(2B-1/2 + 1)-2-A ) exp [’k2te -1

<=y(t,e)<=4(2B-1/2+l-t)-2+e% 0<=t<=l.

Here kl 16(1 + 2A-1/2)-3, k2 16(1 + 2B-1/2)-3 and y is a positive constant.
Next, if uL(1)<B and uR(O)<A(A,B>O), it is easy to see that a Haber-

Levinson crossing occurs at to=1/2+B-1/2-A-1/2e (0, 1).
Suppose now that B>0 and A-<_0; then trivially uR(0)= 4(1 + 2B-1/2)-2 >=

A. Again it follows from Theorem 4.1 that a solution y y(t, e) of (8.10), (8.11)
exists and satisfies lim,-,o/ y (t, e) 4(2B-/2 + 1 t)-2, 0 < =< 1. Similarly, if A >
0 and B =<0, uL(1)= 4(1 +2A-1/2)>-B, and so there exists a solution y y(t, e)
such that lim-o/ y(t, e) 4(t + 2A-1/2)-2, 0 -< t < 1.

It only remains to determine the asymptotic behavior when A <= 0 and B <= 0.
The singular solution us=0 evidently satisfies us(O)>_A and us(1)-B. Thus we
can apply Theorem 4.2 (with q 1) to deduce that for all e > 0, (8.10), (8.11) has a
solution y y (t, e) such that

A(1-A(2e)-/2t)-l+B(1-B(2e)-l/2(1-t))-l<_y(t,e)<_O, 0<_t<_l.

We note that for this example there are no crossings between u. or UR and
us-= 0, i.e., u and UR have no real zeros. Our results are summarized in the
following boundary value portrait. (See Fig. 4.)
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9. Properties of solutions. We briefly discuss here the behavior of solutions
of problems to which none of our hypotheses of the previous sections applies. We
first indicate what types of behavior are excluded by these hypotheses, in
particular, by our restrictions on fy,y,.

As noted in 4, the assumption that fy,y, never vanishes in the domain of
interest places a restriction on the convexity properties which solutions possess
inside boundary layer regions. Essentially if fy,y, < 0, then inside such a region, any
solution y is concave since y" is negative there; while if fy,y, > 0, solutions are
convex. Equally important, such sign restrictions prevent the occurrence of
interior transition layers (i.e., shock layers) in the solution y itself. The reason for
this is simply that across a shock layer (see Fig. 5, below) the sign of y" changes
rapidly for small e > 0, but such sign changes are impossible if fy,y, 0. A similar
line of reasoning shows that solutions y cannot exhibit densely oscillatory
behavior if fy,y, # 0 since such oscillations are possible only if y" changes sign
infinitely often.

The convexity properties of solutions inside of boundary layers also deter-
mine the existence or nonexistence of solutions for certain choices of the bound-
ary conditions, as the following example shows.

Example 9.1. Consider the problem

(9.1) ey"= y + (y,)Z, 0< < 1,

(9.2) y(0, e)=A, y(1, e)=B.

The reduced equation u z+(u’)= 0 clearly has u =0 as its only real solution.
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y(t, 8)

FIG. 5

Consequently, if A and B are nonnegative we can apply Theorem 4.3 (with 1)
to conclude that for all e >0, (9.1), (9.2) has a solution y y(t, e) with

O<= y(t, e)<=A(l +(A(6e)-)/2t)-2+B(l +(B(6e)-a)a/2(1-t))-2 0-<_t-< 1.

It turns out that for all other values of A and B none of the previous theory
applies. However, for these A and B we argue as follows. Suppose, for example,
that A is negative. Then a solution y of (9.1), (9.2) for sufficiently small e > 0 must
pass through the point (0, A) and must reach an order O(e )-neighborhood of the
reduced solution u--0 in a time interval, 0_-< t-< 6, of length O(e). But since
A <0, either y"(t)<0, 0-<t_-<6, or y"(t)>0, 0<=t<-61, and y"(t)<0, 62<-t<-6.
(See Figs. 6a, 6b.) However, in [0, 6], y"> 0, and so neither of these situations can
occur. We conclude that (9.1), (9.2) has no solution if A < 0 and e is sufficiently
small. A similar argument at 1 shows the nonexistence of solutions if B < 0.

We consider now a subclass of the problems we have been considering to
which some of our assumptions do not apply, and yet, the solution exists and
behaves in a regular manner for small e > 0. These problems are distinguished by
the property that certain regular solutions u of the reduced equation f(t, u, u’) 0
i.e., those for which fy,[u] O, behave like singular solutions in that one cannot
impose any boundary condition on them. For such solutions our previous stability
restrictions must be modified.

Recall that a regular reduced root which satisfied the right-hand boundary
condition, i.e., UR, was termed stable if fy’[UR] was nonpositive on [tR, 1), while a
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y(t, e)

y"< 0

(a)

y(t, e)

y"< 0
y"

(b)

FIG. 6

root Uc (for which Uc(0) y(0, e)) was termed stable if fy,[Uc(t)] was nonnegative
on [0, tc ]. However, if a regular root u cannot be made to satisfy either a condition
at t=0 or t= 1, then we define stability as follows: if uc(0) y(0, e), then
fy,[u(t)]<O,O<=t<=6, for a positive constant 6; while if u(1)#y(1, e), then
fy,[u(t)]>O, 1-8 =<t -< 1. In the rest of the interval (& 1-8), the signs of these
functions are immaterial provided that u has some form of y-stability, e.g.,
fy[u(t)] > 0, 8 =< =< 1 & As regards boundary layer behavior, these restrictions
on fy,[u are very natural, since in all of our previous work, the crucial assumptions
were that, near t=O, fy,[u(t)]<--k <0 (if u(0)y(0, e)), and f,[u(t)]>=k>O,
near 1 (if u (1) y (1, e )).

In the solution of an actual problem, one must then look for these "regular-
singular" reduced roots and check their stability according to the above criteria.
These stable roots can thus be included in the algorithm given above to the extent
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that they may have Haber-Levinson crossings with other regular roots or with
each other, in addition to boundary layer behavior at one or both end-points.

As an illustration of the type of result which is possible for this class of
problems, we give the following theorem. A proof can be found in [10]; however,
the reader can easily provide one based on the calculations given above.

THEOREM 9.1. Assume
1) the reduced equation f(t, u, u’)=0 has a solution u=u(t) of class

C(2)[a, b];
2) the function fis continuous in (t, y, y’) and ofclass C2) with respect to y,y’ in

E:a<=t<=b, [y-u(t)l<=d(t,e),[y’[<, where d(t,e)>-Ia-u(a)] (if u(a)a),
a<-t<=a+6, d(t,e)>-]B-u(b)[(if u(b)B), b-6<-t<-b, and d(t,e)=O(e),
a +6<t<b-8; here 8>0 is a small constant; also, fy,y,= O(1) in E;

3) if u(a)A, then there exists a positive constant k such that
fy,(t, u(t), u’(t))<= kl < O, in E [a, a + 6]; if u(b) B, then there exists a positive
constant k2 such that [y,(t, u(t), u’(t))>=k2>O, in E fq[b-8, b]; moreover, there
exists a positive constant p such that

(A-u(a))fy,y,>=p>O,

if u (a ) A, and

(B-u(b)ffy,y,>-p >O,

inEfq[a,a+8],

inE[b-6, b],

ifu(b)B;
4) there exists a positive constant such that

fy(t, u(t), u’(t))>=l>O, ly-u(t)l<-d(t, e), a +6 <-t<=b-6.

Then for each e > 0, e sufficiently small, the problem

ey"=f(t, y, y’), a <t <b,

y(a,e)=A, y(b, e)= B,

has a solution y y(t, e). In addition, for in [a, b],

y(t, e)= u(t)+ O(]A u(a)l exp [-kt(t-a)e-1])
+ O(]B- u(b)] exp [-kz(b -t)e-1])+ O(e).

We remark that this result can be viewed as a generalization of Theorem 4 in
[2]. A simple illustration is contained in the next example.

Example 9.2. Consider the problem

(9.3) ey"= y 2ty’ + (y,)2, 1 < < 1,

(9.4) y(-1, e)=A, y(1, e)=B.

The corresponding reduced equation

u 2tu’-(u’)2, -1 < < 1,

has the regular-singular roots ul(t)= tz and uz(t) O. Of these, u is stable in the
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sense outlined above, since

<0, -l <- =< -l + 6,
L,[u(t)]

>0, 1 _-< _-< 1,
for 0 < 6 < 1.

Since fy,y, 2, we can apply Theorem 9.1 if A, B satisfy A, B _->43- to deduce that
(9.3), (9.4) has a (unique) solution y y(t, e) for which

43-t2_-< y(t, e)<-t2+(A- 43-)exp [-k(1 +t)e -1]
+ (B-)exp [-k(1-t)e-]+2e, -1-<t-<1, where0<k<l.

The existence of such a root u is intimately connected with the fact that the
reduced equation has a singular point at 0 across which [y,[u(t)] changes from
negative to positive.

Finally we note that for other choices of the boundary conditions, the stable
root u is involved in Haber-Levinson crossings with other regular roots and also
in a smooth crossing with u2=0 at 0. For a description of some of these
phenomena, see 11 and 12].

10. Concluding remarks. The present study of the boundary value problem
(7.1), (7.2) has been based upon the principal assumptions that the partial
derivative fy,y, is never zero and that the corresponding reduced equation has
smooth solutions with certain stability properties. It is a natural question to ask
how the existence and asymptotic behavior of solutions are affected if either (or
both) of these assumptions is altered. In particular, if fy,y, is allowed to vanish at
certain values of or along certain roots of the reduced equation, then the nature
of the sign change is critical in determining asymptotic behavior. Among other
things solutions can possess shock layers and there can exist "angular" regular-
singular crossings. On the other hand, if the smoothness requirement on the
reduced solutions is relaxed, solutions of the full problem can possess singular
layers (cf. [14, 21]) associated with discontinuities in the derivatives of reduced
roots. In addition, the basic result of Haber and Levinson given in 5 must also be
modified to handle such cases. These and other related problems are studied in
several papers of the author [10], [11] and [12].
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SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE
PROBLEMS WITH TURNING POINTS. II*

F. A. HOWESf

Abstract. The existence and the asymptotic behavior as e 0 of solutions of the boundary value
problem ey" =f(t, y, y’, e), -1 <t < 1, y(+/-l, e) prescribed, are studied in the case that fy,y, O(1), as

lY’I and fy,, vanishes’at 0. For small values of the perturbation parameter e > 0, solutions are
closely approximated by certain roots of the reduced equation f(t, u, u’, 0) 0 throughout most of the
t-interval with the possible exception of a shock layer region centered at 0 and/or a boundary layer
region at or (or both endpoints). Inside such regions a solution changes rapidly either to
transfer from one reduced root to another or to satisfy the given boundary data. These and other
related phenomena are illustrated by many examples.

1. introduction. In this paper we continue our study of the existence and the
asymptotic behavior as e 0/ of solutions of the singularly perturbed boundary
value problem

(1.1) ey"=f(t, y, y’, e), -1 <t < 1,

(.1.2) y(-1, e) =A, y(1, e) =B,

in the case when f possesses a turning point at 0. For linear functions f many
results are known and the outline of a general theory can be found, for example, in
[18, Chap. 8], [13] and [15, Chap. 8]. It is also possible to treat quasilinear
functions [ (i.e., affine functions of the derivative y’); some results are given in [3],
and a more eneral approach is presented in [7]. However there does not seem to
have been any treatment whatsoever of functions f which are quadratically
nonlinear in y’ and which, in a sense to be made precise below, possess a turning
point at an interior point of [-1, 1 ].

Consider then the boundary value problem (1.1), (1.2) in which f is a
continuous function of its arguments and has continuous partial derivatives of the
second order with respect to y and y’. Assume, in addition, that 02f/Oy’Oy =f,, is
of order O(1), as ly’l c, and that fy,y, 0. Then if fy,r, vanishes at t=0, we say
that f possesses a generalized turning point at 0. A word of explanation is
perhaps appropriate. In the case of a linear function f, a turning point is defined
(see, e.g., [18, Chap. 8] or [13]) as a point at which the coefficient of y’ vanishes.
(Of course, this coefficient is assumed not to vanish identically.) In [7] we extended
this definition to nonlinear functions f by requiring that the partial derivative
Of/Oy’ =f, vanishes at =0, in a rather large domain of variation of y and y’.
However in dealing with functions f which are quadratically nonlinear in y’, it is
necessary to restrict ourselves essentially to evaluating fy, along a single path
u u (t) which turns out to be a solution of the corresponding reduced equation
f(t, u, u’, 0) 0. Consequently, the results in [7] are, for the most part, inapplica-
ble to the more nonlinear functions considered here, although the theorems

* Received by the editors March 11, 1976, and in revised form August 6, 1976.
? Mathematics Department, University of WisconsinmMadison, Madison, Wisconsin. Now at

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. This work was
supported in part by the Mathematics Department University of Wisconsin--Madison.
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presented below share an affinity with those of [7] both in regard to formulation
and method of proof.

We restrict ourselves to functions f which are quadratically nonlinear in y’ in
order to study solutions of (1.1), (1.2) which possess boundary layer and interior
transition layer behavior. The classic result of Vishik and Liusternik 17] (see also
the discussion in [16, Chap. 2]) naturally limits such behavior to solutions of
problems whose righthand sides grow no faster thay (y,)2, as ly’l -. In addition,
the method of proof requires such a growth restriction, since as in [7], we employ
the theorem of Nagumo-Jackson [11], [12] as well as an extended version of
Habets and Laloy [6].

Before commencing our study of the problem (1.1), (1.2) in which f has a
generalized turning point, we make a few remarks about the previous work on
problems whose righthand sides depend on (y,)2. The first result seems to be the
classic theorem of Haber and Levinson [5] (see also [ 16, Chap. 2] and [ 14] for later
extensions) which of course treats functions f without restriction to quadratic
nonlinearities in y’. It describes the asymptotic behavior which can occur when
two stable solutions of the reduced equation (each satisfying the boundary
condition at the appropriate endpoint) intersect with unequal slopes at an interior
point of the t-interval. The second treatment of such problems is contained in the
paper of Dorr, Parter and Shampine [4, 5]. These authors considered the
possibility that solutions of the boundary value problem

ey"+p(t, y)(y’)2+g(t, y)y’-b(t, y)y =F(t, y), 0<t < 1,

y(0, e)=A, y(1, e)=B, A<B, B>0,

where p(t, y) < 0 for all and y, may exhibit boundary layer behavior as well as the
"Haber-Levinson" behavior just described. Finally in [9] we have considered the
general problem (1.1), (1.2) under the principal assumption that fy,y,0. Our
results amplify and extend those of [4, 5]; in addition, some new phenomena
involving interior crossings of reduced solutions are treated for the first time. The
theorems presented below complement several of those in [9]; however, the types
of behavior which can occur when fy,y, has a zero in (-1, 1) are sufficiently
distinctive and varied to warrant the special treatment given here.

We present briefly in the next section the extension of the classical Nagumo
theory which is required in studying the problem (1.1), (1.2). In the following
sections we isolate the various types of asymptotic behavior which solutions can
exhibit and we motivate the hypotheses of the theorems with some illustrative
examples.

2. A differential inequality theorem. In the context of the problem (1.1),
(1.2), the classic theorem of Nagumo [12] (see Jackson’s paper [11] for a more
modern version) states that if there exist functions a,/3 of class C2 [-1, 1] with
a _-<fl, a(-1, e)<-A _-<fl(-1, e), a(1, e)<-_B =<fl(1, e), and for in (-1, 1), a">=
f(t, a, a ’, e), e" _-< f(t, , ’, e ), then the problem (1.1), (1.2) has a solution y
y (t, e) for such e > 0 with a (t, e) _-< y (t, e) -< (t, e), 1 _-< _-< 1, provided that
f= O([y’[2), as [y’[ . For our study of this problem we require the following
extension of this result due to Habets and Laloy [6].
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THEOREM 2.1. Suppose thefunctionf=f(t, y, y’, e)iscontinuouson [-1, 1Ix
lt x [0, eo] (Co > 0) and satisfies the growth estimate
Suppose also that there exist continuous functions a, fl (a <-fl) which are
piecewise-C(2) bounding solutions on [-1, 1], i.e., there is a finite partition {ti},
1 <- <- n, of [-1, 1] such that in each subinterval (ti, ti+l), a and fl are ofclass C(2),
and for 0<e_-<el<_-eo, a(-1, e)<=A <-(-1, e), a(1, e)<-_B <-fl(1, e), and fort
in (ti, t+l), ca">-_ f(t, a, a’, e ), eft" <- f(t, fl, fl’, e ), with Dla (ti, e ) <-- Da (ti, e ) and
Dfl (ti, e ) >- Drfl (ti, e ), 1 < < n. (Here D, Dr denotes lefthand, respectively right-
hand, differentiation.)

Then the boundary value problem ey ’’= f(t, y, y ’, e ), y (- 1, e) A, y (1, e)
B, has for each e, 0 < e <- e 1, a solution y y (t, e) satisfying a (t, e) -< y (t, e) _-<

fl t, e ), l =< _-< 1.
Theorem 2.1 extends the theorem of Nagumo-Jackson described above by

allowing the bounding functions a and fl to have finitely many "corners",
provided that the correct inequalities are satisfied at the corner points 6. Its proof
is an easy modification of the one given in 11] if one notes that the maximum of a
finite number of lower solutions (i.e., functions satisfying the a-differential
inequalities) is also a lower solution, while the minimum of a finite number of
upper solutions (i.e., functions satisfying the fl-ditterential inequalities) is an
upper solution. We remark finally that the solution of (1.1), (1.2) is unique if
Of/Oy fy is strictly positive for all values of its arguments, as follows from a direct
application of the maximum principle.

3. Interior transition (shock) layers. We begin our study of the problem

(3.1) ey"=f(t, y, y’ e) -1 <t < 1

(3.2) y(-1, e) =A, y(1, e) =B,

by considering conditions on the function f which guarantee the existence of
solutions possessing transition layer (or shock layer) behavior at O. Our first
requirement is that the corresponding reduced equation

(3.3) f(t, u, u’, O)= 0

has two solutions (roots) u uL (t) and u UR (t), defined and sufficiently smooth
on [- 1, 0] and [0, 1], respectively, which satisfy ui (- 1) A, UR (1) B and
uL (0) # UR (0). Then if these reduced roots are stable in the sense of assumption 5)
of Theorem 3.1 below and if fy,y, satisfies the inequalities’ (u(O)--UR(O))fy,y,=
0, --6 =< --< 0, and (UL (0) UR (0))fy,y, 0, 0 t _-< 6, for some constant 6 > 0, we
anticipate that a solution y y(t, e) of (3.1), (3.2) exists for small e >0 and
satisfies y(t,e)UL(t),--l<--t<O, and y(t,e)--UR(t),O<t<--l, as e-0+. The
requirement that the reduced roots UL and UR should be stable is a natural and
standard assumption (see, e.g., 16, Chap. 1] or [9]). However, the sign restrictions
on fy,y, near 0 deserve a brief comment. Since across a shock layer a solution
y(t, e) of (3.1), (3.2) changes rapidly from being convex to concave (or vice versa),
the reduced roots and the function fy,y, must reflect this change in convexity in a
neighborhood of 0. For instance, suppose uL(0)> un(O), then if y(t, e)passes
thro.ugh a shock layer at t 0, y changes from being concave to being convex in an
order o(1)-neighborhood of 0. In such a neighborhood, y’(t, e).is unbounded
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as a function of e, and since ey"-1/2fy,y,(y’)2 there, the sign of fy,y, must be
compatible with this change in convexity, i.e., try,y,->_ 0. These heuristics are made
precise in the following theorem.

THEOREM 3.1. Assume
1) the reduced equation (3.3) has two solutions u uL(t), u UR(t), defined

and of class C(2) on the respective intervals [-1, 0], [0, 1], with uL (0)# UR (0);
2) the function f is continuous in (t, y, y’, e) and of class C(2) with respect to

y, y’ in (-1,1):-1 _-<t _-< 1, lY -u(t)l<=d(t),-1 <-t <-0, lY --uR(t)l<--d(t), O<--t <----
1, with d(t) 0(el/2), for t in [-1, 1]\(-6, 6) and d(t) >--IuL(O)--UR(O)I,--6 <t <
6, for 6 > 0 a small constant independent of e, lY’I < o, 0 _-< e _-< co, eo > 0; and in

(- 1, 1), f 0(lY ,j2), as [y ’1-* oo;
3) for the same constant >0 in 2), (uL(O)- u(O))[y,y,_-< 0 in(-8, O) and

(u(O)-u(O))fy,y,>-_O in (0, );
4) there is a positive constant such that

f(t, y,u’(t),e)>-l>O, [Y -u(t)l=d(t), -l<t<0

fy(t, y,u’R(t),e)>=l>O, [y--uR(t)l<=d(t), O--<_t--<l;

5) fy,(t, y, u’ (t), e)> hl(t), [y-u(t)l< d(t), -l < t<O, where hi, defined
and differentiable on [1, 0], satisfies h(O) 0 and h(t) >0, l-h ’l(t) >-0, -1 <-_t <
O;

fy,(t, y, U’R(t), e) <=h2(t), [y u, (t)l d (t), 0 _--< t _--< 1,

where h2, defined and differentiable on [0, 1], satisfies h2(0)=0 and h2(t)<
O,l-h(t)>-O,O<t<=l;

6)

f(t, Ul (t), u’(t), e)= O(e ), -l__<t__<0;

(t) e) O(e)f(t, UR (t), UR O<t<l

Then for each e > 0 sufficiently small, e <= co, the problem (3.1), (3.2) has a
solution y y (t, e). Moreover, the following estimates hold"

(i) if uL (0) > UR (0),

uL (t) (u (0) UR (0)) exp[--e -1
o

hl(s)ds -e /2/<=y(t,e)
1/2<-_u(t)+e % -l__<t_<0;

u(t)--ea/2@<--_y(t,e)<--_u(t)+(u(O)--UR(O))exp e h2(s)ds "[-E1/2/,

O__<t__<l;

(ii) if uL (0) < UR (0),
o

u(t)-e <y(t,e)<u(t)+(u(O)-u(O))exp -e ha(s)ds

1/2+e y, -lt0;

Here and throughout the paper the symbol E(tl, t2),-1 <tl<tz<l, denotes the subregion
E(-1, 1) in (t, y, y’, e)-space obtained by restricting to the subinterval [q, t2].
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u(t)-(u(O)-u(O))exp e h2(s)ds-e <y(t,e)

UR (t) + F_. I/2/, O<t<l

0Here / > 0 is a computable constant independent of e In addition, if u.( u R(O),
the terms of order O(e l/Z) in (i) and (ii) can be replaced by terms of order O(e ).

Proof. It is sufficient to prove the result in the case that u(0)> UR (0) since
the reflected case u/. (0) < UR (0) may be reduced to this one by making the change
of dependent variable y --y. Define then for e in (0, Co]

ui. (t) -Ha(t, e)-(el-1)l/E(u’(O) U’R(O))S+(t, e) ey1-1 --1 <--_ <--_ O,
c(t, e)

UR (t) (el-1) I/Z(U L(O) UR(O)) e’yI-1 O <= <- 1,

and

ut. (t) + eyl-, 1 <-_ <- O,
/3(t, e)

u (t) + Hz(t, e) + eyl- 0 < < 1

if u[(0) u,(O); while if u[(0) < u(0), define

e)-e/l- -1 < <O,
a(t, e)=

uR(t)_e/l_l O<--_t <-- 1,

and

u (t) + (el-1) 1/(u ’R(O) U(0)) + e’y1-1
fl(t, e)

uR(t)+H2(t, e)+(el-a)l/2(U’R(O)-u[(O))S-(t, e)+eyl-,
Here Hi(t, e)=(uL(O)--UR(O)) exp [-e -1 o h,(s) ds], Hz(t, e)=(uL(O)--UR(O))
exp[e-ltohz(s)ds], and S+/-(t,e)=exp[+(e-l)a/zt]; also, y>O is a constant
to be determined.

The inequalities a <-13, a(-1, e)<=A <_-/3(-1, e) and a(1, e)<-B <_-/3(1, e)
are obvious (recall that u. (- 1) A and UR (1) B). In addition, Dta (0) <-_Da (0)
and Dtfl (0) >- Dd3 (0). We consider now just the case u[(0) -> u(0) since the other
one is handled similarly. It remains to verify that a satisfies the correct differential
inequality on [- 1, 0) and (0, 1]; the verification for/3 is analogous and is omitted.

By noting that f(t, a, a’, e) may be written as

[(t, a, a’, e )= jr(t, u, u’, e )+ {f(t, c, u’, e )-f(t, u, u’,e)}
+ {f(t, , a’, e)-f(t, a, u’, e)}

and expanding the bracketed terms by Taylor’s theorem, we obtain the decom-
position

f(t, , a’, e)=f(t, u, u’, e)+fy(t, u +O(a -u), u’, e)(a -u)

+fy,(t, a, u ’, e )(a’ u’)

,(t, a, u’ + O2(a’- u ’), e )(a’- u’)2,
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where 001, 02 < 1. Thus on [-1, 0), differentiating a and substituting into
ea"-f(t, a, a’, e) via this decomposition, we obtain

ea"-f(t, a, a ’, e) eu[-(h + e-Xh)Hl(t, e )-(el)/2(u[(O) u ’(O))S+(t, e)

-/(t, u, u, e)+L(t, n, u,, e)

{H(t, e)+(el-)/Z(u’(O)-u’(O))S+(t, e)+e/l-}
h-fy,(t, a, U [, e ){ -ah1H1 (t, e + (u[(0) U(0))S+(t, /3 )}

-1/2fy,y,(t, a, 1’, e){e-ahlHl(t, e)+(u’(O)--U’R(O))S+(t, e)}2,
where r/1 uL + 01(a ut.) and rt u [ + 02(a ’- u [). Finally, making use of the
assumptions of the theorem (in particular, fy,(t, a, u[, e) -> hi(t) and
-fy,y,(t, a, r/, e)--> 0) and taking e sufficiently small, we have the desired inequal-

" ’, t -1ity ea -f(t, a, a e)=>0, provided y>max{lut( )l,e [f(t, ui.(t), u’(t), e)l, 1}.
On the interval (0, 1], we have trivially

ea"-f(t, , a’ e)= eu"-](t, u, u’ e)z,e)+fy(t, rll, uL,

{(el-a)/2(u’(O)--U’R(O))+eyl-}

>--lul ele-af(t,u,u’
---0, by our choice of y.

Consequently we may apply Theorem 2.1 to conclude the proof of Theorem 3.1.
Remark 3.1. The assumption that fy (t, r/1, p’, e), p’ u[ or u, is positively

bounded away from zero amounts to a stability assumption on the roots u, u.
Since in a neighborhood of =0, these functions annihilate ]’,, stability is
determined by the (linearized) coefficient of y, i.e., by It. However it may happen
that ur and u also annihilate ]’y; then it is reasonable to measure the stability
of these roots by means of [yy,/yyy. etc. Such considerations are related to stability
requirements which are imposed on reduced roots of the problem eZy’’= h(t, y)
(see, e.g., [ 1] and [8]). As an example of such a condition, assumption 4) may be
replaced by 4’) if(t, u, u’, e)= O(e),-1 -<t_<0, 1 -<j =<2q;

u’o q+lf(t, rll, ,e)->l>0, -l=<t<-0;

if(t,u,u’,e)=O(e), 0<-t<-l, 1 <_-j-<_2q;

e)>l>0, 0<t-<l0 q+lf(t, rll, UR,

The error term of order O(e) in the definition of a and/3 is then replaced by a term
of order O(e(Zq+l)-). This is proved most easily by expanding the term
f(t, r,p’, e)-]’(t,p,p’,e) to (2q + 1)-terms by Taylor’s theorem; here r =a or
/3, 0 u or u.

Remark 3.2. Assumption 5) that [y, is bounded by a certain function
of t is only required for in (-6, 6). For simplicity of exposition, however, we
assumed that ]’y, was globally bounded by ha or h2. It is clearly enough to
assume additionally that [y,(t, y, u, e) >= O, lY ui (t)l <= d (t), 1 <- t <= -6, and
fy,(t, y, uR, e) < O, lY UR (t)l < d (t), 6 < < 1

Remark 3.3. The proof of the theorem reveals that if the partials Oiyf only
satisfy 0[(t, p, t9’, e >-- 0, p u or UR (e.g., ify 0), then a result similar to that of
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Theorem 3 1 holds, provided u"L UR 0 and UL(O) uk(0). In addition, esti-
mates (i) and (ii) are valid with the terms of order O(e 1/2) (or O(e)) absent.

Remark 3.4. Two examples of functions h 1, h2 satisfying assumption 5) are:

(a)

(b)

hi(t) -kit2"+1, -1 =<t -<0,

h2(t) -kzt2"+1, O<-_t <= 1, n=0, 1,2,...

hl(t) klt2", -1-<t_-<O,

hz(t) -k2t2", O=<t=<l, n=l, 2,....

Remark 3.5. If the roots UL, UR of the reduced equation satisfy both the
equations UL (0) UR (0) and u[(0) u(0), then under even weaker assumptions
than those of the theorem, a solution y y (t, e) of (3.1), (3.2) exists and satisfies
y (t, e)(y’(t, e)) ut. (t)(u [(t)), 1 =< t -< 0, and y (t, e)(y’(t, e)) - uR (t)(u’ (t)), 0 <-
t-< 1. That is, neither the solution nor its derivative exhibits any nonuniform
behavior in [-1, 1]. However, it frequently happens in the case of generalized
turning point problems and elsewhere that the roots UL, UR satisfy UL (0) UR (0)
but u[(0) # u(0). Such behavior is closely related to the theorem of Haber and
Levinson [5] and it will be examined in that context in the next section.

One of our principal assumptions in Theorem 3.1 was that fy, behaved like a
certain function of in a &neighborhood of t 0. It is also of interest to consider
briefly the case in which fr’ behaves, for example, like a function of the solution
itself, i.e., fy,= g(y). Look then at the following special case of (3.1), (3.2)

(3.4) ey"=p(t,y)(y’)2+h(t,y,y’), -l<t<l,

(3.5) y(-1, e)=A, y(1, e)=B, A#B,

in which tp(t, y)=>0,-l=<t=< 1, for all y. Suppose that the associated boundary
value problem

(3.6) ez"= h (t, z, z’), -1 < t < 1,

(3.7) z(-1, s)=A, z(1, e)=B, A>B,

has a solution z z (t, e) with a shock layer structure at 0, i.e., z (t, e) - A, 1 =<
t < 0, z (t, e) - B, 0 < =< 1, as e - 0+. Then if z’(0+/-, e) is nonpositive, it turns out
that for the range of e > 0 for which z (t, e) exists, a solution y y (t, e) of (3.4),
(3.5) exists and satisfies y (t, e) A, 1 =< < 0, y (t, e) - B, 0 < _-< 1, as e 0/.
Thus y possesses the same shock layer structure as the solution z of the "simpler"
problem (3.6), (3.7). This result is easily proved by defining the functions

a(t,e)=
B,

-l<__-t-<0, {A -1-<__t-<0,
0____<t<__l

fl(t, e)=
ze(t,e), 0_-<t<-l,

where Z1 is a solution of (3.6) satisfying zl(-1, e)=A, Zl(0, e)=B,Z’l(O-, e)<-O
and z2 is a solution of (3.6) satisfying z2(0, e) A, z2(1, e) B, z.(0+, e) -<0. The
analogous result in the case that tp(t,y)<-_O,-l<-_t<-_l, follows similarly if
z 1,2(0 e) is nonnegative and A <B.
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The final transition layer phenomenon we study in this section involves the
case in which the reduced equation f(t, u, u’, 0)=0 has two singular solutions
u, u2 which exist at least on [-1, 0], [0, 1] respectively. The term "singular" in
this context simply means that fr,(t, u(t), u(t), 0) --= 0, 1, 2. Since u 1, u2 annihi-
late fy, on their respective intervals of existence, their stability is determined by the
partial derivatives 0f, for a certain range of ] -> 1. In addition, singular reduced
roots cannot in general be made to satisfy either of the supplementary conditions
of the original problem. Consequently, under hypotheses to be given below, a
solution of the full problem (3.1), (3.2) can possess, in addition to shock layer
behavior at 0, boundary layer behavior at both endpoints. Our earlier remarks
about the relationship between the convexity properties of solutions inside a
shock layer apply equally to the case of a boundary layer. For instance, if fy,y, is
positive near t =-1, then a solution y of (3.1), (3.2) is convex in any boundary
layer at 1, i.e., y" > 0. The singular solution u must then satisfy an inequality
of the form u (- 1) <A, if it is to represent y to the edge of the boundary layer. We
give these intuitive ideas a precise expression in the next theorem, which actually
applies to a broader class of reduced roots than the singular ones discussed above.
It is stated for the case in whichfr’y’ is negative near t 1 and positive near t 1.

THEOREM 3.2. Assume
1) the reduced equation f(t, u, u’, 0)=0 has two solutions Ul =Ul(t) and

u2 ua(t), defined and of class C2 on [-1, 0], [0, 1], respectively, with u(O)
u2(0) and Ul(-1) >A, u2(1) <B;

2) the function f is continuous in (t, y, y’, e) and of class C2 with respect to
y,y’ in (-1, 1): -l_-<t<_-l, ly-ul(t)l<-d(t), -l_-<t_-<0, dl(t)>-Ul(-1)-A,
-1 -<t <-1 +, d(t) O(e), -1 +6 <-t<=-, dl(t)>-IUl(O)-ua(O)l, - <t-<0,
ly-uE(t)l<-da(t), 0<_-t<_-l, dE(t)>-IUl(O)-u2(O)l, O<-_t <, dE(t)=O(e), 6 <-_t<=

1-6, dE(t)>-B-u2(1), 1- <t_-< 1, ly’l <, 0<_-e _<-Co, co>0; and in (-1, 1),
f O(lY ’12), as lY’I -; here > 0 is a small constant independent of e

3) for the same constant 6 > 0 in 2), (u(0)- u2(0))f,,-<_ 0 in (-6, O) and
(u,(O)-u2(O))fy,y,>--O in (0, 6);

4) there is a positive constant p such that fy,y,-< -p < 0 in (- 1, 1 + 6) and
fy,y,>-p >0 in (1-6, 1);

5) there is a positive constant such that

fy(t, y, u’(t), e) >----l >O, ly -ua(t)l<=da(t), -l<__t<__0;

6)
fy(t, y, u(t), e) >----l >O,

fy,(t, y, U’l(t), e)>=O,

lY u2(t)[--< d2(t), 0 =< t _-< 1;

lY -ux(t)l<-d(t), -6 <=t <=O,

and
fy,(t, y, u 2(t), e) --< O, ly uz(t)l <- d2(t), 0 -<_ -<_ 6;

fy,(t, u(t), U ’l(t), e) <--O, -1 =<t=<-l+6,

fy,(t, u2(t), u (t), e) >- O, 1-6<=t<=l;
7)

f(t, ux(t), U’l(t), e)= O(e), -l_t_<0,

f(t, u.(t), u(t), e)= O(e), 0__<t_--<l.
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Then for each e >0 sufficiently small, e <=eo, the problem (3.1), (3.2) has a
solution y y(t, e). Moreover, if ul(0) > u2(0),

Ul(t)-(u 1(- 1)-A) exp [-(e-ll)l/2(1 + t)]- (Ul(0)- u2(0)) exp [(e-ll)l/2t]
e#/ <- y t, e <-_ u t + e/, -l_-<t_-<0,

UE(t)- e/_-< y(t, e) =< UE(t) + (B u2(1)) exp [-(e-ll)l/2(1 t)]

+ (u 1(0) u2(0)) exp [- (e-ll) 1/2t] / e/, 0 <-_ <= 1;

while if u 1(0) < u2(0),

u l(t)-(U l(’-1)-A exp [-(e-11)1/2(1 / t)]- e/ <-_ y(t, e)

<=Ul(t)+(uz(O)-ul(O))exp[(e-ll)l/t]+e/, -l_-<t_-<0,

u2(t)- (u2(0)- u 1(0)) exp [-(e-ll)l/t] e/<-_ y(t, e)

<-u(t)+(B-UE(1))exp[-(e-l)l/2(1-t)]+e/, 0__<t__<l.

Proof. In the case that Ul(0) > u2(0), the proof follows as that of Theorem 3.1
by defining the functions, for 0 < e _-< e0"

u l(t)-(u 1(-1)-A) exp [--(--1/)1/2(1 / t)]

(u (0) u2(0)) exp [(e -11)1/2t] eTl-(t, e) + (u 1(- 1)-A) exp [--(e-1/)1/2], --1 =< =< 0,

UE(t) ev1-1, 0 =< < 1

u l(t) + e/1-1, --l=<t_--<0,

fl(t, e)= UE(t)/(B -u2(1)) exp [-(e-ll)l/E(1-t)]
1/2+(ul(O)-uE(O))exp[-(e- l) t]+e,l-

--1 1/2 .-(B-u2(1))exp[-(e l) ], 0=t=l.

The reflected case u 1(0)< u(0) is handled similarly. Note that for e sufficiently
small, a =< fl and

similarly,

Da (0) u ’1(0-) + l/2e 1/2(u(- 1) A) exp [-(e -1 l) 1/.]
-ll/2e-1/2(Ul(O)-u2(O))<Drct(O)- u2(0 );

Dfl (0) > D,fl (0).

Remark 3.6. Analogous results are valid if instead of requiring u,(-1)>A
and u2(1) < B, we assume that u (- 1) <A and u2(1) < B, or u (- 1) <A and
u2(1) >B, or ul(-1)>A and u2(1)>B. In each of these cases, we must assume
additionally that fy,y, > 0 in (- 1, 1 +) and fy,y, > 0 in (1 , 1), or f,y, > 0 in
@(-1, -1 +) and fy,y, < 0 in (1 -, 1), or fy,y, < 0 in (-1, -1 +) and fy,y, < 0
in (1 , 1), respectively.
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Remark 3.7, The stability assumption, assumption 4) of Theorem 3.2, may
be modified as in [9] to include the case of roots u l, us which annihilate a
succession of the functions f, for a range of j _-> 1. It is then necessary to use
algebraic boundary and interior layer functions (cf. [8] and [9]) in place of
exponential functions.

Remark 3.8. It is clear that the theory presented in Theorems 3.1 and 3.2
may be combined to treat the case of a "regular-singular" shock layer. Namely the
reduced equation has a regular solution, say u uL (t), on [- 1, 0] with UL (-- 1) A
and fy,[u.(t)]>-_hl(t), and a stable singular solution u Us(t) on [0, 1] such that
UL(O) Us(O). Then under the obvious assumptions, the full problem has a
solution y y(t, e), for small enough e, which exhibits shock layer behavior at
t 0 and possibly boundary layer behavior at 1, i.e., y (t, e) --> UL (t), 1 <--_ < O,
y(t, e)--> us(t), 0<t < 1, as e -->0+.

We conclude this section with five examples which illustrate the theory given
above.

Example 3.1. Consider the problem

ey"= t(y’)2- ty’, -l<t<l,

y(-1, e)=A, y(1, e)=B, A>B.

It is easy to verify that u =-- A and UR B satisfy the hypotheses of Theorem 3.1
with h l(t) ha(t) -t (cf. Remark 3.3). For each e > 0, a solution y. y(t, e) exists
and satisfies

A-(A-B)exp[-(2e)-lta]<=y(t,e)<-A, -1-<t=<0,

B<=y(t,e)B+(A-B)exp[-(2e)-lta], 0_<-t<_- 1.

Example 3.2. For the problem

f t(y’)2 + tyy’, 1 <= <--_ O,
f(t, y, y")

t(y ’)2- tyy ’, 0 _-< t _-< 1,

y(-1, e)=A; y(1, e)=B, Ae-I>B>O,

the reduced equation f(t, u, u’) 0 has the roots ti A, u (t) A exp [-(1 + t)],
for in [-1, 0], and aR =--B, UR(t)=B exp It-- 1], for t in [0, 1]. Of these, uL and
aR form a stable pair since fy,(t, rll, u’(t))>=-Ae-t,-l<-_t<-_O, for r/l_-<

A exp [-(1 +t)], and fy,(t, ,12, a’R(t))<--_--Bt, 0--<_t--<_ 1, for r/2>_-B. Setting h(t)
-Ae-lt and h2(t) -Bt we argue as in the proof of Theorem 3.1 (cf. Remark 3.3)
to deduce that this problem has a solution y y(t, e), for e sufficiently small,
which satisfies
A exp [-(1 +t)]-(Ae--B) exp[-Ae-(2e)-ta]-el/2q/_<-y(t, e)

_---A exp [-(1 + t)], -1 =<t _-<0,

B-e/2q/<=y(t,e)<=B+(Ae--B)exp[-B(2e)-lt2]+el/)q/, 0__<t__< 1.

Theorem 3.1 is not directly applicable here since fy(t,y,u(t))=
-tA exp [-(1 + t)] >= 0, -1 _-<t _<-0, and fy(t, y, a’(t))=--0, 0<-_ t <--_ 1.
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Example 3.3. Consider next

ey"= t(y’)2 + yy’, -1 < < 1,

y(-1, e)=A, y(1, e)=B, A=-B>O.

The associated problem ez" zz’, 1 < t < 1, z (- 1, e) A, z (1, e) B, can be
solved explicitly to yield a solution satisfying z (t, e) A, 1 -< t < 0, z(t, e) - B,
0 < t _-< 1. We can then apply the theory discussed above to show that the problem
for y has a solution y (t, e) satisfying y (t, e) --> A, 1 _-< < 0, y (t, e) --> B, 0 < t _-< 1.

Example 3.4. This example is actually a whole family of problems. Consider

ey" t(y ,)2 + h (t: y), 1 < t < 1,

y(-1, e) =A, y(1, e) =B,

where h(t, u)=0 has two constant roots ul, u2 such that hy(t, ui)>0, 1, 2.
Then if the quantities lu 1-u21, IA-u1 and IB- u21 are sufficiently small, we can
apply the reasoning behind Theorem 3.2 to deduce the existence of a solution
y =y(t, e) such that y(t, e)-->Ul,-1 <t <0, y(t, e)-->u2, 0<t < 1.

Example 3.5. Our final example gives an illustration of a "regular-singular"
shock layer which was briefly described in Remark 3.8. Consider the problem

ey"=y-t(y’)2, -l<t<l,

y(-1, e)=A, y(1, e)=B, A<-I, B-<_0.

The reduced pair of interest is UL(t)=--((--a)1/2- 1 +(--t)1/2)2, --l_--<t_--<0, and
us=O, 0<t<= 1. Since fy,(t, y, u[(t))>hl(t)==2((-A 1/2_ 1)(_t)1/2, -1 =<t<0,=
and fy -= 1, the roots u and Us are stable. It is then possible to argue as above and
show that this problem has a unique solution y =y (t, e) satisfying

0

y (t, e) uL (t) + O exp -e h

y(t, e)=O(exp[-e-1/2t])+O(lBl exp[-e’l/2(1-t)])+O(ea/2), 0_-<t_-<l.

The argument is not as straightforward as previous ones since u[ is unbounded at
0, but this offers no real difficulty.

4. Modified Haber-Levinson crossings. We consider in this section
phenomena which were first studied in the classic paper of.Haber and Levinson
[5]. (See also [16, Chap. 2], [14] and [10] for more recent discussions.) The
situation here is the following. The reduced equationf(t, u, u’, 0) 0 is assumed to
have two roots u UL(t) and u UR(t) which exist on [-1, to] and [to, 1], respec-
tively, 1 < to < 1, and satisfy UL (-- 1) A, UR (1) B. In addition, these roots are
assumed to have an "angular" crossing at to, i.e., UL(tO) UR(tO) and u[(to)#
u(to). Finally if UL and UR are stable in the sense that fy,(t, UL(t), u[(t), 0)->k >0
on [-1, to] and fy,(t, UR(t), u’(t), O)<-_-k <0 on [to, 1], and if

{ ,t> 0, u(o) <o < u(t0),
f(to, uL (to), w, O) < O, u(to) < < u(’ to),
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Haber and Levinson showed that the problem

(4.1) ey"= f(t, y, y’, e ), -1 < < 1,

(4.2) y(-1, e)=A, y(1, e)=B,

has a locally unique solution y y (t, e) for small enough e > 0. In addition,
Iut.(’), -1 <-t<-to, [u[(t), -1 <-t<-_to-&

-,o+lim y(t, e)=
UR (t), to < < 1," Ji_,mo+ y’(t, e)=

u to + 6 < <= 1,

for 6 > 0 a small constant independent of e. This theorem of Haber and Levinson
is of course valid without any form of growth condition on f with respect to y’.

For problems (4.1), (4.2) with generalized turning points whose right-hand
sides satisfy/= O(]y’[2), as ]y’] oo, it frequently happens that there exist solutions
which behave like those described by Haber and Levinson, despite the fact that f
does not satisfy the original assumptions of [5]. In the next three theorems we
investigate the nature of these modified assumptions. The proofs are omitted since
this entire question is discussed more fully in [10]. However, with slight adjust-
ment, the proof of Theorem 4.2 follows from that of Theorem 3.1.

THEOREM 4.1. Assume
1) the reduced equation [(t, u, u’, 0)=0 has two solutions u u(t), u UR(t)

which are defined and of class C(2) on [-1, to], [to, 1], respectively, to # O, with
uL(-1) =A, uR(1)=B, uL(to), and u’(to) uh(to);

2) the ]’unction ]’ is continuous in (t, y, y’, e) and of class C(2 with respect to
y,y’ in :-l_<-t<_-l, ly-u(t)l<=d,-l<-t<-_to, ly-u(t)l<=d, to<---t<--_l,
d, d O( ), ly’l<oo, 0-<_-<_o, o>0; and in
fy,y,(0, r/, r/’, e)=0, (0, rt, rt’, e) in ;

3) there are positive constants k 1, k2, and 6 such that

moreover,

4)

5)

L,(t, u (t), u [(t), 0) _--> k > 0,

[y,(t, UR(t), U’R(t), O) <-----k2 < O,

]’y (t, u (t), u [(t), O) >- > O,

]:y (t, UR (t), U ’R(t), O) >-- > O,

to- 6 --< <- to,

to <- t <- to + 6

l <- <- to- 6,

to+6 <-t <- 1;

fy,(t, ut. (t), u [(t), e) >_-- 0,

fy,(t, UR (t), U ’R(t), e) <- O,

>0,
]’(to, u(to), to, 0)

<0,
U[(to) < to < U(to),
U’R(tO) <to < uk(t0);

f(t, ui(t),u’(t),e)=O(e), -l<-t<-to,

f(t, UR (t), U ’(t), e) O(e), to <= <- 1.

Then for each e >0 sufficiently small, e <-co, the problem (4.1), (4.2) has a
solution y=y(t,e) such that y(t,e)=uL(t)+O(e),-l<-t<-to, and y(t,e)=
UR (t) + O(e ), to <- t <- 1.
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The theorem says that the strict nonvanishing of the function fy, along the
appropriate reduced path is required only in a small neighborhood of to
provided that fy is strictly positive outside of this neighborhood, We remark that
an angular crossing cannot occur at t0=0 since fy,y,(0, r/, r/’,e)=0 and
fy,(to, p (to), p’(to), O) O, p uL, UR, i.e., if uL (0) UR (0), then u[(0) u,(0), as
follows from an easy application of Taylor’s theorem.

In the next theorem it is shown that a Haber-Levinson crossing can occur at a
point to at which fy,y, and [y, vanish simultaneoulsy. For convenience, we take
to-0.

THEOREM 4.2. Assume 1), 2) and 5) as in Theorem 4.1 with to 0 and
dl, dE O(e 1/2). Assume also

3)
fy,(t, uL (t), u [(t), e) _--> 0,

L,(t, UR (t), U ’R(t), e) <-- O, 0_--<t_<-- 1;

4) there is a constant > 0 such that

[y (t, uL (t), u ’(t), O)

_
> O,

fy (t, UR (t), U ’R(t), O) >--_ > O,

Then for each e >0 sufficiently small, e _-<eo, the problem (4.1), (4.2) has a
solution y y(t, e) such that

y(t,e)=u(t)+O(el/2), -l_<--t=<0,

y (t, e) UR (t) + O(e 1/2), 0 _--< t _--< 1.

This theorem once again shows the interplay between the functions fy and
which seems to typify linear and nonlinear turning point phenomena (cf. [7]). We
note that the error term is of order O(e /2) since we have only assumed that ]’y, is
nonnegative (nonpositive)along U(UR).

We consider finally a case in which the reduced equation has two singular
solutions which have an angular crossing at t 0. Such solutions in general satisfy
neither boundary condition, so that in addition to Haber-Levinson behavior at

0, the solution of the full problem exhibits boundary layer behavior at t + 1.
THEOREM 4.3. Assume
1) the reduced equation f(t, u, u’, O) 0 has two singular solutions u u(t),

u u2(t), defined and of class C2 on [-1, 0], [0, 1], respectively, with Ul(0)-
u2(0), u(0) u(0), and Ul(-1)_-<A, u2(1)->B;

2) the function f is continuous in (t, y, y’, e) and of class C( with respect to
< < dl(t),-l<t O, dl(t)>-A Ul(-1),y,y’ in (-1 1) 1--t--l, ly u(t)[_-< _-<

1-<t< 1+6, dl(t)=O(ea/2), l+6<t<0, ly uz(t)l<--dz(t), 0_t-l,
d2(t)=O(el/2), O<-t<=l-6, d2(t)>=u2(1)-B, 1-6<t_-<l, ]’or 6>0 a small
constant, ly’l < oo, 0 -< _--< 0, o > 0; in (- 1, 1), .fy,y, 0(1) as ly’l --" oo, and
fr,r,(O, q, q’, e)= O, (0, rl, rl’, e) in

3) there is a constant p>0 such that fy,y,_->p>0 in @(-1,-1+6) and
fy,y,--p <0 in (1-6, 1), ]’or >0 as in 2);
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4) them is a constant > 0 such that

f(t, y,u’l(t), O)>---l>O, ly-ul(t)l<-_dl(t),

fy(t, y,u’2(t), O)>--l>O, ly-u2(t)l<=d2(t),

5)

f(t, ul(t), u’a(t), e)= O(e),

f(t, u2(t), u’2(t), e)= O(e),

Then ]’or each e >0 sufficiently small, e _-<eo, the problem (4.1), (4.2) has a
solution y y(t, e) such that

1/2Ul(t)-el/zy<-_y(t,e)<-Ul(t)+(A-ul(-1))exp[-(e-ll)l/Z(l+t)]+e y,

-l<__t_<0,

1/2,)/ 1/2u2(t)-(Uz(1)-B)exp[-(e-al)l/Z(1-t)]-e <y(t,e)<=uz(t)+e
0_<t_<l.

Remark 4.1. The theorem of Haber and Levinson contains an estimate on
the derivative y’(t, e) of the solution of (4.1), (4.2) (see also [16, Chap. 2] and
[14]). In Theorems 4.1-4.3 we can also give a similar estimate for y’(t, e) based
upon the estimates for y- uL and y- UR.

Remark 4.2. The reduced roots were assumed to satisfy the condition that fy
was strictly positive in a certain domain including the reduced paths. It is
frequently useful to consider the various cases in which such roots annihilate
several of the functions Of. These more general results are discussed in [ 10]. With
regard to such an extension of Theorem 4.3, see the discussion in I-9, 3].

Remark 4.3. We remark finally that the boundary layer behavior observed
in Theorem 4.3 is only possible under the assumption that fr,y,=O(1). An
analogous result is valid if instead of assuming ul(-1) -<A, u2(1) =>B, we assume"

Ul(-1)<=A, uz(1)<=B and fy,y,>0 in @(-1,-l+6),fr,y,>0 in 30(1-6, 1), or
u(-1)>-A, u2(1)<=B and f,r,<0 in @(-1,-1+6), fr,y,>0 in (1-6, 1), or
Ul(-1)>=A, uz(1)>=B and fr,y,<Oin(-1,-l+6),fy,y,<Oin(1-6, 1).

We conclude this section with three examples.
Example 4.1. Consider the problem

ey"= y2_ t2(y,)2, --1 < t < 1,

y(-1, e)=A, y(l,e)=B, -B<A<0.

The stable solutions of the reduced equation for such A and B are uL(t)=
-At-a, -l <-t <O, and Un(t)=Bt, -l <-_t<- l. Indeed, fy,[u(t)]=-2A >O and
fy,[un(t)]=-2Btz<O, SO. Clearly, u(to)=Un(to), for to=-(-AB-)/2 in

t(- 1, 0), and u(o) -B <.(t0) B. Finally the crossing condition is satisfied, i.e.,
(Bto)2-ttoz=t(B-wa)>O, I ,I<B. Thus we can apply Theorem 4.1 to con-
clude that this problem has a solution y =y (t, e) satisfying

u(t)-e /2V<--y(t,e)<--_u(t), -l<__t<l
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where

-At- -1 < t <to,
u(t)=

Bt, to <-_t <= l.

Example 4.2. Consider now

ey" t(y’)2-YY’, -1 < < 1,

y(-1, e)=A, y(1, e)=B, A>0, B<0, A-B.

The reduced equation has the stable pair of roots u/ (t)=-At and UR(t)= Bt,
since [y,[u (t)] -At >= O, 1 <= <= O, and f’[UR (t)] Bt <= 0, 0 --< --< 1. Clearly

0U.(O)=UR(O) and u( )=-a u(0)=B, moreover, fy[u(t)]=a>o and
fy[UR (t)] -B > 0. We can then apply Theorem 4.2 to conclude that this problem
has a solution y y (t, e), for small enough e > 0, satisfying

1/2u(t)<--_y(t,e)<=u(t)+e y, -l<_-t<_-l, if-A<B,

1/23tu(t)-e <y(t,e)<u(t), -l<t<l if -A >B,
where

u (t) { -At, -1--<t-<0,

Bt, 0-<t=<l.

Example 4.3. Consider finally the problem

ey"= Itl(y’)2 2ty’ + y, 1 < < 1,

y(-1, e)=A, y(/,e)=B, A,B>-I.

The reduced roots in this case are the singular ones u l(t) -t, -1-< t _< 0, and
u2(t)=t,O<-t<-l. This pair is clearly stable since fy---1, and since ul(-1)_-<
A, u2(1)<-B, fr,y,=21tl>-O, we can apply Theorem 4.3 to conclude that this
problem has a unique solution y y (t, e) for which

Itl--< y(t, e) _<-Itl + (A 1) exp I-e-I/Z(1 + t)]

+ (B 1) exp [-e -a/2(1 t)] + e a/2y, 1 <- t <= 1.

5. Boundary layer phenomena. In this section we consider the case in which
a single solution of the reduced equation generates a solution of the full problem
(4.1), (4.2) that exhibits boundary layer behavior at t=-l, t= 1 or both
endpoints. Under the assumptions given below it turns out that the stability
restrictions on the reduced root are necessary only near the endpoints provided
the function fy is strictly positive. In other words, the boundary layer behavior is
localized to that endpoint and does not affect the behavior of the solution in the
interior of the interval. We first state and prove a genral result and then examine
several of its consequences in the rest of the section.

THEOREM 5.1. Assume
1) the reduced equation f(t, u, u’, 0)-0 has a solution u u(t) of class

C2) [-1, 1] with u(-1) <-_A and u(1) _->B;
2) the function f is continuous in (t, y, y’, e) and of class C’z) with respect to

y,y’ in (-1, 1):-l<=t<-l, ly-u(t)l<-d(t),-l<-t<-l,d(t)>-A-u(-1), -1 <
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t<-l+& d(t)=O(e), -l + t$ -< =< l -& d(t)>=u(1)-B, 1-t$<t=<l, fort$>O
a small constant, ly’l<oo, O<=e <=eo, eo>0; in (-1, 1), fy,y, O(1)as ly’l- oo;

3) there is a constant k > 0 such that fy,(t, u (t), u’(t), O) <= -k < O, 1 <= <-
-1 +6, if u(-1) <A, andfy,(t, u(t), u’(t), O)>=k >0, 1-6 =<t=< 1, ifu(1)>B;

4) there is a constantp >0 such thatfy,y,>=p >0 in g(-1, -1 +6), if u(-1)<
A; and fy,y,<=-p<O in g(1-6, 1) if u(1)>B;

5) there is a constant >O,such that fy(t, y, u’(t), O)>=l >0, ly -u(t)[<=d(t),
-l_<_t_<_l;

6) f(t, u (t), u’(t), e) O(e), 1 <- <= 1.
Then for each e >0 sufficiently small, e <= e o, the boundary value problem

(4.1), (4.2) has a solution y y (t, e) with

u(t)- (u (1)-B) exp [-ke-1(1 t)]-e/-< y(t, e)

<-u(t)+(A-u(-1))exp[-ke-(l+t)]+e5/, -l=<t-<l,

for k 0 such that k < k and k-k is small.
Proof. Define for in [-1, 1] and e in (0, e0],

a(t,e)=u(t)-(u(1)-B)exp[-kle 1-t)]-eyl

(t, e)= u(t)+(A u(-1)) exp [-ke-(1 + t)]+ tT1-1.
We verify explicitly that a satisfies the correct differential inequality; the verifica-
tion for fl proceeds analogously and is omitted. Clearly

-1k -1e"--f(t,,,e)=eu--e (u(l)-B)exp[-ke (1-t)]-f(t,u,u’,e)

-/y (t, /, u’, e){-(u(1)-B) exp [-kie-l(1-t)]-eT1-}
--1-fy,(t,u,u,e){-kie (u(1)-B)exp[-kle (1-t)]}

-[yy,(t, l, u’, e){-(u(1)-B) exp [-kle-x(1-t)]-e/l-}
{-kle-(u(1)-B). exp[-ke-i(1-t)]}

((t, /, /’, e)in (-1, 1))
-1k -1>--eJu"l-e 2(u(1) B)exp[-ke (l-t)]

-ele-l(t, u, u’, e)l + l(u(1)-B) exp [-ke-l(1- t)]

+ey +fy,(t, u, u’, e)ke-(u(1)-B) exp [-kle-l(1-t)]
-L{(u(1)-B) exp [-ke-l(1 t)]+ evl-}
kle-l(u(1)-B) exp[-ke-l(1-t)]

-1/2/y,y,(t, /, /’, e){ke-l(u(1)-B)exp[-ke-l(1-t]}.
Here [fyv,(t, /, u’, e)l _-<L. Restricting attention first to the subinterval [-1, 1- t ],
we note that the boundary layer term exp [-kle-l(1 t)] is transcendentally small
and, consequently, the desired inequality

lu"l- I,-7(t, u, u’, =>0
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follows if 3’ -> max {lu"l, le-’f(t, u, u’, e)l, e-a’(e)}. Here ’(e)> 0 represents the
contribution of the transcendentally small terms. Finally on the subinterval
[1- 6, 1], we invoke our assumptions about fy, and fy,y, to obtain the inequality

et"-](t,a,a,e)>__-elu"l-e (u (1)B)exp[-kle-(1-t)]

+ l(u(1)-B) exp [-kle-(1- t)]+ e7

+kkle-l(u(1)-B) exp [-kle-’(1-t)]
-L{(u (1) B) exp [-ke -1(1 t)] + eyl-}

kae-l(u(l)-B) exp[-ke-l(l-t)]
+1/2p{kle-a(u(a)-B) exp [-k le-1(1 t)]}2.

Clearly for e sufficiently small and kl < k, 1/2pkg. -2 >Lklt5 -1 and ke- >k le
-a + Ly1-1. Thus with the above choice of y we have the desired inequality on

[1- 6, 1] also. The theorem now follows from Theorem 2.1.
Remark 5.1. The theorem is valid under the weaker assumption that

fy(t, u(t), u’(t), 0)_->1>0, for in (-14-6, 1-6). The proof of this result, which
may be of use in concrete applications, is only technically more difficult than that
of Theorem 5.1 since it involves the construction of slightly more complicated
functions a and/3.

Remark 5.2. The analogous result is valid under the restrictions in Remark
4.3 with Ul =u2=u and @ g’.

Remark 5.3." Theorem 5.1 can be viewed as a generalization of Theorem 4 in
[2] to the case of functions f which are quadratically nonlinear in y’.

We consider now two applications of this result. The first case of interest in
when the function fy,(t, u(t), u’(t), e) is of the order O(t2"), n => 1, throughout
[-1, 1]. If fy,[u(t)] is positive in [-1, 1]\{0}, we require that u(-1)= A; while if
fy,[u (t)] is negative there, we require that u (1) B.

In either case we can apply Theorem 5.1 and deduce that a solution of (4.1),
(4.2) exists and exhibits boundary layer behavior in a neighborhood of the
excluded endpoint. Thus although both fy,[u (t)] and fy,y, vanish at 0, there is no
interior layer phenomenon of the type discussed above at 0. The crucial
assumption seems to be that fy,[u (t)] does not change its algebraic sign as changes
sign.

The second case of interest involves a solution u u(t) of the reduced
equation which cannot satisfy either boundary condition. If the hypotheses of the
theorem are satisfied, a solution of the full problem actually exhibits boundary
layer behavior at both endpoints. Since fy,[u(t)] is assumed to be negative near
t =-1 and positive near t 1, the root u has the correct stability in terms of
boundary layer behavior. Away from + 1, however, its "fy,-stability" is imma-
terial since it can derive stability from fy. This is the reason for assuming that
fy(t,y,u’,e)>O.

In conclusion we give two examples.
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Example 5.1. Consider first the problem

ey" t(y’)a + t)y + y, -1 < < 1,

y(-1, e)=0, y(1, e) =B->0.

Then the function u (t)= 0 trivially satisfies the hypotheses of the theorem, since
u (- 1) y (- 1, e), fy,[0] 2, and fy 1. We conclude directly that this problem
has a unique solution y y (t, e) for which

O<=y(t,e)<_B exp[-ke-l(1-t)]+e% -l=<t=<l,

with 0<k < 1.
Example 5.2. Finally for the problem

ey" -t(y’)2 + ty’ + y, -1 < < 1,

y(-1, e)=A>O, y(1, e) =B <0,

we have again that u (t) 0 satisfies all of the hypotheses of Theorem 5.1. Indeed,
u(-1) <A, u(1)>B, fr,y,[-1] 1, fy,y,[1] =-1, fy,[0] and fy --- 1. We conclude
immediately that this problem has a unique solution y =y (t, e) satisfying

B exp [- (1 )e-l(1 t)]- ey =< y (t, e)
_-<A exp [- (1 )e-(1 + t)] + e% -l_-<t_-< 1,

for 0< < 1.

6. Regular-singular crossings. In [9] we studied the class of problems (4.1),
(4.2) under the principal assumption that fy,y, was never zero in its domain of
definition. An interesting consequence of this is that if a singular solution of the
reduced equation f(t, u, u’, 0) 0 intersects any other solution, then at the point of
intersection, the derivatives of the functions also agree. For the problems under
consideration here, it is however possible to have an "angular" crossing at t 0
between a singular root and another one, since fy,y, vanishes at 0.To be precise,
we consider in this section the case in which a regular solution of the reduced
equation intersects a singular one at 0 with unequal slopes. It is reasonable to
expect a solution of the full problem for small e > 0 to treat this crossing as a
Haber-Levison one. In addition, since one of the reduced roots is singular, this
solution in general exhibits boundary layer behavior associated with such a root.
An illustration of the type of result which is useful in describing such phenomena is
provided by the next theorem.

THEOREM 6.1. Assume
1) the reduced equation f(t, u, u’, O) 0 has a regular solution u u (t) and a

singular solution u =Us(t), defined and of class C2) on [-1, 0] and [0, 1],
respectively, with u(-1) A, u(0) us(O), u[(0) u(0) and us(l) _-<B;

2) the function f is continuous in (t, y, y’, e) and ofclass C2) with respect to y,
y’ int(-1, 1):-l<-t<=l, ly-u(t)l<=d(t),-l <-t<=O, ly-us(t)l<=d(t),O<-t<- l,
where d (t) O(e 1/2), 1 <- <= 1 6, and d (t) >= IB Us(1)l, 1 < t <= 1, for 6 > 0
a small constant, ly’[<, 0<=e_<-eo, eo>0; in (-1,1), fy,y,=O(1), as
ly’]- oo, andfy,y,(O, rl, r/’, e)= 0, (0, r/, r/’, e)inuft;

3) fy,(t, uL(t),u[(t),e)>=O, --l <=t<=O;



268 F.A. HOWES

4) there is a constant > 0 such that

f (t, uL (t), uL(), 0) > > 0, 1 < t < 0;

L(t, 0_-<t_-<l;

5) thereisaconstantp >Osuchthatfy,y,>=p >OinM(1-6, 1),[or6asin 2);

6)
f(t, Ul (t), u( ), e) O(e), 1 < < O,

f(t, Us(t), u s(t), e) O(e ), 0 <- t <= 1.

Then for each e >0 sufficiently small, e <=eo, the problem (4.1), (4.2) has a
solution y y(t, e) satisfying

u (t) e /2/_< Y (t, e) =< ut (t) + e 1/2/, 1 -< t =< 0,
1/2Us(t)-e a/2=<y(t,e)<=us(t)+(B Us(1)) exp [-( e al)a/2(1-t)]+e

0=<t=<l.

’0Proof. We consider the case in which u(0)< Us( and for simplicity, we
assume that u">OL and u}>O= Define then for e in (0, e], e min {1, eo},

u(t), -l_-<t-<O,
a(t,e)

Us(t), O<=t<=l,

(O)--UL( ))+(B -us(l)) exp [-(e-Ill) 1/2]0

e a/Z’yl-1, 1 <- t <- O,+
fl(t, e)=l Us(t)-l-(Eo’-l)l/2(tls(O)--UtL(O)) exp [--(e-111)l/2t]/2+(B-us(1))exp[-(e-ll)l/2(1-t)] +e yl- O--<t=<l,

for 0 <o-< 11 < I. The verification that these functions satisfy the correct ine-
qualities proceeds without difficulty once we have noted that Dtot(O)= u[(O)<
D(0) u(0) and Dtfl (0) >= Drfl (0). The case of nonconvex reduced solutions is
handled in a similar manner.

It is worth remarking that if Us satisfies the opposite inequality us(l)>B and
if the function fy,y, is strictly negative in M(1-6, 1), then a solution of the full
problem exists and is concave in the boundary layer at t 1. Also a similar result is
valid if the first-order stability assumption that fy is strictly positive is replaced by
the higher order stability conditions discussed above. We conclude this section
with two examples.

Example 6.1. Consider the problem

ey"= y t(y’)2,
y(-1, e) =-1,

-l<t<l,

y(1, e) =B-<0.

The pertinent roots of the reduced equation are clearly ut (t)= and Us--0, for
which u(0) us(O) and u[(0) > us(O). Sincefy,[Ul(t)]= -2t >=0,-1 < t < 0,/y,y,
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-2t, us(l)->B, and fy 1, we can argue as in the proof of Theorem 6.1 to show
that this problem has a unique solution y y (t, e). In addition,

min (t, 0) +B exp[-e-1/2(1-t)]-el/2y<=y(t,e)<-min(t,O), -l_-<t_-< 1.

Example 6.2. In this example we illustrate why it is often necessary to
examine several of the partial derivatives cgiyf[Us],/" => 1. Consider

ey" y3 t3(y ,)2, 1 < < 1,

y(-1, e) =A <0, y(1, e) =B-<_0.

It is not difficult to see that u(t)=t((-t)l/E((-A)1/2-1)+ 1)-2, -1 =<t_<0, and
Us =- 0, 0 -< _-< 1, form a stable pair which have an angular crossing at 0. Look
now at fy 3y2; clearly,/[0] =f[0] 0, but ’yy =6. Consequently the proof of
Theorem 6.1 can be adapted to show that this problem has a solution y y (t, e).
In addition,

1/6u(t)+B(l+(2e)-I/2(1-t))-l-el/6.y<--_y(t,e)<-_u(t)+e .y, -l_--<t_--< 1,

for
u (t), -l _<- _-< O,

u(t)=
0, 0_-<t_-<1.

7. Related phenomena. We conclude by discussing briefly several other
phenomena which solutions of problems with generalized turning points can
exhibit. Two of these phenomena are treated in detail in [9] and for this reason, we
only indicate here the possible extensions of the theory given above.

The first remark concerns conditions under which there exist solutions of the
full problem exhibiting boundary layer behavior at one (or both) of the endpoints.
In 5 we gave one set of sufficient conditions for such behavior. However it is
more common for a single solution of the reduced equation to have fixed stability
properties throughout [-1, 1]. For example, in the case of a reduced root
u uL (t), one can assume uL (- 1) y (- 1, e) and fy,[ut (t)] => k > 0, 1 -< t _-< 1.
Then if the value of u (1) relative to y (1, e is compatible with the sign of [r’r’ near

1 (cf. 5), it is not difficult to show that a solution y y (t, e) of the full problem
exists and satisfies y(t, e)= u(t)+O(ly(1, e)-u(1)l exp [-ke-(1-t)])+O(e),
-1 <_-t_< 1. Similarly, if the reduced equation has a solution u UR(t) with
UR(1)=y(1, e) and fy,[uR (t)] <-- --k <0, --1 _--<t -< 1, then under the appropriate
sign restrictions at t=-l, a solution y(t, e) exists and satisfies y(t,e)=
uR(t)+O(ly(-1, e)-u,(-1)l exp [-ke-l(l +t)])+O(e), -1 =<t=< 1. The global
stability of these roots u, UR makes the above results valid without any positivity
restriction on fy (t, y, u [,R, 0). In the same vein, it is possible to generate boundary
layer behavior, in general at both endpoints, by considering globally stable
singular reduced roots. Many of .these results which are treated extensively in
[9, 3] for [y,y, never zero are valid in the case of functions with generalized
turning points in (-1, 1).

This brings us to the question of what happens when the generalized turning
point coincides with an endpoint. Under the appropriate assumptions, a solution
of the full problem exhibits boundary layer behavior at such a point (say 1)
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which is described by a term of the form exp [e -1 t_ h(s) ds] where fy,<-h(t)<-O
near t -1. If fy,y, vanishes at t -1 but is not identically zero near 1, any
solution of the full problem for small e > 0 is influenced decisively by the nature of
fy,y,. It is then very often possible to combine the theory described above in 3
with that in [9, 3] to study the behavior of solutions in the neighborhood of an
endpoint at which fr’r’ is zero. In this regard, see also [7, 6].

Finally we note that the interior crossing theory discussed above consists of
only two examples of such behaviornHaber-Levinson crossings and angular
singular-singular crossings. Another important type of internal crossing, the
smooth regular-singular crossing, occurs provided fy,y, is not zero at the crossing
point and is discussed extensively in [9, 6]. In particular, this theory is applicable
to problems with generalized turning points if the point of the regular-singular
crossing is different from the turning point. These three basic types of internal
crossings can occur in various combinations in the solution of an actual problem.
That is, the reduced equation may have several regular and singular solutions
which cross each other at a number of points inside the interval. To determine the
asymptotic behavior of a solution of the full problem, one then examines the
nature of the reduced roots at each crossing point and applies the theory given
above and in [9]. This qualitative picture of the solution for small e can be given a
quantitative formulation by constructing bounding functions a and /3 which
incorporate such behavior into their boundary and interior layer terms.
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RATIONAL APPROXIMANT BOUNDS FOR A CLASS OF
TWO-VARIABLE STIELTJES FUNCTIONS*

M. F. BARNSLEY? AND P. D. ROBINSON?

Abstract. Dual variational principles are used to impose upper and lower bounds on functions F(w, z)
which can be written F(w, z)= io o do’(s, t)/(1 + w + zt), where or(s, t) is bounded, monotone nondecreas-
ing in s for 0 -< s < oo and 0-< < oe. Following a procedure analogous to one which has been used for
single-variable Stieltjes functions, trial vectors are chosen so as to yield bounds on F(w, z) for all 0 <- w <
0 =< z < oo, in the form of rational approximants involving only an initial set of coefficients in the formal double
series expansion F(w, z)".,

=o ,,=o ,-t I"+"F, w’z ". It is proved that the approximants display certain
matching properties with the formal expansion of F(w, z) when their series expansions are taken. Further-
more, it is established that the bounds obtained improve upon those found by treating F(w, z) as a
one-variable Stieltjes function and forming Pad6 approximants using a comparable set of given coefficients.
Among the approximants defined here are those suggested by Alabiso and Butera on moment-theoretic
grounds. Some applications of the theory, together with simple examples, are given.

1. Introduction. It has been shown that the theory of Pad6 approximants (PA’s) for
Stieltjes functions can be evolved in a natural way by taking dual variational principles
as a starting point [1], [2], [3]. Here we consider two-variable Stieltjes functions
expressible in the form

I? Io &r(s, t)(1.1) F(w, z)=
(1 + ws + zt)’

where o-(s, t) on 0-< s < oe, 0-< < oe, is bounded, monotone nondecreasing in s for
fixed t, and monotone nondecreasing in for fixed s; and where the variables w and z
both belong to the complex plane cut from -oo to 0-. This function has the formal
double-series expansion

(1.2) F(w, Z)"
m=O n=O n

where

(1.3) F,,,,, s"t" dot(s, t), m, n O, 1,...

We suppose that we know an initial set of coefficients occurring in (1.2), say

(1.4)

and assume that these are finite. Then we ask what bounds can be imposed on F(w, z)
when 0 -< w < oo, 0 N z < oo, on the basis of the given information.

In 2 we give a dual pair of variational functionals which impose upper and lower
bounds on F(w, z) for all real positive w and z. We then observe the general "rational
approximant" structure of the optimal bounds, obtained when linear variational trial
vectors are used, and note what sets of information are required. In 3 we choose
variational basis sets as large as possible, but in such a way as to ensure that the only
information needed for the construction of the bounds is an initial set of coefficients
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occurring in (1.2): we denote these bounds by

(1.5) J(N, R, S)<-F(w, z) < G(N, R, S), w >-0, z >-_0,

where (N, R, S) indexes the F,,’s which are used. Among the approximants obtained
here are those defined, by Alabiso and Butera [4] on .moment theoretic grounds,
appropriate for two-variable extended Stieltjes functions. In 4 we use the variationally
optimal nature of J(N, R, S) and G(N, R, S) to establish the matching properties

(1.6) F(w,z)-J(N,R,S)--.termsoforderwPz q, p+q>-2N+2,

and

(1.7) F(w, z )- G(N, R, S) terms of order wPz q, p + q >= 2N+ 3.

The derivation of the above results generalizes previous work [3] on the characteriza-
tion of the [N/(N+ 1)], [N+ 1/(N+ 1)] optimal pair of PA’s for one-variable Stieltjes
functions.

An alternative way of imposing .upper and lower bounds on F(w, z) by utilizing
only an initial set of coefficients in the formal series (1.2) is by forming what are
essentially PA’s for a single-variable Stieltjes function. That is, one replaces w and z in
(1.1) by ,w and ,z respectively so that, for fixed positive w and z, (1.2) becomes a series
of Stieltjes in ,. Applying the usual PA theory [5], we obtain the bounds

(1.8) [N/(N+ 1)](w, z)<-F(w, z)_-< IN+ 1/(N+ 1)](w, z), w _->0, z _->0,

by putting h 1 in the pair of PA’s [N/(N+ 1)] and [N+ 1/(N+ 1)] for F(w, Az) as a
function of h. in 5 we show that the bounds (1.5) are in general superior to (1.8), whilst
the sets of information required are often identical.

In 6 we consider applications of the theory to the evaluation of bounds on special
mathematical functions of the form (1.1), to the improvement of the usual PA bounds
for one-variable Stieltjes functions when half-integer moments are available, and to the
summation of double perturbation series. Simple numerical examples are given.

We stress here that it is not the purpose of this paper to present an alternative set of
two-variable rational approximants to the Chisholm approximants [6] and their rela-
tives [7]. Approximants of the latter types have been designed so that they generalize
various key properties of one-variable PA’s such as homographic, reciprocal, and
unitary invariances [8], [9]. As such, it is expected [10] that they will cope in a general
way with problems of analytic continuation of functions specified only by their
double-series expansions. We are here concerned for the most part with functions of the
special form (1.1), and our emphasis is on bounding properties rather than convergence.
Nonetheless, we do go some way towards answering the question, posed by Chisholm
[6], of how two-variable rational approximants should be defined in order that their
relationship with the two-dimensional moment problem be analogous to the relation-
ship of PA’s to Stieltjes functions.

2. Dual variational bounds for F(w,z), w >-O, z >= O. We begin, following
Alababiso and Butera [4], by writing F(w, z) in the form

(2.1) F(w,z)=([,(l+wA+zB)-l[), w>=O, z>=O,

where (., denotes the inner product in a real Hilbert space ,, f e , and A and B are a
commuting pair of positive self-adjoint linear operators in , with domains N(A) and
@(B) respectively. Specifically, , is the Hilbert space of real functions (s, t), 0 <- s <
0 -< < oo, which are square integrable with respect to the measure or(s, t), and the inner
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product between 1E and 2 E is

(2.2) (1, 12) l(s, t)2(s, t) d(s, t).

A and B are the linear operators which multiply by s and respectively, so that for
example

(2.3) A A(s, t)= s(s, t)= , for all (A),

where (A) is precisely the set of such that . Then, since both A and B are
positive, the equation

(2.4) (1 + wA +zB) =L w 0, z 0,

possesses a unique solution for each [ . With

(2.5) f=f(s,t)=l for all0s<, 0t<,

which belongs to by virtue of the boundedness of (s, t), we have in particular,

(.) (, (, (1 +a +z)-
(1 + s + zt)

We observe that the coecients F, occurring in (1.2) can be expressed as

(.7) f, (,a, m, n 0, , ,. .
When both w N 0 and z 0, equation (2.4) takes the form

(.a) (1+) =, e,
where the self-adjoint linear operator

(.9) a +z, ()=(a)(),

satisfies

(2.10) {O, LO}0 forall ON(L).

On applying the theory of dual variational principles [11] to (2.8)one obtains the
seemingly most elementary pair of complementary functionals [3]

(a.l/ J() -(, (1 +)+(,, e(),

and

(2.14) O()-(b, f)= (6, L(1 + L)6qt),

where 6=-b, and 8=-4, Using (2.10) in (2.13) and (2.14), we obtain the
complementary bounding properties

(2.15) J()<-(4,f)<=G() for each w => 0, z=>0.

and

(2.12) G(xlr)=(f,f)+(,L(l+L)xlr)-2(L,f), e@(L),
where and xI are trial vectors. Each functional provides a variational approximation
to the quantity (b, f), for we have

(2.13) J()-(b, f)=-(8, (1 + L)8),



RATIONAL APPROXIMANT BOUNDS 275

Thus, in view of the Hilbert space representation (2.6) for F(w, z), we have at our
disposal a mechanism for imposing upper and lower bounds on two-variable Stieltjes
functions when w >_-0, z >-0.

We examine here the general structure of bounds on F(w, z) (&, [), derived from
J and G by means of optimization using linear variational trial vectors

N

(2.16) , q= Y a,O,, where a, R, O, @(L), n 1, 2,. , N.
n=l

We will use P to denote the projection operator on , corresponding to the subspace
spanned by {On n 1, 2,. ., N}. Consider J first. On requiring J() to be stationary
with respect to variations in the an’s, and hence maximal, it is found that the optimal
choice for is the unique solution (I)opt of the problem

P(1 +L)P(I)opt Pf
(2.17)

P(I)opt (I)opD
and correspondingly

/((I)opt) ((I)opt,

(2.18)

o o,f)

(01, f) (01, (1 +L)0) (0, (1 +L)0N)

(02, f) (02, (l+L)O) (0, (I+L)ON)

(ON, f) (ON, (1 +L)0) (ON, (1

(0x,(l+L)0) (0,(l+L)0s)

(0, (1 +L)01) (02, (1 +L)0s)

(0, (I+L)01) (ON, (I+L)0N)
Here we have assumed that the set {01, 02, ON} is linearly independentmif it isn’t
then the largest subset of the 0n’s which is linearly independent replaces
{01, 02, , ON} in (2.18). In practice this means that if any row in either numerator or
denominator of (2.18) is linearly dependent on its predecessors then it must be omitted
along with the corresponding column in both numerator and denominator. The
usefulness of this rule will become clear later on.

In order to evaluate J((I)opt) we need to know the following sets of information:
(i) the values of the inner products (0n, f), n 1, 2,. , N;
(ii) the values of the matrix elements (0,n, (1 + L)0n), m, n 1, 2,. , N.

These can be readily interpreted as various integrals with respect to the measure r(s, t).
In a similar manner, choosing W as in (2.16) and requiring G(W) to be stationary

with respect to variations in the an’s, we find that the optimal choice for W is the unique
solution XIJ’op Of the problem

PL (1 +L)PXIopt PLf
(2.19)

pXIop XXopt,
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and correspondingly

6 ((I)opt) (f La’I/opt, f
0

(01, tf) (0,,L(1 +L)0)

=(f,f)+ (O2, Lf) (O2, L(1 +L)(R))

(0N, L/) (0N, L(1 +L)0)
(2.20)

((R)N,L(I+L)(R)u)

(02, L(1-I-L)01) (02, L(1

((R), L(1 +L)(R)) ((R)s, L(1 +L)(R))

Here we assume that the row vectors occurring in the dividing determinant are linearly
independent--if they are not then in practice we follow the same rule as we do in the
case of (2.18). In order to evaluate G(XItopt) we need to know the following sets of
information"

(iii) the value of
(iv) the values of the inner products (0,, L]’), n 1, 2,. , N;
(v) the values of the matrix elements ((R),,, L(1 +L)(R),), m, n 1, 2,... ,N.
Provided that the basis functions {0, 02, , (R)u} are themselves independent of

w and z, we see from (2.18) that we can always write

n+m--N-1 nn+--N(2.21) J(Oopt)
n+m=0 n+m=0
>=O,m >>-O >=O,m >=O

where the a,,,,’s and b,,,,’s are real constant coefficients. When w Xz with , a
constant, J(CI)opt) reduces to a polynomial of degree (N- 1) in z divided by one of degree
N. Similarly, from (2.20), we find that we can write

n+m=2N mZ]7
n+m=2N

(2.22) G(XI/’opt) E Cm,nW E dm,nw mZ
n+m=N n+m=N
n>=O,m>=O n>-O,mO

where the c.,,.’s and d.,,.’s are real constant coefficients. This involves a "doubling-up"
of degrees in the numerator and denominator, but we observe that when w Az with
a constant G(xI)’opt) reduces to a polynomial of degree N in z divided by another one of
degree N, which makes it appear more consistent with J(or,t).

By putting w =Az with A =>0 we can obtain a further understanding of the
structures of J(opt) and G(xI’opt). In this case

(2.23) L z(,A +B)

and we can without loss of generality replace the (R),’s by ),’s, spanning the same
subspace, such that the ),’s are orthogonal, normalized, and chosen to diagonalize the
positive self-adjoint operator L. That is

(2.24) ([)i, ])-- 6ib ([)i, L)i)= zEi(A )6ii i, j 1, 2,..., N,
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where 6ij is Kronecker’s delta and the 8i(A)’S are such that

(2.25)

We note that if the eigenvalues of AA +B are discrete, which in general corresponds to
o-(s, t) being piecewise constant, then the ei(A)’s are upper bounds to the first N
eigenvalues of AA +B taken in order. One way of seeing this is to consider the
Rayleigh-Ritz variational principle for the eigenvalues of &A +B with
{1, z,""", }N} as a linear variational basis set (see [12] for example). Substituting
into (2.18) and carrying out a partial fractions expansion we find

(2.26) J((I)opt) when w Az, and A > 0.
.=1 (1 + ze.(A))

Here the nonnegative real numbers I{)., f)l2 depend on a but are independent of z. If
there are linear dependences among the .’s then the number of terms in the
summation is correspondingly decreased. Applying similar reasoning to G(op,) we
find that in general it can be expressed as

v zv. (a) when w az, and a > 0,(2.27) G(XIpt) (f’ f)-
n=l (1 + Zg,(A))

where the v,(A)’s are nonnegative real numbers and the tT,(A)’s have the same
relationship (2.25)as the e,(A)’s.

In summary, we have the complementary bounds

(2.28) J(dPopt)<=F(w, z) <- G(opt), w =>0, z _->0,

where J((I)opt) and G(xI/’opt) are rational functions, given explicitly by (2.18) and (2.20).
In the next section we show how the basis functions {Oa, O2,""", (R)N} can be chosen
such that the requisite information, namely (i), (ii), (iii), (iv) and (v), consists simply of
sets of coefficients F,,., taken from the beginning of the double series expansion (1.2).

3. Optimal bounds for F(w, z) which use only sets of F,,,,,,’s. When w O, F(w, z)
reduces to a Stieltjes function in the single variable z. In this case it has been shown [3]
that the optimal pair, [N/(N+ 1)], and [N+ 1/(N+ 1)], of PA’s for F(0, z) are given by
J(opt), and G(XIYopt), respectively, when the basis vectors are chosen to be O1 f,
19,., =B"-lf, n 2, 3,... ,N. That is, the basis set consists of the first N vectors
occurring in the formal expansion

(3.1) Cw=0-f+ ] (-z)"B"f.
n=l

Proceeding analogously in the two-variable case, it seems natural to choose as basis set
the "first" N vectors in the formal expansion

( + n
(3.2) "’f+ E ,-wff ,-z,",

m
A"B"f.

m+n=l \ n
0, 0

Accordingly, we take as basis set all of the vectors in (or) and (), below:
(ct) f, together with all vectors of the formA mB"fwhere rn + n 1, 2,. , N, with

m, n, and N being nonnegative integers;
(f3) {A RBV+a-Rf, AR-BlV+E-R, ",A lV+X-SBSBSf} where R and S are integers

such that R + S >- N, 0 _<- R <_- N+ 1, and 0 -<_ S <_- N+ 1. When R / S N we
understand that there are no vectors in (13).
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This basis set can be indexed by the triple (N, R, S), and the total number of vectors is

(3.3) 3r=3r(N, R, S)=1/2(N+ I)(N+2)+(R + S-N).

Assuming that they have been ordered, we denote them by

(3.4) {(R)a, 12,""", 0A;}

exactly as in 2. With reference to this basis set we will write

(3.5) J(Oopt) J(N, R, S), G(xIJ’opt) G(N, R, S).

Using the relation (2.7) and the fact that A and B commute, we find from (i) and (ii)
that in order to construct J(N, R, S) we need to know the coefficients (see Fig. 1)

{F,,,, m-t-n =0, 1,..., 2N+1, m->_0, n>=0},

{FN+I+R,N+I-R, FN+R,N+2-R, FN+I-S,N+I+S},

(3.6)

(3.7)

and

(3.8) {F2R+l,2N+2-2R, F2R,2N+3-R, F2N+2-25,25+l}.

The latter two sets must be taken to be empty when R + S N.
Similarly, from (iii), (iv), and (v), we find that in order to construct G(N, R, S) we

need to know the coefficients (see Fig. 2)

(3.9)

(3.10)

and

(3.11)

{F,,,n" m + n 0, 1, ., 2N+ 2, m >= 0, n _-> 0},

{FN+2+R,N+I-R, FN+I-R,N+2-R, FN+I-&N+2+$}

{F2R+2,2N+2-2R, F2R+1,2N+3-2R, F2N+2-2S,2S +2},
where the latter two sets must be taken to be empty when R + S N.

n

2N+2//(N +I-S,N+I+S)

2N+1N //(2N+2-2S,2S+1)
4 "’, /(2Rq,2N+2-2R)

2 N+I+R N I-R)

0 2 3 4 2N+1 m

2N+2 2N+3
odd number (2N/1) of
diagonals completely next two diagonals
filled partially filled

FIG. 1. Index pairs (m, n) corresponding to the F,,,,,’s required ]’or the construction o]’ J(N, R, S).
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n

2N+4

2N+3
(N+I-S,N+2+S)

4 ", ,, ",, / (2R+2,2N+2-2R)

0 """--’
0 2 3 4 2N+2 m

2N+3 2N+4
even number (2N+2) of
diagonals completely
filled next two diagonals

partially filled
FIG. 2. Index pairs (m, n) corresponding to the F,,,’s required ]:or the construction of G(N, R, S).

Given that one knows the coefficients (3.6), (3.7), and (3.8), for some allowed
(N, R, S), the corresponding J(N, R, $) can be obtained by substituting for the basis
functions {(R)1, (R)=," , (R)} described in (o0 and (13), in (2.18). We obtain for example

J(1, 1, 1)=-[ <A.f,[>

I<ABL f>

(f, f> (Af, f> (Bf, f> (ABf, f)
<f, (I + wA + zB)f> (f, (I + wA + zB)Af) (f, (I + wA + zB)Bf> (f, (I + wA + zB)ABf)
(Af,(l+wA+zB)f) (Af,(l+wA+zB)Af) (Af,(I+wA+zB)Bf> (Af,(I+wA+zB)ABf)
<Bf,(I+wA+zB)[> <Bf,(I+wA+zB)Af> <Bf,(I+wA+zB)B[> <B]:,(I+wA+zB)ABf>
<ABf,(I+wA +zB)f> <ABf,(I+wA +zB)Af> (ABf,(I+wA +zB)Bf> <ABf,(I+wA +zB)ABf)

(3.12) + {same determinant without first row and column}

0 Fo.o F, .0 Fo., F,.
Fo.o (Fo.o + wF,.o + zFo.,) (F,.o + wFz.o + zF,.,) (Fo,, + wF,., + zFo.z) (F,., + wF2., + zF,.2)

=-]F,.o (FI.o+wFz.o+zF,.,) (Fz.o+wF3.o+zF2.,) (F,.,+wF=.,+zF,.z) (Fz a+wF3.,+zF2.z)

[Fo., (Fo.i + wF,., + zFo.z) (F,., + wFz. + zF,.z) (Fo.2 + wF,. + zFo.) (F, iz + wFz, + zF,.)

IF,,, (F,,, + wF2,1 + zFI,2) (F2,, + wF3,1 + zF2.2) (F,,2 + w’F2,2 + zF1,3) (F2,2 + wF3,2 + zF2,3)

+ {same determinant without first row and column}.
Possible linear dependences among the basis vectors can be taken care of directly in

the fiiaal (numerical) form of the approximant by following the procedure described
after (2.18). In a similar way we obtain for example

0 <f, (wA + zB)f> <Af, (wA + zB)f>
G(0, I, 0) (f,/>+ <f,(wA+zB)f) <f,(wA+zB)(l+wA+zB)f> <Af,(wA+zB)(l+wA+zB)f)l

I(Af,(wA +zB)f) <Af,(wA +zB)(l+wA +zB)f> (Af,(wA +zB)(l+wA +zB)Af>

(3.13) "-{same determinant without first row and column}

0 (wF,.o + zFo.,) (wFz.o + zF,.,)
Fo.o+ (wF,.o+zFo.,) (wF,.o+zFo., + wZFz.o+2wzF,., +zFo.z). (wFz.o+zF,., + w2F3,o+2wzF2.1 +z2F1.2)

(wFz.o + zF,.,) (wFz.o + zF,., + wZF3.o + 2wzF., + zZF,.z) (wF3.o + zFz., + w ZF4.o + 2wzF3., + zZFz.z)

+ {same determinant without first row and column}.



280 M.F. BARNSLEY AND P. D. ROBINSON

We observe the following feature of the approximants J(N, R, S) and G(N, R, S).
If we treat the assumed given coefficients, say (3.6), (3.7), and (3.8), as fixed, and ask
what other variationally optimal bounds J(opt) can be imposed on F(w, z) using only
these coefficients, then in fact any other suitable basis set will span a subspace of the
space spanned by the vectors in (o0 and (13). For example, in 5 we consider the PA
bounds on F(w, z) and see that these derive from a much smaller basis set whilst
utilizing comparable sets of coefficients. This means that the bounds J(N, R, S) and
G(N, R, S) are the best that can be inferred from J() and G(), assuming one knows
only those coefficients F,,.n which are actually used to construct the bounds.

It follows from the variationally optimal nature of the bounds

(3.14) J(N, R, S)<=F(w, z)<= G(N, R, S), w >=0, z >=0,

that they must improve as the basis set is enlarged. Thus we obtain, for allowed
(N, R, S), (N, R + 1, S), and (N, R, S + 1):

(3.15)
J(N, R, S)<-_ J(N, R + 1, S);

J(N, R, S)<-_J(N, R, S + I );

G(N, R + 1, S)<- G(N, R, S),

G(N, R, S + I )<-_ G(N, R, S)

and

(3.16) J(N, R, S)<-J(N+ 1, R, S); G(N+ 1, R, S)<= G(N, R, S).

When the set of vectors (13) is empty (R + S N), J(N, R, S) is actually identical
with the two-variable approximant FN/l(W, z) suggested by Alabiso and Butera [4], on
moment-theoretic grounds, as a possible generalization to two variables of the [N/(N+
1)] PA. When F(w, z) belongs to a class of. extended Stieltjes functions, they prove that
the sequence {FN+I(W, z): N=0, 1,...} converges to F(w, z) for w and z lying in
certain complex domains. Their theorem applies in particular to the functions (1.1)
considered in this paper, when w->0 and x =>0, provided that the two sums
m=0 {F2m.o}-1/(2m) and Y-n--o {Fo,2n} -1/(2n) are divergent. However, the approximants
J(N, R, S) with R +S # N, together with all of the G(N, R, S) approximants appear to
be new, as does the observation of their complementary bounding properties with
respect to two-variable Stieltjes functions (1.1) and their power series matching
properties, proved in 4.

4. Matching property of the series expansions of J(N, R, S) and G(N, R, S) with
the series expansion of F(w, z). It was shown in [3] that the power series matching
properties

(4.1) [N/(N+ 1)]-f(h )---terms of order h 2N+2 and higher,

(4.2) [N+ 1/(N+ 1)]-f(A)---terms of order A 2N+3 and higher

of the PA’s for a single-variable Stieltjes function f(A), could be obtained from the
variational characterization of these approximants. Here we apply parallel reasoning to
J(N, R, $), and G(N, R, S), and establish the matching properties (1.6) and (1.7). In
particular, when R + S N the double series expansion of each approximant agrees
with the expansion (1.2) of F(w, z) through precisely those terms which correspond to
the coefficients used to construct the approximants.
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We treat J(N, R, S) first. It follows from (2.17) that (I)op is the unique solution of
the problem

(4.3) (1 + PLP)(Popt Pf,

so that we can write

(4.4) J((I)opt) ((I)opt, f)= ((I)opt, Pf)= (Pf, (1 + PLp)-IPf).

We note here, incidentally, that it is in effect precisely this expression on the right-hand-
side of (4.4) which is used by Alabiso and Butera [4] as their fundamental approximant
to F(w, z). Thus, the identification of their Fry(w, z) with our J(N, R, $) when R + S N
is immediate, because their basis set is the same as ours in this case.

From (4.4) it follows that

(4.5) J(N, R, S) Y. (- 1)k (f, (pLp)kf)
k=O

where we understand (PLP) P, and where P now refers to the basis set of 3, indexed
by (N, R, S). Hence, the term of order w"z" in the double-series expansion of
J(N, R, S) arises from (-1)’+"(f, (PLP)"+"f), m >= O, n >= O.

Consider

(4.6) Sk (f, (PLp)kf) where 0 _-< k <_- 2N+ 1;

we can always rewrite this as

(4.7) Sk ((PLP)"f, Lo(PLP)"’f)

where O<-m’<=N, O<=n’<=N, 0=0 or 1, and m’+n’+O=k. Look at (PLP)rf for
0 -< r -< N. We have

(4.8) (PLP)f Pf f

since the set (ct) contains f. Again,

(4.9) (PLP)f PLf P(wAf+ zBf)= wAr+ zB.f Lf

because the set (c0 contains A.f and Bf. Similarly,

(4.10)
(PLp)2f PL(PLP)f PL2f

p(w2A 2f+ 2wzABf+ z2B2f) L2f
since the set (c0 contains A2f, ABf, and B2f. Groing on in this style we eventually obtain

(4.11) (PLp)rf L rf for all 0 -<_ r -<_ N,

because the set (a)contains all vectors AkBlf with k->_0, /->_0, and l<-k + <_-N,
together with f. Hence we can rewrite (4.7) as

(4.12) Sk (L"’f, LOL"’f)= (f, L"+"’+of)= (f, L’f),
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for 0 =< k-< 2N+ 1. It follows that the coefficient of w"z in the formal expansion of
J(N, R, S)is

(4.13) (-1)m+’*(m + n)(f, AmBnf}= (-1)m+"(m + n)Fm,,,n n

for each m >= 0, n -> 0, such that 0 -< m + n <= 2N+ 1. This establishes (1.6).
We now prove (1.7). We assume for simplicity that L is strictly positive, and

afterwards indicate how the proof is modified when this is not the case. From (2.19) and
(2.20) we have

(4.14) G(N, R, S) (f, f) (PLf, [PL(1 +L)P]-PLf)

where [PL(1 + L)P]-1 is the reduced inverse, defined by

(4.15) [PL(1 +L)P]-I[PL (1 +L)P] [PL(1 +L)P][PL (1 + L)P]-’ P.

We introduce the notations

(4.16) /_7, PLP, and L2= pL2p,

and denote the reduced inverse of by/_-1 SO that

(4.17) L--1=/7,-a/_7, P.

Then we have the formal expansion

(4.18) [PL(1 + L)P]--- , (L-1L)’/7,-(-1)’
k=O

wherein we take

(4.19) (/_-L) P.

Since the basis set (a) contains f we can rewrite (4.14) as

(4.20) G(N, R, S)= (f, f)- (f, [PL(1 + L)PI-1/Sf),

and substituting from (4.18) we derive

(4.21) G(N, R, S)---(f, f)- E (/f, (/-IL2)nf).
k=0

By looking at the terms in this expression when w Az we deduce that the term in
wmz ", m + n --> 1, can only arise from (Lf, (/S-l-)m+"-lf), whilst the constant term is

simply (f, f)= F0,0. Accordingly, we look at

(4.22) T (/S[, (-x-)f) for 0 =< k _<- 2N + 1.
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We have

(4.23) To (PLPf, Pf)= (f, Lf)

because (et) contains f. For 1 <= k =< 2N+ 1, we can always rewrite (4.22) as

(4.24) Tk ((f_,--)"’f, L2(/_7,-L 2)n’f)

where 0-< m ’-< N and 0-< n ’-< N. We now claim that

(4.25)

For r 0 we have

(/S_lL2)rf=JLr/ when r= l, 2, N,
when r 0.

(4.26) (/S--)f Pf f

since (o0 contains f. For r 1 we have

(4.27)
(/S-L2)f f_,-PL2pf f_,-PLPLf

(-x/S)Lf PLf= Lf
where we have used the fact that () contains f, Af, and Bf to give the second and fifth
equalities, and (4.17) to give the fourth equality. For r 2 we have

(I.-l--)2f f_,-XL2Lf f_,-xPL2pLf
(4.28) E_PLPL2f pL2f L2f
where we have used (4.27), and made repeated use of the fact that (o0 contains A
ABf, and B2f. Going on in this fashion, and bearing in mind the contents of (c0, we
verify (4.25). Substituting (4.25) in (4.24) now yields

(4.29) Tk=(f, Lkf) fork=l,Z,...,ZN+l;

from which we infer (1.7), provided L is strictly positive.
When L is not strictly positive, the projection operator P occurring on the far right-

hand-sides of (4.15), (4.17), and (4.19), must be replaced by PL, the projection operator
associated with the subspaces of spanned by the eigenvectors of PLP with nonzero
eigenvalues. All of the above arguments still go through, but one must use the relations

(4.30) PLL"f L"f for n 1, 2,. , N
and

(4.31) LPf Lf,

which follow from the definition of P.
Although the above proofs refer explicitly to function F(w, z) of the form (1.1), it

seems very likely that the matching properties (1.6) and (1.7) are true for an arbitrary
function F(w, z) provided that the determinants in the expressions which define the
approximants, for example (3.12) and (3.13), are nonsingular (i.e. provided that one
does not have to omit various rows and columns to allow for linear dependences). We
conjecture that the formal power series matching property of these expressions could be
proved algebraically: one piece of evidence for this is similarity between the formulas
for J(N, R, S) and G(N, R, S) and Nuttall’s compact formulas for one variable PA’s:
the power series matching property of the latter is algebraic.
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5. Comparison of J(N, R, S) and G(N, R, S) with Pad approximants. Given an
initial set of coefficients in the double series expansion (1.2), a natural way of imposing
upper and lower bounds on F(w, z), w => 0, z => 0, is to construct Pad6 approximants [5].

For the series

(5.1)
f() y f.(-)

the [MINI PA is defined according to

(5.2) [M/N]= Y’. pA" qsA
r=O s=0

where the coefficients, the pr’S and q’s, are specified by

(5.3) E qA ,E f,(-A)" r=0E PrAr= terms of order A N+M+I and higher

together with the relative normalization condition

(5.4) p0 1.

When f(X) is a Stieltjes function in A, the various [M/N] PA’s are guaranteed to exist
and they impose, among others, the bounds

(5.5) IN/(N+ 1)] f(X ) [N+ 1 /(N+ 1)] when X 0.

Now, for each fixed positive w and z, the function

o o d s, )
(5.6) F(w, z; )=

(1 + (wz + zt))

in a Stieltjes function in the single variable A, with formal series

(5.7) F(w, z; ) F, (w, z)(- )"
n=0

where

(5.8) F.(w, z)= Yp+o=. (np)Fp.wPz.
p>_--O, q_>--O

Hence, if we are given the sets of coefficients (3.6) and (3.9), we can correspondingly
construct the lower and upper bounds in (5.5) when A 1, which we denote respec-
tively by [N/(N+ 1)](w, z) and [N+ 1/(N+ 1)](w, z). Then we have

(5.9) [N/(N+ 1)](w, z)<-F(w, z)_-<[N+ 1/(N+ 1)](w, z), w=>0, z>=O.

These approximants have been suggested by Graves-Morris (see [13]), although their
bounding properties were not noted.

Here we compare J(N, R, S) with [N/(N+ 1)](w, z) and G(N, R, S) with
[N+ 1/(N+ 1)](w, z). We concentrate first on the case R + S N, writing for brevity

J(N, R, S)= J(N) and G(N, R, S)= G(N) when R + S N.

J(N) and [N/(N+ 1)](w, z) share the following features: they both impose a lower
bound on F(w, z) for positive w and z; they both require exactly the same set of
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coefficients, namely (3.6), for their construction; and, with the use of (4.1), [N/(N + 1)]
has the power series matching property

(5.11) .[N/(N+l)](w,z)-F(w,z)-termsoforderwPz q, p+q>=2N+2,

in common with J(N) [cf. (1.6)].
Similarly, G(N) and [N+ 1/(N+ 1)](w, z)share the following features: they both

impose an upper bound on F(w, z) for positive w and z; they both require exactly the
same set of coefficients, namely (3.9), for their construction; and, with the use of (4.2),
[N + 1/(N + 1)] has the property

(5.12) [N+l/(N+l)](w,z)-F(w,z)---termsoforderwPz, p+q>-_2N+3,

in common with G(N) [cf. (1.7)].
In order to see the structures of [N/(N+ 1)](w, z) and [N+ 1/(N+ 1)](w, z) we

observe that they can be obtained from the optimized dual variational bounds J((I)opt)
and a(XlYopt), respectively, when the basis set is chosen to be (see [3]; or believe, without
proof, the introductory remarks in 3):

(5.13) (R)1 f; (R)n L"-lf, n 2, 3,..., N,

[The proofs of (1.6) and (1.7) given in 4 apply equally well in the case of the basis set
(5.13), thereby establishing (5.10) and (5.11)---if we hadn’t known these already!].
Substituting the basis set (5.13) into (2.18) and (2.20), and allowing for the explicit
(w, z) dependences of these vectors, in distinction to the case where (2.21) and (2.22)
apply, we find that we can write

n+m N(N+2) In+m N(N+2)+

(5.14) [N/(N+ 1)](w, z)= Y, a"’"wz7 Y" B"’"w"z"
n+m N(N+1) n+m=N(N+1)

n>--O,m>=O n>=O,m>=O

and

[N+l/(N+l)](w,z)=
n+m (N+1)(N+2)

n+m=(N+l)
n>=O,mO

,m,nw mz n/n+m=(N+ )(N+2)

/ n+m=(N+l)
Pm,nW mz

/ =>O,m___-O

where the a.,.,, ’s /3,,,,. ’s y,.,.’s, and p.,,.’s, are real constants. When w hz with h a
constant, [N/(N+ 1)](w, z) reduces to a polynomial of degree N in z divided by one
degree (N+ 1), while [N+ 1/N+ 1](w, z ) becomes a ratio of two polynomials of degree
(N+ 1) in z. On the other hand J(N) and G(N) can be expressed in the forms (2.21) and
(2.22) with 1/2(N+ 1)(N+ 2). Thus, viewed purely as rational expressions, J(N) and
G(N) are more complicated than [N/(N+ 1)](w, z) and [N+ 1/(N+ 1)](w, z) because
they involve a greater number of "unknown constants".

Despite this difference, we note that in the case w hz with h a positive constant
[N/(N+ 1)](w, z) and [N+ 1/(N+ 1)](w, z) can be decomposed respectively into the
forms (2.26) and (2.27) with W N. To prove this we observe that when w hz, h > 0,
z >0, the basis set (5.13) can, without loss of generality, be replaced by the set

(5.13) I)1= O,,=(A +AB)n-1 for n=2,3,... ,N,

which is (w, z)-independent, so that the derivation of (2.26) and (2.27) pertains here
with W=N. Similarly, we also know that in this case J(N) and G(N) have the structures
(2.26) and (2.27) respectively, but with V 1/2(N+ 1)(N+ 2). Hence, the qualitative
behavior of the pair [N/(N+ 1)](w, z) and [N+ 1/(N+ 1)](w, z) is essentially the same
as that of J(N) and G(N).
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Although they are constructed using identical sets of coefficients, we have the
quantitative relationships

[N/(N+ 1)](w, z)<-_J(N); and G(N)<-[N+ I/(N+ I)](w, z),
(5.16)

w =>0, z->_O,

because the basis set (5.13)spans a subspace of the space spanned by ((x). In general,
the subspace spanned by (o) and (13) has dimension (N,R,$)=
1/2(N+ 1)(N+ 2)+(R + S-N), while (5.13) spans a subspace of dimension N, so one can
expect that the bounds (3.14) are a dramatic improvement Over (5.9) for large N.

When R + S > N, the approximants J(N, R, S) and G(N, R, S) use sets of F,,n’s
which contain those used by [N/(N+ 1)](w, z) and IN+ 1/(N+ 1)](w, z), but these
larger sets cannot be used to derive PA’s of higher order. They provide even better
bounds than J(N) and G(N) (recall (3.15)), but otherwise their qualitative features are
similar to those of J(N) and G(N).

The approximants [N/(N+ 1)](w, z) and [N+ 1/(N+ 1)](w, z) have the advan-
tages that they can be simply constructed with the aid of the e-algorithm [13], and that
their bounding properties apply not only to F(w, z) in (1.1), but in fact to any function
expressible in the form (2.1) when the operators A and B do not commute, w >= 0, z >- 0.
J(N, R, $) and G(N, R, $) have the advantages that they impose tighter bounds than
the PA’s using the same sets of given Fm,n’s, and they can be constructed from a wider
variety of sets of given F,,,,’s.

6. Applications and examples. The most obvious application of the preceding
theory is to the evaluation of upper and lower bounds on special mathematical functions
which can be written in the form (1.1), and in particular to the numerical evaluation of
various double integrals of this structure. Among the special functions which can be
expressed in the form (1.1)are a number of the two-variable hypergeometric functions;
see for example [15].

Example 1. We take

fo (l+zt+2w] I’2 fodtexp(-t2)1
exp (-t2) In -1 ---- 1 dt ds(6.1) F(w, z)=

w (1 + ws + zt)’

which has the form (1.1), and for which the coefficients

(2"+a- 1) t" exp (-t2) dt, m, n 0 1(6.2) F,,,, -- -51_- )

are available. For the purpose of comparing the [N/(N+l)](w,z) and
[N+ 1/(N+ 1)](w, z) approximants with J(N, R, S) and G(N, R, S) we suppose that in
fact we know only the coefficients

(6.3) {Fo,o; Fl,0; Fo,1; F2,0; F,,1; Fo,2; F3,0; F2,1; Fo,3; F4,0; F3,1; F2,2}.

Using this set of information the best PA bounds we can construct are

(6.4) [1/2](w, z)<=F(w, z)<-[1/ll(w, z), w >=0, z >_-0;

and the best J, G bounds are

(6.5) J(1, 1, O)<=F(w, z)<= G(O, 1, 0), w >=0, z >=0.
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We find that, at w z 1,

[1/2](1, 1)= 0.296874<J(1, 1, 0)= 0.296902=<F(1, 1)
and

[1/1](1, 1)= 0.313229> G(0, 0, 1)= 0.308936>=F(1, 1).

Thus, there is some advantage in using the J, G bounds here which is in accord with the
discussion in 5. However, the PA bounds were easier to evaluate.

One is sometimes faced with the following situation: it is given that a function (z)
is a Stieltjes function, say

d(t).(6.6) (z) (1 + tz)’

where (t) is bounded and nondecreasing on 0 =< <; and, in addition to knowing the
first few "integer" moments from the sequence

(6.7) -n Jo tn d(t), n O, 1,...,

from which bounds on (z ), z -> 0, can be inferred by using the usual one-variable PA’s,
one also knows a corresponding set of "half-integer" moments from the sequence

(6.8) ’n+1/2-- Jo tn+/2 d(t), n O, 1,....

One would like to be able to use the latter additional information to improve upon the
usual PA bounds on -(z). This situation arises, for example, in the case of the
quantum-mechanical dynamic polarizability function associated with a ground-state
atom or molecule [15], where one knows various sum-rules of both even and odd
orders.

We show how J, G approximants can be used in such a case to improve upon the
one-variable PA bounds. We set

(6.9) F(w, z)=
(1 + ws + zt)’

with

(6.10) dr(s, t)= 6(s- 1/2) d((t) ds,

6(r) denoting the delta-function in the variable r, so that

(6.11) F(O,z)=(z).

Then we find correspondingly

(6.12) F,,,, s mtn6(s 1/2) d((t) ds (n+m/2) d(t),

whence, for each m and n, F,,,, is either an "integer" or "half-integer" moment of the
distribution (t). Bounds on (z) when 0=<z <c which utilize "half-integer"
moments as well as the usual Taylor series coefficients (needed for one-variable PA
bounds) now follow from J(N, R, S) and G(N, R, $), wherein we set w 0. Some of the
basis vectors in (a) and (13) may now be linearly dependent (in fact equal) and this must
be taken into account. This can be achieved either by noting linear dependences among
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rows in the determinantal forms describing the approximants, or else, more simply, by
noting that here

(6.13) A"B’f B"+"/2f,

which reduces the number of basis vectors which need to be included when writing
down the approximants. A typical approximant looks like

(6.14)

J(1, 1, 1)

+ {same determinant without first row and column}.

Example 2. Consider the hypergeometric function

dt In (1 + z)(6.15) F(1, 1; 2;-z)= (z)
(1 +tz’----)

for which

(6.16) P fo tPdt=l/(p+l)’ p=0,1/2, 1,,. .
Using o, ’-1/2, ’1, ’1 1/2, and 2, we find J(0, 1, 0) is a polynomial of degree one in z
divided by a polynomial of degree two in z. At z 1 we get the lower bound

J(0, 1, 0)z=l.(w=0)= 0.693069 <-ln 2 =0.693147.

A comparable PA is [1/2], which uses o, ,1, 2, 3, and yields

[1/2]z=1 0.69203 _-<In 2,

this bound being significantly worse than J(0, 1, 0)z= 1.(w=O) despite the fact that the PA
is a similar ratio of polynomials. However, for small enough positive z the PA bound
would be the best because its Taylor series expansion agrees with (ln (1 + z))/z through
order z 3 compared with.z 2 for J(0, 1, 0).

The rational approximants J(N, R, S) and G(N, R, S) can clearly be used to derive
bounds on quantities represented by double perturbation series of the form

(6.17) F(w, z)--- E E (-1)"+"
n + m

(f, A"B"f)w"z"
"=o ,,=o n

when the operators A and B are self-adjoint, positive, and commute. In such a case they
would be more efficient than the approximants [N/(N+ 1)](w, z) and [N+ 1 /(N+ 1)]
(w, z), as described in 5. However, can they be used to sum double-perturbation series
associated with quantities of the form

(6.18) P(w, z)= (f, (1 +w + zJ)-f)
when the linear operators A and/ are self-adjoint, positive, but do not commute?
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Series of the latter type can occur in below threshold scattering theory when there are
two coupling constants w and z, and (6.18) is one way of writing the forward scattering
amplitude (see [14], for example). In this situation the two-variable PA’s of 5 can still
be used to impose upper and lower bounds on/(w, z). It is suggested by Alabiso and
Butera [4] that the approximants/N/l(w, z) might provide good estimates for J(w, z)"
we use the following simple example to argue that in general the approximants
J(N, R, S) cannot be used to advantage in the "noncommuting" case.

Example 3. LeT b(x) be the unique solution of the problem

(6.19) l-W-xZ+ZX2 b(x)=e-x2, -<x<, w>0= z>0,=

subject to the condition that (x) is square-integrable over the real line. Let be the
real Hilbert space which is associated with the inner product

(6.20) (f, f2) fl(x)fz(x) dx.

Then (6.18) takes the form (2.4) with A(=) and B(=) respectively equal to
-d2/dx 2 and "multiplication by x 2’’, complete with

D(X)= {6(x) " 6"(x) exists, 6"}(6.21)

and

(6.22) D(/) {r/(x) " xZr/(x) }.

Both operators are linear, self-adjoint, and positive, but they do not commute. We look
at the quantity

1/4
--xZ --x2(6.23) P(w, z)= b(x), e 6(x) e dx.

In the formal expansion of this function in ascending powers of w and z, the coefficient
of wmz" arises from

(6.24) (-1)+" e- -w+zx2 e-= dx,

and is finite for all m and n. Writing the double expansion in the form (1.2) we can verify
that

o,0=1; Pl,o=l; P0,=l/4; P2,o23; P,=-l/4; P3,o=15;
(6.25)

P2. -11/12.
At w z 1, the best PA bounds we can impose on F(1, 1), on the basis of (6.24), are

(6.26) [0/1](1, 1)= 4/9 0.44 F(1, 1) 1= [0/0](1, 1).

On the other hand, making fuller use of the information (6.24), we obtain the estimate

(6.27) J(0, 1, 0)w=z_-i 0.48566 =/(1, 1)

which, while it is sensible,, is not as useful a result as (6.26). If we now incorporate the
additional coefficients

(6.28) /o,2=3/16; /1.2=-11/48; /o.3=15/16
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into the set (6.25), we can obtain the PA bounds

(6.29) [1/2](1, 1)= 0.47736=<P(1, 1)=< [1/1](1, 1)=0.60317

and the estimate

(6.30) J(1, 1, 0)w=z= 0.44582-P(1, 1).

The approximant J(1, 1, 0) here is identical to the Alabiso-Butera approximant
/2(w, z). The estimate (6.30) lies outside the rigorous bounds (6.29), and is a worse
approximation than (6.27). Hence, in the "noncommuting" case, the approximants
J(N, R, S) do not in general provide reliable estimates; the PA’s of 5 provide bounds
which are both rigorous and more accurate.
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A NOTE ON THE EIGENVALUES OF HERMITIAN MATRICES*

DAVID SLEPIANt AND HENRY J. LANDAU:

Abstract. Two simple relations are derived that connect the eigenvalues of a Hermitian matrix with
those of the submatrix obtained by deleting a row and the corresponding column. The relations, which readily
establish the interlacing of these two sets of eigenvalues, are used to obtain an upper bound for the largest
eigenvalue and a lower bound for the smallest eigenvalue of a Hermitian matrix.

1. Notation and summary of results. In this note we point out two simple relations
that hold between the eigenvalues of a Hermitian matrix and those of the Hermitian
submatrix obtained by deleting a given row and the corresponding column. The
relations, which readily establish the interlacing of these two sets of eigenvalues, are
used to obtain an upper bound for the largest eigenvalue and a lower bound for the
smallest eigenvalue of the matrix.

First some matters of notation. The scalar product of two k-dimensional column
vectors c= (c1, 2," Ck)T and d= (dl, d2," dk)T is defined by (c, d)=
Cld* q- 2d’2 +" -I- kd’ where the asterisk denotes complex conjugate and T denotes
transpose. If (x, y)= 0, x and y are said to be orthogonal. A number A is said to be an
eigenvalue of multiplicity k of the Hermitian matrix A if there exist exactly k linearly
independent vectors Xl, x2, , Xk such that Axi Axi, 1, 2, , k. While we shall
always use the unqualified word "eigenvalue" to mean an eigenvalue of multiplicity
k _>- 1, it will simplify our exposition to speak sometimes of eigenvalues of multiplicity
zero; the statement "A is an eigenvalue of A of multiplicity zero" means that A is not an
eigenvalue of A.

In all that follows n >_-2 is an integer. Denote by A the n n Hermitian matrix
having elements aij al,.*., i, j 1, 2, n. The following facts are well known 1]. The
eigenvalues of A are real and are identical with the roots A1, A2,’’’, An of the nth
degree polynomial

(1) PA (A)------ det (A hi),

where I is the (n x n) unit matrix. If Ai is a root of PA(A) of multiplicity k, then ,ti is an
eigenvalue of multiplicity k of A. We suppose the eigenvalues are labeled so that

Orthonormal eigenvectors Xl, x2,’’’, xn corresponding to these eigenvalues can be
found. They satisfy the relations

(3) Axi=Aixi,

(4) (x, xj)= 6i, i, ] 1, 2,. , n.

We will denote by ai the last component of xi.

Let B represent the ((n 1) (n 1)) matrix obtained from A by deleting the last
row and column, and let/x and yi 1, , n 1, be the eigenvalues and orthonormal
eigenvectors of B, respectively, with

* Received by the editors November 26, 1975, and in revised form August 13, 1976.
t Bell Laboratories, Murray Hill, New Jersey 07974 and University of Hawaii, Honololu, Hawaii 96822.
$ Bell Laboratories, Murray Hill, New Jersey 07974.
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As a final notational matter, we write

a2n )(5) a---

\an-ln/

for the (n- 1)-dimensional column vector obtained from the last column of A by
omitting the diagonal element a,, and adopt the abbreviation

(6) /3.-= (a, Yi), /" 1, 2,..., n 1,

for the components of a in the coordinate system formed by the eigenvectors {yi}.
In 2 we shall prove the following.
TIqEOREM 1. All the solutions of

(7) b,(A) A a.. 10=h-i
considered as an equation [or A, are eigenvalues o[A. Among these solutions are all the
eigenvalues ofA that are not also eigenvalues ofB.

ThEOrEM 2. All the solutions of

0

are eigenvalues orB. Among these solu6ons am all the eigenvalues orB that are not abo
eigenvalues ofA.

Equations (7) and (8) are the relations referred to that connect the eigenvalues ofA
and those of B. In addition, we shall establish the identities

1 det (B AI)(9) ()=
,(A ) det (A AI)

Theorem 2 and equation (9) are believed to be new: Theorem 1 is contained, for
example, in material to be found in [1, pp. 94-98].

It follows immediately from Theorem 1 that if the eigenvalues of B are all of
multiplicity one, so that

(10) >>. .>._

and if all n 1 of the quantities lflil, ] 1, 2,. , n 1, are different from zero, then ,
in (7) has n- 1 distinct poles. It is then clear from Fig. 1, which shows plots of
A(A) A a,, and g, (A) f, (A)- 6, (A), that the eigenvalues of B separate those of A,
i.e. that

(11)

These are the well-known "interlacing inequalities", [2, Thm. 4, p. 117].
Equation (7) will fail to have n real roots only when b, (A) has fewer than n 1

distinct poles. This can occur because some of the eigenvalues of B are of multiplicity
greater than one, or may arise because some of the quantities/ are zero. A then
inherits some of the eigenvalues of B. The situation can be summarized as follows. Let
/j be an eigenvalue of B of multiplicity k ->_ 1. If a is orthogonal to all the eigenvectors of
B belonging to/xj and if/xj is a root of (7), then/xj is an eigenvalue of A of multiplicity
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(’2

FIG. 1. Solution ofequation (7).

2

FIG. 2. Solution ofequation (8).
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k + 1. If a is orthogonal to all the eigenvectors of B belonging to/xj and if/xj is not a root
of (7), then/xj is an eigenvalue of multiplicity k of A. Finally if a is not orthogonal to all
the eigenvectors of B belonging to/x, then/z is an eigenvalue of multiplicity k 1 of A.
This classifies the possible ways in which eigenvalues forming the pattern (11) can
coalesce.

Similarly, Fig. 2 shows a plot of On(h ) as given in (8) for the case in which none of
the quantities lal,/" 1, 2,. , n, is zero and all of the eigenvalues ,, ] 1,. , n, of A
are of multiplicity one. It is clear again that the separation property (11)then holds. In
passing from A to B the multiplicity of an eigenvalue can change by at most one. If hi is
an eigenvalue of A of multiplicity k -> 1 and also a root of (8), it is an eigenvalue of B of
multiplicity k + 1. If it does not appear as a pole or root of (8), h is an eigenvalue of B of
multiplicity k. If h is a pole of 4’n it is an eigenvalue of B of multiplicity k- 1.

Consideration of equation (7) and of Fig. 1 leads readily to a recursively defined
upper bound U. for h and a recursively defined lower bound L. for h.. Let

(12)

(13)

(14)

(15)

Then it is true that

(16)

]-1

b la, 2, ] 2.3.’’’. n.
i=1

hi <-- U., hn _>-L..

These bounds will be established in 3 below. For diagonal A the bounds are exact.
Some numerical examples of the bounds are given in Table 1. Note that the values of U,
and L, depend on the order in which the rows and columns of A are listed.

TABLE
A <-- Un, An >-- Ln. The bounds On and f-,n are obtainedfrom the matrix with row and column order reversed.

IlAll=-lZ, a]1/z.

A

A

1 .2 -1 0

.2 0 .1 -.1

-1 .1 -.1 .5

0 -.1 .5 -2

0 2 3 -1

0 0 .5 1 -1

2 .5 0 -2

3 1 -2 -1 0

-1 -1 .1 0 -2

2 3 4

2 5 6 7

3 6 8 9

4 7 9 10

Xl 1.619 U4 1.6946 4 1.6809

h2 .0393

h3 -.6047

h4 =-2.1541 L4 -2.2259 4 =-2.4351

Ilall 2.7622

11 3.5516 Us 5.2448 Os 5.5503

2= 1.5431

3 ,2618

h4 -2.1955

5 =-5.1610 L5 -5.8341 5 =-5.8655

Ilall 6.8206

1 24.0625 U4 24.0794 4 24.0806

h2: .5580

A3 .1849

h4 -.8055 L4 -10.7254 4 -9.7781

IIAII 24.0832
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2. Derivation of (7), (8) and (9) and discussion of eigenvalue multiplicity. Suppose
that A is not an eigenvalue of A. Then the system of equations

(al--h)w+a2w2+" + alnWn 0
azw + (a22- h )w2 +" + a,,w,, 0

(17)

a,, Wl + a,,w +. + (a,,,, -A )w, 1

has a unique solution. For w,, we find by Cramer’s rule,

Oet (n(18) w,
det (A hi)"

But (17) can also be written (A-hI)w=z where z=(0,0,..., 1)T so that w=
(A- AI)-lz. It follows that another expression for w, is

(19) w, ((A -hI)-lz, z).

Now the eigenvectors xl, x,..., x,, of A are also eigenvectors of (A-hi)-1, and
corresponding to xi is the eigenvalue (h.- A)-I. By expressing z in terms of the xi, one
finds for the scalar product in (19)

(20) w. L ]a,[2 0,, ().

Consider now the first n 1 equations of (17) which can be written

(21) (B -XI)ff

where a is defined by (5) and ff (Wl, w2," , w.-1). The last of equations (17) in this
notation is

(22) (if, a)+ (a.. -X)w. 1.

If now A is not an eigenvalue of B, (21) can be solved to yield if=-wn(B-AI)-la.
Inserting this expression for ff into (22), we find

(23) -a.. + ((B-I)-11, a)= -.
Wn

Since Yi is an eigenvector of (B-M)- correonding to the eigenvalue (i- A)-a, by
expressing a in terms of the yi one can write the scalar product here in the form
(i )-]Blz, with the B’s given by (6). Equations (18), (20) and (23) give (7), (8) and

(9).
We now have shown that

(24) .(h)= h -a..-

(25)

Singularities of b, (h) and ft,(A), if they exist, are here exhibited explicitly as poles of
order at most one. Suppose now that hj is an eigenvalue of B of multiplicity k and also
an eigenvalue of A of multiplicity 1. If k > + 1, then b, (h) would have a pole of order
->2 at h hj as is seen from the rightmost member of (24); if > k + 1, then n(A)would
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have a pole of order ->2 as shown by the right member of (25). Since this is impossible,
Ik- II <- 1 and the multiplicity of an eigenvalue can change by at most unity in passing
from B to A. The assertions in 1 following (11) all derive readily from this fact and
from (24)and (25).

3. Derivation ot inequality (16). Returning to (7), we see that, because of the
convention (2),

gn(A)=-- _-< A>
--1 A-/x A

I/1 -> E <.-1.

Now from (6) it is seen that the quantities i and ai., j 1, 2, , n 1, are connected
by an (n 1)x (n 1) unitary transformation, so that

E 11= E la.l.
j=z j=

Thus we find

ing.(A)< A >/-/,1,

b.g.(X)_->, <.-1,
A .-i

with denned in (15). Now from (7) and Fig. 1 it follows that A Un and
were U. is the largest root of (X- a..)(x-)= b. and L is the smallest root of
(h a.n )(h ._) b Thus

(26) hz U, [(a,, + #z)+ Ja,, z)+4b,],
(7) h, L, [(a,, + ,_z)-a,, ,-1) +4b,].

But the right side of (26) is increasing in the quantity , and the right side of (27)
decreases as ,_z decreases. We apply the equations successively for n 2, 3,. to
obtain (12(16).

Some numerical examples of the use of (12(16) are given in Table 1. In general
our experience has been that the bounds are tightest when the eigenvalues of A are
nearly equally spaced or when A is nearly diagonal. (The bounds are exact for diagonal
A.) The first two examples on Table 1 have rather evenly spaced eigenvalues and the
bounds are not far from the true eigenvalues. The third example has one large
eigenvalue and three small ones: the upper bound U for h is quite close to the true
value, but L4 is an order of magnitude away from h. The bounds U, and L, depend on
the order in which the rows and columns of a matrix are listed. On Table 1, the
quantities , and, are values of U, and L, when the rows and columns of the matrix
are taken in the opposite order from that listed on the table. For comparison, we also
give the quantity []AI[[ [aii[2]1/2, which is a commonly used upper bound for

4. Comment. Many of the results given here appear in the literature. See [1, pp.
94-98], for example, for a discussion of the relationship between the quantities h and

k. The function ,(h)is used in that discussion. Our inequalities (12(16)appear to be
new, however, as do also (8) and the curious identity (9). We have thought the approach
taken here to be suciently novel to warrant repetition of some known material.
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ON THE BEHAVIOR OF SOLUTIONS OF A SINGULARLY PERTURBED
BOUNDARY VALUE PROBLEM WITH A TURNING POINT*

KOICHI NIIJIMA’t"

Abstract. We find sufficient conditions for the boundary value problem

(1) ey"(x)+f(x;e)y’(x)+g(x;e)y(x)=h(x;e), -a<=x<=b,

(2) y(-a)=A(e), y(b)=B(e)

to have a unique solution by applying the Newton-Kantorovi theorem to Riccati equations associated with
(1). Moreover, we obtain the behavior of solutions of (1) and (2) by constructing them explicitly.

1. Introduction. In this paper we consider the boundary value problem

(1.1a) ey"(x)+f(x; e)y’(x)+g(x; e)y(x)=h(x; e), -a <=x <-b,

(a.lb) y(-a)=a(e), y(b)=B(e)

where a, b > 0, e is a small positive parameter, and/(x; 0) has a single simple zero at
x 0 and satisfies/’(0; 0) < 0 (hereafter x 0 is called the turning point). The equation
(1.1a) has been solved by various asymptotic methods ([2], [7], [11]). Using these
methods, several authors ([1], [3], [5], [6], [8], [9], [12], [14]) have recently studied
asymptotic approximations to solutions of (1.1). However, the question of exact
solutions of (1.1) is not yet sufficiently investigated [4]. In this paper, we study the
behavior of exact solutions of (1.1) by constructing them explicitly.

According to Ackerberg and O’Malley 1] and O’Malley [8], asymptotic solutions
of the homogeneous problem (1.1) (that is, h (x;e)= 0) can exhibit peculiar behavior
which is referred to as "resonance", when -g(0; 0)//’(0; 0) is a nonnegative integer.
Such a phenomenon is of particular interest to us and motivated the present study.
When is not a nonnegative integer, the homogeneous problem (1.1) has a unique
solution which is almost zero within (-a, b) [4]. For this reason we restrict our attention
to the case where is a nonnegative integer.

In this paper, applying the Newton-Kantorovi theorem to Riccati equations
associated with (1.1a), we find sufficient conditions for the problem (1.1) to have a
unique solution and construct the solution to study its behavior. We also show that for
the homogenous problem these conditions become sufficient conditions for resonance
not to occur. It is further shown that our conditions for resonance not to occur are
closely related to those obtained by Cook and Eckhaus [3] and by Kreiss and Parter [4].

2. Preliminaries. In this section we present four lemmas which hold the key to the
success of our analysis.

LEMMA 1. Assume that b(x; e), 4t(x, e), and to(x; e) are continuous in the region
c <= x <= d, 0 <- e <= e o, and that4 (x e) is positive there. Then the solution v (x) ofthe initial
value problem

(2.1a) ev"(x)+4(x; e)v’(x)+q(x; e)v(x)=to(x; e), c <=x <-_d,

(2. lb)

can be written in the form
(2.2)

v(c)=C, v’(c)=D

1--tzv (x) p (x)(DA (x) + (x) + C).
E

* Received by the editors October 31, 1975, and in revised form October 8, 1976.
f Department of Home Life Science, Fukuoka Women’s University, Fukuoka City, Fukuoka, Japan.
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Here

A (x) fx q(t) dt,pE(t)
q(t) Ic’ p(s)

(x) P(t) ,o(s; e)q- ds dt,

q(x)=exp (-f 4(t; dt), and t)p(x)=exp( a(t) d

where a (x denotes a solution of the Riccati equation

(2.3a)
’(x) + (x, e) 4’ (x, e)a(x)+a(x)+= 0

subject to

(2.3b) a(c)=O

Proof. It is well known that the problem (2.1) possesses a unique solution. To obtain
the expression (2.2), we shall introduce the linear relation

(2.4) v ’(x) a (x)v (x) +/3 (x).

Then it follows from (2.1a) and (2.4) that a(x) satisfies (2.3a) and/3 (x) satisfies

(2.5a) fl’(x) + (th(x;e e)+a(x))(x)_to(x;ee’----) 0"

Let a (c) and/3 (c) be chosen as

(c)=O

and

(2.5b) /3(c) =D,

respectively. Applying Newton’s method to (2.3) and choosing

So(X) fx( (t; e))exp (-I th(s; e)ds)dt
as an initial iterate of a Newton sequence [10, p. 138], the condition of Yarmish [13, p.
6"62] is satisfied, so that (2.3) has a solution a(x) satisfying the estimate

where II" Iloo denotes the maximum norm and K is a constant independent of e.
Therefore, solving (2.4) and (2.5) directly, we obtain (2.2).

Next we consider solutions of the initial value problem (2.1) for the case where
4 (x;e) is not necessarily positive.

LEMMA 2. Assume that
(i) bl(x) and Ol(x) are Lipschitz continuous on [c, d],
(ii) b2(x e), O2(x e), and to (x e) are continuous in the region c <-_ x <- d, 0 < e <-_

eo, and bounded there,
(iii) bl(d) Ol(d) 0,
(iv) b l(X) > 0 for c <- x < d,

and
(v) b[(d) < 0.
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Then the solution v (x of the initial value problem

ev"(x) +(dpl(x)-edp2(x; e))v’(x)+(l(x)-e2(x; e))v(x)=to(x; e), c <=x -d,
v(c)=C, v’(c)=D

can also be written in the form

(2.6) v(x)=p(x) DA (x) + (x)+

Here A (x and Ix (x have the same expressions as in Lemma 1, but now

q(x)=exp O-(t;e) d and p(x)=exp a(t) d

where a (x is a solution of

suect to a (c O.
Proof. Yarmish’s condition does not apply, so we apply Newton’s method to the

integral equation

(2.7) P()(x)=(x)+ (t)-(t; e) (t)+(t)+0l(t) -0(t; e) dr=O,

and immediately check the conditions of the Newton-Kantorovi theorem [10, p. 135].
Now, as an initial iterate of a Newton sequence {} [10, p. 138], we choose

(x) ( -O(t)+O(t;e e))exp (- ((s)-(s;ee))ds)dr.
it follows from (i), (iii), (iv), and (v) that there exist positive constants F, FI and G
satisfying

F( -x) (x)F(-x)
and

Therefore we get

and

Moreover an easy calculation gives

IIP"(r)ll_-< 2(d
for any C[c, d]. Therefore (2.7) has a solution ct (x) satisfying the estimate

(2.8) I1
where K is a constant independent of e.
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The following two lemmas will be used to find sufficient conditions for the problem
(1.1) to have a unique solution.

LZMA 3. Let a (x) be a solution of (2.7).
(i) If (x) and (x) belong to C[c, d], then

(2.9) a(d)=
(d)
(d)

(ii) If qb(x) and l(X) belong to C3[c,d], and b2(x; e) and (x; e) are Lipschitz
continuous for c <= x <-d, 0 < e <-eo, and bounded there, then

a(d)

Proof. Integrating ao(X) by parts, we get

(2 10) ao(d)
(d)

+ o
(d)

By combining (2.8) with (2.10), the inequality (2.9) is obtained. The assertion (ii)
follows from a property of Newton’s sequences,

and partial integration of a l(X).
LEMMA 4. Leta(x) be a solution of (2.3), where (x; e) and (x; e) are + 1 times

continuously differentiable with respect to x in the region c <- x <- d, 0 <= e <-_ eo, and (x e)
is positive there. Then p(x)= exp (7 a(t) dt) satisfies the estimates

(2.11) -maxq- 1,0)Ip oS(x) e exp (----m(x c)) + e)e
]=0, 1,2,...,/+1,

where

/(x)=exp
4(t;0)

and K is a constant independent of e.

Proofi Let (x)=-O(x;O)/(x; 0) and /(x)=(x)-(x). Then we show by
induction that the estimates

and
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hold for c =<x =<d. Here Kj and C+1 are constants independent of e and

m= min (x;e).
x

First, it follows from (2.3a) and the definition of d(x) that y(x) satisfies

(2.14)
,’(x) +(x;e)e(x)q (x;e)’(x)+’(x;e)+,’(x)+a(x) O,

E

e(c)
6(c; o)
6(c; o)"

Solving this, we obtain the estimate

IT(x)]-<- Ko exp
e

for c =<x =<d. Furthermore, by using (2.14) and the equation a’(x)=&’(x)+y’(x), we
get

la’(x)l-<C1 e exp ---(x-c) +1

Next we assume that (2.12) and (2.13) hold for j 0, 1, 2, , k 1. Differentiating
(2.14) k times with respect to x, we obtain

,y(g+l)(X) + (X;e e)’Y(k)(/) --l klj=o (k)j (k_J)(X
(2.15)

where 6(x)= (&(x; e)(x)+ O(x; e))/e + c’(x). By the inductive assumptions, we see
that the right hand side r(x) of (2.15) satisfies the estimate

exp (-m(x-c)) +e 1)
for c =< x -< d, where R is a constant independent of e. On the other hand, differentiating
(2.14) k 1 times with respect to x and again using the inductive assumptions, we get

where K is a constant independent of e. Therefore y(k)(x)satisfies

for c =<x-<d. This estimate together with (2.15) implies that

--(k +1) (m ) )exp ---(x-c) +1
E

Thus (2.12) and (2.13) follow by induction. The inequality (2.11) can now be proved by
using (2.12), (2.13), and the equation p’(x)-’(x)=a(x)(p(x)-(x))+’y(x)(x).



BEHAVIOR OF SOLUTIONS 303

3. Main results. In this section we find sufficient conditions for the problem (1.1) to
have a unique solution, and construct the solution explicitly by using the four lemmas
obtained in the previous section. We shall assume that f(x ) and g(x; ) are Lipschitz
continuous with respect to x and e in the region -a =<x =<b, 0-<e =<so, and h(x; ) is
continuous there. Assume that A(e) and B(e) are continuous on [0, so]. First we
consider the following case.

(a) The case when 0. Instead of the problem (1.1), we consider two initial value
problems

(3.1a)

(3.1b)

ey"(x)+f(x; e)y’(x)+g(x; e)y(x)=h(x; e),

y(-a)=A(e), y’(-a) =X

-a =<x _-< O,

and

(3.2a)

(3.2b)

ey"(x) +f(x s)y’(x) + g(x e)y(x)= h(x e),

y(b)-B(e), y’(b)= Y

O<_x<_b,

containing two unknown numbers X and Y. For the problem (3.1), since the assump-
tions of Lemma 2 are satisfied if we set kl(x)=f(x; 0), ql(x)=g(x; 0), 42(x; e)=
(f(x; 0)-f(x; e))/e, 62(x; e)= (g(x; 0)-g(x e))/e, andw(x; e)= h(x; e), the solution
of (3.1) can be written in the form (2.6) on I-a, 0], where C=A(e) and D =X. We
denote this by y_(x), the functions a (x), p (x), q (x),’A (x), and tz (x) in y_(x) by a_(x),
p_(x), q-(x), A_(x), and/x_(x), respectively. For the problem (3.2), if we apply the
change of variable z =b-x and set bl(X) -f(b-x; 0), ql(x)=g(b-x; 0), b2(x e)=
(f(b-x;e)-f(b-x;O))/e, qa(x;e)=(g(b-x;0)-g(b-x;e))/e, and ro(x;e)=
h(b-x; e), then the assumptions of Lemma 2 are satisfied; therefore w(x)=y(b-x)
can be written in the form (2.6) on [0, b ], where C B (e) and D Y. Here we denote
a(x), p(x), q(x), A (x), and/x(x) in w(x)by a+(x), p+(x), q+(x), A+(b -x), and/x+(b -x),
respectively, and set y/(x)= w(b-x), which becomes a solution of (3.2). If we can
determine X and Y so as to satisfy

(3.3a)

and

(3.3b)

then

y_(0) y+(0)

y’_ (0) y_ (0),

y_(x ), -a -<- x <- O,
y(x)=

y+(x), 0<-x<=b,

becomes a solution of (1.1).
Then we have the. following theorem.
THEOREM 1. Let us assume that

Or

(i) f(x; O) and g(x; O) are two times continuously differentiable on [-a, O] and
[0, b ], and g’(O; O) g_(0; O) holds, where g’(O; O) and g_(0; O) denote the left
and the right derivatives of g (x; O) at x O, respectively,

(ii) f(x; O) and g(x; O) belong to C2[-a, b] and are three times continuously
differentiable on I-a, O] and [0, b], and (if/Oei)(x; e) and (iCg/Oei)(x; e),
j=O, 1,2, are continuous in the region -a<-x<-b, O<=e <-eo, and moreover
(O3f/Oe3)(x e) and (03g/Oe3)(x; e) are continuous in the subregions -a <-x 0,
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O <-_ e <= e o and O <= x <= b, O <= e <- e o, and in additionf(x e and g(x e satisfy

_(g’(O; 0)] 2 f’(O" O)g"(O; 0)-/"(0; O)g’(O; O)I
\f’(0; 01]

4
2[3"’(0; 01]2

+[(o.-- o)g’(; o)
oe (o; o)

Then, for sufficiently small e > 0, the problem (1.1) has a unique solution and the solution
can be written as

a (e)p_(x)( 1 A-z.(X)’
_(o)/

y(x)

+p-(x){, /x-(x)- (/x-(0)+" (o)p_(o)- g;_ (o)p+(6)) ,_(x),
(a_(0)+ a+(b))p_(O) A_(0)] + T1,

-a<=x<_O,

B (e)p+(b x)( 1
A+(x)

+p+(b-x){ (g+(x)- g+(o)+ tx" (O)p-(O)-tx’+(O)p+(b) A+(x) +
O<_x<=b.

Here, for j 1, 2,

O(e-lexp (-)), if (i) is satisfied,

T=
O(e-3/2exp(-)), if (ii) is satisfied,

where K =min ($Oaf(t 8)dt, -f(t; e)dt). Moreover, y’(-a) and y’(b) are

and

1 /x (O)p-(O)-/x - (O)p+(b)]A(e)+- /z_(0) +
(,_(o)+ c+(b))p_(0)

y’(-a)=-
A_(O) +Rx

1 /x" (O)p_(O)-/z

_
(O)p+(b)lB(e)+- I/x+(0) +e (a_(O)+a+(b))p+(b)

y’(b)
A+(0)

+RE,

respectively, where, for j 1, 2,

O(e-3/2 exp (-)),
Rj

if (i) is satisfied,

if (ii) is satisfied.
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Proof. The determinant of the coefficient matrix M of (3.3) is given by

(3.4)
detM (a_(0) + a+(b))p_(O)p+(b)A_(O)A +(0) +q_(0)p+(b) A +(0)

p_(0)

p_(0)
A_(0)+q+(b)p+(b )

From this, we see that for sufficiently small e > 0, detM is governed by the first term of
the right hand side of (3.4) which can be evaluated by using Lemma 3. Indeed, applying
Lemma 3 to a_(x) and a+(x), we obtain

a_(0) +a+(b)
g_(0; O) g’(O; O)

f’(o; o)
+ O(4e) 0(1)

if (i) is satisfied, and

o

a-(O)+a+(b) =I{ I_ exp(- I (+2a_,o(s)) ds) dt

b b

if (ii) is satisfied. Thus, for sufficiently small e > 0, detM # 0. Therefore the problem
(1.1) has a solution. The uniqueness of the solution follows from the Fredholm
alternative theorem. The quantities X y’(-a) and Y= y’(b) are obtained by solving
(3.3). Substituting these into y_(x) and y/(x), we get the solution y(x). This completes
the proof.

From these results, one finds that when (1.1a) is homogeneous the solution is
almost zero within (-a, b) and its slope at both endpoints is O(e-1/2). When (1.1a) is
inhomogeneous, the solution is O(e -1/2) within (-a, b) if (i) is satisfied, and O(e -1)
within (-a, b) if (ii) is satisfied.

Remark 1. Suppose that f(x; e) -xa (x) where a (x) >- ao > 0 and a (x)
C2[-a, b], and that g(x; e)=x2b(x) where b(x)>-bo>O and b(x) C2[-a, b]. Then
we have

I=-b(O)/a(O)#O.

Therefore Theorem 3.1 of Kreiss and Parter [4, p. 242] is a particular case of our
Theorem 1.

In Theorem 3.2 [4, p. 243], if (e) is not assumed, the condition that g(k)(o) 0 for
some positive integer k implies that g"(0) # 0. This condition is equivalent to I # 0, since
I -g"(0)/2.

The latter part of Theorem 3.3 [4, p. 244] will be shown in 4 of this paper.
Remark 2. The quantity I is related to the quantity (r with 0 defined by Cook

and Eckhaus [3, p. 135] as follows:

I -f’(O; 0)o-.

Thus, for the case of 0, their criterion for resonance (tr 0) is obtained by our
method.
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To get inproved conditions for resonance, we must calculate the higher order
terms on e of a_(0)+a/(b) under the assumptions that f(x; e) and g(x; e) are
sufficiently smooth.

Next we consider the following case.
(b) The case when is a positive integer. In this case, we assume that the condition

below will hold"
H1. f(x e), g(x e), and h (x ) are times continuously differentiable with

respect to x for -A =< x --< A, 0 --< e =< e o, where A is a positive number indepen-
dent of e.

Since g(0; 0) -> -f’(.0; 0) > 0, there exists a positive number g such that g(x; e) is
positive in the region -g -< x =< g, 0 =< e =< e o. Let 8 satisfy 0 < g < min (A, g). We analyze
the problem (1.1) on each of subintervals I-a, -g ], [-8, 8 ], and [8, b ]. In the interval
I-a,-8], applying Lemma 1 to (1.1a) subject to y(-a)=A(e) and y’(-a)=X, we
obtain a solution y_(x) of the form (2.2). Here we denote a(x), p(x), q(x), A (x), and
/x (x) in y_(x) by a_(x), p_(x), q_(x), A_(x), and/x_(x), respectively. In the interval
[& b], applying the change of variable z b x to (1.1a) and thereafter using Lemma 1,
we can get a function w(x)= y(b-x) of the form (2.2) on [0, b-g]. Here we denote
a(x), p(x), q(x),A (x), and lx(x)in w(x) by a+(x), p+(x), q+(x),A+(b-x), and lz+(b-x),
respectively, and set y/(x)= w(b-x), which becomes a solution of (1.1a) subject to
y(b)=B(e) and y’(b) Y on [8, b]. In the remaining interval [-8, 8], we differentiate
(1.1a) times with respect to x, which leads us to the following differential equation for
vt(x ) y (l(x )"

(3.5)
evI’(x) + (f(x; 0)-4,(x; e))vI(x)+(lf(x; 0)+g(x; 0)

-kl(X; e)f(x; O)--egt(x; e))V/(X)"-" ht(x; e).

Here ’l(X; e), k(x;e), g(x; e), and h(x;e) are determined by the iteration formulas

,f/’+l(X E)--.f/’(X E)4r-I’j(X’ ),

k/(x; e)= k(x e)+r(x e),

g+(x e)=g(x; e)+]’(x e)-r(x; e)f.(x e),

and

hj+,(x; e)= h (x e rj (x e h (x e ),

having fo(X e) (f(x O) -f(x e))/e, ko(x e) O, go(x e) (g(x O) g(x e))/e, and
ho(x; e) h (x e) as initial functions, respectively, where

rj(x e
ff"(x O) + g’(x O)- k’(x e if(x; 0)- kj(x e )f’(x O) eg)(x e

ff’(x o) + g(x 0)- k(x e g(x; 0)- eg(x e)

From these formulas, we see that f,(x; e ), k(x; e), gt(x; e), and h(x; e) are continuous
for - -< x _-< , 0 < e =< e o, and bounded there. We further assume

H2. ]"(x; 0) and lim_,o kt(x; e) are Lipschitz continuous for -g -<x -< and
kt(x e) is continuously differentiable with respect to e in the region -g -<x -<, 0 < e -< e0, and its derivative is bounded there.
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Then, if we set

k(x) f(x O),

qtl(X) lf’(x 0)/g(x; O) lim kl (X e)’f(x" 0),
0

(3.6)

and

6(x e f(x e ),

.(x; e)
k(x ) lim,_o kl(x; e,

f(x O) + gl(x e),
E

o (x e) h, (x e),

it follows from Lemma 2 that the solution of (3.5) subject to V/(--):y(t)(--8) and
v(-8) y(_/+1)(-8) can be written as (2.6) on [-8, 0]. We denote this by Vl^.-(x), the
functions a (x), p (x), q (x), h (x), and tz (x) in Vl,-(x) by k_(x ),/_(x), _(x), A _(x), and
_(x), respectively. In the interval [0, 6], applying the change of variable z 8-x to
(3.5) and thereafter using Lemma 2, we can obtain a function w(x)= vt(6-x) of the
form (2.6) on [0, 8]. Here we denote a(x), p(x), q(x), h (x), and/z(x) in w(x) by &+(x),
//(x), +(x), +(8 x), and +(6 x), respectively, and set Vl.+(x) w (6 x), which
becomes a solution of (3.5) subject to v(6)= y)(8) and v(8)= y(+/+1)(8) on [0, 8]. We
shall determine X and Y to satisfy the matching conditions

(3.7a) v,_(0) vt.+(O)

and

(3.7b) v ,_(0) v 1.+(0).

We have the following theorem.
THEOREM 2. Assume thatf(x 0), g(x O), ft(x e), kt(x e), and gt(x e)satisfy the

conditions

(i) f(x; O) and g(x; O) belong to C4[-,8] and C3[-6,6], respectively, and
lim,_o k(x e) is of class C3[-6, 8 ],

(ii) f(x e), k(x e), and gt(x e) are continuously differentiable with respect to x
and e in the region -8 <-x <= 8, 0 < e <= co, and their derivatives are bounded
there, and (O2kffOxc3e)(x;e) are continuous for -8<-_x<=8, O<e--<Co, and
bounded there,

and

(iii) j= Of g--+ l__Of f" 61 + 1 f"g’ 312 (f,,, z

O f’ 2 f’ 2 \

12 f,,,g, 2 21+lg" Og loaf_.+
f’

q
2 f’ Oe OxOe --where f’, f", and f’" denote the first, the second, and the third derivatives off(x; O)

at x =0, respectively, g’ and g" denote the first and the second derivatives
of g(x;0) at x=0, respectively, and Of/de, Og/Oe, and Ozf/OxOe mean
(Of/Oe )(O; 0), (Og/Oe )(O; 0), and (Of/OxOe )(O; 0), respectively.
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Then, for sufficiently small e > O, the problem (1.1) has a unique solution and the solution
can be written as

y(x)

p_(x XA_(x)/-tx_(x)+A(e -a <-x <-_-,

Here

and

bl +,-(O)b2
a +,-(o)aA (e)-1

/-(0)2/ jL,-(0)
(a +,(_(O)a)

ff ’_(o)_(o)- _(o).+(a) + O(e-(l+a/2) exp (-?))e (al + A"_(O)a:)(a_(O) + c+(a))p_(O)

y=d,,-+(O)dzB ’O ,. +(O)’o2 +/,+(0)
(71 ,-’(0)C2 (E)+

+
e (C1 X+(0)C2)(a--(0) + S+(a))p+(a

where ai, b, , c, d, and n denote (p_(x)X_(x))(-+’=_, p(-+’(-),_
+i_(-+])(p_(x)_(x))(-+’l=_, (p+(b-x)+(x))(-+’l, (-1)’- .. (b-), and

(p+(b x)+(x))(-+’l, respecavely, and min ([ (t; e)dt, [g (t; e)dt).
Pro@ The determinant of the coecient matrix N of (3.7) is

det N -(S_(0)+ S.())_(0).()(a + a_(O))(c c.(O))

+.(,_(0, ’0’*( (c.()ta +a_(O))c -t _(0
Moreover, applying Lemma 4 to p_(x) and p/(b-x) of aj and cj, we obtain

detN (- 1)’+1(_(0) + c+(6))/3_(0)/3+(8 )(/5)(-8)X_(-6) + O(e 3/2))

,/ff(+(b-6)A+,6) + 0,e3/2), + O(e 2 exp ( 2)).
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Note that fi)(-6) O(1) and f(+/)(b -) O(1). By Lemma 3,

I{I9___ (ft0(1(s) ))_(0)+a+(6)=
n
exp

\ e
-2(s;e)+2a-,o(S) ds dt

+ exp \+qb2(6-s;e)-2a+,o(S) ds dt,

where the quantity I is

_{b_](0)]+b](0)q(0)-7(0)q(0) (0)lim 4)1(0; e)+lim qz(0" e)I=
\i(0)/ 2[ i(0)]2 i(0) -o o

and el(X), ti(X), 2(X; E), and t2(X E) denote the functions defined by (3.6), respec-
tively. Using the iteration formulas of f-(x; e), k(x;e), and g(x;e), we can further
calculate the quantity I. Indeed, a direct calculation gives

k(0; 0)=
l(l- 1) f" lg’

2 f’ f"
Ok, I(1-1)(I + 4) f’" l(l + 3) g’--
-x (0; 0)=

12 f’ 4 f’
l(l- 1)2(/8 + 2)(f""2\T)
Of l(l-1) f" ig’
Oe 2 f’ f"

/(o; o)=

and

l(l-1)(21+3)f"g’ /(/+ 1)(,’) 2

4 f,2 2

g(0; 0)
Og Of l(l- 1)(/-2) f"’ l(l- 1) g’--
de OxOe 12 f’ 4 f’
l(l-2)(l- 1)2(/"’ 2 l(l- 1)(21-3) fig’

8 \-fT] 4 f,2
l(l-X){g’] z 1(1-1) Of f" g’

2 \f’] ---- Oe f’ l-OfOe f"
Thus we have I J. Therefore det N 0 for sufficiently small e > 0. This shows that the
problem (1.1) has a solution. The uniqueness of the solution follows from the Fredholm
alternative theorem. The quantities X y’(-a) and Y y’(b) are obtained by solving
(3.7). Substituting these into v(x) and integrating v(x), we get the solution y(x). This
completes the proof.

These results show that if (1.1 a) is homogeneous the solution is almost zero within
(-a, b) and the slope of the solution at both endpoints is O(e-1). It should be noted that
these slopes differ from those for the case when 0. If (1.1a) is inhomogeneous, it
follows that the solution is O(e -max(2’t+l/z)+l) within (-a, b).

Remark 1. The quantityJ is related to the quantity o- defined by Cook and Eckhaus
[3, p. 135] as follows:

] -f(o; o).

One finds from this equation and the similar one for the case of 0 that Theorem 1 and
Theorem 2 are generalizations of their results on resonance, since they restrict their
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attention to the homogeneous problem (1.1) with f(x; e) and g(x; e) analytic functions
of both x and e.

Remark 2. When f(x; e)=-x and g(x; e)=g(x), we have

j _(g,)2
2/+1

2

This equation together with the similar one for the case of 0 show that our Theorem
1 and Theorem 2 include the results of Lemma 3.1 by Kreiss and Parter [4, p. 244].

4. Examples. In this section we consider some illustrative examples. The first
example is

ey"-xy’+(x +ce)y =O, -l_-<x-<l,

y(-1) 2, y(1) =-1,

where c -1. Since all the conditions of Theorem 1 are satisfied, there exists a unique
solution

! exp (-(1 /2e )(1 t)) dt
2exp(x+l) 1-[,_exp(_(1/2e)(l_t))dt +O(x/-e), -l<=x_-<O,

( iexp(-(1/2e)(l-t))d)
y(x)

l-exp(x-1) 1-o exp(-(1/2e)(1-t)) dt
+O(e), O=<x_-<l.

Next, to observe the influence of the right hand term on the nature of the solution,
we analyze the problem

ey"-xy’ +(x +ce)y 1, -1 <-x _-< 1,

y(-1) 2, y(1) =-1,

where c -1. By an easy calculation, we get

/z (O)p_(O)-/x + (O)p+(1) exp dt+O(e)

and

a_(0)+a+(1)=-(c + 1) exp --e dt+O(e).

Therefore, we have

P-(X) l l.,_(x)-- (tx_(O)+ (o)p_(o)- ;_ (o)p+(a))
exp (x) I exp (-(1 t)/2e) dt

(c + 1)e I_ exp (-(1-t2)/2e) dt
--[- 0 (e -1/2

for 1 < x =< 0. Similarly, we have

P+(l-x)llx+(x)_(l+(O)+
E

ix" (O)p_(0)- tx (O)p+(1)) A+(X)

exp (x) .[ exp (-(1-tz)/2e) dt+(c + 1)e I exp (-(1 -t)/2e) dt
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for 0 _<-x < 1. This shows that the solution y (x) is strongly influenced by the right hand
term.

Finally, we solve the turning point problem

ey"-x(l+x2)y’+(2+ce)y =0, -l<-x=<l,

y(-1) =-2, y(1)= 1

treated by Ackerberg and O’Malley [1]. The quantity J in Theorem 2 is given by
J 12 c. Therefore, if c # 12, this problem has a unique solution. Let us choose 8 > 0
to satisfy 82(82 + 2) < 3/2. Then, we have

( ,_(x)) ( -5/2 (62(62+2))) _l=<x_<_ &-2p_(x) 1 A_(-8) + O e exp
4e

(-5/2 (62(62+2)))0 e exp 7 -6 =< x _-< O,

y(x)
O e exp

4e

p+(1 x) 1 +(6)] + O e exp
4e
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ALGEBRAIC STRUCTURE AND FINITE DIMENSIONAL
NONLINEAR ESTIMATION*

STEVEN I. MARCUS," AND ALAN S. WILLSKY

Abstract. The algebraic structure of certain classes of nonlinear systems is exploited in order to prove
that the optimal estimators for these systems are recursive and finite dimensional. These systems are
represented by certain Volterra series expansions or by bilinear systems with nilpotent Lie algebras. In
addition, an example is presented, and the steady-state estimator for this example is discussed.

1. Introduction. Optimal recursive state estimators have been derived for very
general classes of nonlinear stochastic systems [14], [7]. The optimal estimator
requires, in general, an infinite dimensional computation to generate the conditional
mean of the system state given the past observations. This computation involves either
the solution of a stochastic partial differential equation for the conditional density or
an infinite set of coupled ordinary stochastic differential equations for the conditional
moments. However, the class of linear stochastic systems with linear observations and
white Gaussian plant and observation noises has a particularly appealing structure,
because the optimal state estimator consists of a finite dimensional linear system--the
Kalman-Bucy filter [12].

In this paper we exploit the algebraic structure of certain other classes of systems,
in order to prove that the optimal estimators for these systems are finite dimensional.
The general class of systems is given by a linear Gauss-Markov process : which feeds
forward into a nonlinear system with state x. Our goal is to estimate : and x given
noisy linear observations of . Specifically, consider the system

(1.1) dsC(t) F(t)lj(t) dt + G(t) dw(t),
N(1.2)

dx(t)= ao(x(t)) dt + Y ai(x(t))sci(t) dt,
i=1

(1.3) dz(t)= H(t)j(t) dt + R1/2(t) dr(t),

where (t) is an n-vector, x(t) is a k-vector, z(t) is a p-vector, w and v are independent
standard Brownian motion processes, R >0, :(0) is a Gaussian random variable
independent of w and v, x(0) is independent of :(0), w, and v, and {ai, 0,. , N} are
analytic functions of x. It will be assumed that [F(t), G(t), H(t)] is completely
controllable and observable. Also we define Q(t) a- G(t)G’(t).

The optimal estimate, with respect to a wide variety of criteria, of x(t) given the
observations z’ a--{z(s), O<=s<-t}, is the conditional mean ,f(tlt), also denoted by
E’[x(t)] or E[x(t)lz’ [8] (henceforth we will freely interchange these three notations
for the conditional expectation given the r field o’{z(s), 0 <= s-< t} generated by the
observation process up to time t). Thus our objective is the computation of (tlt) and
(tlt). The computation of -(tlt) can be performed by the finite dimensional (linear)
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Kalman-Bucy filter; moreover, the conditional density of (t) given z is Gaussian
with mean (tlt) and nonrandom covariance P(t) [12], [8]. However, the computation
of (tlt) requires in general an infinite dimensional system of equations. The purpose
of this paper is to show that if x(t) is characterized by a certain type of Volterra series
expansion, or if x(t) satisfies a certain type of bilinear equation, then (tlt) can be
computed with a finite dimensional nonlinear estimator.

This research is related to the recent work of Brockett [1]-[3] on algebraic and
geometric methods in control theory and the work of Lo and Willsky [17], [25] on
estimation for bilinear systems.

2. Volterra series and finite dimensional estimation. As shown by Brockett [2],
[3] and d’Alessandro, Isidori and Ruberti [5] in the deterministic case, considerable
insight can be gained by considering the Volterra series expansion of the system (1.2).
The Volterra series expansion for the ith component of x is given by

xi(t)= Woi(t)+ E E w l"’"k’)(t,O’l,"" ’,O’i)
k,. .,k

(2.1)

where the ]th order kernel w1’’’’,) is a locally bounded, piecewise continuous
function. We will consider, without loss of generality [2], only triangular kernels which
satisfy W}ikl"’"kj)(t,O’l, ",O’1)-- 0 if m+m > O’m; l,m 1,2,3,. .. We say that a kernel
w(t,rl," ",ri) is separable if it can be expressed as a finite sum

(2.2) w(t,crl," ,ri) 2 y(t)yl(rl)y2(o’2)
i=1

Brockett [2] discusses the convergence of (2.1) in the deterministic case, but we
will not consider this question in the general stochastic case. We will be more
concerned with the case in which the linear-analytic system (1.2) has a finite Volterra
series--that is, the expansion (2.1) has a finite number of terms. Brockett shows that a
finite Volterra series has a bilinear realization if and only if the kernels are separable.
Hence, a proof similar to that of Martin [20] of the existence and uniqueness of
solutions to a bilinear system drived by the Gauss-Markov process (1.1) implies that a
finite Volterra series in : with separable kernels is well defined in the mean-square
sense.

With these preliminary concepts, the major results can be stated. The proofs are
contained in this section and Appendix B; an example follows.

THEOREM 2.1. Consider the linear system described by (1.1) and (1.3), and define
the scalar-valued process

(2.3) x(t)=eJm(t)
where n is a finite Volterra series in with separable kernels. Then (t[t) and (tlt) can
be computed with a finite dimensional recursive system of nonlinear stochastic differen-
tial equations driven by the innovations dr(t) a- dz(t)-H(t)(tlt) dt.

THEOREM 2.2. Consider the linear system described by (1.1) and (1.3), and define
the scalar-valued processes

io, lo(2.4) r/(t) k(O’m,)’’’k,(O’m,)’ll(O’l)’" "/i(ffi) dO’l"" .do’i,
aO

(2.5) x(t)= ee’)q(t)
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where {yi} are deterministic functions of time and > f. Then (tlt) and ,(t[t) can be
computed with a finite dimensional recursive system of nonlinear stochastic differential
equations driven by the innovations.

The distinction between Theorems 2.1 and 2.2 lies in the fact that i>/" in
(2.4)---i.e., there are more :k’s than integrals. On the other hand, each term in the
finite Volterra series in (2.3) has =f and the -,k are distinct. As Brockett [2]
remarks, we can consider (2.4) as a single term in Volterra series if the kernel is
allowed to contain impulse functions. As we will show in Lemma B.2, a term (2.4)
with < f (more integrals than :k’s) can be rewritten as a Volterra term with f; so
Theorem 2.1 also applies in this case.
The basic technique employed in the proofs of Theorems 2.1 and 2.2 is the

augmentation of the state of the original system with the processes which are required
in the nonlinear filtering equation (A.5(A.6) for (tt). For the classes of systems
considered here, it is shown that only a finite number of additional states are required.

Proofof Theorem 2.1. We consider one term in the finite Volterra series; since the
kernels are separable, we can assume without loss of generality that this term has the
form

(2.6) (t) (a)...,(i)y()...yi(i) d. di.
a0

The theorem is proved by induction on j, the order of the Volterra term (2.6). We now
give the proof for j 1; the proof by induction is given in Appendix B. If j 1, then

(2.7) n(t)= yl(a)gl(X)

and (t) is linear function of . Hence, if the state of (1.1) is augmented with , the
resulting system is also linear. Then the Kalman-Bucy filter for the system described
by (a.a), (a.3), and (2.7) generates (tlt) and (tlt). In order to prove that (t[t)is
"finite dimensionally computable" (FDC), we need the following lemma. First we
define, for gl, 2 t, the conditional cross-covariance matrix

(2.8) e(, , t)= z[((1)- g(l[t))(()- g([t))’l’]

(were ([t)= [()11).
LMM 2.1. The foint conditional density p(l).()(u, u’lz’ ) is Gaussian with

nonrandom conditional cwss-covariance P(I, g2, ti.e., P(, 2, t) is independent
o {z (s), o s t}.

Proof. First, the conditional density is Gaussian because ’ and z are jointly
Gaussian random processes. Assume 1 )2; then

(2.9) p(. ((u, u’[z’)=

(2.10)
P(I([() ’ z)P((’lzt

{z (s), < < t}.where z s

Here (2.9) follows by the definition of the conditional density, and (2.10) is due to the
Markov property of the process (, z) [8]. Each of the densities in (2.10) is the result of
a linear smoothing operation; hence, each is Gaussian with nonrandom covariance
Pl(t) and P(z,z,t), respectively [16]. Also, for g>0, [11] P(,g,t)=
[p-(g)+pl(g)]- where Pn is the error covariance of a Kalman filter running
backward in time from to g, and P(t)&O. Due to the controllability of IF, G], P(g)
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is invertible for all o->0 and Pn(cr) is invertible for all cr<t [28]; consequently,
P(o’, o-, t) is invertible for all 0 < cr -< t. By the formula for the conditional covariance of
a Gaussian distribution [8], we have for 0 <= or1 < 0"2 _<-t

(2.11) Pllr2(t) P(o’x, o’x, t)-P(crl, or2, t)P-X(cr2, ere, t)P’(o’, or2, t).

Since P(ra, 0"2, t), 0_-<era <o’2< t can be computed from (2.11), it is also nonrandom;
and since we have shown previously that P(0, 0, t) is nonrandom, P(r, r2, t) is
nonrandom for all 0 -<_ o’1, 0"2 t.

This lemma allows the off-line computation of P(r, 2, t) via the equations of
Kwakernaak [15] (for era =< r2)

(2.12)

P(cr, or2, t)= P(O’l)q/"(o’2, o’1)

(2.13)
d- (t, r)= [F(t)-P(t)H’(t)R-l(t)H(t)](t, r); (r, r)= I

where the Kalman filter error covariance matrix P(t) a- P(t, t, t) is computed via the
Riccati equation

(2.14)
P(t) F(t)P(t) + P(t)F’ (t) + O(t)- P(t)H’(t)R-(t)H(t)P(t),

P(O) Po.
Recall [8] that the characteristic function of a Gaussian random vector y with

mean m and covariance P is given by

(2.15) My(u)=E[exp(iu’y)]=exp[iu’m-1/2u’Pu].
Hence, by taking partial derivatives of the characteristic function (see Lemma B.1),
we have

Et[x(t)] yl(Cr)Et[eej(t)kl(o’)] do"

(2.16)
Tl(O’)[l(o’lt)+ Pk,j(o’, t, t)] e gj(’l’)+/z)P"(’) do’,

Iot ,yl (O-)pkl,i(o-, t, t) do- + Et[ Iot ),l (O-)ll(o.) do.] } e ’(tltl+(1/2)P,, (tl

3,(cr)Pk.i(cr, t, t)dcr+(tlt) e j(tlt)+(1/2)Pj(t).

Since the first term in (2.16)is nonrandom and (tlt) and (tlt) can be computed with
a Kalman-Bucy filter, (tlt) is indeed FDC for the case f 1.

The induction step of the proof of Theorem 2.1 is given in Appendix B. A crucial
component of the proof is Lemma B.1, which expresses higher order moments of a
Gaussian distribution in terms of the lower moments. Notice that in equation (2.16)
we have interchanged the operations of integration and conditional expectation. This
is justified by the version of the Fubini theorem proved in [18]; since we will be
dealing only with integrals of products of Gaussian random processes, the use of the
Fubini theorem is easily justified, and we will use it without further comment.
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The proof of Theorem 2.2 is almost identical to that of Theorem 2.1; the
differences are explained in Appendix B. We now present an example to illustrate the
basic concepts of these theorems; this example is a special case of Theorem 2.2.
However, we will need one preliminary lemma.

LEMMA 2.2. The conditional cross-covariance satisfies
(2.17)
where

(2.18)

Proof. Let

and consider

P(r, t, t)= K(t, r)P(t)

d
K’(t, o’)= -[F’(t)+ P-l(t)O(t)]K’(t, o’); K’(o-, o’)= I.

dt

P(o’, t) a__. E[((o’)- ’(o’[o’))((t)- ’(t[t))’]

P(o’, t, t)- P(o’, t)= E[((rlr)- (o’lt))((t)-(tlt))’lz’].
Since (rlo")- (rlt)is measurable with respect to the o’-field r(z’), the projection
theorem [22] implies that P(r, t, t)-P(r, t)= 0. The proof is concluded by noting that
11] P(r, t) K(t, r)e(t). [3

Example 2.1. Consider the system described by

(2.19) [dl(t)] [ -c O][l(t)]dt+[dwl(t)]d:2(t)J=t_ 0 --3 Cz(t)J [dwz(t)J’

(2.20) dx(t) (-yx(t)+ l(t)z(t)) dt,

(2.21) rarz (t)] r.
Ldz2(t)J I se:(t)J Ldv(t)_l

where a, 3,3 >0, wl, w., vl, and v are independent, zero mean, unit variance
Wiener processes, q(0) and :(0) are independent Gaussian random variables which
are also independent of the noise processes, and x(0)= 0.

The conditional expectation (tlt) satisfies the nonlinear filtering equation (A.5)-
(A.6):

d.(tlt)=E’[-x(t)+(t)&(t)] dt+{E’ e-’(’-(s)&(s)ds ’(t
(.)

-E[I0’e-’(-’:1(s )&(s ) ds]’(tlt)} dr(t)

where :(t) [:(t), :(t)]’ and the innovations process v is given by

(2.23) dr(t) dz(t)- (tlt) dt.

Recall that the conditional covariance P(t)of se(t) given z’ satisfies the Riccati
equation (2.14). Since 1(0) and :z(0) are independent, it is not difficult to show that
Plz(t)= Pzl(t)= 0 for all t. From (2.17)--(2.18) we can compute

I;Pll(s)dsl 0 ](2.24)p(o., t, t)
Pll(t) exp[a(t- r)- -1

0 P2z(t)exp[3(t-cr)-r’P22 (S) ds]



ALGEBRAIC STRUCTURE 317

These facts and equation (B.3a) imply that the transpose of the gain term in (2.22) is

E’[ Ioe-’(’-:1(s):2(s)(t)ds]- E’[ Ioe-/(t-S)l (6:):2($)d$] (tlt)

E,J C e_,(,_)[ 0 Pxx(s, t,
LP22(s, t, t) 0 t)][’l(s)]ds}(2.25a)

(2.25b) 11(t)P11(t)]
n2(t)P22(t)Jk

where

0 /l(t)] 1 rl(t)l
(2.26) L #2(t)J 0 /3 y r/2(t)l L:2(t)J’

n (o) n:(o) o.
In other words, the argument of the conditional expectation in (2.25a) can be realized
as the output of a finite dimensional linear system with state l(t)=[nl(t), /2(t)]’
satisfying (2.26).
Thus the finite dimensional optimal estimator for the system (2.19)-(2.21) is con-

structed as follows (see Fig. 1). First we augment the state of (2.19) with the state /
of (2.26). Then the Kalman-Bucy filter for the linear system (2.19), (2.26), with
observations (2.21), computes the conditional expectations (tlt) and l(tlt). Finally,

d(tlt)= [-y(tlt)+ l(tlt)2(tlt)] dt + ’(tit)P(t) du(t),(2.27)
 (olo)=o.

d// KALMAN-BUCY
FILTER

._ FILTER

FIG. 1. Block diagram o[ the optimal filter for Example 2.1.

We now discuss the steady-state behavior of the optimal filter. Since the linear
system (2.19) is asymptotically stable (and hence detectable) and controllable, the
Riccati equation (2.14) has a unique positive-definite steady-state solution P [28]; a
simple computation shows that

0 P2 0 -/3 + 4/3 2 + 1
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Thus, in steady-state, the augmented linear system (2.19), (2.26) is time-invariant.
Now consider the eigenvalues of (2.26) in steady-state:

a y- P{-x a y- (-a +4a + 1)-= -y r-da + 1,

/3 y-P- =/ y- (-fl +4/3 + 1)- -y- /fl + 1.

Consequently, the augmented linear system is also asymptotically stable and con-
trollable in steady-state. Let the conditional covariance matrix of the augmented state
[so(t), r/(t)] given z’ be denoted by S(t). Then the Riccati equation satisfied by S(t) has
a unique positive-definite steady-state solution S (notice that Sll Pll and S22 P22).

The steady-state Kalman-Bucy filter [8] for the augmented system (2.19), (2.26)
is easily computed to be

(2.29)

dl(tlt)]
2(tlt)/=
rl(t]t)

14

0 0

1 -y-v/ce2+ 1

0 0

01

0 Ia(tlt)
0 [2(tlt)

0 l(tlt
--r /2"+"

dt

where

PIP.2 $23
P11Pa2

814
P11Pa2 + (a + y)eaa + 1’ P11Paa +( re + T)Pll + 1

(here P and Pa2 are defined in (2.28)). The conditional expectation 2(tlt) is com-
puted according to

d2(tlt) [- y2(tlt)+ (tlt)&(tlt)] dt + t’(tlt P du(t),
(2.30)

 (010)=0
which is a nonlinear, time-invariant equation.

We note that the stability of the original linear system is not necessary for the
existence of the steady-state optimal filter in this example; in fact, a weaker sufficient
condition is the detectability [28] of the linear system (2.19), (2.21) and the positivity
of y in (2.20). The generalization of this result to other systems is presently being
investigated.

3. Finite dimensional estimators for bilinear systems. In this section the results of
the previous section are applied, with the aid of some concepts from the theory of Lie
algebra [23], to prove that the optimal estimators for certain bilinear systems are finite
dimensional. Consider the system described by (1.1), (1.3), and the bilinear system [1],
[101

(3.1) 2(0 Ao+ Y (t)A X(t); X(0)=I
i=1
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where X is a kk matrix. We associate with (3.1) the. Lie algebra 5&
{Ao, A 1, AN}LA, the smallest Lie algebra containing Ao, A AN; the idealo
in generated by {A1 AN}; the group G a--{exp}, the smallest group
generated by {exp A} for all A &o; and the subgroup Go--a {expo} [10], [18], [19],
[261, [27].

DEFInITIOn 3.1 [23]. A Lie algebra is solvable if the derived series of ideals

(o=,
("+=[(",("]={[A,B]IA, B "}, n >=0,

is the trivial ideal {0} for some n. is nilpotent if the lower central series of ideals

o ,
."+ [, "] {[A, B]IA e "}, n >--_ O,

is {0} for some n. is Abelian if ()=1= {0}. Note that Abelian:::>nilpotent=:),
solvable, but none of the reverse implications hold in general.

A useful structural result for nilpotent Lie algebras is presented in the following
lemma [23, p. 224].

LEMMA 3.1. A matrix Lie algebra is nilpotent if and only if there exists a
(possibly complex-valued) nonsingular matrix P such that, ]’or all A , PAP-1 has the
block diagonal form

(3.2)
0

[2(a) "..
* )]0 (I)2(A

(this will be called the nilpotent canonical form). The functions " C are linear.
Furthermore, ([, ])= {0}.

It is easy to show, using Brockett’s results [2] on finite Volterra series, that each
term in (2.3) can be realized by a bilinear system of the form

(3.3) 2(t)=j(t)x(t)+ ak(t)k(t)X(t)
k=l

where x is a k-vector and the Aj are strictly upper triangular (zero on and below the
main diagonal). For such systems, the Lie algebra o is nilpotent. In this section we
will show conversely that if the Lie algebra o corresponding to the bilinear system
(3.1) is nilpotent, then each component of the solution to (3.1) can be written as a
finite sum of terms of the form (2.3). Hence, such systems also have finite dimensional
estimators; this result is summarized in the next theorem.

THEOREM 3.1. Consider the system described by (1.1), (1.3), and (3.1) and assume
that o is a nilpotent Lie algebra. Then the conditional expectation ’(t[t) can be
computed with a finite dimensional system of nonlinear differential equations driven by
the innovations.

Remarks. (i) It can easily be shown that if 5o is nilpotent, then w is solvable;
however, the converse is not true. Hence, is always solvable in Theorem 3.1.

(ii) Theorem 3.1 provides a generalization of the work of Lo and Willsky [17] (in
which is Abelian) and Willsky [25]. The Abelian discrete-time problem is also
considered by Johnson and Stear [9].
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(iii) The model considered in Theorem 3.1 is motivated by a problem in strap-
down inertial navigation [18], [26]. However, in the navigation problem o is not
nilpotent (in fact, so(3) is simple [23]), so Theorem 3.1 does not apply.

(iv) Using the notation of Brockett [2], it is easily seen that the pth order
moments XtPl(t) satisfy an equation of the form (3.1) (with different coefficient
matrices Aitp), and hence XtP(tlt) can also be computed with a finite dimensional
estimator. In particular, the performance of the estimator of Theorem 3.1 can be
evaluated by computing the conditional covariance of X(t) given z in this
manner.

Theorem 3.1 is proved via a series of lemmas which reduce the estimation
problem to the case in which is a particular nilpotent Lie algebra. The first lemma
generalizes a result of Willsky [25], Brockett [1], and Krener [13] (the proof is
analogous and will be omitted).

LEMMA 3.2. Consider the system described by (1.1), (1.3), and (3.1) and define the
k k matrix-valued process

(3.4) Y(t)= e-Atx(t).
Then there exists a deterministic matrix-valued function D(t) such that Y satisfies

(3.5) IT(t) Y /-/y,(t) Y(t); Y(0) I

where {Hi,. ", HM} is a basis foro and

(3.6) y(t)= D(t)(t).
In addition, X can be computed according to

(3.7) (tlt) eA’I(t[t).
Lemma 3.2 enables us, without loss of generality, to examine the estimation

problem for Y(t) evolving on the subgroup G0={exp o}, rather than for X(t)
evolving on the full Lie group G {exp }. Thus, we need only consider the case in
which Ao 0 and o is nilpotent in order to prove Theorem 3.1.

By means of Lemma 3.1 the problem can be further reduced to the consideration
of Lie algebras in nilpotent canonical form.

LEMMA 3.3. Consider the system described by (1.1), (1.3), and (3.1), where Ao 0
and .. is nilpotent. Then there exists a (possibly complex-valued) nonsingular matrix P
such that

(3.8) ff(tlt) P- ’(tlt)P
where Y satisfies (3.5) and [{H1, , HM} are in nilpotent canonical form.

Proof. According to Lemma 3.1, there exists a nonsingular matrix P such that
PP-I is in nilpotent canonical form. If we define H=PAiP-, then X(t)=
e- Y(t)P, where Y satisfies (3.5). Hence, P(tlt)=e"(t[t)e- and the lemma is
proved.

Finally, by means of the following trivial lemma, we reduce the problem to the
consideration of one block in the nilpotent canonical form.

LEMMA 3.4. Consider the system described by (1.1), (1.3), and (3.1), where Ao 0
and {Ax,..., Ate} are in nilpotent canonical form. Then X(t) has a block diagonal
form conformable with that of {A, ., Ate}.

Let gn (rn) denote the Lie algebra of upper triangular rn rn matrices with equal
diagonal elements. Then Lemma 3.4 implies that the bilinear system (3.1) can be
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viewed as the "direct sum" of a number of decoupled kj-dimensional subsystems

(3.9) "(t)= [ i(t)A]X’(t); X’(0)=I
i=1

where A,. .,Abelong to gn(k). Hence, Theorem 3.1 will be established when we
prove the following lemma.

LEMMA 3.5. Consider the system described by (1.1), (1.3), and (3.1), where Ao=0
and {A1," ",Ar} gn(k). Then each element of the solution X(t) o[ (3.1) can be
expressed in the form

(3.10) exp(
where is a finite Volterra series in ith separable kernels. Hence, Theorem 2.1
implies that (tt) can be computed with a finite dimensional system o nonlinear
stochastic differential equations.

Proofi Since {A,. ., A}e gn (k), the bilinear equation (3.1) can be rewritten in
the form

(3.11) 2(0 ,(t I+.,2 (t)B X(t)

where are constants, I denotes the k x k identity matrix, and B, .,B are strictly
upper triangular (zero on the diagonal). It is easy to show that

X(t)= exp( i (s) Y(t)
i=1

where Y satisfies

(3.12) I;’(t)= [ i(t)Bi]Y(t); Y(0)=L
i=1

Since the {Bi} are strictly upper triangular, the solution of (3.12) can be written as a
finite Peano-Baker (Volterra) series [2], and each element of X(t) can be expressed in
the form (3.10). 1

4. Conclusions. It is shown in [18] that if o is not nilpotent, then the optimal
estimator for (1.1), (1.3), and (3.1) is infinite dimensional. Thus, the results of this
paper cannot be generalized to much larger classes of systems.

However, the papers of Fliess [6] and Sussmann [24] show that, in the deter-
ministic case with bounded inputs, any causal and continuous input-output map on a
finite interval can be uniformly approximated by a bilinear system of the form (3.1) in
which Ao, A1,..., Av are all strictly upper triangular. For such a bilinear system
both ’0 and are nilpotent Lie algebras. Stochastic analogues of this result are
currently being investigated. The implication of such a result would be that suboptimal
estimators for a large class of nonlinear stochastic systems could be constructed using
the results of this paper.

Appendix A. General nonlinear filtering equations. In this Appendix we state
some results on nonlinear filtering [7], [8], [14]. Consider a model in which the state
evolves according to the Ito stochastic differential equation

(A.1) dx(t)= f(x(t), t) dt + G(x(t), t) dw(t)



322 STEVEN I. MARCUS AND ALAN S. WlLLSKY

and the observed process is the solution of the vector Ito equation

(A.2) dz(t) h(x(t), t) dt +R 1/z(t) dr(t).

Here x(t) is an n-vector, z(t) is a p-vector, R 1/ is the unique positive definite square
root of the positive definite matrix R, and v and w are independent Brownian motion
(Wiener) processes such that

min(t, s)

(A.3) E[w(t)w’(s)l Q(r) dr,
a0

(A.4) E[v(t)v’(s)] min (t, s). I.

For any integrable random process a(t), we denote E(a(t)lz(s), O<=s<-t) by
d(t[t) or E’[a(t)]. Then, [7], [8], [14], the conditional mean 2(t[t) satisfies

(A.5) d(t[t)= E’[f(x(t), t)] dt +{E’[x(t)h’(x(t), t)]-2(tlt)E’[h’(x(t), t)]}R-l(t) dr(t)
where the innovations process v is defined by

(A.6) dr(t) dz(t)-E’[h(x(t), t)] dt.

Appendix B. Proofs of Theorems 2.1 and 2.2.
B.1. Preliminary results. In this section we present some preliminary results

which are crucial in the proofs of Theorems 2.1 and 2.2. The first lemma follows easily
from some identities of Miller [21].

LEMMA B.1. Let x [x1,"" ", Xk]’ be a Gaussian random vector with mean m,
covariance matrix P, and characteristic function Mx. Then, if <= k,

.ouM,(ul, ", uk) el"’" e-Phj2ej3"
OUl"

(B.1)
+PmPm,s...sh M(ul,..., uk)

where

k

(B.2) e imi- 2
n=l

and the sums in (B. 1) are over all possible combinations of pairs of the {ji, 1, , 1}.
Also,

(B.3a)

(B.3b)

k-1

E[xlx2" "Xk] E[xklE[xlx2" "Xk-l]+ 2 PkhE[xj2xi3 "xik-]
h=l

E[x1"" "xi]E[Xi+l"" "Xk -I- 2 P]xl,+lE[x]2 xh]E[xh+’’" xtk]
+2 Phh/P,,/E[x "xhlE[xh+’" "Xl]

(B.3c) + PmPm,rni5. m +...

where the sums in (B.3b, c) are defined as in (B. 1); also, in (B.3b), {],, c 1,. , i} is a
permutation of {1,..., i} and {l, + 1,..., k} is a permutation of {i + 1,..., k}.

In the remainder of this Appendix it will be assumed that : and z are Gauss-
Markov processes satisfying (1.1) and (1.3), respectively. We now define classes of
random processes which occur as the/’th order term in a Volterra series expansion in :
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with separable kernels, and we prove some lemmas relating these to other relevant
processes.

DEFINITION B.1. The space Aj of Volterra terms of order is the vector space over
R consisting of all scalar-valued random processes hj of the form

N

(B.4) Aj(t)= Y y(t)A](t)
i=1

where

(B.5) A](t) ’]/ (o-l)" "}lj(o-j)kl,i (O-l)’’" ki, (O-j) dO’l""" do"
a0a0 a0

where for each i, {:kl.,,"" ", :kj.,} are not necessarily distinct elements of , and {y} are

locally bounded, piecewise continuous, deterministic functions of time. We denote by
A the space of all processes

,j(tlt) A E[A(t)[z’], where A A.
The next lemma, which is due to Brockett [4], shows that terms of the form (2.4)

with <f (more integrals than ’s) are in fact elements of A.
LEPTA B.2. Let satisfy (1.1) and consider the scalar-valued process

(B.6) n(t) y()...y()()...,(,)d. d
0

where ]1i are as in Definition B. 1, mn # m ]’or n l, and <. Then rl Ai.
Proofi It is easy to show using the construction of Brockett [2, Thm. 4] that rt(t)

has a realization as a time-varying bilinear system

(B.7) (t)=A(t)x(t)+ E k,(t)Bl(t)x(t),
/=1

(B.8) r/(t) xl(t)

where A(t) and {Bl(t)} are strictly upper triangular matrices. The Volterra series for
(B.7) can be expressed via the Peano-Baker series [2], and the Volterra series is finite
because A(t) and {Bt(t)} are upper triangular. In fact, because the original expression
(B.6) contains only the product of components of :, the Volterra expansion of
rt(t) xl(t) will contain only an ith order term

(B.9) f0’;0 I0’-{o-
E r{(O-1)" ’(o-i)and(o-i)" ni(o-/)do"lrt(t)

where {nt, l= 1,..., i} is a permutation of the {kl, 1,..., i} of (B.6). Hence rt e
Ai. [3

Recall that the conditional cross-covariance P(o-1, o-2, t) (defined in (2.8))was
shown to be nonrandom in Lemma 2.1; it can be computed from Kwakernaak’s
equations (2.12)--(2.14). The following lemma shows that Pii(o-1, o-2, t) is a separable
kernel.

LEMMA B.3. Pi(O’l, o’2, t) is a separable kernel; i.e., it can be expressed in the form

(B.10) Pii(o’a, o-2 t) E To (t)T1 (o-1
k=l
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Proof. Assume (71=<0-_-<t. Then it follows from (2.12) that, for arbitrary real
numbers a,/3, and 6,

P(0-1, 0"2, t)= e(0"1)xI3"(o., 0"1) ’If(0"2, o)- xIff(’/’, a)H’(’)R-l(z)H(z)(", o"z) dr. P(0"z)
2

(B.11) *’(.r, a)H’(’r)R-(’r)H(’r)*(’r, 6) dz *(6, 0"2)P(0"2)

_a A(o’x)[B(o’:)+ C(t)D(0-2)].
Hence, if ei denotes the ith unit vector in R n, it is obvious from (B.11) that

(B.12) Pi/(0"1, 0"2, t)= e/P(0"1, 0"2, t)ei
has the form (B.10) for some functions {y(t)}.

The next lemma proves that certain processes which occur in the proof of
Theorem 2.1 are elements of Aj.

LEMMA B.4. Let satisfy (1.1), and consider the scalar-valued process

(B.13)

where the mi are arbitrary integers in {1,..., i} and Pn, n, are arbitrary elements of P.
Then 1 Aj.

Proof. Since we have shown in Lemma B.3 that P,,, n, (0-,,,,, 0-,,, t) is a separable
kernel, the kernel of the integral (B. 13) is also a separable kernel. Hence, r/e Ai.

Lemma B.4 implies that if ,(tlt) can be computed with a finite dimensional
estimator for all AieAi, then (tlt) where r/ is defined by (B.13)) is also "finite
dimensionally computable" (FDC).

B.2. Proofs of Theorems 2.1 and 2.2. The proofs of these two theorems are
almost identical. We will prove Theorem 2.1; then we will explain how this proof is
modified to prove Theorem 2.2.

Proof of Theorem 2.1. As stated in 2, we consider the/’th order Volterra term

IOIOCrIO (o"j) k1(0"1)" ":k,(0"j) d0"1 do",.
o"i_

(B.14) r/(t) yx(0")" "yi

The theorem is proved by induction on , the order of the Volterra term. The proof for
] 1 is presented in 2. We now assume the theorem holds for ]-< i-1 (i.e., we
assume that E’[ee’(’)7(t)] is FDC, where r/Aj, for =<i-1), and prove that it holds
for ] i.

The proof is in two steps. We first reduce the problem to the computation of the
elements of (see Definition B.1). We then show by induction that all of the
processes in At can be computed with finite dimensional estimators.

(i) We first consider the computation of (tlt), where
(B.15) x(t)= e’(’)q(t).

Now

(B.16) (tlt) ’}/1(0"1)"" .,(rg). E’[ee’(’)x(r) .s,(<)] d0"1"" "do’i.
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By (B. 1) and the definition of the characteristic function, it follows that

E’[e /(t)kl(O’l)""" k, (O’i)]

(B.17) e’l’>(/2e"m{8(tr) .&(tr,)
+EP(,,t)(). h(,)+""

where

(B.8) () &(lt)+P,At,, t)
and , a 1,..., i} is a permutation of {k, a 1,..., i}.

Equation (B.3)implies that (B.17)can be rewritten as

Et[ee’(t)k(g)’" "k,(gi)] e 4(tlt)+(1/2)Pu(t)

(B.19)
{Et[k,(,)" "k,(,)] +Z P.i,(t, ,, t)E’[i(g)" ’i,(,)1

+Z P,&(t, gm, t)Pt&(t, m2, t)Et[i(m) "h(gm,)]

+"" +Z p,,(t, , t). .p,,,(t, m, t)}.
Hence, Lemmas B.2 and B.4 mply that the computation of (tlt) involves only the
computation of elements in Ai, j= 1, ..., i. However, the induction hypothesis
implies that the elements of hi, J 1,. , i- 1 are FDC, so we need only prove that
the elements of A are FDC.

(ii) Assume that n A is defined by (B.14) (where j i). Then the nonlinear
filtering equation (A.5(A.6) for (t]t) is

(B.20)

where

(B.21)

and

d(tlt) Et[y(t)k(t)h (t)] +(Et[,l(t)’(t)]- l(t[t)’(tlt)}H’(t)R-l(t) de(t)

dr(t) dz (t)- H(t)(tlt) dt

(B.22) a (t) :k, )

is an element of M-; thus, by the induction hypothesis (tlt) is FDC. The first term in
(B.20) (the drift term)is (see (B.3a))

E’[y(t)k,(t)A (t)] y(t)k(t[t)(tlt)

[ o o’’ o Pk‘’k’(t’’’ t)2(2)’’’
(B.23) +v,(t)Et

/=2

The first term in (B.23) is FDC by the induction hypothesis, and the second term, by
Lemmas B.2 and B.4, is also FDC (i.e., it is an element of _2).

Equation (B.3a) implies that the gain term in (B.20) is the row vector (here
P(m t, t) denotes the ith row of P(, t, t))

et[, (t)’(t)]- (t[t)g’(t[t)

(u.24) e’
1=1

,(,)...,_,(m-),+,(m+,)’’ "&(,)P,(,, t, t)a...a]



326 STEVEN I. MARCUS AND ALAN S. WILLSKY

each element of which, by Lemmas B.2 and B.4, is an element of Ai-1. Thus, by the
induction hypothesis, the gain term, and hence the nonlinear equation (B.20) for
(tlt) is FDC. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. This proof is identical to the proof of Theorem 2.1, except
for the computation of the drift term in (B.20), so we will consider only that aspect of
the proof. Assume that r/is defined as in (2.4)---i.e., r/is given by

i0;io(B.25) r(t) :(cr,).. ",(o’,,)r(o’)"" "7(cr) &r...dr

where >/’; we also assume that ml m, 1 and m # 1 for fl > a. In this proof,
the induction is on j, the number of integrals in (B.25). That is, we assume that the
theorem is true when r/contains <=- 1 integrals, and prove that the theorem holds if
r/contains/" integrals.

The nonlinear filtering equation yields

d7(tlt) E’[yl(O’l):kl(t)’’" :k,, (t)A (t)]
(B.26)

+{Et[7(t)’(t)]- (t[t)’(t[t)}H’(t)R-(t) dr(t)

where du is defined in (B.21) and

(B.27) a (t) y2(0"2)" y/(o’i):k+l(o’,=+,)"" "sck,(o’,,) dcr2" "do7.
a0

The drift term in (B.26) is, from (B.3b),

E’[W(t):kl(t)’" ":k: (t)A (t)]

"r(t)E’[(t)’" .(t)](tlt)
(B.28) +yl(t)E{E’[12(t)’"" :t.. (t)]

[Io Io=... f y2(tr2)"’yi(tri)P,,+l(t, cr,,+t)
o’j_

g
ao

lo,+2((Tmo,+2)" "li(O’m,) d(T2" "do’i]}+""
where {Ix,. ., l} is a permutation of {kx,..., k,,} and {//1, ", li} is a permutation of
{k,/l,..., ki}. The first term of (B.28) is FDC by the induction hypothesis, and the
other terms, by Lemmas B.2 and B.4 and the induction hypothesis, are also FDC. We
have also used the fact that the conditional distribution of :(t) given z is Gaussian
(Lemma 2.1) in order to conclude that Et[ka(t) "k,,(t)] can be computed (via (B.3c))
as a memoryless function of (tlt) and P(t).

The gain term in (B.26) is also FDC; the proof is identical to that of Theorem 2.1.
Hence (tlt) is FDC, and Theorem 2.2 is proved, l-I
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SUFFICIENT CONDITIONS FOR ACKERBERG-O’MALLEY RESONANCE*

F. W. J. OLVER’

Abstract. An investigation is made of the asymptotic nature of the solution of the boundary-value
problem

ey"+2xA(e,x)y’-A(e,x)B(e,x)y=O; y(a)= 1, y(b)= rn,

as e-->0, where A(e,x) and B(e,x) are continuous real functions of e and x, a <0, b >0, and A(e,x) is
nonzero in [a, b ]. Particular attention is paid to the problem of resonance, which arises when the limiting form
of the solution exhibits an unusual lack of decay (in the case A(e, x)< 0), or an unusual rate of growth (in the
case A (e, x)> 0). By application of a recent theory of differential equations with coalescing turning points
sufficient conditions for resonance are established, both with and without the assumption that A (e, x) and
B(e, x) are analytic functions of e and x. Illustrative examples are also included.

1. Introduction. In this paper we study the differential equation

(1.01) ey" + 2xA (e, x )y’-A (e, x )B (e, x)y 0,

in which the independent variable x ranges over a compact interval [a, b with a < 0 and
b > 0, and e is a small positive parameter. The coefficients A (e, x) and B(e, x) are
continuous real functions of e and x, and A(e, x) is nonzero in [a, b]. The boundary
conditions are assumed to be

(1.02) y(a):/, y(b) rn,

where and rn are prescribed real constants, at least one of which is nonzero. The
problem stems from the flow of viscous fluid between rotating disks [17], [5], and
interest is focused on the asymptotic behavior of the solution y as e --> 0.

By assuming that the coefficients A (e, x) and B(e, x) are independent of e, or,
more generally, expandable in asymptotic power series of the form

A (e, x)--- Ao(x)+A x(x)e + Az(x)e 2 +’",
(1.03)

B(e, x)’-- Bo(x)+ BI(X)8 + B2(x)e 2 +’",

the problem can be treated by the methods of singular perturbation theory [15]. The
nature of the solution depends on the sign of A (e, x) in [a, b]. When this sign is negative
(which is the case of greater physical interest), it is found that in general y --> 0 as e --> 0,
uniformly in any closed interval that is properly interior to [a, b]. However, certain
exceptional situations may arise in which the solution does not decay in this manner.
Ackerberg and O’Malley drew attention to this phenomenon in [1] and called it
resonance. Using two distinct methods, these writers (and also O’Malley [13] and [14,
Chap. 8]), showed that a necessary condition for resonance to take place is given by

(1.04) B(0, 0)= 2s- 2, s 1, 2, 3,. ,
and they included an example in which resonance actually occurs. The first method of
Ackerberg and O’Malley is to construct the Liouville-Green (or WKBJ) approxima-
tions to the solutions of (1.01) valid in intervals that exclude the turning point at x 0
and to link these solutions by skirting the turning point in the complex plane by the
method of Zwaan [19]. The second method is based on the uniform reduction theorems
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Foundation under Grant GP 32841X2.
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of Sibuya [16] and Lee [6], and transforms (1.01) into a differential equation of the same
type in which A (e, x) and B (e, x) are replaced by functions that are independent of x.
This yields approximations for the solutions in terms of parabolic cylinder functions that
are uniformly valid throughout [a, b ]. The first method was applied in a formal manner,
but the second method was placed on a rigorous foundation by assuming that the
coefficients A (e, x) and B(e, x) are analytic functions of e and x.

The first method of Ackerberg and O’Malley was reconsidered independently by
Watts [17] and Zauderer [18]. Avoiding Zwaan’s complex-variable approach, these
writers showed that the linking of the Liouville-Green approximations across the
turning point can be achieved with the aid of local approximations in terms of parabolic
cylinder functions. These local approximations are obtained by making a stretching
transformation of the independent variable.

Next, Lakin [5] and Cook and Eckhaus [2] demonstrated independently, by formal
methods, that the condition (1.04) is only the first of an infinite sequence of necessary
conditions for resonance. Lakin constructed series solutions in terms of parabolic
cylinder functions that are uniformly valid in [a, b], whereas Cook and Eckhaus used
the method of matched asymptotic expansions.

More recently, Kreiss and Parter [4] and Matkowsky [7], [8] have considered the
problem and discussed several examples in detail. The approach of Kreiss and Parter is
quite different from the approaches of other writers that have been mentioned, and is
based in part on the maximum principle. Matkowsky uses a formal criterion that does
not depend on Zwaan’s method or on local approximations in the neighborhood of
x 0. We shall discuss some of Matkowsky’s results more fully later ( 9).

A similar situation exists when the coefficient A (e, x) in (1.01) is positive through-
out [a, b]. In [13], and also [14, Chap. 8], O’Malley showed that in general the solution y
is bounded as e 0, except in the neighborhood of x -0 where it may grow algebrai-
cally, that is, at the rate of a negative power of e. However, in certain exceptional cases
the solution grows exponentially in closed intervals that are properly interior to [a, 0] or
[0, b]. These exceptional cases are again regarded as manifestations of a resonance
phenomenon, and O’Malley proved that when the coefficients A (e, x) and B (e, x) are
analytic in e and x a necessary condition for resonance is given by

(1.05) B(0, 0)=-2s, s 1, 2, 3,. .
Finally, de Groen [3] has considered resonance problems of the same general type

for certain elliptic partial differential equations.
None of the references cited establishes sufficient conditions for resonance that are

directly applicable to the general case. Furthermore, the only ordinary differential
equations for which resonance has been conclusively demonstrated are either solvable
exactly in terms of parabolic cylinder functions, or have a nontrivial solution that is
independent of e. In 8 of the present paper we shall remedy this situation by
establishing a sufficient condition for resonance, applicable to each of the cases
A(e,x)< 0 and A(e,x)>O. In effect this condition requires (1.01)to be transformable
into a particular form of Weber’s equation (that is, the differential equation satisfied by
the parabolic cylinder functions), except for the inclusion of a coefficient term that may
depend x as well as e and is uniformly and exponentially small in [a, b] as e 0. Not
surprisingly, the particular form of Weber’s equation has to be one that admits a
solution that is recessive both for large positive and large negative arguments. We also
give new examples in which the sufficiency condition is satisfied.

The main purpose of the present paper, however, is to reconsider the problem
without the requirement that A (e, x) and B (e, x) be analytic functions of e and x. By
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permitting nonanalytic behavior, we shall see that resonance occurs without the need
for (1.01) to be transformable into the special form of differential equation that differs
from Weber’s equation only by an exponentially small term in the coefficient. In fact,
from the new standpoint resonance occurs in the general case iust as frequently as it
does with Weber’s equation. This is a more natural state of affairs because with the
assumptions (1.03) the original differential equation (1.01) is always transformable into
an equation having the same asymptotic structure as Weber’s equation.

Another way of viewing the situation is that by imposing analytic behavior on the
coefficients A (e, x) and B (e, x), the boundary-value problem becomes ill-posed when
the condition (1.04) (or (1.05)) is satisfied. That is, nonresonant solutions are transform-
able into resonant solutions by making relatively small numerical changes in the
coefficients.

Our approach will be to introduce an extra free parameter K in the differential
equation, which we define by

(1.06) +/-K 1 +B(0, 0),

the upper sign applying in the case in which A (e, x) is negative, and the lower sign when
A (e, x) is positive. In order to facilitate applications of the uniform asymptotic theory of
linear differential equations, the term in the first derivative in (1.01) is removed by
change of dependent variable. From the standpoint of this theory the transformed
equation may be regarded as having two simple turning points which depend on e and K

and coalesce into a double turning point as e - 0. This is exactly the situation treated in a
recent paper by the present writer [12], and application of the theory given in this
reference yields asymptotic solutions of (1.01) for small e that are uniformly valid with
respect to x el0, b] or x e [a, 0], and also with respect to positive values of the
parameter K that are bounded and bounded away from zero. The approximate solutions
are expressed in terms of parabolic cylinder functions, accompanied by strict error
bounds. On combining the solutions in such a way that the boundary conditions (1.02)
are satisfied, we find that the condition for resonance becomes a type of eigenvalue
problem resulting in a transcendental equation for . The solutions (e)of this
equation form a continuum, and are therefore not analytic functions of e. However,
(e) can be approximated asymptotically, and the results are consistent with the
necessary conditions for resonance given by (1.04) when A (e, x) is negative, or (1.05)
when A (e, x) is positive.

2. Assumptions and preliminary transformations. In the given differential equa-
tion (1.01) we shall assume that

(2.01) A(e,x)=Ao(x)+Ax(x)e +Az(e,x)e 2,

(2.02) B(e, x)= +/-K 1 + Xo(X)+ BI(s, x)s,

subject to the following conditions:
(i) Ao(x), A (x), and/o(X) are independent of e.

(ii) Ao(x) is nonvanishing in [a, b], and the upper or lower sign is taken in (2.02)
according as Ao(x) is negative or positive.

vi ^v(111) Ao(x), A (x), and Bo(x) are continuous in [a, b].
(iv) A2(e, x), OA2(e, x)/Ox, and B (e, x) are continuous functions of e and x when

e [0, 6] and x e [a, b], where 6 is a positive constant.

As usual, Ai(x)denotes the sixth derivative of Ao(x), and so on. These conditions are stronger than
actually needed, but they simplify the exposition.
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(v) K is a free parameter with the range kl =< -< k2, where ..k and k2 are constants
such that 0 < k < k2 < oo.

We remove the term in the first derivative from the differential equation (1.01) by
taking a new dependent variable w w(e, , x), defined by

(2.03)

Then

(2.04)

w exp tA (e, t) dt y.

W"-- e-2{X2A2 -F e (xA)’+ cAB}w,

where primes again denote partial differentiations with respect to x. Substituting for A
and B by means of (2.01) and (2.02) and rearranging, we find that

w" {e-zf(e, , x)+ g(e, , x)}w,(2.05)

where

(2.06)

(2.07)
f(e, , x) xZA + {xA ’o + xAo + 2x2AoA -t" xAoo}e,
g(e, , x)= x2A 21 + xA + xA 3r" 2x2AoA2 +xA1/0 d- AoB1

+ (2xZA 1A2 +xA ’2 + KA2 +xA2o+A1B1)e

+(x2a+azB1)e 2.
In consequence of conditions (iii) and (iv), f(e, , x), g(e, , x), and the first five partial
x-derivatives of f(e, , x) are continuous functions of e, , and x.

To find the boundary conditions satisfied by w, we introduce the notations

(2.08) P(x)= tAo(t) dt, Q(x)= tAl(t) dt.

Then from (2.01) we have

Io(2.09) tA t) %e(x)+ O(x)+ ),

as e 0, uniformly with respect to x [a, b]. Hence from (1.02) and (2.03) the new
boundary conditions are given by

(2.10) w(e, , a)= le( ee()/{1 + O(e)},

(2.11) w(e, , b)= me() ee()/{1 + O(e)}.
3. Zeros of f(e, , x). Write

(3.01)

Then in [a, b], (x) is nonvanishing and six times continuously differentiable, and w(x)
is five times continuously differentiable. From (2.06)we see that

(3.02) x)=

Let r and R denote the positive constants

r= min b(x), R max Ito (x)l.
a<__x<__b

In the interval -kl/(2R)<- x <- kl/(2R) the factor t xw(x) is positive; accordingly the
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zeros of f(e, K, x) are given by

+/-Z(x, x)= e /,
where here and elsewhere e 1/2 denotes as usual the positive square root, and

(, x)= x{(x)P/{, -xoo(x)}-/.

It is easily seen that ..(K, x) is continuous and a..(x, x)/0x is positive and continuous in
the region kl <- t <= k2, -k <-x =< k, where k is an assignable positive constant. We now
apply the implicit function theorem in the form given in [12, p. 144], with in the role of
a and e 1/2 in the role of s. We deduce that as long as the constant 6 is small enough, the
only zeros of f(e,,x) in the interval -k<-x<-_k are given by x=zl(e,r) and x=
z(e, ), where Zl(e, to) and z2(e, ) are continuous functions of e and r, Zl(e, r) being
nonpositive and a decreasing function of e, and z2(e, r,) being nonnegative and an
increasing function of e; furthermore

(3.03) zI(O, /) z2(O, R:) O.

Again, by taking 6 small enough we can also ensure that Zl(e, r) and Z2(8, tO) are the
only zeros of f(e, , x) in the whole of the original interval [a, b ]; in fact it suffices that

<rk2/{k2+R max (la[, b)}.
The asymptotic forms of the zeros Zl(e,/) and z2(e, ) are found by equating the

right-hand side of (3.02) to zero, and solving by standard asymptotic methods given, for
example, in [11, p. 13]. We find that

/ /E }1/2 / ’(0) E 3/2),ZI(E, RT)
(0)

w(O)+ :
(0) 2&(O)

+ O(e
(3.04)

z2(e, )=
(0)

w(O)+K
(0) 2(0)

+ O(e/),

as e - O, uniformly with respect to .
We shall need certain properties of the function p (e, , x), defined by

(3.o5) p(e, , x)= 1(, , x)/{(x -z)(x z)},

when x # zl or Z2, or by the limiting form of this quotient when x zl or z2.
Clearly p(.e, , x) is always positive, and from (3.02) and (3.03) we have

(3.06) p(0, , x)= CZ(x).

LEMMA 3.1. The function p(e, , x) and its first three partial x-derivatives are
continuous in the cuboid

(3.07) O<-_e <=6, kl<-_K<-k2, a<-x<-_b.

In the proof that follows we suppress the arguments e and of f and p in most
places; thus f(x)--f(e, , x) and p(x)--p(e, , x). We continue to use primes to denote
partial differentiations with respect to x.

Since f(x) is a continuous function of e, , and x, and zl and Z2 are continuous
functions of e and K, it follows immediately that p(x) is continuous throughout the
cuboid (3.07), except possibly at those points for which x Zl or z2. Let us define

(3.08) h(x)= f(x)/(X-Zl), X : Zl; h(Zl)= f’(Zl).
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Then

(3.09) p(x)= h(x)/(x- z2), x Zl or z2.

By the mean-value theorem h (x) ’(c 1), where c lies between x and z 1. Since f’(x ) is
continuous (in all variables) it follows that h (x) is continuous when x z 1, and therefore
throughout (3.07). If e 30, then ZlZ2 and it follows from (3.09) that p(x) is
continuous when x zl, and therefore, by symmetry, when x z2.

It remains to consider the edge -e x 0 in order to establish the continuity of p(x)
throughout the whole of (3.07). Differentiating (3.08), we have

(3.10) h’(x) {(X-Zl)f’(x)-f(x)I/(x-z), x Zl.

From Taylor’s theorem

f’(X)--f’(Zl)+(X--Zl)f"(C2), f(X)--(X--Zl)f’(Z1)+1/2(X--Zl)2f"(C3),

where c and c3 lie between x and zl. Substitution in (3.10) yields

f (c3), x z.(311) h’(x) f"(2)

From (3.08)we have by definition

(3.12) h’(z)= lim f(x)-f’(zl)}=11/2f"(z).
x-z XZl XZl

The last two results show that h’(x) is continuous when x z 1, and therefore throughout
(3.07). Now suppose that # 0. Since h (z)- 0, application of the mean-value theorem
gives

h(x)=(X-ZE)h’(dx),

where dl lies between x and z2. Substituting for h’(dl) by means of (3.11) and (3.12), we
obtain

h(x) (x z2){f"(el)-f (e2)},

where el and e2 lie in the smallest interval/, say, that contains x, Zl, and z2. Hence

(3.13) p(x) f"(el)-1/2f"(e2),
provided that x # z2. By symmetry, however, (3.13) also holds when x # Zx. Therefore
(3.13) applies at every point of (3.07) except those on the face s 0. From (3.02) and

0(3.06) it follows that p(x)=f ) when s x =0. Because f"(x) is continuous, it
follows from (3.13) that p(x) is continuous at all points of the edge s x =0. This
completes the part of the proof concerning the continuity of p(s, , x).

The proofs for the derivatives Op(e, r, x)/Ox, 02p(e, , x)/Ox 2, and 03p(e, tO, X)/tgX 3

are similar and it is unnecessary to record details, except perhaps the equations that
correspond to (3.13):

p’(x) f’"(e3) =’"’-x 53’iv,’ 13
"1 t;41 p"(x) ---5-fiV(e6),r es)

p"(X) 233 58"
=0-I eT)--3-r V(es),

where e3, e4,’’ ", e8 are points in the interval I defined above. In particular, when
e x 0 we have

iv/0p’(0) /"’(0), p"(0) j ), p"’(0) o/V(0).
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LEMMA 3.2. As e - 0

(3.14) p(e, , x)= b2(x)+ O(e),

uniformly with respect to e [ka, k2] and x e [a, b].
Since p(0, r, x) equals b2(x), in effect this result supplies information concerning

the partial derivative Op(e, , x)/Oe. The proof is as follows. Write

(3.15) (x)(e,,x)=[(e,,x)-(X-Zl)(x-zz)&Z(x),
(3.16) (x)(e, , X)=(E, , X)/{(X--Z1)(X--Z2)}.
Then (x) and its first five partial x-derivatives are continuous in the cuboid (3.07) and
(x) vanishes when x z or z2. Lemma 3.1 may now be applied with f(x) and p(x)
replaced by (x) and (x), respectively, and inter alia we deduce that

(3.17) fi(x) "(1)-la"af(e2),
where d and 2 lie in I; compare (3.13). From (3.02) and (3.15) we see that

(3.18) (X)={(Zl+Z2)X--ZlZ2}2(X)--{K--X(X)}(X’)6.
The approximations (3.04) show that as e 0th Zl + z2 and ZlZ2 are uniformly O(s).
From this result and the twice-differentiated orm o (3.18) it is evident that as e -0,
"(x) is uniformly O(e); hence from (3.17) (x) is uniformly O(e). Combination of
the last result with (3.05), (3.15), and (3.16) yields the desired relation (3.14).

4. Application of the Liouviile transformation. Returning to the differential
equation (2.05), we follow [12, 2], and take a new independent variable (, definedby

(4.01) 22f(e, , x)= (- a2,
where the dot signifies differentiation with respect to (, and a is a nonnegative real
number chosen to make ( =-a correspond to x Zl, and (= a correspond to x z2.
Thus a a (s, ) is given by

(4.02) {-f(e, , X dx (2 C2)1/2 d(

Next, integration of (4.01) yields the following relations between x and (:

I_t)}a/2 --T2)1/2 < <(4.03) {-[(e, , t= (a r, Zl=X =z,

(4.04) {f(e, , t)}1/2 dr= (2-a d, z2=x b,

(4.05) {[(e, x, t)}/ t= (-a , axz.

These equations define ( as a continuous and increasing function of x in [a, b]. We
suppose that ( a (<0) corresponds to x a, and ( b (>0) corresponds to x b.

The Liouville transformation of (2.05) is completed by introducing a new depen-
dent variable W, defined by

(4.06) W=2-1/2w.

Then

(4.07) d2 W/d(2 {e-2((z- az)+ O(a, , ()} W,
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where

(4.08) g,(a, r, ()= 2ag(e, x, x)+ 21/2d2(2-1/a)/d2.

LEMMA 4.1. Provided that 6 is sufficiently small, a (e, K) is a continuous function of
e and , and an increasing function of e in the rectangle

(4.09) 0 =< e <- , kl <= x =< k2,

and 0(a, K, ’) is a continuous function of a, , and ( throughout the region

(4.10) O<-a<=a(6, x), k<=x<-k2,

For fixed values of K we obtain this result by applying Lemma I of [12], with e -1 in
the role of u, 1/2(z2-zl) in the role of a, and x-1/2(zl+z2) in the role of x, and using
Lemma 3.1 above to verify that the requisite conditions are satisfied. The added
properties of continuity with respect to e and x in the case of a (e, x), or continuity with
respect of a, x, and " in the case of (a, x, r), are verifiable by repeating the steps in
the proof of Lemma I of [12] in a straightforward manner.

We shall need asymptotic approximations to the values of a and ( when e is small.
These estimates are supplied by the next two lemmas.

LEMMA 4.2. As e + 0

(4.11)

uniformly with respect to [k, k2].
On substituting in (4.02) by means of (3.05), we obtain

2 2 Izz2 )}1/2Og {(Z2--X)(X --Z1)}I/2{p(E, I,, X dx.

When x e [za, z2], we have x O(e /2); compare (3.04). Hence from Taylor’s theorem
and Lemmas 3.1 and 3.2, we find that

(4.12)
p(, ,,, x)= p(e, ,,, o)+ xp’(, ,,, o)+ O(x)

4,(o)+ xp’(, ,,, o)+ o(),
the last O-term being uniform with respect to x and x. Therefore

(4.13) a 2 2IzZ2 {(Z2__X)(X__Z1)}I/2 )(0).0.xpt(E, K, O)
rr 24,(0)

+ o(e)} dx.

We now make the substitutions

(4.14) x

and note that

(4.15) Z {/g// (0)}1/2 "" O(g3/2);
compare (3.04). Then

2IzZ2 2 I__" V2)1/2 2{(Z2--X)(X--Z1)}1/2 dx (z 2 dv z + O(e2),
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and

2IzZ2 )}1/2X 2 I_."{(z2 x )(x z dx (z 2
-) itl+Z2)+v}dv

77" 71"

1Z2/Zl+ z:)= O(e).
Substitution of these results in (4.13) yields the required result (4.11).

LEMMA 4.3. As e + 0

(4.16) a2= Ke + 0(e,

uniformly with respect to , where O(e, ) is continuous in the rectangle

O<=e <=6, k
To prove this result, we repeat the steps of the proof of Lemma 4.2, retaining more

terms in the expansions. Thus in place of (4.12), we use

e(e, , x) (0)+x’(e, , 0)+x.p"(e,, 0)+ o(e/);
compare again Lemma 3.1. Also, the form of the next term in each of the expansions
(3.04) is obtained by replacing the error terms O(e 3/2) by q:Z(tc)e3/2+ O(e2), where
Z(:) is a continuous function of x. Further details are straightforward, and need not be
recorded.

LEMMA 4.4. As + 0

(4.17) 1/2(2 Ie(x)[ + O(e),

where P(x) is defined by (2.08) and the O-term is uniform with respect to [kl, k2] and
x[a,b].

Suppose first that x [z2, b ]. Then " [a,/7], and the relation between x and " is
expressed by (4.04). The right-hand side of this equation is evaluable in closed form;
thus

Since r _> a, it follows that

(4.18) I, ),/2 1 ()12(r2-a dr -a2 In +sr + O(a 2)

as a -+ 0. Here and in the rest of the proof the O-symbol is understood to be uniform
with respect to all variables.

To approximate the left-hand side of (4.04), we substitute by means of (3.05) and
use Lemma 3.2. This yields

{f(e,x,t)}/2 dt= {(t-Zl)(t-z2)}/2cb(t)dt+O(e).

On making the substitutions (4.14), with x replaced by t, we obtain

Izx-(1/2)(z+z:z)
{f(e, N;,/)}1/2 dt

2

_z2hl/2fl_tz(/32 ) t/,’ .2 l+za)+td}dv+O(8).
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Since z + z2 O(e), this gives

{f(e, tc, t)}I/Z dt= (1)2-z2)l/2(1))dv +O(l)

Jl + J2- J3 + O(e ),

where

zx zJ1 (/)2__ Z2)/Z(O) dr, J2 v{$(v)- $(0)} dr,

J3 {v-(vZ-zZ)X/z}{(v)-(O)} dr.

By comparing with (4.18) and recalling that z O(e l/Z), we see that

Jl b(O){ -z21n () +x2} + O(e).

Secondly,

Thirdly,

Jz v{(v)- (0)} dv+O(e)= v(v)dv--(O)xZ+O(e).

Il<__z I"1()-()’ <=z Io1()-()’ =o().

Combining these results we obtain

i Io 1
{f(e,x,t)}p dt= v(v)dv--(O)zZln +O(e).

In consequence of (4.04), the right-hand side of this relation may be equated to the
right-hand side of (4.18). On using Lemma 4.2 and (4.15), we then find that

;o(4.1.9) 21-2"-" v(v)dv+xe In + O(e).

We now refer to the equation

dxlZ-az}/2 1(4.20) "= (x-zl)(x- zz) {p(e, K, x)}/’

obtained from (3.05) and (4.01). From the proof of Lemma I of [12] used in establish-
ing Lemma 4.1, it is immediately seen that the right-hand side of (4.20) is continuous
and positive. Therefore dx/d( is bounded, and also bounded away from zero. By
integration, it follows that (x z2)/(" a ) and ((- a)/(x Z2) are both bounded. Using
(3.04) and Lemma 4.2 we then see that x/( and (/x are both bounded, and hence that
Iln (Ux)[ is bounded. Therefore from (4.19)

1/2ffz= v(v)dv+O(e)=lP(x)l+O(e);

compare (2.08)and (3.01).
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We have therefore established the required result (4.17)when x [z2, b]. An
exactly similar proof holds when x e [a, Zl]. Lastly, if x [Zl, z2], then Irl _-< a and hence
from Lemma 4.2 1/2( is O(e). Also P(x) is O(xz) and therefore O(e). Thus (4.17)
again applies. This completes the proof of Lemma 4.4.

5. Uniform approximations to the solution of the boundary-value problem.
Instead of applying the approximation theorems of [12] directly to the differential
equation (4.07), we first modify this equation in the following manner. Write

(5.01) (e, , ()= O(a, , ()+ e-:(e -a:).
Then (4.07) becomes

(5.02) d2 W/d(z {e-2((2- re)+ (e, , ()} W,

and from Lemmas 4.1 and 4.3 it follows that O(e, , () is a continuous function of its
arguments.

Applying Theorem I of [12] to (5.02) and using the same notation as in this
reference, we deduce that there are solutions WI() WI(e,K,sr) and W2(’)-W(e, , () having the following forms in the interval 0 -<_ r _<_ b"

(5.03) Wl(r) u((4-)+ n((), w:(()

where the error terms r/l(’)= r/l(e, a, sr) and rz(’)-= r:(e, , () are subject to the
bounds

(5.04)

_<l:-l((x//e)[exp 1/2)Vct;(F)}- 1]{(re)/l
(42/--S)’ (2/)1/(42/)

(5.05)

In2(c)l Ini()l ,< E((4/e)[exp {(TfE )1/2ll (-1/2X)o c(F)}- 11.
M(srx/2/---)’ (2/E)l/ZN((x/e)

Here, and subsequently, r/(() and r/.(() denote 0’Ol/0( and 0’1"/2/0" respectively, and
we have suppressed the argument parameter -2x- of the parabolic cylinder functions U
and U and also of the auxiliary functions I:, M, and I1; thus

U(4-i)-- U(-,,, 4-5/),
and so on. The error-control function F--F(e, , () is defined by

(5.06)
O(s’ ’ ()

d’,

with the balancing function iq(t) subject to the conditions prescribed in [12, 6.1].
On taking iq(t) to be 1 + Itl and observing from Lemma 4.4 that/7 is bounded, we

see that
](e, , t)[o,(F) dt
1 + t*/e

s
O{e 1/ In (i/e)}

dt
O(1)

1 + t/e
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as e + 0, uniformly with respect to x [/1, k2]. Next, the function/I(--1/2K) is continuous
in , and therefore bounded. Substituting in (5.04) and (5.05) by means of these results
we conclude that

r/1(’) E- (’/e)M((/e)0(),

(5.07)
r/i(sr) e 1/E- (’/-)N(%/2)O(),

r(’) E(#-/-)M(/-e)O(),

r/i(() e -Z/E(’/2])N(’#-)O(),

as e -> 0 uniformly with respect to K [kl, k2] and r [0, b], where

(5.08) e In (l/e).

We also note here the properties

’0(5.09) r/l(b) r/(b)= 0, r/2(0) rt2( )= 0,

obtained from (5.04) and (5.05) by setting " b and 0, respectively.
In a similar manner, by applying Theorem I of [12] to (5.02) with r replaced by-sr,

we deduce that in the interval a-< r NO there are solutions W3(sr) W3(e, K, () and
W4() W4(e, K, (), given by

where

w (c) +

r/3(’) E-1(-(/e)M(-(/2/--)O(),

(5.11)
r/(") e 1/2E- (-’/-)N(-’/e)O(g"),

r/,(() E(-’,,/-)M(-’//e)O(e),

-1/2E( ’/e)N(-’#2e)O(),

as e 0 uniformly with respect to [kl, k.] and " [& 0]. Furthermore,

(5.12) r/3(ti) r/;(a) 0, r/4(0) r/(0) 0.

To determine the boundary conditions for (5.02) we require the values of 2-z/2 at
the endpoints. Using (3.02), (4.01), Lemma 4.2, and Lemma 4.4, and recalling that
$ (x) IAo(x)], we find that

22 2{aAo(a)}-2lp(a)l + O(e ) at x a,

2, 2{bAo(b)}-EIp(b)l + O(e) at x b.

From these results and equations (2.10), (2.11),.and (4.06) it follows that the wanted
solution W(r)-- W(e, , () of (5.02) satisfies the conditions

(5.13) W(a)= feP("/’(l+h), W()=NeP(b/’(l+lx),
where and r are constants given by

(5.14) f= laAo(a)lZ/El2P(a)l-z/4 e(’)l, K [bAo(b)lZ/Zl2P(b)1-1/4 e(b)m,
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and h and/z are functions of e and K with the properties

(5.15) A O(e), /x O(e),

as e - O, uniformly with respect to K. We now write

(5.16)
W(()= A1Wl()-- A2 W((), 0 <- " =< b,

W(r) A3 W3(’)+ A4 W4(’), 1 0,

where the coefficients Aa, A2, A3, and An are to be determined.
When (= 0, the properties of the parabolic cylinder functions and the auxiliary

functions given in [12, 5] show that I:(0)= 1 and

(5.17) U(0)=_ M(0) sin/3, U’(0)_ -hi(0) cos/3,

U(O)= M(O) cos fl, U’(O) hi(O) sin/3,

where

(5.18) /3 1/4r(l+x).
From (5.03), (5.09), (5.10), (5.12), and (5.17), we obtain

WI(0) M(0) (sin +/91),

w:(0) m(0) cos

W3(0) M(0)(sin fl +/93),

W4(0) (0) COS

Wi(0) -(2/e )I/2N(0)(cos/3 + o’1)

W.(0) (2/e)1/2N(0) sin fl,

W;(0) (2/8)I/2N(O)(cos -t- O’3),

W;(0) -(2/e)1/2hl(0) sin fl,

where

’//1(0) () 1/2 ’0 i(O)
/91---- M(O)’

(7"1 1(0)’
(5.19)

n(o) ()’/ n(o)
103 (0)’ 0"3--" 1(0)

Thus/91, o’1,/93, and o’3 are functions of e and x, and from (5.07) and (5.11) it follows that

(5.20) /91, o1,/93, 0"3- 0()

as e - O, uniformly with respect to g.

On referring to (5.16) and matching the solutions and their (-derivatives at " O,
we obtain

Al(sin fl +/91)+ A2 cos fl A3(sin fl +/93)"t- A4 cos fl,

-AI(COS fl + 0"1)+ A2 sin fl A3(cos fl + o’3)- A4 sin ft.

The boundary conditions (5.13) yield

A3U(-g’,//e)+ A40(-542/)(1 +/4) [eP(")/(1 + a ),

A U(’,/-/e)+AO(/;/e)(1 + ,,2) r e

where v2 and /]4 denote the quantities

P()/ (1+/z),

(5.21) ,, n:()/O(4/), /]4 T/4(a)/
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From (5.07), (5.11), and the properties of the auxiliary functions I and M given in [12,
5.8], we see that

(5.22) v2, /24= O(/)

as e - 0, uniformly with respect to K.

Solving the four simultaneous equations just given for A1, A2, A3, and A4, we
obtain, after a straightforward calculation,

(5.23) DA rfi eP)/ (1 + t) sin 2flU(-8#-)

+ rfi ee()/ (1 +/z)(cos 2/3 +0.3 cos/3-p3 sin/3)(1 + v4)O(-a4e)

-/-ee(")/ (1 +A)(1 +0"3 cos fl +p3 sin fl)(1 + v2)O(/Tx/e),

(5.24) DA2 [ee(a)/(1 +h)(1 +0"3 cos/3 +p3 sin fl)U(/x/7-)
+ r ee(b)/ (1 +/z)(cos 2fl+0" cos/3 --Ox sin fl)U(-52,d)

rfi e e(b)/ (1 +/z)

{sin 2/3 + (pl + p) cos/3 + (0"1 + 0") sin/3 + p0" +p0"1

(1 + v4)O(-a#e),

(5.25) DA= eP(’)/(l+A)sin2flU(lff/-)

+/-eP()/ (1 + a )(cos 2/3 + 0"1 COS/--Pl sin/3)(1 + v2)0(/Tx/2e)

-fit ee()/ (1 +)(1 -{-0"1 COS "{- Pl sin/3)(1

(5.26) DA4 fft, ee(b)/(l+)(1 +0"1 COS/ -["Pl sin

+ -ee(’)/" (1 + A )(cos 2/3 + 0"3 cos/3 03 sin/3)U(/7/--)

_/eP(-)/(I+A)
{sin 2/3 + (01 -[/93) cos -[- (0"1 -[- 0"3) sin/3 + P10"3 "+- P30"1}

where
(1 + v=)O(x/-),

(5.27) D sin 2U(-ag-/e)U(.,/-e)

+(cos 2/3 -[-0"1 COS --Pl sin/3)(1 + vz)U(-a4)O(642/e)

+(cos 2/3 +0"3 cos/3-p3 sin/3)(1

-{sin 2/3 + (pl -[- 03) cos -[- (0"1 "-[- 0"3) sin/3 + 010"3 ---[- 030"1}

(1 + u2)(1 + v4)O(-a/2)O(/7/-7-).
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These results supply the desired formulas for the coefficients A1, Az, A3, and A4 in
the expressions (5.16) for the wanted solution W((). This solution is related to that of
the original boundary-value problem of 2 via

y(x)= exp
1

tA(e,t)dt

compare (2.03) and (4.06). Hence from (2.09) and (5.16) we have

y(x)= {1 + O(e)}21/2 e-O(x) e-P()/{A1Wl(()+ Az W2(()},

and

y(x)= {1 + O(e)}21/2 e-Ox) e-mX)/{A3 W3(st) + A4 W4(r)}, a<__x<__O,

where the O-terms are uniform with respect to : and x. In the proof of Lemma 4.4 we
noted that 2 and its reciprocal are continuous and bounded for all values of the
variables. In consequence, as e -, 0 the asymptotic rate of growth (or decay) of the
solution y (x ) is governed entirely by that of the functions
(5.29) A1 e-P*)/WI(()+ Az e-P*)/W2(()

A3 e-e()/W3(()+ A4 e-e()/W4(()
when 0 <- x <-_ b, or

(5.30)

when a <=x <=0.
Investigation of this growth forms the subject of the next three sections. Because

we shall have frequent need of asymptotic estimates for the parabolic cylinder func-
tions, we collect the relevant results here for reference.

By combining Lemma 4.4 with the asymptotic forms of the parabolic cylinder
functions of large positive argument given in [10, Chap. 19] or [12, 5.2], and
remembering that the argument parameter of each of these functions is 1/2K, we derive

u(ICl,/5- e) e -le(x)l/ e o(1),

(1+)/4 elP(x)l/ 0(1)

as e 0, uniformly with respect to K and x, provided that [kl, k2] and Ix[ is bounded
away from zero. In the same circumstances,

E-l(lsrld-)M(lrl4e) e (1-:)/4 e-le()l/ e o(z),
(5.32)

Particular cases of (5.31) are given by

(5.33)
U(-a’,/2/) e (i->/# e -IP(a)l/e e

O(-aJ-e) e (1+>/4 eIP()l/ e (1>,

U(/4) 6
(1-:>/4 e-IP(b>l/ eO(l>

(5.34)
."(642) (1+>/4 elP(>l/ e o(>,

valid when e - O, uniformly with respect to .
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For the full interval x e [a, b], we have the weaker estimates

u(lffl4 - ) (1--)/4 e-Ie(x)l/O(1),

(5.36)

valid when s -)0, uniformly with respect to t and x, where

(5.37) : max (K, 1).

6. Conditions for resonance: Case Ao(x) negative. In this section we use the
expressions (5.29) and (5.30) to investigate the asymptotic behavior of the solution of
the boundary-value problem of 2 in the case when the coefficient Ao(x) in (2.01) is
negative throughout the given x-interval [a, b]. From (2.08) we observe that this
condition implies that the function P(x) is negative for all values of x, other than x 0.

Suppose first that the positive parameter K is independent of e and not an odd
integer. From (5.18) and (2.02) it is seen that this implies both/3 and B(0, 0) are fixed,
sin 2/3 0, and

(6.01) B(0, 0)#0, 2, 4, .
Referring to (5.20), (5.22), (5.33), and (5.34), we observe that as e --)0 the dominant
contribution to D in (5.27)derives from the last line; consequently

1 0(1)
(6.02) = O(-54)U(b)"
Next, on substituting in (5.23) by means of (5.151, (5.201, and (5.22) and then referring
to (5.331 we see that

(6.03) DA1 O(1)el"(b)/’O(-a’f)+O(1)eP(’)/’O(’,f).
Also, from (5.03) and (5.07) we obtain

W(r) O(1)E

Combining the last three equations, we see that when 0_-< x -< b
{P(b)-P(x)}/e

e e()/
e

::-1((/)M((/)11 WI(() O(1)
(’,/2/e)

(6.04)
e

+ 0(1/

Using (5.33), (5.34), and (5.36), and bearing in mind that P(x)= -IP(x)l throughout
the present section, we find that

(6.05) A1 e-P(x)/eWl() O(1)e-(K+l)/4{e -21P(b)l/" q e-21P(a)[/}.
This vanishes as e - O, uniformly with respect to x.
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Next, by similar analysis we obtain from (5.03), (5.07), (5.24), and (6.02)
e{P(b)-P(x)}/e

(6.06) Aa e-e*/W2(() O(1)

and hence

(6.07) A2 e-P/W2(() O(1 )E -(1+:)/4 e {IPI-IPbI}/‘.

Let bl be any constant such that 0< bl < b. Because IP(x)l is increasing when x is
positive, the right-hand side of (6.07) vanishes as e 0, uniformly with respect to
x [0, bl].

In a similar manner it is verifiable that A3 e-e(x)/W3(() vanishes uniformly in
[a, 0], and A4 e-P(x)/eW4()vanishes uniformly in [al, 0], where al is any constant such
that a < a < 0.

On combining the foregoing results we conclude that when x is independent of e
and not an odd integer, the solution y (x)of the boundary-value problem of 2 vanishes
as e 0, uniformly in any closed interval properly interior to the given interval [a, b].
That is, there is no resonance in the sense defined in 1. This conclusion is already well
known from the theory of Ackerberg and O’Malley, given in [1], and also [14, Chap. 8].

In order to induce resonance it is clear that as a first step we must arrange for the
contribution from the term in (-Sx/2/e)(/7x/2-) in the expression (5.27) for D not
to dominate the other terms. This is achieved by imposing the condition2

(6.08) sin 2/ + (101 -[-/93) cos q-- (0"1 -[- 0"3) sin/ + 010"3 -[-/930"1 O(e-2m/e),
where r is any constant such that

(6.09) > max {IP(a )l, IP(b)l}.
The condition (6.08) is satisfied by relaxing the requirement that/3 and K be indepen-
dent of e. Thus (6.08) is to be regarded as an equation for/3 =/3(e), say, and the
corresponding value of K x(e) is given by (5.18). From (5.20) we see that for small
values of e the relevant roots are

(6.10) fl =sTr + O(e),

where s 1, 2, 3,. and g is given by (5.08). Correspondingly,

(6.11) : 2s- l + O(g).

We note that for each value of s, neither the value of/3 nor that of is unique because of
the freedom of choice allowed by inclusion of the O-term on the right-hand side of
(6.08). All roots satisfy (6.10), however.

We now suppose that/3 =/3(e) is prescribed in the manner just indicated, and
distinguish three cases in subsequent analysis, given by IP(a)l >-<_ IP(b)[. In examining
these cases in turn, we continue to use the symbols a and bl to denote any positive
constants such that a < a < 0 and 0 < bl < b; in addition we use a2 and b2 to denote any
constants such that al < a2 < 0 and 0 < b2 < bl.

Case I. [P(a)l > IP(b)l. In this case Lemma 4.4 shows that [t/I >/ for all sufficiently
small values of e, and referring to (5.33), (5.34), (6.08), and (6.09) and substituting in
(5.27) by means of (5.20), (5.22), and (6.10), we see that

(6.12) D (- f{1 + O(g)}O(-ax/-)U(x/2]e).
The condition (6.08) is adequate for the present purposes, but it could be weakened somewhat without

affecting the general conclusions.
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From (5.23) we derive in a similar manner

(6"13)DA (-){1 + O(t)} eP()/(-/e)- {1 + O(t)} [eP()/ LSr(/7//e).
Therefore

(6.14) {P(b)--P(x)}/ee
e-P(x)/A1 Wl(’) {1 + O()}r U(/74s)

{U(r42]i)+ ’1(’)}

eP(>-I’(x>/ O(/7/2/s)
+ (--)s-l{1 +O(g:)}’--=={V(x]2/8) -t- ’01(’)}.

O(-a,/:/ u($,/:/

From (5.07), and also (5.33) through (5.36), the contribution from the second line is
estimated by

O(1)e (--1)/ ele()l-l()l/,

as e 0, and therefore vanishes uniformly in [0, b]. On the other hand if fit # 0, that is
(from (5.14)) if m 0, then with the aid of (5.31) and (5.32) we see that in [b2, b] the
contribution from the previous line is e (1), that is, bounded and bounded away from
zero.

Next, from (5.24), (6.08), and (6.10) we derive

(6.15) DA={l+O(g)}reP(’)/U($’,//s)+(-){l+O(g)}r eP(b)/U(-a/-/s)

Accordingly, from (5.33), (5.34), (6.09), and (6.12) it follows that

Hence

A2= O(1)e

(6.16) A e-P(x)/ Wa(sr) O(1)
e{P(a)-P(x)I/e E(:s)M((/2/s);

consequently

(6.17) A2 e-e(x)/W2() 0(1)8 -(1+’)/4 e 2{lP(x)l-IP(a)lI/e.

Since IP(x)] [P(b)l this vanishes as e -+ 0, uniformly in [0, bl.
The behavior of the wanted solution in the interval [a, 0] may be investigated in a

similar manner. First, we find that as e 0 the term A3 e -P(x)/e W3(() is bounded and
bounded away from zero throughout [a, a2], unless m 0 in which event this term tends
to zero uniformly in [a, 0]. Secondly, we find that A4 e-P(x)/eW4() tends to zero
uniformly in [al, 0].

Combining the results for the intervals [0, b] and [a, 0] we reach the following
conclusion" when [P(a )[ > IP(b )l there is resonance if m 0 but not if m O.

Case II. IP(b)l > IP(a )1. This case may be investigated in a similar manner to Case I,
or the results can be deduced by symmetry. The conclusion is that when IP(b)l > IP(a)l
there is resonance if 0, but not if O.
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Case III. P(a)= P(b). In order to discuss this case we shall suppose that we know
the value of y(a)-y(b), where y(x) denotes the second coefficient in the expansion

(6.18) 1/2(:=[e(x)l+7(x)e+o(e), e0;

compare Lemma 4.4. The value of y(a)- y(b) can be found by extending the analysis of
3 and 4, but we shall not pursue these details in the present paper. In passing,

however, we note one special case in which the value of y(a)- y(b) is already available.
This is the case in which the coefficients A (e, x) and B(e, x) in (1.01) are even functions
of x, and a -b. In these circumstances the functions f(e, K, x) and P(x) are even in x,
and sr ((x) is odd; in consequence y(a)- y(b) 0.

Returning to the general case, we see from Lemma 4.4 that when P(a)= P(b) we
have

a= -{l+O(e)}b.
From this result, (6.18), and the asymptotic approximations for the parabolic cylinder
functions of large positive argument, it follows that

(6.19) U(-a42) {1 + o(1)I e’()-()U(5/),

(6.20) O(-a4) {1 + o(1)} e()-()O(tT/-).
Substituting in (5.27) by means of these approximations and using (6.08) and (6.10), we
find that

(6.21) D (-){1 +o(1)}2 cosh {y(a)-y(b)IU(/-s)(1ff/-s).
The relation (6.13) remains valid in the present circumstances, and by referring to
(6.20) we see that

(6.22) DA [(- ){1 + o (1)}ff eV()-()- {1 + O(g)}/-] eP()/ O(/;/-e).
We now impose the restriction

(6.23) (--)sin e v(a)-(b),
that is,

(6.24) e()-v()[aao(a)l x/z (-)m e(b)-v(b)lbao(b)ll/;
compare (5.14). From (5.03), (6.21), and (6.22)we then obtain

(6.25) A1 e-e(x)/W(()
m e()-()- (-)’

{1 + o(1)} {U((4)+ ()}.
2 cosh {r(a)- r(b)} U($4)

As e 0 this quantity is uniformly e() in [bz, b].
Next, equation (6.15) remains valid. With the aid of (6.21) we deduce that

(6,26)

Accordingly,

A O(1) eP(b)//O(/-/e),

A2 e-P()/ W2(() 0(1)e -(1+ >/4 e 2le()l-IP()1/;
compare (6.17). This vanishes as e 0, uniformly in [0, bl].
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The analysis for the interval [a, 0] is similar, and we find that as e 0 the term
A3 e-P(x)/eW3() is e o(1) uniformly in [a, a2], and the term A4 e-P(x)/W4(() vanishes
uniformly in [al, 0].

On combining the foregoing results we conclude that when P(a)= P(b), resonance
takes place, provided that the condition (6.23)(or (6.24)) is satisfied.

The problem is more difficult when

(6.27) [= (-)Srfi e v(a-v(b.

The explicit terms on the right-hand side of (6.22) then cancel, but in general our
analysis does not reveal whether or not the error terms cancel. There is, however, one
special case in which we can arrive at a firm conclusion, as follows.

Let us suppose that the coefficients A(e, x) and B(e, x) in (1.01) are even in x, and
a -b. As noted above, the functions P(x) and ( ((x) are then respectively even and
odd, and y(a)= y(b). It is also easily seen that O(e, K, r) is an even function of r. From
these properties it follows that the error terms are related by pl =/93, 0-1 0"3, /2-" /4,

and A =/x. Hence (6.08) reduces to

sin 2/3 + 2p3 cos/3 + 20"3 sin/3 + 2/930"3 O(e-2/e).
The left-hand side of this equation factors, and we deduce that either

(6.28) sin/3 + p3 O(e-2’/),
or

(6.29) cos/3 + tr3 O(e-2"/).
From (6.10) it is clear that the former alternative applies when s is even, and the latter
when s is odd. In the present case the condition (6.27) reduces to (- fn5. Whether s
be even or odd, it is easily verified from (6.28) and (6.29) that

r (cos 2/3 +0"3 COS B--P3 sin/3)-- [(1 +0-3 COS +/93 sin/3)= O(e-2=/e).
Hence from (5.23)we obtain

DA1 nq eP(b)/(1 + IX) sin 2/3U(LT/2)+ O(e-2.’/) eP(b)/r(1ffx/-/e).
In consequence

A e-P(x)/Wx() 0(: )
e{IP(x)l-lP(b)l}/e
O(L7/2])

E-x (r24)M("2,de ).

This vanishes as e-0, uniformly in [0, b]. Similarly A3e-P(x)/eW3(() vanishes
uniformly in [a, 0]. Accordingly, in this special case resonance does not take place.

7. Conditions tor resonance: Case Ao(x) positive. The analysis in this section
parallels that of 6, the essential change being that the function P(x) is now nonnega-
tive. We again use the symbols a l, a2, b, and b2 to denote any constants such that
a <a<a2<0 and 0<b2<bl<b.

Suppose first that the parameter K is independent of e and not an odd integer.
From (5.18) and (2.02) it is seen that this implies both /3 and B(0, 0) are fixed,
sin 2/3 0, and

(7.01) B (0, 0) -2, -4, -6, .
Equations (6.02), (6.04), and (6.06) again apply, and using (5.32), (5.33), (5.34), (5.36),
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and the fact that P(x) is increasing when x is positive, we may verify that as e 0, each
of the quantities A1 e-P(/W(() and A2 e-P(x/W.(() is uniformly O(e -(+"/4) in
[0, b] and uniformly O(1) in [b2, b] where K1 is given by (5.37). Similarly each of the
quantities A3 e-P(/W3() and A4 e-P(x)/eW4() is uniformly O(e -(+0/4) in [a2, 01
and uniformly O(1) in [a, a2]. These results accord with those of O’Malley [13, p. 487],
and correspond to the nonresonant situation.

In the rest of this section, we again suppose that/3 fl (e) is a root of the equation
(6.08), wherem is a constant subject to (6.09). Thus/3 and are estimated by (6.10) and
(6.11), respectively.

Case I. P(a)> P(b). Equation (6.14) again applies, and as e 0 both terms on the
right-hand side grow uniformly (and exponentially) in [b2, b]. Equation (6.16) also
holds, and from it we deduce that A2 e-P(x)/eW2() is uniformly O(e -(1+)/4) in [0, b2]
and O(1) in [b2, hi. In order to guarantee resonance for positive values of x we
therefore need to ensure that the two terms on the right-hand side of (6.14) do not
cancel. As in Case III of 6 we assume that we know the value of y(a)-y(b), where
y(x) is defined by (6.18). Then using the asymptotic approximations for the parabolic
cylinder functions of large positive argument and Lemma 4.4, we calculate that the ratio
of the first term to the second term is given by

{ P(b)(’+ll/4(7.02) (-)’-{1 + o(1)}
Hence on using (5.14) we see that the requisite condition is given by

(7.03) e(a)-’(’){-aAo(a)}l/2{p(a)}"/4 e (-)’m e(b)-’(b){bAo(b)}I/2{P(b)}"/4.

The interval [a, 0] may be investigated in a similar manner, and our findings are as
follows. Let c be the point of (a, 0) for which

P(c)=P(b),

and restrict a so that c < a < 0. Then A3 e-e(x)/ W3(sr) grows uniformly (and exponen-
tially) in [ax, az] provided that (7.03) applies. And A4 e-e(x)/eW4() is uniformly
O(e -+")/4) in [a., 0] and O(1)in [a, a].

Therefore when P(a)> P(b) resonance takes place, provided that (7.03) is satisfied.
This is the case, for example, if either or m is zero, or if and (-)S-m have the same
sign.

When the condition (7.03) is violated some cancellation takes place on the
right-hand side of (6.14) as e 0; similarly for A3 e-P(x)/W3(). The present analysis is
insufficiently delicate to determine whether resonance occurs in these circumstances
however.

Case Ii. P(b)> P(a). This case is treatable in a similar manner, and we find that
when P(b)> P(a) resonance takes place, provided that (7.03) is satisfied.

Case III. P(a)=P(b). Equations (6.21) and (6.22) remain valid. Hence (6.25)
eapplies, subject to the condition (6.24). Accordingly, Ax W1(st) grows uniformly

(and exponentially) in [b2, b]. Next, (6.26) applies, and from it we conclude that
A2 e-e(x)/sW2(() is uniformly O(e -(1+)/4) in [0, b2] and uniformly O(1) in [b2, b]. The
analysis for the interval [a, 0] is similar, and the general conclusion is the same as in
Cases I and II, that is, resonance takes place, provided that (6.24) (or (7.03)) is satisfied.

An example in which the condition (6.24) is violated, but a definite conclusion can
still be reached, is again supplied by the case in which the coefficients A (e, x) and
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B(e, x) in (1.01) are even in x, and a -b. Similar analysis to that given at the end of 6
shows that resonance does not take place in these circumstances.

8. Exact eigenvalues. In the first parts of 6 and 7 we proved that if/ 1/4r(1 + )
is independent of e and 2fl is not an integer multiple of r, then resonance does not take
place. We also showed that if/ is permitted to depend on e, then except for certain
special boundary conditions resonance occurs whenever fl satisfies equation (6.08), that
is,

(8.01) sin 2fl + (p + 03) cos fl + (o’1 q- 0"3) sin fl + 010"3 q- 030"1 O(e-’/)
as e -> 0, where r is any constant exceeding both IP(a)l and [P(b)l. As we noted in 6,
this equation has roots

where
/ =/s(e), s=1,2,3,...,

=ssr + O{e In(l/e)}

as e --> 0. The corresponding form of the original differential equation (1.01) is obtained
by substituting

(4/7r)fls(e)- 1

in (2.02). For each value of s there is a continuum of roots/3,(e); therefore since Bs(e) is
not unique it is not an analytic function of e.

In the form of the original problem that was investigated rigorously by Ackerberg
and O’Malley, [1, 5] and O’Malley [13, 3 and 4], itwas assumed that the coefficients
A(e,x) and B(e,x) in (1.01) are holomorphic functions of e and x and possess
asymptotic expansions as e 0 for x in some complex neighborhood of the interval
[a, b and for e in a sector 0 < le [N e0, Iph eN 00, where 00 > 0. With these assumptions
it was proved that necessary conditions for resonance are given by (1.04) or (1.05), that
is (in both cases), 5st, where s is a positive integer. Correspondingly, 2s- 1;
compare (5.18). As we have already noted, these results are consistent with those of

6 and 7.
In the first part of the present section we investigate circumstances in which (8.01)

1Spossesses exact roots B =5 , where s is a positive integer. In other words, we seek
sufficient conditions for resonance when the conditions (1.04) or (1.05) are fulfilled.
Our assumptions will be the same as in 2; thus no conditions of analyticity are imposed
on the coefficients in (1.01).

On substituting =ss in (8.01), we obtain either

(8.02) (--)s/2(Ol+O3)+Pl3+O3l=O(e-2m/e), S even;

or

(8.03) (-)(s-1)/2(1 + 3)+013 +031 O(e-2"/), s odd.

One obvious situation in which these conditions are satisfied is given by

(8.04) 0 =1=03=3 =0.

This happens, for example, when the function 6(e, , ) in (5.02) is identically zero; in
this event the original differential equation (1.01) is transformable into Weber’s
equation.

A more general situation in which (8.02), or (8.03), is satisfiable identically for all
sufficiently small values of e arises when the error terms Ol, , 03, and 3 are
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independent of e. Apart from the case (8.04) this may happen when equation (1.01) has
a nontrivial solution that is independent of e. 3

Turning to cases in which Ol, trl, 03, and tr3 may vary with e, we observe that (8.02)
and (8.03) are satisfied when

(8.05) 4S(s, 2s- 1, ()= O(e-’/)

as e - 0, uniformly with respect to ff [ti, b]. For in this case by taking the balancing
function l)(rx/e)in (5.06)to be 1 + Irlx/e, we easily deduce from the definitions
(5.19) and the error bounds (5.04) that both pl and O" are O{e In (1/e)e-2"/};
compare (5.07). A fortiori p and trx are O(e-2*’/). Similarly, both p3 and tr3 are
o(e-,/).

Equation (8.05) is therefore an appropriate condition of sufficiency to be adjoined
to (1.04)or (1.05).4 The only additional requirement concerns the boundary conditions,
as specified in 6 and 7. It will be observed that (8.05) is not unlike the condition given
by Ackerberg and O’Malley on p. 292 of [1 pertaining to a coefficient tr(e) that appears
in a certain transformation of the differential equation. The important difference is that
we have explicit formulas for tP(e, 2s-1, st), given in 4 and 5, whereas only an
existence theorem and asymptotic expansion are available for Ackerberg and O’Mal-
ley’s or(e).

We are now in a position to construct new examples of resonant systems, as
follows"

(8.06) ey"- xy’ + {x + s 1 e + eC(e, x)}y 0,

and

(8.07) ey"+ xy’ +{x + s e + eC(e, x)}y 0.

In both cases the boundary conditions are again given by y(a)-l and y(b)-m, with
2 q- m E 0. Here s is a fixed positive integer, and C(e, x) is any continuous function of e
and x that satisfies

(8.08) C(e, x)= O(e-2’/)
as e 0, uniformly with respect to x [a, b ], where nr is any constant exceeding both 1/4a 2
and 1/4b 2.

To establish resonance properties for (8.06) and (8.07), we write

(8.09) P(x)= 1/4x 2,
where the upper sign applies in the case of (8.06), and the lower sign in the case of
(8.07). On making the substitutions

(8.10) y e-P(’/W, x 2e + (x/-,
we obtain, in both cases,

(8.11) dE W/d(2 {e-z(rz- 2se + s)- 2C(e, 2e + sr4)} W.

This differential equation has the form (5.02) with -2C(e, 2e + srx/) in the role of

3When A(e,x) and B(e,x) are independent of e, such nontrivial solutions are necessarily linear
functions of x or constants. Some examples have been supplied by Kreiss and Parter [4, 3].

4 The condition (8.05) could be weakened somewhat with more detailed analysis.
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4,(e, , r), and 2s- 1. The boundary conditions are evidently given by

(8.12) W(/) eP(’)/, W(/7) rn e P(b/,,
where

(8.13) a (a 2e)/’, /7= (b 2e

Comparison with (5.13) shows that and rn are now playing the roles of and
respectively, and ,

=ix 0. Lastly, from (8.08) it is clear that the condition (8.05) is
satisfied.

On applying the results of 6 to (8.06) we immediately conclude that in Case I, that
is (in the present instance), lal> b, resonance occurs if m # 0 but not if m 0. Similarly
in Case II, given by [a I< b, resonance occurs if 0, but not if 0. To deal with Case
III, given by a =-b, we first compare the second of (8.10) with equations (6.18) and
(8.09). This shows that y(x)=-x. Hence (6.23) becomes

(8.14) # (-)Sm e 2b,

and resonance takes place in Case III whenever this condition is satisfied.
In the case of (8.07) we apply the results of 7. We find that resonance occurs for all

boundary conditions, except possibly those satisfying

(8.15) la e mb e ’"
compare (7.02), with replaced by l, and rfi replaced by m.

Equations (8.06) and (8.07) appear to be the first established examples of reso-
nance that satisfy the original conditions of Ackerberg and O’Malley and do not fall into
either of the categories mentioned in the fourth and fifth paragraphs of this section.
That is, neither (8.06) nor (8.07) is transformable into Weber’s equation, nor is there a
nontrivial solution that is independent of e.

9. Matkowsky’s criterion. Recently, Matkowsky [7] proposed an interesting for-
mal criterion for resonance, applicable when the coefficients in the original differential
equation are analytic functions of the parameter e and independent variable x. His
approach is to construct the outer solution of the boundary-value problem via the
method of matched asymptotic expansions, and the criterion adopted for resonance is
that all the coefficients in the outer expansion must be bounded throughout the interior
of the interval of integration, including the turning point x 0. Some applications have
since been made to nonlinear problems [9]. Before we consider the validity of the
criterion, it is instructive to discuss one of Matkowsky’s examples in some detail.

Section 2 of [7] contains four examples, in three of which resonance is claimed in
certain circumstances. Two of these examples are forms of Weber’s equation and when
corrected as in [8] the conclusions agree with the results of the present paper. The other
example of resonance is given by

(9.01) ey"-x(1 +xZ)y’+ (2 + 12e)y =0.

In the light of our observations in the preceding section, this differential equation
appears to be of unusual interest, because it is not a form of Weber’s equation.
Unfortunately, however, the analysis in [7] has not been carried sufficiently far for this
example, and the conclusions arrived at are incorrect. More complete analysis is as
follows.
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The outer expansion for the solution of (9.01) is given by

y 2 w(x),
/=0

where

(9.02) x(1 +x2)w;(x)-2wj(x) 12wj_l(x)+ W;I(X), f 0, 1, 2,

with W_l(X)=-- 0; compare [7, eqs. (19)and (20)]. Integration of (9.02)yields

x2

I12Wj_e(X)_+3w;’_e(X)dx.wj(x)
1 + X’’ x

From this relation it is easily seen that the coefficients have the form

Wj(X)= Coqj(x)+ Clqj-l(X)+ c2qi- 2(X)+""" + Cjqo(x),

where Co, c 1, c2," are arbitrary constants of integration. The first three functions qi(x)
may be verified to be

2 2xx 1 5x 2 2

qo(x)=
l+x----’--’ q(x)=

l+x2 (l+x2)2-(l+x2)3’

12 42x2 33x2 30x2 12x2

q(x)
1 + x a + (1 + x)----+

(1 + xa)--- - (1 + xa)------+ (1 + xa)--------108x 54x2

+
l+x2 lnX-l+x-----ln(l+x2).

Each of the coefficients Wo(X), w(x), and WE(X) is therefore bounded as x-0, as
required by Matkowsky’s criterion. On proceeding to the next coefficient, we perceive
that each term in qo(x), ql(x), and qE(X) that is analytic at x- 0 makes a bounded
contribution to Wa(X). This takes care of all terms except the penultimate member of
qE(X). For this term we find that

x I 1( dx)[x.lnx’l+x
12+ \l+x2]dx=(x)-lnx’

where X(x) denotes a function that is bounded at x 0. Hence Wa(X) is unbounded at
x 0. Accordingly, when Matkowsky’s criterion is applied correctly to this example, it
indicates that resonance does not take place. This is contrary to the statement on p. 88
of [7], but in agreement with our present results.

In order to show that Matkowsky’s criterion can lead to a false conclusion when
applied to the class of problems considered originally by Ackerberg and O’Malley, we
consider the following (and final) example, given by

(9.03) ey"-xy’+(x+l-e+ee-2’/)y=O; y(a)=/, y(b)= m,

where r is a positive constant. It is easily seen that the coefficients in this equation
satisfy all the conditions of the Uniform Reduction Theorem quoted in [1, p. 291],
including those of analyticity with respect to e and x.

The differential equation in (9.03) is the special form of the example (8.06) with
s 2 and C(e, x)= e -’/’. The results of 8 therefore show that when

(9.04) > max (1/4a , 1/4b :)
resonance occurs except for certain special values of and m. This conclusion is
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consistent with Matkowsky’s criterion, because the outer expansion is found to have the
form

Y E (cx 2c_) e
i=0

in which Co, Cl, Ce, are arbitrary constants, and c-1 0. Thus all coefficients in the
outer expansion are free from singularity everywhere in [a, b].

Let us now suppose that instead of (9.04) the constant w satisfies the condition

(9.05) 0 <w< min (1/4a :, 1/4b :).
On making the substitutions (8.10) with

(9.06) P(x)= -1/4x :,
we transform (9.03)into

(9.07) d2 W/d(2 {e -2(r2- 3e)- 2e-2’/} W;

compare (8.11). This rearranges into the form (5.02)if we take

(9.08) K 3 + 2ee-2’/, (e, K, r)= 0.

The analysis of 5 then applies with each of the error terms r/x((), r/E((), r/a((), and
r/4(() replaced by zero. Furthermore, because the boundary conditions for (9.07) are
given by (8.12) and (8.13), we again see from (5.13) that and m are playing the roles of
and r, respectively, and A =/x 0.
From (5.18) and (9.08) it follows that

-2/e/ r + gree
Hence for small e

cos 2/3 1 + O(e 2e-4’/), sin 2/3 {1 + O(eee-4’/)}ree-2’/.
Next, from (5.33), (5.34), and (9.06), we see that

U(-aff-le)= O{e -’/e

U(/Tx/-) O{e -/2 e-b’-/(2)}O(/-).
Substituting in (5.27) by means of these results and referring to the condition (9.05), we
derive

D -{1 + o (1)}zre

Similarly (5.23) reduces to

DAl={l+o(1)}me

Dividing the last two equations and using the first of (5.03), we obtain

Ax e-e(")/Wx(() -{1+o(1)}
rn eZ’/ e

+ {1+ o (1)}---/e’/ e
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Then letting e 0 and referring to (5.33), (5.34), and (5.35), we see that the right-hand
side vanishes uniformly in [0, b].

For the second term in (5.29) we find that

A2 e-e")/Wz(() -{1 + o(1)}1 e2,/ e
f.7(/7 /2/e) f.7(-a

+{1 +o(1)}me(x2-t’2)/(4)

As e-0, the first term on the right-hand side vanishes uniformly in [0, b], and the
second term vanishes uniformly in [0, bl], where, as before, 0 < bl < b. The correspond-
ing results for the interval [a, 0] may be arrived at in a similar way or by symmetry" we
find that A3 e-P(x)/eW3(() vanishes uniformly in [a, 0], and A4 e-P(x)/eW4(() vanishes
uniformly in [al, 0], where a < a < 0.

The results just obtained show that the system (9.03) never resonates when the
condition (9.05) is satisfied. On the other hand, Matkowsky’s criterion does not
distinguish between the cases (9.04) and (9.05), and would therefore lead to a false
conclusion in the latter case. It is also interesting to note that the system (9.03) satisfies
the infinite set of necessary conditions for resonance found by Lakin [5] and Cook and
Eckhaus [2], irrespective of the value of the positive constantr.

10. Summary and conclusions. In this paper we have studied the asymptotic
behavior, for small e, of the solutions of the boundary-value problem given by (1.01)
and (1.02), with differentiability and other conditions on the coefficients A(e, x) and
B (e, x) stated in the opening paragraph of 2. By transforming the differential equation
into a form resembling Weber’s equation ( 3 and 4), we constructed four asymptotic
solutions, complete with error bounds, two of which are uniformly valid in the interval
0 =< x <-b, and the other two are uniformly valid in the interval a -< x-< 0 ( 5). These
solutions were then combined to satisfy the boundary conditions, and the asymptotic
behavior of the resulting solution as e 0 was examined in the cases A (e, x)< 0 ( 6)
and A (e, x)> 0 ( 7). Particular attention was paid to the phenomenon of resonance,
that is, an unusual lack of decay ( 6) or an unusual growth ( 7) of the solution as e 0.
We showed that in the general case resonance occurs essentially in the same manner as
in the special case in which (1.01) is transformable into Weber’s equation. That is,
corresponding to each value of the positive integer s, there is an infinite set of values of
the parameter x appearing in the expression (2.02) for B(e, x) for which resonance
takes place. The values of depend on e, and are not known explicitly, except in the
case of Weber’s equation. Asymptotic estimates of are supplied by (6.11), in which

e In(l/e).
Next ( 8), we considered the problem in the form proposed originally by Acker-

berg and O’Malley [1], in which the coefficients A (e, x) and B (e, x) are assumed to be
holomorphic functions of e and x. Hitherto, only necessary conditions for resonance
have been found in these circumstances. We completed these results by deriving a
sufficient condition, and we illustrated this condition by two examples. In the conclud-
ing section ( 9) we discussed a formal criterion for resonance that has been proposed
recently, and showed by means of an example that this test is incomplete in its present
form.

We have concentrated on the resonance phenomenon in the present paper, since
this has been the least understood feature of the problem. The separation of the solution
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into boundary layers, which is of physical significance, has been neglected because this
has been discussed fully by earlier writers. Nor did we consider details of the interesting
oscillatory behavior of the solution in the neighborhood of x 0. If desired, all of this
information can be recovered from the uniform asymptotic approximations we have
constructed for the solution.

Finally, we comment that we have restricted attention to a finite interval Is, b l,
since this has been the assumption of earlier writers. However, the theory of differential
equations with coalescing turning points that we have used is also applicable with
unbounded values of the independent variable. In consequence, the corresponding
boundary-value problem with a =-o and b is solvable by similar methods.
Indeed, the analysis in this case is somewhat simpler, because inter alia the values of K

that correspond to resonance are eigenvalues of the system and comprise a discrete set.

Acknowledgments. The author is indebted to Dr. R. E. O’Malley for illuminating
discussions concerning the implications of the analyticity assumption on the coefficients
in the differential equation, and also for providing several references. The author also
thanks Dr. B. J. Matkowsky and the referees for several improvements in the presenta-
tion of the results.
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A PERIODICITY THRESHOLD THEOREM FOR SOME
NONLINEAR INTEGRAL EQUATIONS*

ROGER NUSSBAUM’I"

Abstract. We consider a parametrized family of nonlinear integral equations F,(x)= x which arise in
the theory of epidemics. We study the equations by means of bifurcation theory and establish a best possible
value Zo (a "periodicity threshold") such that for - > ’o the equation has positive, periodic solutions. The
value of ro is determined by the spectral radius r(L,) of L,, where L, is an associated family of linear
operators, so we also study properties of the map - --> r(L,).

Introduction. In a recent paper [2] K. Cooke and J. Kaplan suggested a model for
the spread of a disease in which seasonality was incorporated (as opposed to [1]). If -is a positive constant and f(t, x) is a nonnegative, continuous function which is
w-periodic in t, they were led to consider

(1) x(t) f(s, x(s)) ds.

Cooke and Kaplan then defined a number/3 (dependent on [) such that for each r >/3
equation (1) has a positive solution of period w. However, numerical studies in [2] for
the special case f(s,x)=(l+1/2sin27rs)g(x), where g(x)=x(1-x) for 0-<x-<l and
g(x)=0 otherwise, suggested that positive periodic solutions of (1) exist for ’> 1,
although the number/3 is 2 in this case.

In this paper we shall consider a more general class of integral equations, namely

(2) x(t) P(t-s, z)f(s, x(s)) ds (Fx)(t)

We shall study (2) by means of a global bifurcation theorem and prove the existence of
a positive number z0 such that (2) has a positive periodic solution for z > Zo and will, in
general, have none for -< ’o. In particular we shall prove that ’o 1 for the example
above (see Theorem 3 and Remark 5). In fact our results are more precise than just
showing existence of periodic solutions for - > z0: see Theorem 3.

Typically in bifurcation problems it is assumed that the nonlinear operator F,(x)
has a Fr6chet derivative L, at 0 and that the map z--> L, is at least continuously
Fr6chet differentiable. In the context of the general theory, the novelty of our results
is that the map - -->L is not Fr6chet differentiable. Nevertheless, the map z - r(L)
the spectral radius of L, may be very regular; part of this paper is devoted to proving
this and studying z - r(L,).

The organization of this paper is as follows: In the first section we prove a global
bifurcation theorem which generalizes Theorem 1.3 of [11]. In the second section we
apply the bifurcation theorem to (2). We associate to F, its Fr6chet derivative L,; Zo is
a value of r such .that r(L,) 1. In the third section we study the problem of computing
r(L,), and in the fourth section we consider the differentiability of the map ---> r(L,).
Sections 2, 3 and 4 can be read independently.

1. A global bifurcation theorem. Let X denote a real Banach space. By a "cone"
K in X we shall mean a closed, convex subset K of X such that x K implies that
tx K for all t-> 0 and x K-{0} implies -x K. We shall say the cone is "total" if

* Received by the editors February 26, 1976, and in final revised form May 27, 1977.
t Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903. This work was

supported in part by the National Science Foundation.
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the closed linear span of K is all of X, and we shall always assume our cones are total.
If x and y are elements of X and y-x K, we shall write x =<y. If L: X-X is a
bounded linear operator such that L(K)c K, we shall say that L is "positive". If L2
and L1 are bounded linear maps of X to X, we shall write L1 <L2 if L2-L1 is positive.
If L is a bounded linear operator we shall always write r(L)=spectral radius of
L lim,,-o IlL ’/.

If J=(0, oo) consider a map F: K J-K such that F(0, r)=0. Following
Rabinowitz’s approach [16], we shall study S, the closure in XJ of {(x, ’): x K-
{0}, r sJ, F(x, r)=x}. Motivated by the example of (1) (which we shall eventually
study in the space X of continuous, real-valued functions of period o) we assume

H1. F: K J K is a continuous map which takes bounded sets into precompact
sets and is such that F(0, r)= 0 for all r J. If F(Xk, rk)= Xk for a sequence
such that Xk 0 and "Fk "-’-> 0, then it follows that limk_o

The last part of H1 is a technical condition which will ensure that a set So to be
considered in Theorem 1 is unbounded. The condition can be omitted at the expense
of complicating the statement of Theorem 1.

We also need to assume that F,(x)= F(x, -) has a linearization L, at 0, but the
example of (1) again shows that L, cannot be assumed to be of a simple form like
L, ’B. Thus we suppose

H2. For each "J there exists a compact, positive linear operator L, with the
property that for any compact interval [c,d],limo(llxll-)
(llF(x, 0 uniformly in - [c, d]. The map - L is continuous
with respect to the linear operator norm. Recall that a compact operator is
one taking bounded sets to precompact sets.

Finally we shall need a technical condition on the spectral properties of the family

H3. There exists a countable family A c J with no finite accumulation point such
that x L(x) for x K -{0} and - A.

Remark 1. If K is a total cone in a Banach X and L is a compact, positive linear
operator with positive spectral radius r, then the Krein-Rutman theorem implies that
there exists an x K-{0} such that Lx rx; see the appendix of [17] for details. In
particular, H3 then implies that A1 ={r J" r(L)=spectral radius of L 1} has no
finite accumulation points, since A A.

Remark 2. Simple examples with positive matrices show that A is, in general,
smaller than {-" 1 is an eigenvalue of L,}. This is one advantage of working in K.

If H2 and H3 hold, then a direct argument shows that for each - A, there exists a
positive number p(’) such that F(x,-)x for 0<llxll_-<p( ) and x6K. If Bp=
{x e g’llxll<p} and if iK(F,, Bo,) denotes the fixed point index of F, on
(see [12] for a summary of the properties of the fixed point index and [13] for
more details), then just as in [11, p. 328], we define z(’o)=
lim_,, i:(F,, Bp,))-lim,_.,- ix(F, Bo,). The homotopy property of the fixed point
index implies that A(ro)= 0 for ’0 A.

PROPOSITION 1. Assume that H1, H2 and H3 hold. If 7o A, there exists 6 > 0
such that one of three possibilities hold" (a) r(L,) > 1 for 7o < r < 7o + 6 and r(L,) < 1 for
’o- 6 < r < 70, (b) r(L) < 1 for 7o < " < ’o + 6 and r(L) > 1 for ’o- < z < ’o or (c)
r(L,)- 1 is of constant sign for 0 < It- r01 < . Furthermore, in case (a) we have
A(ro) 1, in case (b) A(z0)= 1 and in case (c) A(ro)= 0.

Proof. By using the homotopy and additivity properties of the fixed point index
together with H2 and H3, we find that iK(F,, Bo,)= iK(L,, Bo,)). It follows from H3
and Remark 1 that there exists 3>0 such that L,(x)x for 0<lr-rol-_<6 and
x eK-{0} and r(L,)# 1 for 0<17-7o1=<6. The homotopy property shows that
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iK (L,, Bp(,)) is constant for Zo < r < z0 + 6 and constant for ’o- 6 _-< z < Zo. To complete
the proof it suffices to show that if L is a compact, positive linear operator such that
Lx#x for xK-{0} and B- x gllx[l<p}, then i:(L,B)=I if r(L)<l and
iK(L, B)= 0 if r(L)> 1. If r(L)< 1, consider the homotopy tL for 0_-< _-< 1. If tLx x
for Ilxll-o and 0_-<t- 1, we find that r(L) 1, and we have a contradiction. Thus the
homotopy property implies that iK (L, B) iK (Lo, B) 1, where Lox 0 for all x K.

If r(L)= r > 1, use the Krein-Rutman theorem to select xoK-{0} such that
Lxo rxo. Consider the homotopy Ls(x)= Lx + SXo for s->0. Exactly the argument
used in the final paragraph on p. 329 of [11] shows that Ls(x) # x for Ilxll- , x g and
s >-0. It follows from Lemma 1.1 of [14] that iI((L,B)=O.

With the aid of Proposition 1, our next theorem is a direct consequence of
Theorem 1.2 in 11 ].

THEOREM 1. Suppose that H1, H2, and H3 hold; for some Zo A suppose that
r(L) > 1 for " > ’o and z near ’o and r(L) < 1 for " < Zo and near Zo (or vice versa).
Let S denote the closure in K x J of {(x, z) K x J. x # 0 and F(x, r) x} and So denote
the maximal connected component of S which contains (0, o). Then it follows that So is
nonempty and either So is unbounded or So contains a point (0, Zl) with Zl A and
’1 # to. If So is bounded and Ao denotes the finite set of r A such that (0, z) So, it

follows that Ao A(z) 0.
Theorem 1 is proved with the aid of the fixed point index, which can be viewed as

generalizing the Leray-Schauder degree. The idea of using the Leray-Schauder
degree in bifurcation theory can be found in Krasnosel’skii [9]. An important
improvement of Krasnosel’skii’s ideas has been given by Rabinowitz [16], whose work
provides the model for the abstract bifurcation theorems in [11]. A less general
version of the formula Ao A0-)= 0 is implicit in Rabinowitz’s work and has been
remarked explicitly by E. N. Dancer [5] and J. Ize [7].

If one is only interested in the question of existence of a nonzero solution for a
given - J, the following theorem suffices for our applications here.

THEOREM 2. Let K be a total cone in a Banach space X and F: K-K a
continuous, compact (nonlinear) map such that F(O)= O. Assume that there exists a
bounded, compact, positive linear map L such that F(x)=L(x)+R(x), where
limllxll_,o[[[R(x)l[/llx[[]-O. Suppose that r(L)> 1 and Lx #x for x K-{0}. Finally,
assume that there exists a constantMsuch that x tF(x) 0 for IIx II-M and 0 <- <- 1.
Then F(x x for some x K with 0 < IIx < M.

Proof. There exists a p > 0 such that if Bp {x K" Ilxll <}, then F has no fixed
points in Bo-{0} and i(F, Bo)= i(L, Bo). The argument mentioned in the proof of
Proposition 1 shows that iK(L, Bo) 0. The homotopy tF(x) for 0-<t--< 1 shows that
iK(F, BM) 1. If U={x K’p <llxll<M), it follows from the additivity property of
the index that iK (F, U)= 1 and hence that F has a fixed point x U. [-1

We also shall need a condition which assures that a map F" K-K has no
nonzero fixed point.

PROPOSITION 2. Let K be a cone in a Banach space X and F" K-.K a map.
Assume that there exists a positive linear map L" K
L(x) for all x K. Then 0 is the only fixed point of F.

Proof. An easy induction argument shows that

(3) Fn(x)<-Zn(x)

for every positive integer n and every x e K. If F(x)= x for x e K-{0}, equation (3)
implies that Ln(x)-xeK for all n. Since r(L)<l, it follows that Ln(x)-O and
-x e K. This is a contradiction.
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2. An integral equation from the theory of epidemics. We shall use Theorems 1
and 2 to study equation (2). Since we shall always be looking for solutions of period o,
henceforth we shall always denote by X the Banach space of continuous, real-valued
functions x(t) which are periodic of period o in the sup norm; elements of X will be
viewed as defined on all of R. Similarly, we shall denote by Y the square-integrable,
real-valued functions y(t) on [0, w] in the L2 norm; again these are extended to R by
periodicity. We shall write and for the complexifications of X and Y respec-
tively.

We suppose about f that
H4. f: R R/R/ is a continuous function such that f(s, 0)=0 for all s and

f(s + w, x) f(s, x) for all (s, x) R R /. There exists a continuous, strictly
positive, periodic function a(s) of period o such that limx_.O If(s, x)/x]=
a(s) uniformly in s. Finally, we suppose limx_.oo If(s, x)/x] 0, uniformly in
S.

There is a great deal of freedom possible in choice of hypotheses on P(u, 7-). For
simplicity we restrict ourselves to the following assumptions"

H5. P: R R/-R / is a bounded, nonnegative, continuous function such that
P(u, z)> 0 for u e [0, r] and P(u, 7-1) -> P(u, 7"2) whenever 7"1 => 7"2-. Further-
more, if a(s) is the function in H4, lim,_(inf,I[_,P(t-s, 7")a(s)ds) is
strictly greater than one.

Let K2 denote the cone of nonnegative functions in Y and K1 the cone of
nonnegative functions in X (X and Y as in the first paragraph of this section). Given
y K2, define a function F: K2 K1 by (F,y)(t) j_, P(t s, 7")f(s, y(s)) ds z(t). It is
a simple calculation, which we leave to the reader, to show that z is periodic of period
(.0.

Note that in the proof of Lemma 1 below, the same symbol is used for the norm in
X and Y.

LEMMA 1. Assume that H4 and H5 are satisfied and define F(y, 7")= F(y). Then
F is a continuous map of K2 R /

to K1 and F takes bounded sets in K2 R /
to

precompact sets in K1. If H4 is weakened by only assuming that f: R R/R+ is
continuous and of period oo in its first variable, then F takes bounded sets in K1 R /

to
precompact sets in K1, and F is continuous.

Proof. If x6X or Y define (Gx)(s)=f(s,x(s)). If H4 holds, then there exist
constants A and B such that f(s, x)<=A +Bx and using continuity of f one can show
that G defines a continuous map of K2 to K2 which takes bounded sets to bounded
sets. If H4 does not hold, G defines a continuous map from K1 to K2 which takes
bounded sets to bounded sets. Define a linear map A,: Y-X by (Az)(t)=
[_P(t-s, 7")z(s) ds. Since F,=AG, it suffices to show that A(z, 7") A(z) defines a
continuous map from Y R + to X which takes bounded sets to precompact sets.

Let S be a bounded set in Y xR+ and select a constant M such that
supt ([_, yZ(s)ds)<-M and 7"_<-M whenever (y, 7") S. From H5 it follows that there is
a constant C such that P(u, ’) <- C for all (u, ). If R, tr > 0 and Ilzll <- M, it follows
by the Cauchy-Schwarz inequality that for an integer M’ with M’to _-> tr we have

(4) P(t- s, -)z(s) ds <- CM’r/llzll

Inequality (4) shows that A(S) is bounded in X. To prove A(S) is an equicontinuous
family, select an integer N such that Nw =>M and select 6 > 0 such that IP(ul, 7"1)-
P(u2,2)I<[e/(2N)](M-/2) whenever lulU.2J< and ]7"1-7"21<6 and IluII-<M,
II  II--<M, Aso select 6 small enough that CM6 1/2 < e/4. It then follows that if (z, 7") S
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and 0 < t2- tl < t, we have

P(t-s, ’)z(s) ds- P(t-s, ’)z(s) ds
2--"1"

<-_ [P(ta-s, z)]z(s) ds + (P(tl-S, z)-P(t2-s, z))z(s) ds
tl-

()
+ P(t-s, r)z(s)ds NC/M++C

It follows that A(S) is precompact. The proof that A is continuous follows by
estimates like (5), and we leave it to the reader.

Results like Lemma 1 are familiar: see [9, Chap. 1]. Probably Lemma 1 exists in
explicit form somewhere in the literature.
LA 2. Let[: R xR+R+ be a map which satisfies H4 exceptor Ne assump-

tion that lim(s,x)/x]=O uniformly in s. Suppose that H5 is saaNed. en it

ollows that F: K K sasfies H1. g H4 is saNed, Fthought 4as a map[tomK
K again sagsfies H1.

Pro@ In either case Lemma 1 shows that F is a continuous, compact map from

K x R + to ., where ] equals 1 or 2. It remains to show that if

(6) F(x, x
where 0 and x e g-{0}, then IIxl. Suppose first that satisfies the
weakened form of H4, and x eKe. Select t such that
P(u, )N C for all (u, ), we obtain

(7) IIxll P(t -s, rg(s, x(s)) ds
k --k

where we define M supS(s, x): 0x llxll, sR}. If IIxll is bounded from some
subsequence x (which we identify with x by relabeling), then (7) implies that

IIxll0. However, the weakened form of H4 shows that there exists a positive
constant Ca such that

(8) M Cllxll
if IIxll is small enough. If CCr < 1, inequalities (7) and (8) give a contradiction.

If H4 is satisfied, there exists a constant B (different from that in the proof of
Lemma 1) such that f(s, y)By, for all (s, y) R x R +. If (x, r) is as above with

x 6 K2-{0}, the Cauchy-Schwarz inequality gives (for r <)

(9) Ix(t)l BC2/2
Squaring both sides of (9) and integrating, we obtain a contradiction if B2C2r <
1.

The proof of Lemma 2 actually shows that if H4 and H5 are satisfied and the
constants B and C are as above that the equation F(x,
with x Ka-{0} and r R + if r < (BC)- and no solution (x, r) with x K2-{0} if
r < (BC)-We now assume that H4 and H5 hold and define a linear map L, by

(10) (L,y)(t) P(t-s, r)a(s)y(s) ds.
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Exactly the same argument used in Lemma 1 shows that L defines a bounded
compact linear map from Y to X such that L(K2)cK1. If B(Y,X) denotes the
Banach space of bounded linear operators from Y to X in the operator norm, then it
is easy to show that the map -L B(Y, X) is continuous. Since X is continuously
imbedded in Y, the above remarks show that L can be considered as a positive,
compact linear operator from X to X or from Y to Y and that in either case - -L is
continuous in the operator norm. Finally, it is not hard to show that if we work in X
and [c, d] denotes a bounded interval, then

lim (llxll- )(llf(x,

uniformly in " [c, d] (note that this may not be true in Y). Thus we obtain the
following lemma, whose detailed proof we leave to the reader.

LEMMA 3. Assume H4 and H5 and consider F as a map from KI to K with
F(x, z) =- F,(x) and L as a map from X to X. Then H2 is satisfied.

At this point we need to recall a definition and a result from [10, Chap. 2].
DEFINITION 1. Let C be a cone in a Banach space Z and L: Z-Z a bounded

linear operator such that L(C)c C. If Uo6 C-{0}, L is called uo-positive if for every
x C-{0}, there exist an integer n and positive constants a and/3 (all dependent on
x) such that

aUo <= L" (x <- Uo.
Our next lemma follows directly from the results in Chapter 2 of [10] and the

Krein-Rutman theorem already mentioned in Remark 1. In the statement of Lemma
4, recall that a cone K in a Banach space X is called "reproducing" if X
{x-y :x, y e K}. The cones K1 and K2 are clearly reproducing.

LEMMA 4 (see [10, Chap. 2]). Let C be a reproducing cone in a Banach space Z
and L: Z-Z a compact linear operator such that L(C) C. Assume that L is Uo-
positive for some Uoe C-{0}. Then if r(L)= r, we have r >0, and if Lx Ax for
x eK-{0}, it follows that =r. Furthermore, {x eZ: (rI-L)"x =0 for some positive
integer n } is one dimensional and contains a nonzero element of C.

The linear maps we shall consider are all uo-positive; specifically we have
LEMMA 5. Assume that H4 and H5 hold, define Uo to be the function which is

identically one, and define L, by the formula (10). Then for " > O, L, is uo-positive as a
map from K to Ka or as a map from K2 to K2.

Proof. First take a fixed y e KI-{0}. We have to show that there exist positive
constants a and/3 and an integer n such that

aUo <L" </u-rY 0

If n and a have been found, it suffices to take =llgTIlllyll, If y(to)>0, then by
continuity there exists an e >0 such that y(t)> 0 for [to, to + e]. Since we assume
P(t-s, -)a(s) continuous and strictly positive for t-r<s <-_t and every t, it follows
from the form of (9) that y(t)=(L,y)(t) is strictly positive for t6[to, to+e+r].
Repeating this argument n times, we find that (L’y)(t)= y,(t) is strictly positive for
t [to, to+e +nr]. If n is selected so that nT">w, then by periodicity of yn, y, is
everywhere positive and is continuous, so a exists.

The case of L,: K2 K2 reduces to the previous case if we recall that L, actually is
a continuous map from K2-*K1 and if we show y e K2-{0} implies that L,(y)e
KI-{0}. We leave the details to the reader. I-1
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Lemmas 4 and 5 imply that if A {r e (0, c)- Lx x for some x K1-{0}}, then
A= {’" r(L,)= 1}. As we shall now show, the restrictions on P(u, ’) were made to
ensure that r(L,) is a strictly increasing, continuous function of -, so that A consists of
at most one point. One can weaken the assumptions on P (and in fact we have omitted
some interesting examples), but then the determination of A becomes more difficult.

LEMMA 6. Assume that H4 and H5 hold and define L," X -.Xby the formula (9).
Then it follows that the map " r(L,) is a strictly increasing, continuous function of "for
" > 0 such that lim_.o r(L,) > 1 (possibly +oo).

Proof. For 0 < " < r, we have to show that r(L) rl < r(L) r2. According to
Lemma 4 there exists an Xl KI-{0} such that L,Xl =rlxl and rl >0. Since L,"(Xl)
rxl, Lemma 5 implies that there exist positive constants b and c such that

(11) b<=xl(t)<=c.

H4 and H5 imply that there exists a positive constant a such that

(12) P(t-s, r)a(s)>-a

for s [t--, t-" + A], where A (o--’)/2 and the constant a is independent of t. If
we recall that P(u, r)>-P(u, ’) and apply (11) and (12) we obtain

t-"

(Lxl)(t)-(LXl)(t)/ P(t-s, r)a(S)Xl(S) ds

(13)
>- (rlx 1)(t) + (ba A) __> (px 1)(t)

where O rl -bc-lA. It follows from (13) that

(14) > "xL,x p 1.

If the spectral radius of L were less than p, then (14) would imply that --Xl K1, a
contradiction. Thus we have r(L)>=p > rl.

The kind of argument used above also shows that given e > 0 and ’, X and rl as
above, there exists a 6 > 0 such that for -- 6 < r =< - one has

(15) LoXl >-(rl-e)Xl.

It follows that r(L) >= rl e for " 6 < r =< ’.

It is true in general that for a continuous family L of bounded linear operators

(16) lim sup r(L) <-_r(L,)

(see [6, Thm. 3.1]). On the other hand, the remarks above show that

(17) lim inf r(L) >= r(L).

The inequalities (16) and (17) yield the continuity of r(L).
The final condition in H5 ensures that

(18) Le >_--Ae

for - large enough; here A is a constant greater than one and e is the function
identically one. It follows that r(L)->A > 1 for - large. [-I

We can now prove an existence theorem for positive periodic solutions of (2).
THEOREM 3. Assume that H4 and H5 hold and let L" X-Xbe defined by (10).

There exists a unique o > 0 such that r(L) spectral radius ofL satisfies r(L) < 1, for
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" < ’o, r(L,o) 1 and r(L,) > 1 ]:or ->’o. If S denotes the closure in Ka (0, o) of
{(x, r): x K1-{0}, " > 0, F(x, -)= x} and So denotes the connected component of S
which contains (0, ’o), then So is nonempty and unbounded. The set S contains no
element of the form (0, ’) for " ’o, and ifJ is any bounded subinterval of (0, c), the set
S (3 (K1 J) is bounded. If - > to, there exists a nonzero solution qb Ka of the equation
F,(b) b.

Proof. We must show that with F, and L, defined as in this section the assump-
tions H1, H2 and H3 are satisfied. Lemmas 2 and 3 show that H2 and H3 hold.
Lemmas 4 and 5 show that the set A of H3 consists in our case of the unique point ’o
such that r(L,o)= 1. Furthermore, Lemmas 1 and 5 show that A(-o)=-1. It follows
from Theorem 1 that So is unbounded.

If F(Xk, 7"k)-"Xk for a sequence (Xk, q’k) such that limk_ (Xk, "/’k)--(0, "/’) with
Xk 0, then if we define Uk x (llx l1-1) and use H2 we find that

(19) L,(Uk) Uk O.

Since L is compact, we can assume by taking a subsequence that Uk U and L,(u) u.
This is a contradiction unless " ’o.

We must show that if J is a bounded interval, there exists a constant M such that
[[bll_<-M if (ok, ’)S and "rJ. Let A be a constant such that ][L, II<_-A for -eJ and let
e be a number such that eA < 1. One can show (using H4) that there exists a constant
M such that whenever x K1 and Ilxll >--M it follows that

(20) f(s, x(s))

If (6, ’) S and " J, then (20) implies that one must have 11611< M, because if 11611>M
one would have

(21)
11611

<--emll6ll,
a contradiction.

Finally we note that F+(b) b has a nonzero solution for - > +’0. For by the above
remarks, So contains elements (b, +’) with - arbitrarily large or +- arbitrarily close to +’o.

By connectedness of So, for each " > o, So contains an element (b, -); since (0, ’) S,
4,0. t3

Remark 3. In view of Theorem 3 it is reasonable to conjecture that under further
assumptions on f So may in fact be a curve (b(s), ’(s)) with (b(0), -(0))=(0, ’o)
parametrized by some parameter s. We can prove this statement near (0, ’o) by an

argument in the spirit of the Crandall-Rabinowitz work in [3], although the precise
conditions of Theorem 1.7 in [3] are not satisfied: our function F(x, ’) is not twice
continuously Fr6chet differentiable because the map zL Fx(O, ) is not C as a

map into the space of bounded linear maps with the norm topology.
The questions of parametrizing So globally or of proving uniqueness of any

positive solution of F,(p) p for each - > 0 (or for some subset of R +) are interesting
but apparently difficult. We have obtained some uniqueness results in [ 15], which was
written after this paper. The results in [15] prove uniqueness of positive solutions of
(1) for any ->1 for the example f(s,x)=(l+1/2sin2rs)g(x) mentioned in the
Introduction. For this example H. Smith [18] independently proved uniqueness, but
only for the range 1 < - <- 2. However, for many functions f(s, x), the structure of So is
still not well analyzed.
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Remark 4. In general ’o in Theorem 3 is best-possible. Precisely, if [(s, x) _-< a (s)x
for all x >-0, then one can show that

(22) F,(x)<=L,(x)

for any - > 0 and x K. Proposition 2 implies that F, has no nonzero fixed points in K
for - < o.

Remark 5. If the function P is identically one, one can give simple crude
estimates for ’o in Theorem 3. If - =mo observe that L has e as an eigenfunction with
corresponding eigenvalue

(23) r(L,) n a(s) ds

It follows that if n is the first integer such that

(24) 1 <-n a(s) ds

then ’o ((n 1)w, nw with ’o nw if equality holds in (24). Applying this remark to
the example a (s)= (1 + 1/2 sin 27rs) in the Introduction shows that ’o 1 there.

3. Estimating the spectral radius of L.. We shall consider here the problem of
calculating r(L,) to within a specified accuracy. Our approach will be to reduce the
problem to that of computing r(P,L), where P, is a finite dimensional projection. The
basic difficulties are already apparent for

(25) (Lx)(t) a(s)x(s) ds

where x X and a and X are as before, and for simplicity we shall restrict ourselves to
(25).

We begin by defining a sequence {P,} of finite dimensional linear projections on
the space X of continuous, w-periodic functions. Given an integer n => 1 define
t=jo/n for 0=<j_-<n. IfxX, define P,x=y by y(ti)=x(t) for 0=</’=<n and

t]+l-- t t- ti(26) y (t)
tj+l tj

y (tj) + y (ti+ 1)
t+ t

for ti <=t tj+l. Observe that P, is a linear projection whose range is n dimensional
and that P,(K)c K.

LEMMA 7. Let a(s) be a continuous, positive periodic function and define aO’)=
inft {[_,a(s) ds} and/30") supt {[_, a(s) ds}. IlL, is defined by (25) for z >0, then for
n > 1 the spectral radii ofL and P,L satisfy

c (-) -< r(L) _-< fl (r), a (-) < r(P,,L) <= (’).

Proof. If L is any positive linear operator on X, then

(27) r(L) lim IIL II’/ lim IlLel[1/
k--->oo

where e is the function identically one. One can see that

aO’)e <=L(e) <=O’)e
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and since Pne e, this implies that

a(r)e <-P,L(e) <-[3(r)e.

Using these estimates and iterating k times with the operators L, and PnL respec-
tively yields

(a (z))% <=L(e)-< (/3 (z))%,
(28)

(a (z))% <- (PnL,) (e) (/3 (z))e.
By combining (27) and (28) we obtain the lemma.

To state the next lemma we need a definition.
DEFINrrION 2. If M => 1 is a constant and K is the cone of nonnegative functions

in X, define Kt by Kt {x K: max, x (t) -<M min, x (t)}.
It is easy to show that Kt is a cone in X, and with a little more work one can show

that Kt is total if M > 1.
LEMMA 8. If the projections {P,} are defined as before, then Pn(KI) c Ktfor each

n >- 1 andM >- 1. Ifj is a positive integer and jto <- z < (j + 1)to, then L(K) Kt, where
M (j+ 1)/f.

Proof. The projections P,, preserve the ordering induced by K, so if x e K and
ae _-<x <_-/3e, it follows that ae aPne <-Pnx <-Be. Applying this to the case x e Kt,
a mint x(t) and/3 maxt x(t), we obtain the first part of lemma.

To prove the second part, observe that for x eX

y a(s)x(s) as a(s)x(s) ds < a(s)x(s) ds

(29)
<-(/" / 1) a(s)x(s) ds.

We have already seen that L has a unique positive eigenvector of norm one with
corresponding eigenvalue r(L,). The next proposition shows that the same thing is
true for P,L if to/n < r (if to/n >z, there may be nonzero vectors x e K such that
(P,L,)(x 0).

PROPOSITION. Let a be a positive, continuous periodic function of period to and
suppose L, is defined by (25). If to/n < r, there exists a unique x K-{0} such that
[[x,[I 1 and PnLxn hnx, ;h,, is necessarily r(P,L,).

Proof. By the remarks in the previous section, it suffices to show PnL, is e-
bounded. To prove e-boundedness, it suffices to show that if x K-{0}, then
(P,L,) (x) is strictly positive everywhere for some integer k. Since x eK -{0}, select s
such that x(s) >0. The form of L,x y shows that y is strictly positive on [s, s +’], and
since z >to there must exist a point t =jto/n [s, s +z]. This shows that P,y is
positive at ti. Assume inductively that we have shown (P,L,) (x) is strictly positive on
some interval [t, t+,,-1]. Then the same reasoning as above shows (P,L)"+1 is strictly
positive on [ti, ti+,,], so that (P,L,)n+l(x) is everywhere strictly positive. !-]

Because of the above proposition, given a fixed -> 0 and n so large that to/n < -we can define x, to be the unique element of K of norm one such that P,L,x, A,xn
(An r(P,L,)) and x to be the unique element of K of norm one such that Lx hi. Of
course x and Xn depend on -.

We shall see that it is crucial for our problem to estimate the minimum of x, and
x, so we make the following definition.

DEFINITION 3. If Xn and x are as above, define k, (z) (mint xn (t))-1 and
k(z) (mint x(t))-1.
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LEMMA 9. Let a(s) be as in Lemma 7 and let a(-) and (-) be defined as in
Lemma 7. Ifjo -<-< (j + 1)w for a positive integer j, then k(-) <-(j + 1)/j and k,,(-) <=
(j + 1)/j for o/n <. If 0<-<o, it follows that k(-)<-_exp[llal[o/(aO-))] and if also
Ilalloo/(na(z)) < 1/2, then k,,(r) =<exp

Proof. If jw <= " < (j + 1)w and M ( + 1)/j, then Lemma 8 implies that x,
-P,Lx, KM and x A-L,x KM, so the first part of the lemma is immediate.

If 0 < " < w, we have that

X(t) =A -1 a(s)x(s)ds

where , r(L) and a(’)-<,. Differentiating the above equation and using the fact
that x (s)> 0 for all s gives

x’(t) A-a[a(t)x(t)-a(t-’r)x(t-’r)] <= l)x(t).(30)

Suppose x has its minimum at to. Then the equation

implies that for to =<

(31) x(t)<=X(to)exp --d--(t-to)
Since x is periodic of period w, equation (31) gives the estimate on k (z).

The argument for k,, (r) follows the same outline, but with some technical com-
plications. Assume that [lal[w/(naO’))<1/2 (which implies w/n <) and for positive
integers j define ti =jw/n. We know that x, is linear on each interval Its, t+a] and that

-1

x(/)=() [X(t+)-x(t)] fortNtNt+.

The definitions of Xn, A r(PL) and P, yield

t+

Xn(t]+l) A a(s)x.(s) ds,
dtj+lT

x(t) 2 a(s)x(s) s.

ese equations give that

x(t+)- x(tl 2 a(s)x(s) s- a(s)x(s) s

2 a(s)x,(s)ds

It follows from the above inequality that

(/n)-[x.(t+)-x.(t)]xyllall max (x,(t), x,(t+)).
If x, (-)x,(ti+), the previous inequality implies

x.(t+) x.(t+)+x.(t)
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and since we are assuming Ilalko/(n())< 1/2 we obtain

xn(ty+l) <=2Xn(ly),

which is clearly also true if x.(ti)>x.(ty+l). Thus we find that if x.(t)<-x.(ti+l) and

ti <-_t<-ti+l we have

(32) x ’(t) <=-: (t)

and this inequality is trivially valid if x.(t)> xn(ti+).
Now suppose that Xn has its minimum at tk. By using inequality (32) (recalling that

An >-a(r)), we easily obtain as before that

xn (t)--<xn (tk) exp/| 2[[al[(t- t),]\
\ /

and using the periodicity of xn, we obtain from this the estimate on kn (z). ]
Remark 6. The estimate in Lemma 9 for k (r) approaches infinity as - 0. If x,

denotes the unique normalized positive eigenvector of L, x, e if a is a constant
function and k (-)= 1 in that case. If a is not a constant function, one can show that
there does not exist a convergent sequence (in X) of eigenvectors x. with ’n 0. This
suggests k 0") may behave badly as - 0, but we have no sharp results on the behavior
of k(r) for small z. However, we are primarily interested in finding r such that
r(L) 1, and for these purposes we can restrict attention to - such that fl(-)-> 1. For
this range of z, Lemma 9 provides a computable constant k such that k(z)<=k and
kn(r)<=k.

Our next lemma is a simple application of the mean value theorem which we
leave to the reader.

LEMMA 10. Suppose thatx X, x is differentiable and ]x’(t)-x’(s)l <= CIt-sl for all
t, s. Then we have

IIP.x -xll< (C/2)(o/n 2.
We are now in a position to prove an approximation theorem for r(L).
THEOREM 4. Let a be a positive periodic function and assume that a is Lipschitzian

with Lipschitz constant C. Define a(z) and J 0") as in the statement of Lemma 7 and
k (r) andkn (r) as inDefinition 3. (Recall thatLemma9 gives estimates for k (z) and kn (r)).
Then it follows that

r(L) >= r(PnL) [C+]()Zkn (’),

r(L)<-r(PnL)+ C +--)j k (’r).

Proof. Suppose hx Lx for x 6K, Ilxll a. If y Lx, then y is differentiable
everywhere and

y’(t) a(t)x(t)-a(t--)x(t--).
It follows from the above equation that

ly’(t)-y’(s)[ <[a(t)-a(s)[ [x(t)l+la(s)[ [x(t)-x(s){
(33) +[a(t-r)-a(s-z)[ Ix(t- -)[

+ [a(s- -)1 [x(t--)-x(s--)[.
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Since Ix’(t)l (1/h)ly’(t)l Ilall/((z)), inequality (33)implies that

(34) ly’(t)- y’(s)l_--< 2

Lemma 10 and inequality (34) imply that

(35) []P.y yl]_-< C(o/n)=.
Inequality (35) and the definition of k0") now give that

(36) P.Lx >= Ax en >= (A e.k O’))x.

Since PnL. is a positive operator, the inequality (36) implies that

(37) r(PL) >-_ r(L) e.k O’),

which is the second inequality in the statement of Theorem 4.
To prove the remaining inequality, let Xn denote the normalized eigenvector of

PnL, in K and write Yn Lxn. If one recalls that the argument used in Lemma 9 shows
that

for t
(/" + 1)w

then essentially the same argument used above shows

]y ’,(t) y ’,(s)] =< 2 C a,i)lt-sl.
Lemma 10 now implies that (writing h. r(PnL.))

IIP.y y.ll-- II.x.- g.x.II <= c

This implies that

Ln >= XnX,, 6n >= [An 6.kn (z)]x,,,

and since L, is a positive linear operator we conclude that

[ [[a[[]() 2

,r,
r()-> r(P,L)- C +--W,_l . 0").

Remark 7. To compute the eigenvalues of PnL, let Xn Pn (X)= an n dimen-
sional space and find the eigenvalues of PnLIX,,, an n n matrix. This reduces the
question to an algebraic one. However, the matrix for PnL, will in general have no
nonzero entries even for a simple function like a(s) c + d sin 27rs, so the method may
be unsuitable for large n. By exploiting the fact that L: K-KM for -_->o, it is
possible (for z->o) to give approximation theorems of the type [r(OnL)-r(L)[ <-
Men, where {Qn} is a sequence of finite dimensional linear projections such that
[[OnL-L[I e 0 and/" is a fixed positive integer. If a is Lipschitzian, one can take,
for example, j to be 2 and On to be the orthogonal projection (considered as a map of
X into X) onto the span of cos kx, sin kx, 0 <-k <= n. The matrix QnL may be simpler
than PnL. For reasons of length we omit details.
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4. Differentiability of the map a-- r(L). Consider a linear map L: X--)X (a
map more general than in 2) defined by

t--g(’)

(38) (Lx)(t) P(t-s, r)a(s)x(s) ds.

We assume about the functions a, P and g in (38)
H6. a: I is a C" (n -> 0), strictly positive periodic function of period to. The

map P: +-R is such that (O/Os)J(O/or)kp(s, ’) exists and is continuous
for ] + k _-< n + 1, and P is bounded, nonnegative and strictly positive for
s (g(r), -). The function g: R+I+ is Cn+l and 0-<g(-)< for z>0.

We shall prove that under assumption H6 the map - r(L,) is C"/a. Our interest
in this question arises from several sources. For instance, consider a mild generaliza-
tion of equations in 2:

x(t)= f(s,x(sllds.

To apply Theorem 1 to this equation, we have to know that if

t--’/2

A {r: r(L.)= 1}, where (Lx)(t)= a(s)x(s) ds,
t--

then A has no finite accumulation points. However, it is unclear whether r(L,) is a
monotonic increasing function of - in this situation, and investigating the structure of
A is much harder than in 2. Information about derivatives of r(L,) helps in studying
the structure of A. Of course if one could establish real analyticity of r(L,) for a, g and
P real analytic, A would necessarily have no accumulation points, but calculations for
the simple case g 0, P-= 1 and a (s) 1 + b sin 7rs with 0 < Ibl < 1 suggest that real
analyticity may not hold, although we have no proof yet.

The question of differentiability also arises in a more general model for epidemics
suggested by H. Smith [18]. Smith is led to the linear map

(L,ox)(t) a(s)P(t-s)x(s) as

where 0<a </3, a is as in H6 and P(u)>-6 >0 for all u >-0. For each a >0 one
defines fl(a)=/3 to be the unique/3 such that r(L,,t)= 1, and one is interested in
properties of the map/3(a). The techniques we develop here can be used to show
c /3(a) is C"/a if a and P are C and to study other properties of/3 (a), although we
do not pursue this here.

The proof we shall give of differentiability is rather long, and before embarking
on it we should mention the technical difficulties which arise even for P 1 and g 0.
In this case the map r-L is not Fr6chet differentiable (in the norm topology for
operators) even if a(s) is a positive constant. If a(s) is not a constant, the operators L,
and L do not in general commute. Finally, the operator L is not normal (for
nonconstant functions a) when considered on the Hilbert space L2(a(s)ds) of square-
integrable to-periodic functions x with norm

x(s)a(s) ds
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which seems the natural Hilbert space in which to work. The adjoint L* of Lr is

(L*x)(t) j a(s)x(s) as,

which need not commute with
We now begin the proof. The same sort of argument used 2 shows that Lr is

e-bounded (e is the function identically one) if H6 is satisfied. It follows from Lemma
4 that if h r(Lr), then U j_>l N((A -Lr)) =the generalized null space of h -Lr is one
dimensional. If X denotes the complexification of X, Lr is defined in the natural way
on X and if F is a simple closed curve in the complex plane which contains no elements
of the spectrum of Lr, one can define a linear projection Q by

(39) Or - (r-Lr)-I dr.

If D denotes the interior of F and if h r(Lr) is the only point of the spectrum of Lr in
D, it is known (see i-8, pp. 178-181]) that R(Or); the range of Or, is the generalized
null space of h -Lr. Using this fact and Theorem 6.17 (on p. 178 of [8]) one also sees
that if W is the range of h -L in 2 and S h -Lr[ W, then W has codimension one
and S is one-to-one and onto.

Our next lemma will be convenient in studying the projections Qr; the result is
known but we include a proof for completeness.

LEMMA 11. Let P1 and P2 be bounded linear projections on a Banach space Z and
denote their ranges by R1 and R2. Then if IlP1-P2ll< 1, dimRl=dimR2 (if one is

infinite dimensional, both are).
Proof. A ! + (P2-P1) and B I + (P1-P2) are one-to-one maps of X onto X,

because IIP - P II < 1. Since A(R 1) (22 R2 and B(R2) c R 1, it follows that dim R1 --<
dim R2 and dim R2 =< dim R 1. l-1

LEMMA 12. Assume H6, let r be a fixed positive number and let A r(L) with
c.orresponding positive eigenvector Xo or norm one. Define W to be the range ofA L in
X and S-1= A-LIW (as a map of Wonto W). Letfbe a continuous linearfunctional
such that f(Xo)= 1 and flW 0 and define Q(x)= x-f(X)Xo. Let F denote a circle of

1/2 1/2raaius r (11/111/=)(11OII /11 11 )- (llsll)- about A in C. Then -L is one-to-one, onto
X if F and

(40) IIL-LII < (llsll)-l(llOII ’/= + Ilfll/=)-== c-
Further, if J is an interval of reals containing o" such that (40) holds .for r J and if

Or is defined by (39), then Or has one dimensional range for r J.
Proof. Suppose that ((-L)x =y for sr F. We can write x axo+ u and y

bxo + v, where u, v W. The equation becomes

(41)

Solving (41) gives

a(-h)xo+S-[I + (’-h)S]u bxo+v.

b
(42) x ._A.Xo+[I +((-A)S]-Sv

1
[I + (sr- A)S]-1 < .,,,,,,, bxo=f(y) and

1

and since

v o(y),
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we obtain

(43)
1-rilSllJLr

Simplifying the bracketed expression on the right side of (43) gives

(44)

If we write

" L. [I (L L)(" L)-a](sr L)

and assume that (40) holds, then sr-L, is a product of invertible operators and so
invertible.

To prove dim R(Q,)= 1 for -J, note that - Q, is continuous in the norm
topology. Thus if for each nonnegative integer n (including n +oo) we define
E, b" J: dim R(Q,)= n}, Lemma 11 implies E,, is open (as a subset of J). Thus E1
is nonempty (o-6E1), open and closed (it is the complement in J of U ,,,1E,). Since J
is connected, E J. l-I

Now let notation and assumptions be as in the statement and proof of Lemma 12
and let J1 be an open interval containing o- such that (40) holds and such that

(45) IIZ.-Lll<e
for ’eJa, where e will be selected later. According to Lemma 12, R(O) is one
dimensional, and since L,O, OL, it follows that if x, is a nonzero element of
R (O), x is an eigenvector of L with eigenvalue A,. One can easily show (we omit the
proof) that Q(X)cX, so that if O(xo):/: O, then O(xo)X is an eigenvector of L
with real eigenvalue A,. However, if inequality (45) holds we have

(46)
O. i (-L’)-I[I-(L-L’)(-L’)-I]- d(

If C is as in inequality (40) and 6 > 0 is such that 6 < Ilfll then (46) implies that if
(eC2)(1-eC)- < 1 we have

(47)

Since we have

(48) f(G(Xo)) >f(OXo)-llfll Ilxoll- 1  llfll > o
it follows that Q.(xo):/: 0 and that

(49) Z [flL,Q,(xo))][f(Qo)]-1.
We claim that Q,(xo) is an element of the interior of K for all -eJa. This is

certainly true for r near o’, since Xoe/. To prove it in general suppose not, and let
’1 e J1 be the first reJ1 such that ’>tr and Q,(xo):I. By our remarks Q,,(Xo)=Z -0, z K and z is an eigenvector of L,I. However, since L,I is e-positive, we must have
z e/, a contradiction.

Since Q,(xo) Ii2 for -e J1 and since it is an eigenvector of L, it follows that
A, r(L,). Thus to prove that r(L,) is a C"+1 function of -, it suffices to show that
Q,(x0). and L,Q,(xo) are C"/1 functions of -. Equality (46) provides an expression for
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Q(xo); to study LQ.(xo)observe that for r J1 we have

(50)

We need some further notation. For simplicity we shall henceforth write X
instead of X. For each nonnegative integer/" let X. denote the Banach space of/" times
continuously differentiable, complex-valued periodic functions of period w and set
X-1 Xo X; we define the norm on X. by

][x[. sup [x(m)(t)].

If L: X- Xk is a bounded linear operator, we shall write IILI.,, to denote the norm of
L as an element of B(X, Xk), the space of bounded linear operators from X. to X,.

Our next lemma follows essentially by a direct (though messy) differentiation.
LEMMA 13. Let notation be as above and suppose that g: /--> /

is C /1, a: -->

is C" and periodic ofperiod to and P: ff+- is such that (O/Os)J(O/Or)P(s, ) exists
and is continuous for + k -< n + 1 (weaker assumptions than in H6). If L, is defined by
(38), it follows that L, B(X.,X.+I) for O<=]<=n and L, 6B(X,X.) for]=n+l. If
u X ]:or <-_ n and 0 <-_ m <-+ 1, en the map - --> L,u X.+I-,,, has m derivatives in
the X’/l-m topology and (d )/dr ))(L,u)=Lm)(u), where L( B(X., X/l-m) (we
omit reference to/" in the notation Lm)). Furthermore the map z -L( is continuous in
the strong operator topology on B(X, X/a-,, ).

Proof. We induct on the integer n in the statement of the lemma. If n 0 the
result is clear once one observes that for u Xo,

(51)
L.u (t)=

t--

P(t-s, z)a(s)u(s) ds

+P(z, -)a(t--)u(t-’-g’(r))-P(g(z), r)a(t-g(r))u(t-g(z))

where the derivative in (51) is taken in the X0 topology, and

(52)

t--g(’r)

-((L,u)(t)) P(t- s, z)a(s)u(s) ds

+P(g(z), z)a(t-g(r))u(t-g(z))-P(z, -)a(t-z)u(t-z).

Generally, assume inductively the lemma is true for any functions a, g and P
which satisfy the hypotheses of the lemma for n <N and suppose that a, g and P
satisfy the differentiability assumptions for n =N. If u XN, equation (52) holds.
Clearly the last two terms on the right in (52) possess N derivatives in t which are
bounded by glllull,, gl independent Of u. By inductive hypothesis (thinking of
(O/Ot)P(t-s, z) as Pa(t-s, r)) the integral in (52) determines a continuous linear map
from Xv to X and hence has N derivatives in t bounded by g211ull,,. Thus we have
L,B(Xzv, XIv/I), and since X/a is continuously imbedded in Xv, L,
B(Xv/I, Xv+a). The same inductive argument shows L, B(X-, X/I) for 0 _-<] < N.

The second part of the lemma follows by a similar inductive argument once one
observes that for ]<-_N (51)holds for uX. if aC, gC+1 and PCzv+a (the
derivative with respect to z being taken in the X topology). We leave details to the
reader.
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Since X]+ is compactly imbedded in X for j _->0, Lemma 13 implies that L,: X. -X is a compact linear operator for j-< n. If L is a compact linear map of a Banach
space Z into itself and " is a nonzero scalar, ’-L is one-to-one and onto iff it is
one-to-one. Since sr-L is one-to-one and onto Xo for sr F, it follows that ’-L, is
one-to-one and onto as a map of X for 0j -< n.

Before studying the ditterentiability of Oo and LOXo, we need some lemmas
concerning the differentiability of the terms in the series expansion (46) of Ox0.

LEMMA 14. Let U, V, W be Banach spaces with U c V W and continuous
inclusion maps. Suppose that J is an interval of reals, u: J U is a continuous map and

" i(uO’)) Visa C map, where i: U Vis inclusion. Assume thatwe are given a map
r -A B(V, W) which is continuous in the strong operator topology on B(V, W) and
thatfor each fixed Uo U, the map z -. A(i(uo)) Wis C 1. Then - A(i(u(-))) is a C
map into W. Further, if we write (d/dr)(A(i(uo)))=Al)(uo) and u(1)(7")
(d/dr)(iu(r)), we have

rA,(iuO-))
Az(u(1)(,r)) + A(rl)(u(,r))"

Proof. Since no confusion should result, we shall omit the inclusion in our
formulas. To prove the lemma it suffices to show the following equalities hold (where
limits are taken with respect to the W topology):

u(r+A)-u(r))lim A+a A,(u (1)(,./.)),
A-0 A

The second equality holds by assumption. To prove the first, observe that the con-
tinuity of A in the strong operator topology and the uniform boundedness principle
imply that there exists a constant M such that liAr+all <_-M and

A+a(u (r + A) u (r)
u (1)(T w<-11u(r+A)-u(r)A u (1)0")ll v -0.

The strong operator continuity also gives that

lim A+a(u)(r)) A.(u(1)(’r)),
A0

so the lemma is proved.
In our next lemma we adhere to the notation of Lemma 13; also for notational

convenience we set S L-L and S")= L’) for 1 <m <n + 1
LEMMA 15. Assume that H6 holds and that n is as in H6. Suppose that J is an

interval of reals and we are given a map v: J-X. such that v has con’nuous
derivatives in the X._i topology for 0 ] n + 1 (recall that X_ Xo). For ( F define
w(r) X, by

w(r) (C-L)-’(L.-L)(v(r)).

Then wO’) has the same differentiability properties as vO’) and

(53) W)(r)=(--L,)- ()S]-k)(vk)o’)).
k=0
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Proof. In the notation of Lemma 14, set U=Xn, V W=Xn-a. The map
z-v(’)eXn-a is C and (sr-L)-aS,: V W satisfies the conditions of Lemma 14,
so w(z) is a C map into X,-a and

w (’)(r) ( L)-’[SI)(v(r)) + S(v 1)(r))].
We assume inductively that we have shown that r w(r)X,_ has m deriva-

tives for 1m]n, with the derivatives given by the formula (53), and we try to
prove the same result for ] + 1. By assumption we have

w)()=(-L)- ()S:-)(v)()).
k=O

For a fixed k Nj, define U X,_, V X,__a and W X,_i_a and observe that the
conditions of Lemma 14 hold for the term Si-)(v()(r)). Thus we can differentiate
term by term and observe that

k=o k

which is of the required form.
We are finally in a position to prove our theorem about the differentiability of the

map r r(L).
TORM 5. Assume that H6 hoMs, let X denote the space of connuous, com-

plex-valued func6ons of period w and for > 0 define a map L,: X X by the formula
(38). en if n is as in H6, the map r(L,) the special radius of L, is n + 1 6mes
continuously differen6able.

Proof. By our previous remarks, it suffices to show that the maps r O,(Xo) and
r LO(Xo) are C"+. Let J =J be an open interval containing and for rJ and
( F define

It follows from Lemma 13 that an eigenvector of L which corresponds to a nonzero
eigenvalue must lie in X,+a, so xo6X,+a. Lemma 15 and formula (53) now imply that
z Wk(Z, Sr) has ] continuous derivatives in the X,_j topology for 0-<] -<n + 1 and that

d
d.i Wk (’, )= W (ki(", )

is a continuous function of " in the Xn-i topology. Notice that

(54) O,(xo) -1 k=0" Wk(T, ) d( and L,O,(xo) x[-i Wk(T’ ) d(
k=O

where the integrals are taken in Xo. Suppose we can prove that for 0 =</" =< n + 1

(55)

where Yko ek < oo and ek is independent of " e F and - e J. Then a standard argument
shows that O.(Xo) and LO.(Xo) are Cn+a in Xo with derivatives obtained by differen-
tiating the series in (54) term by term.
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Thus it remains to prove an estimate like (55). Recall that the subscript on a norm
indicates the space in which the norm is taken. By formula (53) we have for 0_-<j =<
n+l

j--l(j% )--1 (j--m (m)]]w)(’, ’)11- <- Z I](r Lo. S )]]O-m,,.,-i)llWk-l(’r,
m=0 \/m

(56)
/ ll( L)-s,ll.-llw ,

Take a constant K such that for all " F, - J and integers m and ] with 0 m <j
n + 1 we have

II(C Z)-1Sj-m)l](n-m,n-j) g.

By taking the interval J about to be suciently small we can assume that for all
F, r J and integers j with 0 j n + 1 we have

If we define for 0j n + 1 and k 0 by the formula

>= sup {llw>(r, ()ll- r z ( F}

then (55) implies

(57) tZ <k <= l<,ld, k -- Cl.l, k
m=0

Let Cl be such that c < Cl < 1 and suppose 0 =<j -< n + 1. We claim that there exists
a constant A such that

(58) tzj> <=k(k 1)... (k -j + 1)Ac-for k >= n + 1; when j 0, the right hand side of (58) is interpreted as Ac. By our
previous remarks we will be done if we can prove (58). Select an integer k => n + 1
such that for any integer k _-> k and for 0 =<j -< n + 1 we have

j-1 (j)(k-1)(k-2)...(k-m)(59) ,,,=o" m
K

This can be done because each term in the summation is dominated by ()Kk -1. Next
select A so large that formula (58) holds for 0-<j =<n + 1 and for n + 1 =<k =<kl. We
assume inductively that formula (58) is valid for k => k and for 0 =< j -< n + 1 and try to
prove it for k + 1; formula (57) gives

(J) < K(k (k m + 1)Ac#’k+l
m=O m

+(cAckl-i)(k)(k 1)... (k -j / 1)
(60)

_-< (ac-l( + ... (-+l{c}.

In the above formulas (k).. (k-m + 1) is interpreted as 1 for m 0. Inequality (60)
completes the inductive proof.

Remark 8. If one is only interested in proving z r(L,) is C if a is continuous
and P is C (the case n 0), a simpler proof using the implicit function theorem and
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following the idea of Crandall and Rabinowitz in [4] can be given. This approach fails
to give higher order differentiability in our case, however.

Remark 9. The argument we have given here can be abstracted to the situation of
a parametrized family of linear operators L which operate on a nested family of
Banach spaces X,+a=Xn c... c X0 and which are assumed to satisfy the con-
clusions of Lemma 14 and some other conditions. The explicit form of (38) has not
been strongly used.
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ON CERTAIN MULTIPLE INTEGRALS OCCURRING IN A
WAVEGUIDE SCATTERING PROBLEM*

J. BOERSMAf

Abstract. Closed-form results are presented for some n-fold integrals where the integrand contains the
exponential of a specific quadratic form in n variables. These integrals arise in the ray-optical analysis of
reflection and diffraction problems for an open-ended parallel-plane waveguide. The results are obtained by
three methods: the first method is elementary, the second method uses an integral equation which is solved
by the Wiener-Hopf technique, and the third method is based on a probabilistic interpretation of the
integrals.

1. Introduction. This paper deals with the evaluation of the n-fold integrals

I,,,,(a) zr-’/z Io x exp -axe-2 x 2

m=2

+2 Y’. XmXm/ dx dx,,

n=1,2,3,..., q=0,1,2,...,

J,,,q(a)=r-’/2 xqexp -ax-2 Z x2+2 Y XmXm+l
m=2 m=l

(1.2) -2x,_x,-x] dx dx,,

n=2,3,4,..., q=0, 1,2,...,

where the integration extends over the orthant x 0, m 1, 2,. , n. By repeated
application of the estimate

(1.3) /p-/ exp (s/p) exp [-px + 2sx] dx /p-/ exp (s/p),

valid for p >0, s 0, it is found that the integrals (1.1) and (1.2) converge if >
(n- 1)In and > (n- 2)/(n- 1), respectively.

These integrals were encountered in the ray-optical analysis of (i) the reflection
problem for a TM or a TE mode traveling toward the open end of a semi-infinite
parallel-plane waveguide [6], [7], (ii) the diffraction problem for a plane wave nor-
mally incident on two nonstaggered parallel half-planes [14]. In the course of that
analysis explicit results were needed for I,q(), J,q() with q 0, 1 and 1 or

2. It is the purpose of this paper to provide such results, namely

1 1
_

1
(1.4) I, o(2)

(n, .. 1)3/2, In,l(2)
4"rr 1/2 m=lm3/2(n +1-- m)3/2’

(1/2), 1 "- (1/2)m
(1.5) I, o(1)=, n’.

I, (1)= 27r2
=o m !(n m)1/2’

(-1/2),, 1 "- (-1/2)m
(1.6) J,0(2)= n J,, (2)= 2r/ rn)/,=o m !(n

* Received by the editors June 4, 1976, and in revised form October 14, 1976.
f Department of Mathematics, Technological University, Eindhoven, the Netherlands.

377



378 j. OZRSMA

1
(1.7) J,,,o(1) .\1/2, Jn, l(1)27r(n

1 1 n--2 1
+

8,/r 1/2 87/.3/2 1/2(/,/_.,=1 rn 1 m)1/2’

where (a), denotes Pochhammer’s symbol defined by

(1.8) (a)o 1, (a),,=a(a+l)...(a+n-1), n=1,2,3,....

The integrals I,,o(2) and In,1(2) were already evaluated [6, Appendix D] thus
leading to (1.4). Only recently .the author became aware of a previous evaluation of
I,,,o(2) by Anis and Lloyd [2] using essentially the same method as in [6, Appendix D].
In 2 of this paper the remaining results (1.5)-(1.7) are derived by elementary
methods that involve integration by parts and generating function techniques. For
q-> 2 recurrence relations are presented for I,,q, J,,q, expressed in terms of the same
functions with second subscripts q- 1 and q- 2.

In 3.1, 3.2 the results (1.4)-(1.7) are rederived by a second and different
approach. It is shown that the evaluation of I,,q and J,,q can be reduced to the solution
of the integral equation

(1.9) q(t) =f(t) +
,rl,.

exp [-(t-s)2]q(s) ds,

where f(t)= e -’ and IAI< 1. The latter equation is solved by Fourier transformation
and Wiener-Hopf technique. In 3.3 we consider the related n-fold integral

(1.10)
n(t)=’lr-n/2 exp 2 e-=i/4txl--X--2 X

2

m=2

o_1 ]+ 2 Y x,,x,,+l dx dx,,
m=l

n=1,2,3,...,

while -o(t)= 1 by definition. As a side result of the previous analysis it is found that

(1.11)
n=0

1 log (1-A e
dx <0,exp x-ei/4t

(1-Ae-it)-lexp[-iI_ lOg(1-h’e-x) ]X e*ri/4t dx t>0,

where IAl< 1. Then the right-hand side of (1.11) is expanded in a power series in
powers of A and it turns out that -,, (t) can be expressed in terms of Fresnel integrals.
The result (1.11) is to be used in the ray-optical solution of the radiation problem for
an incident mode traveling toward the open end of a semi-infinite parallel-plane
waveguide [8].

The Wiener-Hopf solution of the integral equation (1.9) has been treated in the
literature to some extent. Stewartson [18] solved both (1.9) and the associated
homogeneous equation with f(t)= 0, in the case when A 1. As Stewartson points
out, these integral equations arise in the evolution theory of comets and in some
problems from fluid mechanics. Ghizzetti and Ossicini [ 11] studied the eigensolutions
of the homogeneous equation when A > 0. A related integral equation with a shifted
kernel exp [-1/2(t +A-s)2] was recently discussed by Atkinson [5] in connection with
some inference and queuing problems.

In {} 4 the integrals I.,o(a) and J.,o(a) with a 1 or a 2 are evaluated by a third,
probabilistic method. It is shown that I,,,o and J.,o can be interpreted in terms of the
probability distribution of a sum of random variables which are independent and have
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the same normal distribution function. Then the explicit values (1.4)-(1.7) are
recovered by means of theorems due to Sparre Andersen [1] and Spitzer [17]. In fact,
the same probabilistic approach underlies a previous evaluation of I,,,o(1) due to Anis
and Lloyd [2], [3].

Integrals similar to (1.1), (1.2), but containing the exponential of a general
quadratic form, occur in probability theory and statistics. For example, the so-called
orthant probability for the multivariate normal distribution with zero means and
variance-covariance matrix V is given by

(1.12) n(V) (2"n’)-"/z]v]-1/2 Io exp [-1/2x’V-lx] dx.., dx,,,

where x’--(XI, X2,’’" ,Xn); see Ruben [16], Johnson and Kotz [12, Chap. 35].
According to 16], ,(V) can be expressed in terms of the area of a certain simplex on
the unit sphere in n-dimensional space. Such an expression is obtained by a suitable
linear transformation of (1.12) which reduces x’V-lx to a sum of squares. Then the
domain of integration is transformed into a polyhedral cone in n-dimensional space,
bounded by n hyperplanes through the origin, and the said simplex is the intersection
of the cone and the unit sphere. Closed-form results for ,(V) are readily obtained
now in the cases n 1, 2, 3. For n > 3, ,, (V) can no longer be expressed in terms of
elementary functions; cf. [16, p. 171]. Various other methods for the evaluation of
multinormal probabilities are reviewed in [12, Chap. 35]. It is remarked that none of
the methods of this paper is applicable to the general integral (1.12). As for the
integrals In,q(Ot), Jn,q(Ot), closed-form results valid for any a may be derived when
n _-< 3 by the geometrical approach as described above.

2. Evaluation by elementary means.
2.1. l,,,q(2). The integrals In,0(2) and 1,,1(2) were already evaluated, see [6,

Appendix D], [2]. Consider now I,,q(2) with q ->_2, as defined by (1.1), and replace the
factor x I in the integrand by

(2.1) x=2-;-1) n(4xl-2x2)+
m=2" (n+l--m)(--2Xm-1+4Xm--2Xm+l),

where x,+l 0 by definition. Then I,,,q(2) can be expressed as a sum of integrals which
permit integration by parts with respect to x and explicit integration with respect to
x,,, m- 2, 3,..., n, respectively. The result comprises an n-fold integral which is
recognized as In,q-Z(2), and a sum of (n- 1)-fold integrals which can be expressed as
products I,,,-1,q-1(2)I,,-,,,o(2), m 2, 3,..., n. On substitution of the actual value of
I,-,,,o(2), we obtain the recurrence relation

(2.2)
n (q 1)

I,,,q-2(2) -I-,q(2) + 1 2(n + 1) (n m /2,

valid for q _-> 2. The same method may be used for the reduction of the integral I.,1(2),
yielding

(2.3)
-1/2r I,,-1,0(2) 1 1

1/2 Z m)3/2,I,, 1(2)=
2(n + 1)m=l (n --1/2 47r m=l m3/2(n + 1

in accordance with (1.4). The relations (2.2) and (2.3) can be combined to the single
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recurrence relation

n(q 1) rr-1/2 "C-. I.,,q-1(2)
(2.4) Inq(2),

2(n + 1
Inq-2(2)+,

2(n +1-’=o (n m)1/2,
valid for q -> 1, where it is understood that (q- 1)/,q_2(2)= 0 for q 1, and Io,q(2)=
6qo with 600 1, 6qo 0 for q # 0 (Kronecker’s symbol).

2.2. I,(1), ./,(2). Consider first the integrals I.,o(1) and J.,o(2), as defined by
(1.1) and (1.2). In the integral J.,o(2) we set

Io exp [-2X._lX. -dx,,X2n] ,./r
1/2

then it is obvious that

.-1)- Io exp [2X._lX. -x.2] dx.;exp (x 2

(2.5) J,,o(2) I,-1,o(1) I,,o(1), n ->2.

A second relation between I.,o(1) and J.,o(2) is obtained by starting from the identity

qT
-n/2 (2X1--2X2)+ E (--2Xm-l+4Xm --2Xm+l)

m=2

+4x. + 2x,,+1)- (2x,, + 2x,,+1)}(2.6) + (--2Xn-a

n--1

exp -x-2 x2+2 E xx.,+-2x,,x.+l

--Xn+l dXl dx,,+l 0,

where n _-> 2. Notice that the successive linear factors are just the derivatives of the
exponent with respect to x,., m 1, 2, , n + 1. Hence, the (n + 1)-fold integral (2.6)
can be rewritten as a sum of integrals which permit explicit integration with respect to
x.,. Each of the resulting n-fold integrals is the product of an (m- 1)-fold integral
equal to I,.-1,o(1), and an (n + 1-m)-fold integral equal to J.+a-m,O(2). Thus we find

(2.7) Y. Im,0(1)J,,-,.,0(2) 0, n -->2,

where Io,o(1)= 1, Jo,o(2)=-1, J,o(2)= 1/2 by definition. By a direct calculation from
(1.1) it is found that Ii,o(1)= 1/2, hence, (2.7) and (2.5) also hold for n 1.

In order to determine I.,o(1) and J,,,o(2), we introduce the generating functions

(2.8) Ao(A)
n---0

From (2.5) and (2.7) we then infer

(2.9) Bo(a -(1 a )Ao(a ),

and consequently

(2.10) Ao(a) (l-a)-/2

Bo(a)= Y. J.,o(2)a".
n=0

Ao(a)Bo(a) -1,

Bo(A) -(l-a)/2.

By expansion of (l-a)+1/2 in binomial series we readily find I.,o(1) and J,,,o(2), as
stated in (1.5) and (1.6).
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Consider next the integral In,q(1) with q -> 1, as defined by (1.1), and replace the
factor x in the integrand by

(2.11) xT= [n(2x ],gx-1 2x2) + (n + 1-m)(-2Xm-1 + 4x,, 2x,,,+1)
m=2

where X,+l =0 by definition. Proceeding as in 2.1, we are led to the recurrence
relation

(2.12)
1 Ira,q-l(1)

In,q (1) 1/2n (q 1)In,q-2(1) + 2r1/2
m=O (n m)1/2,

valid for q => 1, where (q 1)In,q_2(1) 0 for q 1, and Io,q (1) 6qo by definition. The
present relation was also established by Anis [4] in the same manner. A similar
recurrence relation for Jn,q(2) is obtained by setting

n--2

(2.13)
x=1/2x- (4x1-2x2)+ m=2Z (--2Xm- +4Xm--2Xm+a)

+(--2x,,-i+4xn-1 + 2x,)-- (2x,_ + 2x,)]
in the defining integral (1.2). Thus we find

1 1 (_1/2),,,i,,__,,q_1(2)(2.14) Jn,q(2) 1/2(q 1)Jn,q-2(2) 2.17.1/2 m=Om--
valid for q => 1, where (q 1)Jn,q-2(2) 0 for q 1, and I0,q(2) tqO by definition. For
q 1 the recurrence relations (2.12) and (2.14) provide the explicit values of
and Jn, l(2), as stated in (1.5) and (1.6).

For later use we introduce the generating function

(2.15) Aq(A)= Z L,,q(1)a", q=0, 1,2,....
n=O

Then (2.12) can be reduced to a recurrence relation for Aq(A), viz.,

(2.16) Aq(A) =(q- 1)AAq_z(A) + 2l,/2A,-l()t)L()t),
where a prime denotes differentiation with respect to A and

(2.17) L(A)= Z 1/2"
n=ln

Starting from Ao(A) (l--A)-1/2, we have

(2.18) AI(A) 2rr/2(1-A)- (A),

(2.19) )-3/2 1 )_1/2L2(A+ 4---. (1 -A ),

and so on; in principle the functions Aq(A) are completely determined.
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2.3. n,q(1). Starting from (1.2) with a 1, we perform an integration by parts
with respect to Xl, yielding

J.,q(1) =Tr q+l(2x-2x2)exp -x-2 X2m
q +’--- Xl

m=2

+ 2 X.,Xm+1 2X._X,, X dx dx,,,
m--1

where it is supposed that n >_-3. In the latter integral the factor 2Xl- 2x2 is replaced by

(2.21)

n-2

2Xa-2X2 (--2x,,,-1+4x,-2x,,,+l)
m=2

(--2x.-2 + 4x.- + 2x,,) + (2x,,_ + 2x,,).

Then J,,q(1) becomes a sum of integrals which permit explicit integration with respect
to x,,, m 2, 3,. ., n. Proceeding as before, we find

--1/2 2 1/2)mi,,(2.22) J.,q (1) =’rr (-
q +----,,,=o il __,,,q+(1),

valid for n-> 3. In a similar manner it can be verified that (2.22) holds true also for
n 2. Thus Jn,q(1) has been expressed in terms of the integrals Ira,q+1(1) which are
known from 2.2.

In order to explicitly evaluate J,,o(1) and J,,l(1), we introduce the generating
function

(2.23) Cq(A)= Z L,,,(1)a".
n=2

Then it follows from (2.22) that
--1/2

7r )1(2.24) Cq(A) q + i A(1-A /2Aq+I(A)

where Aq+(A) is defined by (2.15). Referring to (2.18), (2.19), we thus find

(2.25) Co(a (1/2rr)aL(a ),

(2.26)
1 2( )-1 1

c(a) 8rr,/=a 1-a + 87/.3/2/L2(/ ).

By expansion of these functions the results (1.7) for J,,o(1) and J,,,l(1) are readily
established.

3. Evaluation by integral equations.
3.1. In,q(2), In,q(1). Let the functions q,(t), real, n 0, 1, 2,..., be defined by

qo(t) e

(3.1) (,(t) rr-"/2 e -’ exp 2tx-2 , Xm+2 Y, XmXm+ dx’"dx,,
m=l m=l

Then it is easily seen from (1.1) that

(3.2) I,q(2) 2 q [eq" (t)] --o’

n=1,2,3,....

I,,q(1) 37
"-1/2 tqp,_l(t) dt.
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By repeated application of (1.3), one is led to the estimate

O<-,,(t) <- r-1/2n-1/2 e

(3.3)
f(n+l)_l/2 exp [-t2/(n + l)], >-O,-< ], 1/2(n + 1)-1/2 exp (-t2), t _-< 0.

The functions o,(t) are connected through the recurrence relation

(3.4) 0, (t) r- exp [-(t-s)],,_a(s) ds, n >= 1.

We now introduce the generating function

(3.5) q (t)
n=O

then, in view of (3.3), (3.4), the latter series converges and is precisely the Neumann
series associated with the integral equation

(3.6) 0(t) e +-r75 exp [-(t-s)2]q(s) ds.

Furthermore, it follows from (3.3) that

(3.7) q(t) O(1), t_>0; o(t)=O(e-’2), t<=O.

(By a more careful analysis the first result can even be improved to q(t)= O(e -t’) as
tom, where /3 will be specified below; however, we do not need this sharper
estimate.)

The integral equation (3.6) is solved by Fourier transformation and Wiener-Hopf
technique (cf. Noble [15]). We introduce the Fourier transforms

t"0

(3.8) *+(w) | (t) e’ dt, *_(w) | ,(t) e’ dr,
JO

where w is a complex variable. Then the estimates (3.7) imply that +(w) is regular in
the upper half-plane Im w >0, while _(w) is an integral function. Under Fourier
transformation the integral equation (3.6) reduces to

1/2 e -w:Z/4+(w)+_(w) 7r +A e /4+(w),
or equivalently

(3.9) (1-Ae-WZ/4)[dP+(w)+ff-]+*-(w) =0,

Im w >0,

Imw>0.

Before going on we observe that the factor 1 A e 7w:z/4 vanishes when w 2 (log A) 1/2.
The zeros closest to the real axis have imaginary parts +/3 where/3 21Im (log A)1/2
with the principal value of log A to be taken. Thus, 1-A e-’2/4S0 in the strip
-/3 <Im w </3. Then by means of (3.9), extended to Im w >-/3, +(w) may be
analytically continued into the upper half-plane Im w >-/3.

The functional equation (3.9) is now solved by the standard Wiener-Hopf pro-
-w:/ intocedure. The key step in this procedure is the factorization of 1- A e

(3.10) 1-Ae-w/a=K+(w)/K_(w), -/3 <Im w <fl,
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such that K/(w) is regular and nonzero in Im w >-/3, and K_(w) is regular and
nonzero in Im w < ft. This factorization can be accomplished by means of Noble [ 15,

1.3, Thm. C], yielding

(3.11) g+(w)=exp [i f+ia lg (1-A e-Z2/4) dz],
--oO+ia Z W

(3.12) K_(w) exp [/foo+ib log (1-)t e -z2/4) ]dz
-oo+ib Z W

where a, b are any numbers subject to -/3 < a < b </3, and the logarithm stands for its
principal value. Using (3.10), we rearrange (3.9) as

(3.13) K+(w) *+(w)+---] -K_(w) _(w)- -fl < Im

Then the functions on the left-hand side of (3.13) are regular in the upper half-plane
Im w >-B, and the functions on the right-hand side are regular in the lower half-plane
Im w < ft. Hence, by analytic continuation both sides of (3.13) must equal an integral
function P(w), say. From (3.11), (3.12) it is obvious that K+(w)+ 1 as
Im wq:/3; likewise, +/-(w)0 as Iwloo, Im w <>/3, according to the Riemann-
Lebesgue lemma. Thus P(w) 7ra/2/A as Iwl oo, and consequently P(w)= zrl/2/A by
Liouville’s theorem. Then the solution for /(w) is easily obtained from the left-hand
side of (3.13), viz.,

7"/’1/2{ 1 1}cI)+(w) --- K+(w------
(3.14)

,././.1/2 1 log(1-ae-ZW4)]={ [- I_ dz -1 Imw>0,a exp
z -w

where the path of integration has been chosen along the real axis. Finally, the original
function 0(t) is found by inverse Fourier transformation of q/(w), viz.,

(3.15) q(t) - rb+(w)e dw, t>0.

The solution for q(t) thus determined is of a rather complicated form. However,
it follows from (3.2), (3.5), (3.8) that

(3.16) E I,,,q(2)a" 2-q
d q

[e
n=O

(3.17) Y I,q(1)a" =i-75 tqq(t) dt=a
n=l 7/"

so the required integrals Inq(2) and In.q(1) are completely determined by the deriva-
tives q(’)(0), m =0, 1,...’, q, and (+q)(0) only. The derivatives q(’)(0) are readily
obtained from the asymptotic expansion of /(w) as Iwl-oo, Im w>0. In fact,
starting from the Taylor series

(3.18) q(t) y q(")(0)
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one has by Watson’s lemma (see e.g. Erd61yi [9, 2.2])

(3.19) +(w) Z i’+’o"(o)w-’’-, Iwl-  ,
m=O

6 =<arg w =< r-6,

for any positive 6. Thus the integrals In,q(2) and In,q(1) can be determined from +(w)
only. We shall now evaluate the integrals in the two cases q 0 and q 1.

The asymptotic expansion of /(w) is easily obtained from (3.14), viz.,

7rl/2{ 1 f_ -1+(w) / log (1 --A e -z:z/4) dz w
(3.20t

8. log (1 -, e -:/4) dz w-+ O(w-)

as wm, Im w >0. Compare the latter expansion to (3.19); then it is found that
/

log (1- a e -z/41 dz

e -nz/4 dz
(n /’

(3.22) 5’(0)=4/[(0)]=4 / o(ni)/

In view of (3.16), the present results immediately yield In,o(2) and 1,,1(2), their values
being given by (1.4).

Next we determine /(0) from (3.14) by taking the limit when w0 from the
upper side Im w > 0. By Plemelj’s formulae we have

(3.23) +(O)=exp[_1/21og(l_a)]_l=(l_A)_l/_l y,. (1/2),,,
’Tr n=l /’!

which should be compared to (3.17). Then the result (1.5) for I,,o(1) is obvious. From
(3.14) the derivative _(w) is found to be

[ __1/2-( 4__/)i_ ze-Z2/4_z2/4 dz
(3.24) (w) /(w)+---J Im w > 0.

l-ae z-w’
Then again by Plemelj’s formulae we have

"i-1 [’/2 ] e-zz/4
(0)= +(0)+1

1 &e /4dz
(3.25)

a g (1/2). a"
.=o .=o (.

from which the result (1.5) for In, (1) is easily recovered.
In principle, the integrals In,q(2) and I,,,q(1) with q->_2 can be evaluated in the

same manner. In addition, one may establish recurrence relations for the integrals.
However, these recurrence relations turn out to be more complicated than the ones
derived in 2.1, 2.2. Therefore we shall not pursue this matter.
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3.2../.,(2), ar.,(1). The approach is highly similar to that of 3.1. Let the
functions ’n (t), t real, n 1, 2, 3,. , be defined by

--1/2 It(t) 1/2 erfc 7r e- dx,

--t 2(3.26) ,(t)=rr_,/Ee exp 2tXl-2 Y. x,,+2 Y. x,,x,,+l
m=l m=l

-2x,_x,-x2,| dx dx,, n 2, 3, 4,....

Then it is easily seen from (1.2) that

(3.27) Jn,q (2)= 2 q [et2n (t)] Jn,q (1)= 7r tqn_l(t) dt.
t=0

The inner Xn integral in (3.26) can be estimated in an obvious manner, thus leading to

1/2n 1/2 e -t2/n, > O,
(3.28) 0<On(t)<sqn_l(t)< 1/4n_l/Ze t<--O,

on account of (3.3). The functions 0n (t) are connected through the recurrence relation

1/2 f0(3.29) (t)- r- exp [-(t-s)2]_l(S) ds, n -2.

As we did in (3.5), we introduce the generating function

(3.30) (t) Y, AnOn(t), I l<a;
n=l

then, in view of (3.29), the latter series is the Neumann series associated with the
integral equation

(3.31) (t) =1/2A erfc +r, exp [-(t s )2]lp(s ds.

Furthermore, by use of (3.28) it can be shown that O(t) 0 as oo.
The integral equation (3.31) can again be solved by Fourier transformation and

Wiener-Hopf technique. However, a simpler way out is to differentiate (3.31) with
respect to followed by an integration by parts in the integral term, thus yielding

A
(3.32) ’(t) ---f75/2 [P(0)- 1] e -t + "f77 exp [-(t- s)2]ff’(s) ds.

The latter integral equation is of the same form as (3.6), hence, its solution is given by

(3.33)
A

O’(t) i77[(0) 1]q9 (t).

By integration of (3.33) over [0, oo), we have

(3.34)
-q(O) =---i/2[(0)- 1] q(t) dt

A
=---[q(O)- 1]+(0) [q(O)- 1][(1 --/)-1/2- 1],
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where +(0) was taken from (3.23). Thus we find

(3.35) (0) 1 -(1 -A)1/2,
(3.36) q/(t) -Tr-1/2A (1 X) 1/2q (t),

and @(t) is completely determined in this manner.
We now turn to the evaluation of the integrals Jn,q(2) and Jn,q(1). It follows from

(3.27), (3.30) that

(3.37) 2 J,.q(2)A" 2-q(d]q[et@(t)]
,=1 \dtl

(3.38) Z J,,,q(1)A" =-i7 tqp(t) dt.
n--2 7"/"

In the cases q 0, q 1, the right-hand side of (3.37) reduces to

(3.39) 6(0)= 1-(l-A)a/2=- E (--1/2)nAn,
n=l

(3.40) 1/20’(0) --’--7’1--1/2/ tl (a --A (-1/2).\"--A’tl/2(’"t--" 2"rrl/2,,=o n!
A"

,,=o
y"

(n + 1)/2’

where o (0) was quoted from (3.21). Then it is easily recognized that J,,,o(2) and J,,1(2)
are given by (1.6). In the same manner one may evaluate Jn,q(2) when q -> 2. Consider
next (3.38) where the right-hand side is reduced through an integration by parts. By
replacing @’(t) by (3.36), we obtain

(3.41)
Y’. J,,.q(1)A"

7r

,,=2 q+l
Az(1-A)a/2 tq+lq(t) dt

-1/2rr (-1/2).a
q + 1

x
n=o /’[! n=lX In,q+l(l)An

on account of (3.17). By equating the coefficients of corresponding powers of A in
(3.41), we re-obtain the recurrence relation (2.22). As shown at the end of 2.3, the
latter relation readily yields the explicit values of J,,,o(1) and J,,l(1).

3.3. .(t). We consider the n-fold integrals -,(t), t real, n =0, 1,2,...
defined by

fro(t) 1,

(3.42) _,(t)=rr_,/ exp 2e-"/4tx-x-2 Y. x
m=2

+2 XmX=+ dX dx,,
m=l

n=1,2,3,...

ese integrals can be expressed in terms of the functions , as given by (3.1), viz.,

(3.43) ft,(t) -1/ o exp [2 e-i/4u]n_(x &, n 1.
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Then by means of (3.3) one has the estimate

f [ X__] { entz/2’ t>-O’(3.44) I-,,(t)] (Trr/)-1/2 exp 21/2tx dx <-_ , t_-<0.

We now introduce the generating function

(3.45) G(A, t)= Z A"-,(t),
n=0

where A is a complex variable. In view of (3.44), the latter series certainly converges
for Ix I< exp (-t2/2) when -> 0, and for Ix I< a when t _-< 0. Replace -, (t) by (3.43),
then G(A, t) reduces to

x _ri/atx
A

(3.46) G(A, t) 1 + 1/2 exp [2 e ]q(x) dx 1 +--i+(-2 e m/4t),

on account of (3.5), (3.8). The Fourier transform +(w) was determined in 3.1--see
(3.14); it was also found that +(w) is regular in the upper half-plane Im w >-/3,
where/3 21Im (log A)1/2 I. For the present purpose we rewrite the solution (3.14) with
the path of integration shifted to Im w a where a is any number such that -/3 < a =<
O. Then we have, under an obvious change of variable,

7,/.1/2 +(-2 e =i/4t) exp ri/4t dz t <
.--oo--ia/2 Z e

or equivalently,

’" ri/4t)1 +--7+(-2 e

(3.47) [/I_ lg (1-A e-xz) ]exp dx
x e ri/4t

(1-Ae-it:)-lexp[iI_ lOg(1-Ae-:) ]
oo x--eri/4t dx

t<0,

O<t <2-1/2fl.

Notice that the inequality 0 < t < 2-1/2fl is certainly satisfied when t > 0, IA] <
exp (-t2/2). For fixed t the right-hand side of (3.47) is a regular function of A in the
region IA[ < 1. Hence, its Taylor series, that is the series (3.45), will be convergent
when ]A] < 1. Thus we obtain the final result (1.11) for the generating function of the
integrals -,, (t).

Starting from (1.11), we shall express -,,(t) in terms of Fresnel integrals F,
generally defined by

1/2 --i/4 --it i(3.48) F(t) 7r- e ds.

To that purpose, the exponent in the right-hand side of (1.11) is expanded in a power
series in powers of A. Then the coefficient of A", n 1, 2, 3,. , can be reduced to

1 I e -"xz -F(n 1/:zt), t < 0,(3.49)
27ri ox-ei/4t dx [e-i"’2-F(nl/2t), t>0,

according to a well-known integral representation for the Fresnel integral. On sub-
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stitution of the latter result, we find

(3.50) A’-, (t) exp --F.nl/L,
n=0 n=l /2

valid for ]A]< 1 and all t. Then, by equating the coefficients of corresponding powers of
A in (3.50), we have

-o(t) 1, -l(t) F(t),

(3.51) -2(t)=1/2F(21/2t)+1/2F2(t),
-3(t) 1/2F(31/t) / 1/2F(21/2t)F(t) +-w3(t),

and so on. In addition to these explicit results, differentiation of (3.50) with respect to
A yields

(3.52) nhn-l-.(t) X"-,(t) h-lF(nl/2t),
n=l n=O n=l

from which we derive the simple recurrence relation

(3.53) -(t)
1 1 m(t)F((n-m)l/2t), n >- 1.
?l m--O

It is clear that the integrals -,(t) are completely determined by (3.53) and the initial
value fro(t)= 1.

4. Evaluation by probabilistic means.
4.1. I,,,o(1), I,,,o(2). Let the functions Fn (t), t real, n 1, 2, 3,..., be defined by

(4.1) Fn(t)=’tr-/2 exp -2 x2,,+2 xx+l-X dXl"’dx,.
m=l m=l

Here it is understood that the lower limit pertains to the integration with respect to
x,,, all other integrations having lower limits 0. It is easily seen from (1.1) that

(4.2) F. (0) I.,o(1), 1/2In-F.’(0) 7r- 1,o(2).

Consider the exponent in (4.1) which is rewritten as

(4.3)
n--1

2
n--1

2 Z x,.-2 Z XmXm+lq-X2--X (Xm--Xm--1)2.
m=l m=l m=2

We introduce the new variables

(4.4)

and conversely,

yl--X1; Ym Xm Xm-1, m =2, 3,. , n,

(4.5)

Then (4.1) transforms into

x,,= yi, m=l,2,...,n.

(4.6)
Dn m=l
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where Dn is an n-dimensional domain given by

(4.7) D," yj=>0, m=l, 2,...,n-1; yj>-_t.
j--1 j=a

The integral (4.6) admits of a simple probabilistic interpretation. Let
y l, Y2,’", Yn be independent random variables with a common normal density
function "/r

-1/2 exp (-y,), m 1, 2,..., n, and let their partial sums be denoted by
S,, Y= yi, m 1, 2, , n. Then F,, (t), as given by (4.6), is equal to the probability

P{Sl >-_O, Sn_l O, Sn >=t).

In particular we now have, from (4.2),

(4.8) In,o(1)=P{SaO, S2>=O, S,, => 0},

(4.9) 1,-1,o(2) r’/Zp{S1 => 0, , S,-1 --> 0, S, 0},

where p denotes the probability density.
The probability (4.8) can be determined by means of the generating function

relation

(4.10) 1+ Y. P{Sl>-O, S2>=O,...,S,>=O}A"=exp A--p{s,>-O A <1,
n=l n=l /

first proved by Sparre Andersen [1, Thm. 1]; for later, different proofs, see Spitzer
[17, p. 330], Feller [10, XII.7]. In the present case one has P{S, =>0}=1/2 for all n,
thus leading to

(4.11) 1+ Y, I,,o(1)A"=exp exp [-1/21og (1-A)] (1-A)-1/2,
n=l n=l

from which the result (1.5) for I,,0(1) is easily recovered. The same result was also
derived by Anis and Lloyd [2], [3]. In fact, these authors were prior to Sparre
Andersen [1] in proving (4.10) for the special case when P{S,, >-0}- .

The probability density (4.9) remains the same when all inequalities _-> are
replaced by strict inequalities >. We now employ a combinatorial result due to
Spitzer [17, Thm. 2.1], rephrased as follows for the present purpose" "Let y
(yl, Y2, Yn) be a vector such that Yl + Y2 +" + Yn 0, but no other partial sum of
distinct components vanishes. Let y,,+, y,,, and y(m)=(ym, Ym+I,’", Y+,), m
1, 2, , n. Then exactly one of the n cyclic permutations y (m) of y has the property
that its successive partial sums are all positive except the last one which vanishes."
Then it is easily seen that

(4.12) 1,,_1,0(2)= (’n’l/Z/n)p{Sn 0} 1In 3/2,
since p{S, t}= (rn)-1/2 exp [-tZ/n].

4.2../.,o(2), .,o(1). Consider first the integral J,,o(2), as defined by (1.2). Pro-
ceeding as in 4.1, we now introduce the new variables

(4.13) Yl --Xl; Ym ’-Xm--Xm-1, m 2, 3, , n 1; y,, --Xn- Xn--1.

Then the integral J,,,o(2) reduces to a form which is readily interpreted as a probability,
namely,

(4.14) J,o(2) P{Sl >= 0,..., Sn-1 >= O, Sn 0}
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with S,,, as defined in {} 4.1. Compare (4.14) with (4.8), then it is obvious that

(4.15) J,,o(2) I,_ 1,0(1) I,,o(1)
(-1/2),
n

in accordance with (1.6).
Secondly, the integral J,,+l,O(1), as defined by (1.2), may be expressed in the form

(4.16)
I I [ n--1

--(n+l)/2 2Jn+l,O(1)=Tr ,+’, exp -x-2 Y’. x,,+2 Y. XmXm+l
m=2 m=l

--2XnXn+l--Xn+l H(xm)dXl" dX.+l,
m=l

where E"+1 is the (n + 1)-dimensional Euclidean space, and H(x) stands for the unit
step function, i.e., H(x) 1 for x >0 and H(x) =0 for x <0. Consider the exponent in
(4.16) which is rewritten as

(4.17)

n--1
2x+2 x2,, -2 Z x,,x,,+l +2X,X,+l +x,,+l

m=2 m=l

n--1

2 +(x.
m=l

We now introduce the new variables

(4.18) Yl --Xn--Xn+l; y, Xn+2-m--Xn+l-m, m 2, 3,. n; Y,+I --Xn+l.

Then, conversely,

(4.19) Xn+l--m Yn+l- Y.i, m 1, 2," ", n; Xn+l --Yn+l,
]=1

and (4.16) transforms into

(4.20)
J,+a,o(1)=’/r -(n+l)/2 E.+,... exp --m=l y2,,

m=l Yn+l--]=ly" yj

Here, the integration with respect to y.+a can be carried out, thus leading to

(4.21) J"+l’(1)=-("+l’/2I’’’fexp[--YL]g(y)dyl"’’dY"’E"
m=l

where

(4.22) g(y)=-min 0, max F, yj.
<----m <--n

For a probabilistic interpretation of (4.21), let y l, yz,’", y, be independent
--1/2 2random variables with a common normal density function rr exp (-y,,), rn

1,2,...,n. Then J,+l,0(1), as given by (4.21), is equal to the expectation
rr-1/2E(g(y)). By means of the notations

m+l

(4.23) S,,, Y y,, T,, Y, y,, a + max [0, a],
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we reduce (4.22) to

(4.24)
[ max S,,,]=max[0, max S,,,]- max Smg(y) =-min 0,

l<-m_n lNm<-n l<=mNn

max S-yl- max T.,+.
l_m_n l<=mn--1

Inserting (4.24) into (4.21), we may set

-1/2E ( S.) I/2E( max S)(4.25) J.+1,0(1) 7r max -Tr-
lm<-n lrnn--1

since the random variables S. and T have the same distribution. e present result
can be further reduced by means of the relation

(4.26) E( max
1NmNn m=l m

quoted from Spitzer [17, p. 330], and originally due to Kac [13, Thm. 4.1]. Thus we
obtain as our final result

(4.27) Jn+l,O(1)
7r-1/2 foE(S+)= 1 -t2/,, 1
n 7rn

3/2 e dt
2rrn
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AN INVERSE EIGENVALUE PROBLEM OF
ORDER FOUR---AN INFINITE CASE*

JOYCE R. McLAUGHLIN’

Abstract. In this paper coefficients A (s) C3[0, 1] and B (s) C [0, are constructed so that two
given positive sequences A1 < A2 <’", and Pl, 02,’ are the eigenvalues and the corresponding
normalization constants for the fourth order, self-adjoint, eigenvalue problem y(4)+ (Ay(1)))+ By-
Ay =0, y(O)= yO)(O) y(1)= y()(1)= O, y(2)(O) 1.

1. Introduction. The inverse eigenvalue problem to be considered here is
that of assuming that two sequences of positive numbers A I<A2<’’’ and
Pl,/92, are given and then seeking to determine coefficients A (s) and B(s) and
real numbersMi, Ni, i,/" 1, 2, 3, 4 so that the set of real numbers A < 2 <" is
the entire set of eigenvalues for the eigenvalue problem

y (4)(S)’1-(A (s)y(X)(s))(1) + B(s)y(s)- Ay(s)= 0,
4

Y’. [Mjy(i-)(0)+Niy(i-)(1)] =0, i= 1, 2, 3, 4,
j=l

and the sequence p, p2," is the corresponding set of normalization constants.
(The normalization constants are squares" of the L2 norms of the eigenfunctions
corresponding to the sequence of eigenvalues.) The method of solution is illus-
trated by assuming that the two sequences 1<A2<"" and px, p2," have
particular asymptotic forms. Then coefficients A (s) and B(s) are found so that the
set A1 <2<"" is the entire set of eigenvalues, and the set pl, p2," is the
corresponding set of normalization constants for the eigenvalue problem

y(4)(s) + [a (s)y )(s)](a) +B (s)y (s)- Ay(s) 0,
(1)

y(0)= y(1)= 0, y(2)(0) 1.

Requiring other asymptotic forms for A </2 <" and/91,/92, would result in
different coefficients and other boundary conditions in the eigenvalue problem.

Interest in fourth order eigenvalue problems is fairly recent. However,
inverse second order problems have been considered by a number of authors.
Extensive work has been done by Borg [3], Marcenko [13], Krein [6], [7],
Levinson [9], and Gel’land and Levitan [4]. Roughly speaking in each of their
papers sequences of eigenvalues and possibly a sequence of normalization con-
stants are given and then a function q (s) and corresponding boundary conditions
are sought so that the given sequences are the eigenvalues and normalization
constants for second order eigenvalue problems whose differential equation is
y(2)+(A-q(s))y=0. In [3], [13], [6], [7], [9], knowledge of two alternating
sequences of eigenvalues is assumed and one function q(s) and two sets of
boundary conditions are found (to correspond with the sets of eigenvalues). In the
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12181. This work was supported by National Science Foundation under Grant MPS75-08328.

395



396 JOYCE R. McLAUGHLIN

paper by Gel’fand and Levitan [4] knowledge of a sequence of eigenvalues and a
corresponding sequence of normalization constants is assumed and then the
coefficient q (s) plus one set of boundary conditions is determined to correspond to
the sequence of eigenvalues and the sequence normalization constants. Further-
more, Levitan [11], [12] has shown that given the two sequences of eigenvalues in
[3], [13], [6], [7], [9], the normalization constants associated with either sequence
i.e., the spectral function, may be constructed. Hence if either two alternating
sequences of eigenvalues are known or if the spectral function is known, the
approach given by I. M. Gel’land and B. M. Levitan may be used to find the
unknown coefficient, q(s), and boundary conditions in the second order inverse
problem.

Some work in the fourth order inverse problem has been done by by Barcilon
[1], [2], McKenna [14], and the author [15]. The work of V. Barcilon follows the
approach of M. Krein. He shows that uniqueness of coefficients can be obtained
for a fourth order problem from the knowledge of three, distinct, interlacing
sequences of eigenvalues and three corresponding sets of boundary conditions.
Further, he develops a method to find the coefficients in the fourth order
differential equation when it is known that the three, interlacing, distinct se-
quences of eigenvalues are eigenvalues for eigenvalue problems which contain the
given, corresponding sets of boundary conditions.

The present paper is an extension of the work in [15] which in turn was a
generalization of the work of Gel’land and Levitan [4]. In [15], 2n positive
numbers were given and coefficients were found so that the positive numbers
given were the first n eigenvalues and corresponding first n normalization con-
stants for a fourth order eigenvalue problem. The remaining eigenvalues and
normalization constants were chosen judiciously so that certain boundary condi-
tions could be achieved for the resultant eigenvalue problem. The coefficients
were determined as a finite sum of other functions, which in turn could be
calculated merely by solving a finite set of nonhomogeneous linear equations.

More specifically, the solution in [15] was found in the following way. We
assumed that 2n positive numbers A < A2 <" < An, /91, P2, Pn were given.
Then, we let

[sin A X/4s-sinh A /4s] [cosh A 1/4s -cos A 1/4s]z 3 +
2a /2 2a 1/2

where
cosh A 1/4-- COS / 1/4

3= sinh A t/4- sin h 1/4

(This definition for Zx is slightly different than that in [15] but it does not alter the
results.)

Further, let ,t * < A <... be the eigenvalues for the eigenvalue problem
Z(4)+AZ= 0, Z(0)= z(a)(o)=z(1)=Z(I)(1)=O. Then Zx7 is the eigenfunction
corresponding to a* with Z2,.)(0) 1, 1, 2, Define p* I [Z (S )]2 ds,
i= 1, 2,..., and

i=1 iOi 0/
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With these definitions it was shown that the solution Kn(s, t) (and all of its
derivatives with respect to s and t) of fn (s, t) + fn (t, y)Kn (s, y) dy + K,, (s, t) 0
could be determined from solutions of linear nonhomogeneous equations. And, in
addition, it was shown that if An(s)=-4(d/ds)Kn(s,s), and Bn(s)=
-A,K,,I,=, + 2(K,,-K,,,),lt=,-2(d3/ds3)K(s, s), and yT(s) Z, (s) +
o Kn (s, t)Zx, (t) dt, then A < A2 <" < An would be the first n eigenvalues, with
corresponding eigenfunctions y 7 (s), 1, 2,..., n, for the problem

y(4) + (Any (1))0) + Bny Ay 0,

y(O)= y(1)(o) y(1)= o,

with pi 10 [y 7(s)]2 ds, 1, 2,.. , n. The nature of the construction of the above
coefficients and eigenfunctions also yielded that the remaining eigenvalues for the
above problem would be h , n + 1, n + 2, , with associated eigenfunction
yT= Za,*.(s)+ Kn(s, t)Za(t) dt, and normalization constant p* [yT(s)]2 ds,
i=n+l,n+2,.

We seek now to show that if the infinite set of numbers h < 12 <’’’ and
pl, p2, are given positive numbers that satisfy appropriate asymptotic forms,
then there exists A(s) C1[0, 1] and B(s) C[0, 1] such that A1 <h2 <. are all
the eigenvalues for the eigenvalue problem

y(4) + (Ay(1))o)+By hy O,

y(o)= o.

And if yi(s) is the eigenfunction associated with Ai, with y[2)(0)--1, then
10 [yi(s)]2 ds, 1, 2,’" In particular, we seek to show that if {Ai}=l and
satisfy the appropriate asymptotic forms then A(s), B(s) and yi(s), 1, 2,..
can be determined by

A(s)= lim An(s), B(s)= lim Bn(s), yi(s) lim y’(s),

where An (s), Bn (s) and y 7(s), i, n 1, 2,. , are as given above. This will give us
sufficient conditions for convergence if we seek to obtain solutions close to the
"real" solution by applying the technique of 15]. Furthermore, it should be noted
that it is not necessary to know, in advance, that the sequence of eigenvalues and
the sequence of normalization constants arise from some unknown fourth order
eigenvalue problem; that is, the existence of coefficients A(s) and B(s) so that
/ </2 <(" and 01,102, are eigenvalues and normalization constants for the
fourth order eigenvalue problem is contained in the proofs in this paper.

The procedure for proving the above is as follows. In 2, we require the sets
{/i)ic_- and {Pi}i= to have appropriate asymptotic forms so that fn(s, t) and all
derivatives, up to and including the order four, converge uniformly as n --> o to

f(s, t)= E Zx’(s)Zx’(t)-ZxT(s)ZxT(t)
i=1 Pi P



398 JOYCE R. McLAUGHLIN

and the corresponding derivatives of f(s, t). Then the solution, K(s, t) of the
integral equation f(s, t)+o f(t, y)K(s, y) dy + K(s, t)= 0 has continuous deriva-
tives up to and including the order four. Furthermore,

oi+J oi+i
n-lim Os Ot

gn(s, t)
Os oti K(s, t), i,j=0, 1, 2, 3, 4, 0_<_ +/’_<_4.

Once this is determined, it can be shown that there exists A(s) C3[0, 1] and
B(s)CI[O, 1], yi(s)C4[O, 1] such that A(s)=limn_.ooA,(s), B(s)=
limn_, B(s), yi(s) Zx, (s) + K(s + t)Zx,(t) dt, and yi(s) satisfies the differential
equation

y4)+ (Aye1))(1) + Byi- Aiyi 0, i=1,2,....

In 3, it is shown that pi 1o [yi(S)]2 ds and that each yi(s) satisfies the boundary
conditions of (1), i= 1, 2,.... Further the set hi<A2<.., is shown to be the
entire sequence of eigenvalues for the eigenvalue problem (1). Finally in 4 more
general inverse problems are discussed. That is, application of the techniques of

2 and 3 are discussed for the cases when different asymptotic forms are known
and/or other boundary conditions are desired.

2. Convergence of A., B,,, y’, as n--> oo. In this section we will determine
conditions on the positive numbers A < A2 <" and p, p2, in order that the
finite sums

OJ+k oi+k

Os otkf,(S, t)= . Zx,(s)Zx,(t)

converge uniformly to

Oi+k 3i+k

Os otkf(S, t)= Zx,(s)Zx,(t)
OS Otk i= Pi P

ZxT(s)Zx*,(t)

ZxT(s)Zx*,(t)

for/’, k 0, 1, 2, 3, 4, 0 =</" + k -< 4. We will also determine conditions on the
positive sequence A < A2 <" in order for the set of functions {Za, (s)}= to be a
complete set of functions in L2[0, 1]. Using these results it will be shown that there
is a unique solution K(s, t) C[0 -< =< s _-<_ 1] of

(2) f(s, t)+ f(t, y)K(s, y) dr + K(s, t)= 0

and that K(s, t) has derivatives with respect to s and t, for 0 =< -< s =< 1, up to and
including the order 4 with the property that

Oi+k OJ+k
lim g(s, t)= K(s, t),. Os ot s i

uniformly for 0 _-< _-< s _-< 1, j, k 0. 1, 2, 3, 4, 0 -<_ j + k _-< 4 where K. (s, t) is the
unique solution of f.(s, t)+ o f.(t. y)K,(s, y) dy + Kn(s, t)= 0; see [15].
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Further, suppose An (s) and Bn (s) are the coefficients, calculated as in 15], so
that the fourth order eigenvalue problem

y(4) + (Any (1))(1) + Bny Ay 0,

y(0)= y(1)(0) y(1)= y(’)(1)= 0
will have A < Aa <" < An < A .*+ < A .*+2 <" as all of its eigenvalues, and so
that if y ’ is the eigenfunction associated with the ith eigenvalue, with (y [’)(2)(0)= 1,
then

Pi, i= 1, 2," n,
[Y ]a dS

[p*i n + l, n + 2,

Then it will be shown that there exist functions A(s) C3[0, 1], B(s) C[0, 1],
yi(s) C4[0, 1], i= 1, 2,..., such that

lim [An(s)](k) [A (s)](k) uniformly for 0 <- s =< 1, k 0, 1,

lim B,,(s) B (s) uniformly for 0 <- s -< 1,

lim [y(s)](k)= [yi(s)](k) uniformly for 0 -< s =< 1,

k =0, 1, 2, 3, 4, i=1,2,3,...

and such that y4+ (Ay))(+Byi-Aiyi 0. (It should be noted that the assump-
tion that An < A *,,+ is achieved for large n through the asymptotic form required of
the sequence {Ai}i 1.)

We begin with the following five theorems and two corollaries.
THEOREM 1. Let A < A a <" and pl, p2, be given sequences of positive

numbers. Let Zx, A p’i, 1, 2, , be given as in the Introduction. Suppose that
(Ai)1/4 (A/)1/4 _. Pi, 1/ (AiPi) 1/(A P*i + Ri and that the two sums Ei=I (Ai)k/4[eil
and Ei=l (Ai)k/4]Ri[ converge for k O, 1, 2, 3, 4. If we define

f(s, t)= Zxi(s)Zx’(t)-ZxT(s)Zx(t)
i=1 Pi P

then the series

[--Zx,(t)] [sZxT.(s)] [--ZxT(t)]
i=l

[s]ZAi(S)] dk dk

Pi P

convergences uniformly to continuous functions (o]+k/Os otk)f(s, t) for j, k
0, 1,2,3,4 and 0_-</+k =<4, O<-t<-s<=l.

Proof. The proof consists of a careful examination of the term

Zx,(s)Zx,(t) Zx*,(s)ZxT(t)
Pi PSi

4and its derivatives. For ease of notation, we let A =/x for A and/ positive. Then
after suitable rearrangement of terms, Z(s)=(1/(21.tE))[J(ix, s)+e-"H(t.,s)]
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where J(ix, s) sin Ixs cos Ixs + e -"s + e-"+"s (cos Ix sin Ix) and where H(IX, s)
has the property that there exists M>0, independent of Ix and s, such that
I(Ok/Os k)H(IX, s)l <- MIX k for k 0, 1, 2, 3, 4 and Ix -> 0. Further, using the above
estimates, we can write

4h/*p/*=4A/* Io [Zx*’(s)]Z ds Io [J(ix’ s)]2 ds + e-"Tll(ix )

where (ix,)4=h/, and Ii(ix/*) is uniformly bounded for i= 1,2,....
Straightforward integration then yields that 4h/*p/* 1 + (1/ix/*)
(cos Ix/* -sin) cos Ix/* + e-"";Iz(ix/*) where Iz(ix/*) is uniformly bounded for
i= 1, 2,.... We then can write

Zx,(s)Zx,(t) ZxT(s)ZxT(t)
Pi P

1

4AiPi
,{Q(ixi, s, t)+ J(ixi, s) e-"’H(ixi, t)

+J(ixi, t) e-"’H(ixi, s)+ e-"’H(ixi, t)H(ixi, s)}

4A/,p,{O(ix*, s, ) +J ix s ) e ’H(IX*, t)

2+J(ix t) e-g’H(ix s)+ e- "’n(ix OH(IX*i, s)}
where

Q(IX, s, t)= cos Ix(s t)- sin Ix(s + t)+ e-"(sin Ixt- cos Ixt)

+e-"/"*(-cos Ix(1 t) + sin Ix(1 + t)+ e-"’(sin Ixs-cos Ixs)

+e-’+)+ e-"+"-’+)(cos tz -sin t)

+e-"+"(-cos s +sin txs)+ e-"+"-)(cos tx -sin )

+e-2"+"+)(1 -sin 2/x).

It can be shown that the set {ix/*}=l is the set of zeros of the function
1-cos tx cosh Ix. Hence it can be shown that limi_oo (ix/*-izr-Tr/2)=0. In
addition, by hypothesis we have limi_ (ix/*-ixi)=0; hence limi-oo(ixi-iTr-
,r/2) 0. Therefore

OSiOk+i[(tk[’4AiPil )i= {J(ixi, S)e-"’n(ixi, t) + J(ixi, t)e-"H(ixi, s)

+ e-2’n(ixi, t)H(ixi, s)}]
converges uniformly for 0 -< <_- s <- 1, k, ] 0, 1, 2, 3, 4, 0 <_- k +] -< 4. A similar
statement holds when Ixi is replaced by Ix/* in the above expression. We need only
concern ourselves, then, with the terms

O(ixi, s, t) O(IX s, t)
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Following the notation in the hypothesis of this theorem, we write

1Q(/,, s, t) Q(*, s, t)
R,Q(tzi, s, t)+ [Q(tzi, s, t)- Q( s, t)]

4AiPi 4h fp p*4A *
It is clear from the definition of O(tx, s, t) that there exists M>0 such that
[(ok+i/OS Otk)O(Iz, s, t)[-< Mtz +i, k,/’=0, 1, 2, 3, 4, 0_-<k +/" -<4. Hence, we have
that Yi=l (a+i/asi ot)[RiQ(tx, s, t)] converges uniformly for 0-<k+/’-<4,
k,/" 0, 1, 2, 3, 4. In order to show that

., 1 0k+]

i=1 p/*4h Os Otk
[Q(tzi, s, t)-Q( s, t)]

converges uniformly, we consider first the difference of the first terms in Q(/z, s, t)
and Q(/z*, s, t). That is, we consider

1 0k+i

O’*, 4A Os Ot
[cos Ii(s t)- cos/x/*(s t)].

Straightforward computation yields that there exists M> 0 such that

I(Ok+i/Os 0t)[cos Ii(s t)- cos/x/*(s t)]l--< M(/*)+i[P].
Hence

[cos tzi(s t)- cos/z/*(s t)]

converges uniformly for k, j, k +/" 0, 1, 2, 3, 4. Similar bounds yield the required
uniform convergence of

1 0k+jF,
*4* Os Otk

[Q(/x, s, t)- Q(/z*, s, t)], k, ], k +] 0, 1, 2, 3, 4.
i=lp

The fact that the derivative (oJ+k/Os otk)f(S, t) is continuous for ], k
0, 1, 2, 3, 4, 0 -< ] + k -< 4, 0 _-< -<_ s _<- 1 follows from the uniform convergence of
the series.

Remark. It should be noted that in differentiating the series

each successive differentiation introduces a factor of (Ai)1/4 into the numerator of
the term obtained by differentiating Za,(s)Za,(t)/p and introduces a factor of
(A/*)1/4 into the numerator of the term obtained by differentiating
Za7(s)Zx7(t)/p. Hence it can be seen from the proof of Theorem 1 that in order
for

f(s, t)= Z Zx,(s)Zx,(t)_
i=1 Pi

Z *’Z *(t)]
to converge uniformly for 0_-< t<-_s_-< 1 we need only have Zil [vil <c) and

--1 [R[ < oe. Further, first order derivatives of f(s, t) can be obtained by differen-
tiating the series, representing f(s,t), termwise, if i---1 h i/41Pl<e and
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Y’-i=I (/*i)l/4[Ri[ < 03, and kth order derivatives can be obtained by differentiating
the series k times, termwise, if Y’.i=1(Ai)k/4[ei[<03 and Y’.i=1(A*i)k/nlRi[<03,
k=l, 2,..’.

Before proving Theorem 2 we remark that we have changed notation in
Theorem 2 to facilitate the notation in the proof. Accordingly, we have let/x be
the positive root/x =h 1/4 for A >0 and we let Z’(s) 2/x2(sinh/x-sin ix)Z(s).
Since we are concerned here with the completeness of the functions {Zx,(s)}=l
these changes do not alter our completeness result. To aid the reader Corollary 2
is written out in terms of {Zx, (s)}= 1.

THEOREM 2. Let Z" (s) (cosh/x cos/x) (sin/zs sinh/xs) + (sinh/x
sin/x)(cosh/zs- cos Ixs), and let 0 < tXl < tx2 <" be a given sequence ofpositive
numbers. Let tXo O. Let A(u) be the number oflx, <- u, n O, 1, 2,. . Then iffor
v > 1, and some b > 1,

v 1A(u)
du >---log v- C

u zr 4b

]’or some constant C, then the set {Zi}7= is complete on L2(0, 1).
Remark. The definition of completeness of {Z "’ (s )}= on L2(0, 1) used here

is that if f L2(0, 1) and 0 Z"(s)f(s) ds 0, 1, 2,. , implies that f= 0, a.e.
on 0-<s_-< 1, then {Z"’}=I is complete on L2(0, 1).

Proof. The proof is by contradiction. Assume, contrary to what we want to
prove that there exist ]’(s) L2(0, 1) such that ]’(s) # 0 on a set of positive measure
and such that the analytic function

H(tz)= Jo f(s)Z" (s) ds

has the property that H(t,,) 0, n 1, 2,. . Further H[(A,*)I/4] cannot be zero
for every n 1, 2,. since f(s) # 0 on a set of positive measure and {ZCa

=1

is a complete set on L2(0, 1). Hence H(tz)0. In addition we observe that
H(-tt,) H(i/z,) H(-it,) 0, n 1, 2,. Also since Z"(s) has a fifth order
zero at/z 0, then H(t) has a fifth order zero at t 0.

Denote n (r) as the number of zeros of H(tz) when ]1 =< r. We now obtain an
upper bound for n(u)/u du. By Jensen’s theorem, see e.g. [10, p. 243],

flr, 1 f02n(u)
du < log IH(r ei)l dO + alu =--

where a is independent of r. From the form of Z" (s), it is seen that when/x r e
we have the estimate

[Z" (s)]-< d max [e rlcs 01 erSlsin 01, er(l--s)lcos 01, er(l--s)lsin 0l, e rslcos ol erlsin 0l]
_-< d e lcs ol e rlsin 01

where d is a constant independent of r, s and 0. Substituting this estimate in the
above inequality, and observing that o2’ [[cos 01 + [sin 0[] dO 8, we can obtain

4rn(u)
du <---+ a2

U 7r
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where a2 is independent of r.
We will now achieve a contradiction in the following way. We construct the

analytic function

f(ft) ft
4 n__ 1--n

see e.g. [5, Chap. 1], which has a fourth order zero at/x 0, and simple zeros at
/z ,, -,, i,, -i,, n 1, 2,. . Then the function () H()/F() is also
analytic for all finite . The number of zeros, n l(r), of &() for Ilr is
n(r) n(r)-4A(r) and hence for r > 1

fl".4r [4r 1 C] 1nl(r)
dr <+a2- log r- log r+a4

r

where a4 is independent of r. The coecient of log r is less than 1, and nl(r) is
integer valued, nonnegative, and nondecreasing. Hence n(r) 0 and &() has no
zeros in the finite plane. But it is known that H() has a fifth order zero at 0
while F() has exactly a fourth order zero at =0. Hence, &(0)=0. This
contradiction proves the result.

COROLLARY 1. If ,>O, n=l,2,’.., and ,=((2n+l)/2)+O(1/n),
n 1, 2,. , then {Z"" (s)}=l is a complete set on L2(O, 1).

Proof. The result follows easily once it is observed that for large , there
exists k > 1 such that A()/- 1/(4k).

1/4 ((2i+ 1)/2)+ 0(1/i),COrOLLaRY 2. If A < A2 < and A
1, 2,..., then {Zx,(s)}= is a complete set on L2(O, 1).

Proof. Since Z"’ is a constant multiple of Zx,, we have that {Zx,}l is a
complete set on L(0, 1) iff {Z"’}= is a complete set on L:(0, 1). Hence,
Corollary 2 is just a restatement of Corollary 1.

Remark. The hypothesis in Corollary 2 is implied by the hypothesis of
Theorem 1. This is seen by noting first that the sequence {A }= is determined as
the set of fourth powers of the positive roots of the equation

cosh (X /4) cos ( 1/4)_ 1 0.

Further, it is easily seen, by graph of the function cosh A 1/ cos A 1/4 that the
sequence {A }= has the property lim. [(A )1/4_ ((2i + 1)/2)] 0. By letting
(A )1/4 ((2i + 1)/2) +, it can then be shown that lim. [ e+1)/:) 2]
0. Hence we have that (A )/4 ((2i + 1)/2) + O(1/i). In addition the hypothesis
of Theorem .1 states that (A)1/4 (A )/4 +p where =x Ie, < This yields that
the sequence {P} satisfies P O(1/i). Hence (A)1/4= ((2i + 1)/2) + O(1/i).

THZORZM 3. Let Za,(t), Zx7(t), p, p be defined as above. Assume that

Pi

converges uniformly for 0 s 1, and that g(s, t) is continuousfor 0 s 1.
Further assume that the set of functions {Zi(s)}=l is complete on the interval
0sl.
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Then them exists exactly one solution k (s, t) continuous in t, 0 <-_ <- s, ]:or each s

g(s, t)+ f(t, y)k(s, y) dy + k(s, t)= O.

Proof. The Fredholm theory tells us that for each s there exists exactly one
solution, continuous in of the above equation if the only continuous solution h (t)
of

f(t, y)h(y) dy h(t)=+ 0

is h 0. Hence, fix s and assume h (t) is a continuous solution of o f(t, y)h (y) dy +
h(t) 0. Then multiply this equation by h (t) and integrate from 0 to s to obtain

O= [h (t)] dt

[[o h(t)Z,(t) dt][o h(y)Z,(y) dy]

(The integrals may be taken inside the summation sign since the infinite sum which
defines f(s, t) converges uniformly.) Parseval’s equation tells us that

0 [h(t)] dr= 2
[I; h(t)Z,(t)dt]

i=

and hence we have that

[ h (t)Zx, (t) dt]2
O.

i=1

Since this is an infinite sum of nonnegative real numbers, it must now be true that

h(t)Zx,(t) O, 1, 2,....dt

But {Zx, (t)}= is a complete set of functions on 0 1 and hence is a complete
set of functions on any subinterval. Thus h(t) O.

THEOREM 4. Suppose that there exist functions e,(t, s), n 1, 2,. , e(t, s)
continuous on 0 s 1, and functions d(t, y, s), n 1, 2,. , d(t, y, s) con-
tinuous for O t, y s 1 such that lim, e,(t, s)= e(t, s) uniformly for Ot
s 1 and lim, d,(t, y, s)= d(t, y, s) uniformlyfor O t, y s 1. Also, suppose
there exists a unique continuous solution Q,(t, s), Ots 1, of the integral
equation

e(t, s)+ d(t, y, s)O(s, y) dy + O(s, t)= O, n 1, 2,...,
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and them exists a unique continuous solution Q(s, t), 0 _<- _-< s <= 1, o/ the integral
equation

e(t, s)+ d(t, y, s)O(s, y) dy + O(s, t)= 0.

Then lim,,_, O,,(t, s) O(t, s) uniC’ormly ’or 0 <- <- s <-_ 1.
Pro@ We show first that if we define

[IQ. QII {Q.(s, t)- Q(s, t)}2 d

then lim,,_.oo IIQ.-QII 0 uniformly in s, O_-<s _-< 1. To do this we subtract the
second integral equation above from the first to obtain the sequence of integral
equations

0 e(t, s)- e(t, s)+ d.(t, y, s)[O(s, y)- O(s, y)] dy + O(s, t)- O(s, t)

+ [d,,(t, y, s)-d(t, y, s)lO(s, y)dy, n 1, 2,. .
We assume that IIQ.-Q[I_< 1 for n 1, 2,.... This is without loss, for if
IIQ -QII> for some n we divide the above equation for that same n by
IIQ QII. This would change e.(t, s)- e(t, s) and d.(t, y, s)- d(t, y, s) but not the
convergence properties of the sequences {e,,(t,s)-e(t, s)}=l and {d.(t, y,s)-
d(t, y, s)},,= 1.

Let D, be the linear operator

D’= d,(t, y, sff(y) dy, n 1, 2,...,

and D be the linear operator

D"= d(t, y, sff(y) dy,

all defined for " e L(0, s). Since lim,,_., e,(t, s) e(t, s) uniformly for 0 _-< _-< s _-< 1
and lim,,_, d,,(t, y,s)=d(t, y,s) uniformly for 0<_-t, y_-<sN1 we can conclude
from the above sequence of integral equations that lim,,_,[D(O,-O)+
(O,, O)] 0 uniformly in and s for 0 _-< _-< s _-< 1. Further, it can be shown that
{D(O,-O)}I is a uniformly bounded, equi-continuous set of functions.

DHence, there exists a subsequence { ,,,(O,,- O)}-- and a continuous function
y(t, s), 0 <- <_- s <_- 1, such that lim_,o D,(O,, O) y(t, s) uniformly for 0 <_- <_-

Ds-<l. In addition the set of inequalities
implies that

uniformly for 0-< s =< 1. And the set of inequalities

IIDSY + Yll <--IIDy D.,yll + IID,,,y D., (Q., O)ll

implies that IIDSy + Yll O.
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This last inequality says that y(s, t) 0, 0 =< -< s -<- 1, since we have a unique
solution for DSy + y 0 by hypothesis. Hence limi_ [[Qn,- QII 0 uniformly in s,
0-<s=<l. Since Q is the unique solution to the integral equation e(s,t)+
o d(t, y, s)Q(s, y) dy + Q(s,/)= 0 we have that limn_ lion Oil 0 uniformly
for 0<-s=< 1.

It remains to show that we have uniform pointwise convergence, that is, that
limn- Qn- Q 0 uniformly for 0 =< =< s-< 1. This follows easily from the fact
that limn_ D,](Qn Q)+ Qn Q 0 uniformly for 0 <- -< s -< 1 and from the fact
that limn_, IIQ QII- 0 uniformly for 0 =< s -< 1.

THEOREM 5. Let g(s, t) and h(s, t) have continuous partial derivatives up to
order n (n included), (n >= 0), with respect to s and for 0 <-_ <-s -<- 1. Suppose that
the homogeneous equation

Ios h(t, y)k(y)+ k(t)= 0

has only the trivial solution k(t) O, 0 <= <- s. Then the unique solution k(s, t) ofthe
integral equation

g(s, t)+ h(t, y)k(s, y)+ k(s, t)= 0

has continuous partial derivatives up to order n (n included) with respect to s and t.

Proof. From the Fredholm theory, see e.g. [16], we know that for fixed s,
k(s, t) has continuous partial derivatives up to order n (n included) derivatives
in t, 0 _-< _-< s. The remaining derivatives follow from the lemma on pp. 273-274
of [4].

We can now combine all of the above results to show that when the positive
sequences I <,2<’ and 0, 0., have the appropriate asymptotic forms,
and if fn(S, t), gn(s, t), n 1, 2," ., are defined as in the Introduction, then

f(s, t)= 2
Zx,(s)Zx,(t) ZxT(s)ZxT(t

i=1 Pi PSi
is a well-defined C4(0 =< _-< s _-< 1) function, and the integral equation

f(s, t) + f(t, y)K(s, y) dy + K(s, t) 0

has a unique solution K(s, t)e C4(0=< t<=s <- 1) with the property that

tgi+k tgi+k
lim k gn (s, t)= k g(s, t)
n- Os Ot Os Ot

for j, k 0, 1, 2, 3, 4, 0 -< j / k <_- 4, uniformly for 0 _-< _-< s _-< 1. We prove the
following theorem.

THEOREM 6. Let A A2 and pl, D2 be two positive sequences. Let
A’i, p’i, i= 1, 2,..., andre(s, t), Kn(s, t), n 1, 2,..., be given as in the Intro-
duction. Suppose that (Ai)/4 (A ,)1/4 +p and 1/(Ap) 1/(A/*p*)+ Ri and that
’,i=1 (Ai)k/4]pi <00 and i=1 (A,)k/4lR, < c [or k=0, 1,2,3,4. Let f(s, t) be
given as in the Introduction. Then there exists a unique solution K(s, t)
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C4(0 .<= <- s <= 1) of the integral equation

[(s, t) + f(t, y)K(s, y) dy + K(s, t) 0

with the property that

t9 +k tgJ+k
lim g,,(s, t)- [g(s, t)]- s s t

uniformly ]’or O <- <= s <= l, f, k O, 1, 2, 3, 4, 0-</’+k =<4.
Proof. We shall show first that there exists a unique solution K(s, t) continu-

ous in t, 0 <- <- s for each s, 0 <= s <- 1, of the equation

f(s, t)+ f(t, y)K(s, y) dy + K(s, t)= O.

To this end, we recall that from Theorem 1 we have that the sum

y z.,(s)Z.,(O z.(s)Z.(t
i;1 0i 0/*

converges uniformly to the continuous function f(s, t), 0 -<_ -<_ s <_- 1. Further, from
the remark following Corollary 2 of Theorem 2, we know that the set of functions
{Z,, (s)}; is complete on L2(0, 1). Hence Theorem 3 gives us the required result.
In addition we can state that the derivatives oJ/kK(s, t)/Os Otk exist and are
continuous for/’, k 0, 1, 2, 3, 4, 0 -<_ ] + k -<_ 4, and for 0 <- <_- s <- 1. This follows
directly from Theorems 1 and 5.

To show that the limits exist as in the statement of our theorem, we first recall
that, as in the Introduction, K,,(s, t) is the unique solution of

(s, t)+ (t, y)I((s, y) dy + g(s, )= 0

where

fn(s, t)= Zx’(s)Zx’(t)-ZxT(s)ZxT(t)
i= Oi O

and that f(s, t), K,,(s, t)e C(O<-_t<-_s <-_ 1). Further since L(s, t)-f(s, t)
uniformly for O<-t<-s<-l, we have .from Theorem 4 that K,(s,t)K(s,t)
uniformly in and s for 0 _-< _-< s _-< 1. Also, once K, (s, t) is known, the derivative
(O/Os)K,(s, t) may be determined as the unique solution, see [15], of the integral
equation

O’- f(s, t)+ f,,(s, t)K,,(s, s)+ f,,(t, y) K,,(s, y) dr +[,(s, t)] 0.

Since (O/Os)f(s, t) and (O/Os)K(s, t) exist and are continuous for 0-<_ t-<_ s-<_ 1 we
may determine the derivative (O/Os)K(s, t) as the unique solution of the integral
equation

O-- f(s, t)+ f(s, t)K(s, s)+ f(t, y -sK(S, y) dy +-s [K(s, t)] O.
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From Theorem 1 we have that lim,_ (a/Os)fn(s, t)= (O/Os)f(s, t) uniformly, and
that fn(s, t)-f(s, t) uniformly. We have previously applied Theorem 4 to obtain
that K,(s, t)K(s, t) uniformly. Hence we apply Theorem 4 again to achieve
that lim, (O/Os)K,(s, t)=(O/Os)K(s, t) uniformly for Ots 1. Similar
proofs enable us to show that lim, (Oi/Os)K,(s, t)= (Oi/Osi)K(s, t), 2, 3, 4
uniformly for 0 s 1.

The remaining uniform limits, i.e.

Oi+k Oi+k
lim k K(s, t)= K(s, t),O Ot Os Ot

uniformly for 0 s 1, j 0, 1, 2, 3, 4, k 1, 2, 3, 4, 0 ] + k 4, are shown
more directly. Consider, first, the first partial derivative with respect to t. As in the
above argument we can differentiate the integral equation satisfied by K(s, t) to
obtain that

K(s, t)=-f(s, t)- f.(t, y) K(s, y) dy.

In addition we differentiate the integral equation satisfied by K(s, t), with respect
to t, to obtain

OS -f(s, t)- f(t, y) K(s, y) dr.

Since K.(s, t) K(s, t) uniformly, as was proved above, and from Theorem 1 we
have (O/Ot)f.(t,y)(O/Ot)f(t,y) uniformly and (O/8t)f.(s,t)(O/Otff(s,t)
uniformly, we must have (O/Ot)K.(s, t) (O/Ot)K(s, t) uniformly for 0 6 s 1.
Similar proofs apply to the remaining derivatives.

Having shown thatK(s, t) and its first four derivatives converge uniformly to
K(s, t) and its corresponding derivatives, we are now prepared to prove our main
result. That is, suppose we have the two positive sequences hi< ha <... and
px, p2,. satisfying the appropriate asymptotic forms. And suppose that A.(s)
and B.(s) are coecients, found as in [15], with the following properties: the real
numbers h h2, h., h +1, A*.+, are all the eigenvalues for the eigenvalue
problem

Y
(4) + (A.y()1 ()+B.y Ay 0,

y(0)= y(1)(0) y()= y(1)(1) 0;

if Y7 is the eigenfunction corresponding to the ith eigenvalue, and if
2(d2/ds2)[y,]l,=o= 1, then [yT(s)]2 ds o,, i= 1, 2,..., n or o [y(s)] ds p,

n + 1, n + 2,. and if K.(s, t) is the unique C*(0 s 1) solution of

f (s, t) + f. (t, y)K. (s, y) dy + K. (s, t) 0, then we define the coecients A. (s)
and B(s) as

K (, s),A,(s)=-4
ds

d3

e,(s) -A.(s)K...(s, t)[,= + 2(K.,..- K.,,,),I,=.- 2K(s, s),
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where K,(s, t) and its derivatives can be found by solving appropriate linear
nonhomogeneous systems of equations. Then it will be shown in Theorem 7 that
there exist functions A(s) and B(s) and yi(s), i=1,2,..., such that
lim,,_ A,,(s) A (s), lim,_. B,,(s) B(s), lim,_. y’(s) y,(s), 1, 2, , and
such that yi(s) satisfies the differential equation

y4)+ (Aya))(x) + Byi- hiyi 0,

1, 2,.... To complete the analysis we need to show that y(0)= ya)(0)=
y(1) ya)(1)= 0, yZ)(1)= 1, that A </2 <" are all the eigenvalues for the
eigenvalue problem

y(4)_[_ (Ay (a))() + By hy 0,

y(0) y(1)(0) y(1) yO)(1)= 0

and that pi ao [y(s)] ds. This last analysis is done in 3.
We proceed with Theorem 7.
THEOREM 7. LetZx, h*, p[, K,(s, t), yT(s), i, n 1, 2,.. , be givenas in the

Introduction. Suppose that the positive sequences hi <h2 <’’" and px, p2,""
satisfy the conditions (Ai)x/4=(h)l/4+Vi and 1/(hp)= l/(h* p* )+R where

i=1 (i)k/41pi[<O0 and -?=1 (li)k/4[Ril<, k=0, 1,2,3,4. Let K(s,t)e
C4(0-< _-< s _-< 1) be defined as in Theorem 6 and let

yi(s) Z.,(s)+ K(s, t)Z.,(t) dr,

Z.,(s)+ K.(s, t)Z.,(t)dt, i= 1, 2,..., n,

Z,*.(s)+ | K,,(s, t)Z*,(t) dt, n + 1, n +2,..
Jo

LetA(s ), B, (s ) C[0, 1 be defined as above and let

d
A (s -4-s K(S, S ),

d
B(s)= -a (s)K(s, t)[,= + 2(K -K,,),I,=- 2-s3K(s, s).

Then A(s) C3[0, 1], B(s)e Ca[0, 1], lim,_. A,,(s) A (s) uniformly for 0 <= s <=
1, lim,_oB,(s)=B(s) uniformly for 0=<s -< 1, yi(s) ca[0, 1],

[yT(s)] d
lim k.-. ds d-fi-[y’(sl]’

uniformly for 0 <- s <- 1, k 0, 1, 2, 3, 4, and

y4)+ (Aya))(1) +By-hiy 0, i=1,2,....
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Proof. From Theorem 6 we have that all of the derivatives, up to and
including the order four, of K(s, t) exist and are continuous on 0 <- <- s -< 1. Hence
A (s) andB (s) are well defined withA (s) C3[0, 1 and B(s) C [0, 1 ]. Further

lim K.(s, t) t)
n- OS Otk K(s,

uniformly for 0 _--< =< s -< 1. Hence lim._. A,, (s) A (s), lim._. (d/ds)A. (s)
(d/ds)A (s), lim._ B. (s) B (s) uniformly for 0 =< s -<_ 1.

It remains to show the desired conclusions about yi(s), 1, 2,. . First of
all, since K(s, t) C4(0 _-< tl), we have that yi(s) C4[0, 1]. To show the remaining
conclusions, we shall make a slight change in notation and write

y= Zxi + K,(s, t)Zx, (t) dt, i=1,2,...

This is without loss since it is a true statement for _-< n and we shall be concerned
with limiting values as n oo for fixed i. Once this is done, we use the fact, from
Theorem 6, that

Oi+k Oi+k
lim K.(s, t)= K(s, t)
r,--, OS tk OS Otk

uniformly for 0-<_t<-s<=l, ],k=0,1,2,3,4, 0-</’+k-<4, to show that
lim,_, ((dk/dsk)[y’;(S)])= (dk/ds k)[yi(s)] uniformly for 0 <= s <= 1, k
0, 1, 2, 3, 4. Having this fact we may write

0 lim {(y7)(4)+ [mn(yT)(1)](1)+ B,,y’-

(Yi)(4) + (Ay 1))(1) + Byi AiYi,

the last conclusion of the theorem.

3. Showing {Y}=I is a complete set of eigenfunctions. We have shown in
2 that if we have two positive sequences, A1 <A2 <"’, pa, p2," with given

asymptotic forms, then we can find coefficients A(s) C3[0, 1], B(s)6 C1[0, 1]
and functions yi(s) C4[0, 1], i= 1, 2,..., such that

y 4) -I" (Ay ))(1) _[_ Byi- l,iYi O.

We seek now to show that h < A 2 <" are all the eigenvalues for the eigenvalue
problem

y(4)_k_ (Ay (1))(1) + By Ay 0,

y (0) y(1)(0) y(1) y(1)(1) 0.

It will also be shown that yi is the eigenfunction associated with hi, that y 2)(0)- 1
and that pi Xo [Yi(S)]2 ds. Our proof will consist of showing that {yi}=l is a
complete, orthogonal set and that each yi satisfies the five boundary conditions
and has the right normalization constant.

THEOgEM 8. LetZx, A *, p*, 1, 2,. , andre(s, t), K,(s, t), n 1, 2,. ,
be given as in the Introduction. Suppose that the positive sequences h < l 2 <" and
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i01, i02, satisfy the conditions (,i)1/4 (//)1/4 +Pi and 1/(Aipi) 1/(A*p*)+
where i=1 (Ai)k/4lPil < oe and Yi=l (,)/41RI < oo,/c 0, 1, 2. Let K(s, t) be
the unique continuous solution of

f(s, t)+ f(t, y)K(s, y) dy + K(s, t)= O.

Let yi(s)=Za,(s)+oK(s, t)Za.(t)dt, i= 1,2,..-_ Then {yi}il is a complete,
2orthogonal sequence with pi o [yi(s)] ds and yi )= yl)(0)= yi(1)= y)(1)= 0,

y)(O) 1, i= 1, 2,. .
Proof. We discuss first the proof of the fact that {y}_- is a complete,

orthogonal set. The proof is the same as that in the first part of Theorem I of [15]
provided that we can interchange integrations (with respect to s or t) with the
infinite sum which defines f(s, t). All that is needed then is that the infinite series

f(S, t) l[ZXi(s)Zxi(t)
converges uniformlyo 0 _-< _--< s _-< 1. It is seen from fle proooTheorem 1 o tiffs
paper tIat the condRons on Ai, p, 1, ,. , given above
uniform convergence.

We next show that p [yi(s)]2 ds. This follows directly from Theorem 7.
For if lim,_, y ’(s) y(s) uniformly for 0 <= s <= 1 as was proved in Theorem 7 and
if Ilo [y(s)]2 ds O for n ->_ as is true by hypothesis, then

pi= lim pi lim | [y’(s)]2ds f lim [y(s)]2 ds= f [yi(s)]2 ds.
0

It remains to show that the desired boundary conditions are achieved. The
hypothesized asymptotic forms for hi and Oi insure that the first and second
derivatives of K(s, t) exist and are continuous. Hence the left boundary conditions
can be verified directly recalling that Z(0)= Z(a)(0)= 0 and Z(a2)(0)= 1. The right
boundary conditions are verified by recalling that lim,_.oo y ’(s) y(s), 0 _-< s <- 1,
and observing that also lim,_.oo (d/ds)[y(s)] (d/ds)[y(s)], 0 <= s <- 1.

Remark. The asymptotic forms required in Theorem 8 are somewhat weaker
than those required in Theorem 1 and Theorem 7. The reason for this is that in
order to prove the results of Theorem 8, we do not need all of the first four
derivatives of K, (s, t) converging uniformly to the corresponding derivatives of
K(s, t). Accordingly, to show that {y}l is a complete, orthogonal set, that
O ]’o [Y(S)]2 ds, and that y(0) y(1) 0, 1, 2,. , we need only require that
Y’,i=llPil<oo. To show that y})(0)=yl)(1)=0, i=1,2,..., we need that

Ei=I (li)l/4[Vi[ < O0 and that Y=x (Ai)x/4[Ril < o0. Finally to show that y()(0)= I we
use the hypothesis that 2i=1 (Ai)l/e[Pi[ < oe, Yi= (h)l/[Ri[ <

4. Other boundary conditions. We have proved our results requiring that Zx
be defined for h > 0 by

Z(A4) --/ZA "-0,

Zx (0)= Z()(0) Zx (1)= 0, Z()(0) 1.
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Further we have let h *, p*, 1, 2,..., be the eigenvalues and normalization
constants for the eigenvalue problem

Z(4)-AZ 0,

Z(0)= Z(’)(0) Z(1)= Z(1)(1) 0, Z(z)(O) 1;

and we have given our asymptotic conditions on h 1,/2, Pl, P2, in terms of
the eigenvalues h *, h 2*, and normalization constants px*, p*,"

We choose this particular problem to make the analysis easier but the analysis
can be carried out under much more general circumstances. As is stated in
Remark 2 at the end of 2 of [15], the Zx’s could be replaced by Yx’s where for
h > 0 each Yx satisfies the equation IA4)- h Yx 0 plus two homogeneous bound-
ary conditions and one nonhomogeneous boundary condition at s 0 and one
homogeneous boundary condition at s 1. That is, there would exist real a, i, yi,

4 2 4 2r/,,i 1, 2, 3, 4, independent of A and with E/4=l 0/2 0, Ei=I i . 0, Ei=I y 0,
2 4 i-1) 4 4 i--1)

’li 0 such that Ei---1 ai Y(A (0)"-0, Ei=I iY(Ai-1)(0) 0, Ei=l YiY(A (1)=
0, Y=I r/i IA-I)(0) 1. Furthermore, p*, h/*, 1, 2,. , would be replaced by i,
i, 1, 2,. , respectively, where ,i, 1, 2,. , is the entire set of eigen-
values, (and the corresponding set of normalization constants) for the eigen-
value problem

y(4)_/ y O,
4 4 4 4

0-" iy(i-1)(0)-- iy(i-1)(0)-- E iy(i-1)(1) E tiyi-l(1),
i=1 i=1 i=1 i=1

4

E ,iy(i-1)(0) 1,
i=l

4
(here 6i is real, independent of A, 1, 2, 3, 4, and Ei= 6/2 7 0). It is assumed that
i is simple, that the above eigenvalue problem is self-adjoint, and that for all
h >0, Yx and Y, satisfy [y.y3) yxy3)_y-(1) y(2) + p.v(Z)v(1)-I[h ][s=O --0.

With all of these assumptions the analysis in [15] can be carried out to find
coefficients and boundary conditions, so that h , h2, , h., .+, .+1, and
Pl, P2, Pn,/n+l,/n+2 are all the eigenvalues and normalization constants for a
fourth order, linear eigenvalue problem. We would then require that hi/4=
(i)l/4+pi and 1/(AiPi)-" 1/(.i,)+Ri with 2i=1 (Ai)k/4lpi[<O and
i=1 (Ai)k/4lRi[ < cx3, k --0, 1, 2, 3, 4, to obtain the convergence of coefficients,
and eigenfunctions as discussed in this paper. This leads to the existence of a
fourth order eigenvalue problem whose entire set of eigenvalues is hi, h2,.
and corresponding set of normalization constants is pl, p, .
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DILATIONS AS PROPAGATORS OF HILBERTIAN VARIETIES*

P. MASANIf

Abstract. In this paper W-to- W* operator-valued positive definite kernels K(. are defined on A x A,
where W is a Banach space and A an arbitrary set, and Hibertian varieties X(. with such covariance kernels
are studied with the aid of the Kolmogorov-Aronszajn-Pedrick kernel theorem. The general notion of a
propagator of X(. is introduced in terms of the action on A of a semi-group F, and necessary and sufficient
conditions are established for its existence. We show that these conditions simplify substantially when the
semi-group F is involutory, especially so when A F. For F A equal to a unitized Banach algebra with
isometric involution, these conditions subsume those given by Stinespring for C*-algebras.

If for Hilbert spaces W and semi-groups A, dilations are redefined in terms of isometries rather than
projections, then the dilation/ (.) of a given W-to-W operator-valued function R (.) on A is precisely the
propagator of a Hilbertian variety whose covariance kernel K(.. satisfies K(., 0)=R(. ). Dilation
theorems are thus rendered explicit, and their method of proof routinized. From our results on propagators
we deduce a simplified version of Nagy’s principal theorem in which his translational inequality is mitigated,
and the Bram version of Halmos’s theorem on subnormal operators. Dilation theorems such as those of
Lebow, Arveson and Naimark are shown to fit into this approach.
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1. Introduction. As usually enunciated, a simple dilation theorem asserts the
embeddability of a Hilbert space W into a larger Hilbert space 9 so that a given
operator R on W to W can be retrieved by projection from a simpler operator/ on ,
to 9; more precisely,

(1.1) RP PLOP, equivalently R Rstr. wPt,
where P is the orthogonal projection on 9 onto W, and "Rstr. w" stands for "restriction
to W". Less simple versions assert the same type of embeddability for all positive
powers R n,/ n.

Dilation theorems are significant for physics and engineering in connection with
systems whose inputs and outputs can be characterized by vectors on a Hilbert space W,
and the action of the system by an operator R on W to W. Suppose, for instance, that
this R is a contraction--the case of a dissipative filter. The theorem that contractions R
have unitary dilations/ then shows that an equivalent filter can be obtained in the
canonical way indicated in (1.1) from a nondissipative (ideal) one governed by/. This
kind of knowledge contributes to the theory of systems designing, and may even suggest
efficient and economic use of hardware.

An examination of the proofs of dilation theorems reveals however that in nearly
every case, 9 does not contain W but rather a subspace I isometrically isomorphic to
W; briefly, W---ff’_ and WE. Only when W is "identified" with IY’, does W
"become" a subspace of . Now identifications are compelling and useful in many
mathematical situations, but in the present instance to identify Wand W is unnecessary

* Received by the editors October 23, 1975, and in revised form November 15, 1976.

" Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260. This work was
supported by the National Science Foundation U.S.A. under Grants GP43072 and MPS 74-07302 A01.
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and even misleading. For it obliterates the connection between the subject and the
theory of propagators of varieties in Hilbert spaces or in spaces of Hilbert-space-
operators which stem from positive definite kernels, as shown by theorems of a type
initiated by Kolmogorov. This obscures the nature of the subject and cloaks it with a
deceptive individuality.

In this paper we shall adopt a definition of dilation that is suggested by the proofs
themselves, reveal the nexus between dilation theory and the theory of Hilbertian
varieties and their propagators, and thereby appreciably simplify and systematize the
former. Among our new results we would call attention to the Main Thms. 4.10, 4.13,
from which emerge readily a substantially improved version of Nagy’s principal
theorem [26, p. 21] and the theorem of Stinespring [32, Thm. 1], and from which the
Bram theorem [6, Thm. 1] follows in a clearcut way (cf. Thms. 5.3, 4.14, 4.15 and 6.2).
Our definition reads as follows"

1.2 DEFINITION. (a) Let W, 9 be Hilbert spaces over the field :, R be any
operator (not necessarily linear) from W to W and/ be any operator from (C) to . We
say that/ is a dilation ofR ill ::i a linear isometry J on W into such that R J*/J.

(b) Let A be any set, W and be Hilbert spaces over IF, R(. be a W-to-W
operator-valued function on A, and/ (.) be a -to- operator-valued function on A.
We say that R (.) is a dilation ofR (.) ill :I a linear isometry J on W into 9 such that

va A,

In this approach the equation (1.1) gives way to that in Def. 1.2(a). A dilation
theorem is one that claims for a given type of W-to-W operator R or W-to-W
operator-valued function R (.), the existence of a dilation/ or/ (.) of a specific type,
in the sense of Def. 1.2. When perceived in this way, dilation theory comes to depend on
the generalizations of the following theorem of Kolmogorov on positive definite kernels
[15, Lemma 2] .2

1.3 KOLMOGOROV’S THEOREM. Let k(. be a positive definite (PD) kernel on
N/ x N/ to g:, and let gO be any infinite dimensional Hilbert space over g:. Then a
sequence (x,) in gO such that

Vm, n +, (x,,, x,)= k(rn, n).

This is the first in a line of theorems which assert the realizability of scalar-valued or
operator-valued PD kernels on spaces A x A as covariance kernels of varieties in
Hilbert spaces or in spaces of Hilbert-space-operators.3 A culminating step in this
development was the Moore-Aronszajn reproducing kernel theorem [2]. Very recently
Allen, Narcowich and Williams [1] have extended the Kolmogorov result to W-to-W
operator-valued PD kernels on A x A, where W is any separable Hilbert space and A a
separable Hausdorff space, by a direct proof free of the reproducing kernel technique,
and in this paper, Thm. 2.10, we state its further extension to W-to-W* operator-
valued kernels, where W is any Banach space and W* is its adjoint, using certain ideas

Our use of a nonprojection J in 1.2 seems to be in keeping with recent trends, cf. the enunciation of
Lebow’s theorem in [5, Thm. 1.0] in which J is an isometry, and especially Stinespring [32, Thm. in which J
is any continuous linear operator.

In this paper : will refer to either the real number field R or the complex number field C, and to the set
of all integers. +, R+, and No+, R0+ will denote the subsets of positive elements, and subsets of nonnegative
elements of and R.

For specific Hilbert spaces such L2(f, , P) and specific types of PD kernels, such theorems have a
history going back at least to Khinchine’s ’work on stationary stochastic processes [14] (1934).
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of Vakhania [33]. These ideas appear, however, in the 1957 technical report [30]4 by G.
B. Pedrick, in which W is just any locally convex topological vector space.

Theorems of the Kolmogorov-Aronszajn-Pedrick type permit the translation of
problems depending on positive definiteness into ones about Hilbertian varieties, and
thereby open the way to using knowledge about the structure of the latter to solve the
former problems,s But such theorems are also crucial for dilation theory in view of the
fundamental fact, first perceived by Halmos [11] and Nagy [26], that a dilation-
possessing operator-valued [unction R (.) on A gives rise to a PD kernel K(. ) which
reflects the specific properties ol R (.), and differs lrorn the trivial kernel J( on A x A
given by J(A, M)= R(I’)*. R(1). For instance, for the semi-group (C":n o+) of
linear contractions on a Hilbert space W, Nagy defined the kernel K(. ) on N x N by:

K(m,n)=C(m-n),
, n>_O,

C(n) (c-")*, n <0.

The nonobvious fact that this K(. ) is PD rests on the C being contractions; cf. [26,
p. 30], [27, p. 29].

Now it is well known to workers in random processes and random fields that
Hilbertian varieties associated with PD kernels by theorems of the Kolmogorov-
Aronszajn type often carry with them in a natural way certain operator-valued
functions such as unitary groups, isometric semi-groups, spectral measures, etc. These
operator-valued functions act as propagators or controllers of the varieties; cf. Def.
3.2(b). This holds in particular for all the nontrivial kernels considered by dilation
theorists, and the propagators turn out to be precisely the desired dilations. One can in
fact lay down the following routine for obtaining all dilations:

1.4 PROCEDURE. Given the W-to-Woperator-valued function R (.) on A, (i) find
the appropriate (nontrivial) PD kernel K(. ) on A x A (if any), (ii) find the vector- or
operator-valued Hilbertian variety X(. ) having the covariance kernel K(.. ), (iii)
determine the operator-valued controller or propagatort (.) of this variety. Then 1 (.) is
the dilation ofR (.), and the isometry J in 1.2 is the value ofX( ) at some distinguished
point on A.6

The verification of the last assertion in 1.4 just involves writing the relevant
definitions and combining them trivially to get the equations in Def. 1.2 (see proof of
Thm. 5.1 below). Of the three steps in 1.4, it is (i) which involves the hardest work. In
the classical proofs steps (ii) and (iii) are not sharply distinguished, and the variety is

4 As this report has remained unpublished, results subsumed in it have been rediscovered in subsequent
years. The case in which Wis a Hilbert space was treated by MacNerney in his 1960 paper 18], the contents of
which was announced in 1955 in the abstracts [17]. We find that our Thm. 2.10 may be retrieved from
Pedrick’s Thm. 5 [30, p. 42]. But this is stated for W*-to-W operator-valued kernels, and in an idiom which
emphasizes the reproducing rather than covariance property. So it is easier to prove Thin. 2.10 directly from
Aronszajn’s Thm. (see Appendix C).

Although this method is still new, it has shed new light on several important problems depending on
positive definiteness. Among the notable examples: 1) th,e F. and M. Riesz theorem on bounded complex-
valued measures on the unit circle C of C, [31, 4.3]; 2) the theorem of factorization of a matrix-valued
function on C in the form (. )(. )* where is in th-e Hardy class on the inner disk D/ [35] and its many
extensions culminating in 25, Thm. 3.8]" 3)the factorization of a matrix-valued Hardy class function on D
into optimal and residual (Beurling’s outer and inner) factors [19]" 4) the Levy-Khinchine theorem for
infinitely decomposable probability distributions over R [22].

6 In many instances, the dilations are known in stochastic and related work, and.a search of the literature
will often give this free.
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encountered from the start with the propagator inserted.7 This mix-up is confusing, for
step (ii) can be taken for any set A, whereas step (iii) requires A to have some algebraic
structure. In pioneering days this initial merger of steps (ii) and (iii) was perhaps
unavoidable, since the generalization (2.10 below)of Aronszajn’s theorem was
unknown and the notion of propagator was somewhat amorphous. But today a more
perfect architecture is revealed by the realization of 1.4 and of the close alliance
between dilation theory and the theories of Hilbertian varieties and of their controllers
and propagators.

In much the same spirit, the concept of extension to a larger Hilbert space (9, as
opposed to dilation in ), cf. [26, p. 19], also needs widening. The definition which
naturally uggests itself is as follows"

1.5 DEFINITION. Let A, W, S, R (.),/ (.) be as in 1.2(b). We say that/ (.) is an
image-extension of R (.) iff =l a linear isometry J on W into such that

VA A, JR (Z)j-1 ___/ (A),

i.e. such that/(A) is an extension of the image JR(A)J-X, in CL(, ), of R(A),
range of J.

In 2 we define Hilbertian varieties and formulate a very general version of the
kernel theorem following the thought of Kolmogorov, Aronszajn and Pedrick (Thm.
2.10). In this A is an arbitrary set and W is only a Banach space. We consider the
continuity questions which arise when A is equipped with a Hausdorff topology, and the
measurability questions which come up when A is equipped with a tr-algebra (Cors.
2.13, 2.15). We also study the case where A is a vector space and the kernel K(. is
sesquilinear (Cor. 2.16). As most of the material in 2 is ancillary to dilation theory in
the narrow sense and is formulated with somewhat greater generality than needed for
dilation purposes, the proofs of all theorems in 2 are relegated to Appendices at the
end of the paper.

In 3 we first define a wide concept of propagator or controller S(. ) of a Hilbertian
variety X(. ) on A" it is only required that S(. ) be the representation of a not
necessarily Abelian semi-group F that acts on A. We then establish the necessary and
sufficient conditions that X(. ) should possess such an S(. ) (Thin. 3.4). We also
consider the propagators of stationary varieties (Cor. 3.5), and the strong continuity of
the propagator when the semi-group F is topological (Cor. 3.6).

In 4 we turn to the important case in which F is an involutory semi-group in the
sense of Nagy [26, 6]. Our main objective here is to show that the necessary and
sufficient conditions for the existence of a propagator are much milder than those
required in Thin. 3.4 for noninvolutory F (Main Thin. 4.10). The conditions are that the
covariance kernel of the variety possess mild transfer and translational properties,
(4.Sa-b). As a first step we show that the transfer requirement (4.5a) alone is necessary
and sufficient to yield closed, single-valued (but possibly discontinuous) propagators on
domains having a common everywhere dense linear manifold (Thin. 4.’7). Then with
some clues from Stinespring’s proof we show that the mild translational requirement
(4.5b) secures their continuity as well. Our main Thin. 4.10 can be recast in terms of the
notion of PD function R (.) on F due to Nagy (Thm. 4.13). Next we take the F in 4.13 to
be a Banach algebra with a unit and an isometric involution (viewing it as a

For instance, the Gelfand-Raikov Thm. [9] that if b(. is a PD function on a topological group A, then
4(t) (U(t)a, a) where U(. is a unitary representation of A over a Hilbert space ) and a ), combines two
assertions: 1) there is a variety in ) having the covariance 4 ("), 2) this variety being stationary, its propagator
is a unitary group.
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multiplicative s.g.), and the PD function R (.)on N to be a linear operator on N, and
obtain as a corollary a generalization of Stinespring’s theorem for C*-algebras [32,
Thm. 1], (Thms. 4.14, 4.15).

In 5 we assume that the parameter space A is itself a semi-group and W is a
Hilbert space, and prove a general dilation theorem for all W-to-W operator-valued
PD kernels for which the associated Hilbertian varieties have propagators, (Thm. 5.1).
This validates Procedure 1.4, and shows that the only nonroutine aspect in proving a
dilation theorem is the discovery of an appropriate kernel K(.. ) on A x A and the
demonstration of both its positive definiteness and its fulfillment of the propagator
existence requirements given in 3,4. As an immediate corollary of Thms. 5.1 and
4.13 we get an explicit and simplified form of Nagy’s principal theorem [26, p. 21] in
which his translational requirement (c) is substantially mitigated (Thm. 5.3). 8 Another
such corollary is a dilation-version of our extension of Stinespring’s theorem [32, Thm.
1], (Thm. 5.4). From Thm. 5.4, Lebow’s pioneering theorem [16, p. 84] involving
spectral sets, which subsumes classical dilation theorems, can be retrieved by Arveson’s
method of extensions [5, 0.1].

Next, we show (Thm. 5.12) that in the classical Naimark dilation theorem for a
bounded W-to-W nonnegative hermitian operator-valued measure, the Hilbertian
variety is a quasi-isometric measure, (5.7), and the dilation is its spatial spectral measure,
Def. 5.10, useful concepts which emerged from considerations quite independent of
dilation theory; cf. [21]. A natural candidate for the dilation space is the space of
W-valued functions on A which are "L2" with respect to the nonnegative hermitian
operator-valued measure M, (Remark 5.13). We thus provide an explicit version of the
Naimark theorem.

In 6 we turn to the work of Halmos and Bram on normal extensions in the new
setting in which projections give way to isometries. Just as Nagy showed in [26, 10]
that the Halmos theorem could be deduced from his principal theorem, we now show
that the substantially improved version of the Halmos theorem due to Bram [6, Thm. 1]
follows from our simplified version (Thm. 5.3) of Nagy’s theorem.

Initial parts of this paper bear the impress of some valuable conversations with Dr.
V. Mandrekar in the summer of 1975 on Aronszajn’s theorem and its possible
extensions. The writer is happy to acknowledge that his conception of the scalar kernel
associated to an operator-valued PD kernel (cf. 2.6(/)) is especially traceable to these
discussions. This was before we became aware of Pedrick’s unpublished report [30].
For this awareness thanks are due to Dr. H. Salehi. The paper was subsequently revised
and enlarged. The revised portions bear the benefit of conversations with Drs. J.
Conway, P. JOrgensen and especially W. Arveson.9

2. The covariance kernel of a Hilbertian variety. In this section we shall introduce
the concept of nonnegative hermitianness for linear operators from a Banach space W
to its adjoint W* and the concept of a W-to-W* operator-valued positive definite
kernel. Our definitions are modifications of those due to Vakhania [33] and Chobanian

The writer is grateful to Dr. Arveson for communicating his (unpublished) observation that Nagy’s
premiss (c) is redundant for bounded PD functions, and a sketch of his proof. This information kindled the
writer’s interest in involutory semi-groups and led him to Thms. 4.10 and 5.3. The relationship between
Arveson’s observation and our Thm. 5.3 is not as yet clear. Arveson’s proof appeals to Stinespring’s theorem
on C*-algebras, whereas ours does not, and we get the latter theorem as a corollary.

9 These informal but useful discussions occurred at the Conference on Operator Theory held at the
University of New Hampshire in Durham in the summer of 1976, and the writer is very grateful to the
organizers, Drs. E. Nordgren and B. Moore III, for their invitation.
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[7] who define these ideas for semi-linear operators on W to its dual W’.1 Our goal is to
give a very general definition of Hilbertian variety and its covariance kernel, which will
yield the requisite propagator theory ( 3, 4), and when W is a Hilbert space provide
all the varieties encountered in dilation theory ( 5). For the purposes of the latter
theory we shall give a general formulation of the Kolmogorov, Aronszajn, Pedrick
theorems for a Banach space W (Thm. 2.10). An even more general formulation in
which W is only a locally convex topological vector space is possible as Pedrick has
shown [30]. It will be understood that:

(a) A is any set,
(b) W is a Banach space over : (g: or C),
(c) W* is the adfoint of W,(2.1) (d) CL(, eg) is the space o[all continuous linear operators on gT to , where

qY are normed vector spaces,
(e) VA CL(, ), A* is the ad]oint ofA.

2.2 Remarks. (a) The distinction between the adjoint W* and dual W’ of the
Banach space W is important here:

w* 7 be(. ): f(. ) w’},
i.e. W* is the set of all continuous semi-linear functionals on W to IF. It follows that if
A e CL(W, W*), then

Vw, w’e W and Vc, c’ e, [A(cw)l(c’w’)=e’c [A(w)l(w’).

Of course W* W’ when IF N.
(b) For A e CL(T, od) the adfointA* of A is defined to be the *-to-* operator

such that
A*(f)= f A, f *.

Thus A* CL(*, *), and A* differ in general from the dual A’ of A, which is a ’-
to-’ operator. We have (cA)* CA*, c =. However, IA*l IA’l IA I.

(c) If is a Hilbert space over IF, then * is isometrically isomorphic to . Now in
this paper we identify * and . Consequently, the adjoint J* of an operator J
CL(W, ) is a 0-to- W* operator. Moreover from the definition of the adjoint given in
(b) and )= (C)*, it follows readily that null space J*= (Range J)- in , and if J, J
CL(W, ) then

Vw, w. e w, [0r*q)(w)l(w) (rw, rw).

The term on the left supplants the familiar (J’JlWl, W2)w for a Hilbert space W. It is
also easy to see that

VJ CL(W, S), IJ*JI- IJI
2.3 DEFINITION. (a) An operator HCL(W, W*) is called hermitian iff Vw,

w’ s W, {H(w’)I(w)= {H(w)I(w’).
(b) An operator H CL(W, W*) is called nonnegative (in symbols H>- 0) iff H is

hermitian and Vw W, {H(w)}(w)>=O.
(c) For H1, H CL(W, W*)we write H >- H2 to mean that H-H2 0.
Note. When W is a Hilbert space, the condition in 2.3(a) becomes: Vw, w’s W,

(Hw’, w)= (Hw, w’). Since the last term is (w’, Hw), this condition is just the usual one
for hermitianness. Unlike the case of a Hilbert space W, a W-to- W* hermitian operator

xo English translations of several papers by these authors on this subject and its stochastic ramifications

are available in a Michigan State University Technical Report by Dr. A. G. Miamee.
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H is not self-adjoint, i.e. H # H*. This is because H* is on W** to W* and not on W to
W*. If W is reflexive and we identify W** with W, then of course H becomes
self-adjoint. As for the condition 2.3(b), it too reduces to the usual one for nonnegativ-
ity when W is a Hilbert space.

The proof of the following triviality is left to the reader. The parts (c), (d), (e), which
are generalizations of the parallelogram law, the polarization identity and the
generalized Schwarz inequality, are immediate consequences of the sesquilinearity of
the kernel &(.. )on Wx W to IF, defined by &(w, w’)=R(w)(w’), where Re
CL(W, W*). Part (f) follows from (e), and (g) follows from (f).

2.4 TRWALTY. Let H, Ha, Hz CL(W, W*) and w, w’ e W. Then
(a) Ha, Ha are hermitian and ca, cz R call1 + czHe is hermitian
(b) Ha, He >" 0 and Ca, C2 CL(W, W) C*IHaCa + CH2C2 >" 0;
(c) n(w + w’)(w + w’)+n(w- w’)(w- w’)= 2{n(w)(w)+n(w’)(w’)};
(d) 4n(w)(w’)= {n(w + w’)(w + w’)-n(w w’)(w w’)}

+ i{H(w + iw’)(w + iw’)-H(w iw’)(w iw’)};
(e) H

_
0 IH(w)(w’)[ <-’,/{H(w)(w)} ",/{H(w’)(w’)};

H(w)(w)
(f) n _> 0 => Inl sup

(g) HI >- He >- 0 =), [Ha[-> [H2].
From the Remarks 2.2 it is clear that the following extended definition of positive

definite kernel is consistent with the standard one for scalar-valued kernels:
2.5 DEFINITION. A kernel K(. ) on A A to CL(W, W*) is called positive definite

(PD) iff /functions C(. ) on A to CL(W, W), Vr +, and VA 1, , h A,

0,
i=1 i=1

and1

Vh, h’ A and Vw, w’ W, [K(h, h’)(w)](w’)= [K(h’, h)(w’)](w).

The following lemma, giving conditions equivalent to positive definiteness, is
required for the very formulation of our extension of the Moore-Aronszajn theorem.

2.6 MAIN LZMMA. Let K(.. ) be a kernel on A x A to CL(W, W*). Then the
following conditions are equivalent:

(a) K(. ) is eD,
() functions w(. )on A to W, r +, and A,. A

[K(AI, Ai)(w(A,))I(w(Ai))O
i=1/=1

and 12

Vh, h’ A and Vw, w’ W, [K(A, h’)(w)](w’)= [K(A’, h)(w’)](w),

(,) if Vh, h’ A and Vw, w’ W,

k{A, w), (A’, w’)} 7 [K(A, X’)(w)](w’),

k (" ) is a PD kernel on (A x W)x (A x W) to :.
Proof. See Appendix A.

11 When : C the condition to come follows from the last, and is therefore redundant. We leave this to
the reader to check. When W is a Hilbert space, this conditon has the equivalent simpler rendering:
K(,, Z’)= K(A’, h )*.

12 See Footnote 11.
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The following are some simple properties of operator-valued PD kernels, easily
obtainable via 2.6(/) from the familiar properties of :-valued PD kernels:

2.7 TRIVIALITY. LetK( ) be a PD kernelon AxAto CL(W, W*), andA, A’ cA
and w, w’ e W. Then

(a) K(A, A) is hermitian and nonnegative (Def. 2.3), and

O<-[K(A,A)(w)I(w)<-IK(A,A)I Iwl2,.
(b) I[K(A, A’)(w)](w’)_-< #[K(X, X)(w)](w) #[K(A’, X’)(w’)l(w’),

(c) Ig(x, x’)l-<-,/Ig(X,  )1.41g(x’,
In a nutshell, our generalization of the Moore-Aronszajn theorem asserts that the

operator-valued PD kernel K(. ) factors with variables separated via the reproducing
kernel Hilbert space of the associated :-valued PD kernel k (. ) of 2.6(-/). Before giving
the full enunciation, it is necessary to define Hilbertian varieties, and dispose of the
question of uniqueness up to unitary equivalence:

2.8 DZFINITION. (a) By a Hilbertian variety we shall mean a function x (.) on A to
or a function X(. ) on A to CL(W, (9) where is any Hilbert space.

(b) The subspace of a Hilbertian variety x(. ) or X(. ) is defined by13

7 (h): h A}, 5x 7 {X(h )(W): h A}.

(c) By the covariance kernel of a Hilbertian variety x (.) or X(. ) we shall mean the
function k(. ) or K(. ) on A x A defined by

k(A, A’) 7 (x(A), x /(A, A’)- X(A’)* X(A).

Thus k(." ) takes values in : and K(.. ) takes values in CL(W, W*).
We now assert that any two Hilbertian varieties having the same covariance kernel

are unitarily equivalent"
2.9 CONGRUENCE THEOREM. Let (i) W be a Banach space and , be Hilbert

spaces over IF, (ii) X(. ), Y(. ) be functions on A to CL(W, (3), CL(W, ), respectively,
having the same covariance kernel, i.e. such that

VA’, A A, X(h’)*X(h )= Y(A ’)* Y(A ).

Then a unitary operawr V on 5t’x onto Sty such that Y( )= V X( ).
Proof. See Appendix B.
2.10 KERNEL THEOREM.? (Kolmogorov, Aronszajn, Pedrick). Let (i) W be a

Banach space over and W* be its adjoint, (ii) K(.. ) be a PD kernel on A x A to
CL(W, W*). Then

(a) ::1 a cardinal numbera such that]or all Hilbertspaces over g: with dim (9 -> a, :i

a function X(. ) on A to CL(W, ) for which the covariance kernel is K(.. ), i.e.

VA, h A,

(b) /A, A’ cA and Vw W,

IX(A)w I {K(A, A)(w)}(w) and ]X(A)I 41K(A, x)l.

Proof. See Appendix C.

/3 For A
_

(9, ((A) 7 the (least closed linear) subspace spanned by A.
i" See Note added in proof.
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2.11 Remarks. Thm. 2.10 subsumes a wide variety of known results. 1) When A is
a singleton {A } and consequently K(A, ) is just a nonnegative hermitian operator H on
Wto W*, it reduces to a result due to Vakhania [33] and Chobanian [7] that Hhas a W-
to-g) operator "square root" T such that T* T H. 2) When W is a separable Hilbert
space, A a Hausdorff space and K(.. is continuous on A A, Thm. 2.10 yields (via
Cor. 2.13 below) the recent result of Allen, Narcowich and Williams [1] cited earlier. 3)
When W=:, Thm. 2.10 reduces to the Aronszajn reproducing kernel theorem [3,
p. 344] if we observe that to each h g) corresponds the IF-to-(C) operator Th: c --> ch, that

Th* (’) (’, h) and consequently that T’, Th" c "> (h, h’)c, c :. 4) The same
observation shows that when W [F and A +, Thm. 2.10 reduces to the original
Kolmogorov Thm. 1.3.

2.12 COROLLARY. Let (i) Wbe a Banach space and g) a Hilbert space, both over :,
(ii)X(.)beafunctionon A to CL(W, g)) having the covariance kerneIK( ). Then
A’ A and Iw W,

(a) IX(A)(w) X(A’ 2)(w)Io=[{K(A,A)+K(A ,A’)-K(A,’)-K(A, A)}(w)l(w),
(b) [X(A)--X(M)[B 4[K(A,A)+K(A’,A’)-K(A,A’)-K(&’,A)IB, where the sub-

script B indicates the Banach norm.

Proof. See Appendix D.
2.13 COROLLARY. Let A be a Hausdorffspace, and W, (C), X( ), K (. ) be as in the

last Corollary.
(a) ILK(. is continuous on A A to the Banach space CL(W, W*), then X( ) is

continuous on A to the Banach space CL(W, ).
(b) If K( ) is strongly continuous on A A to CL(W, W*), i.e.

Vho, h A, slim K(A, A ’)= K(Ao, A ),
(x. x’)-,(Xo. Xo)

then X(. is strongly continuous on A to CL(W, ).
Proof. See Appendix E.
Our next corollary reveals how the measurability of the kernel K(. affects that

of the variety X(. ). It is convenient to introduce the following notation:
2.14 Notation. (a) For ; # q/_ 2A and ; #

_
2,

j//(0//, 3) {f: fA and VB 3, f-(B) ll},

i.e. J//(, 3) is the set of all a//, measurable functions on A to W.
(b) For any topological space (W, ) we shall write

Bl(T) o--alg(z) 7 the o--algebra over T generated by the topology -;

this is the so-called Borel algebra over .
2.15 COOt.ARV. Let (i) 0-//be a r-algebra over A, and W, , X( ), K( ) be as

in Corollary 2.12; (ii) /h’eA, KX’( )K(., M)e//(a//, o--alg(’)), where ’ is the

strong operator topology for CL(W, W*). Then
(a) X(. ) is weakly all-measurable on A to CL(W, ) in the sense of [12, p. 74,

3.5.5.(3)]; more fully, Vw W, X(. )w is -scalarly measurable on A to 9, i.e.

and (X(.)w, x) e //(a//, BI([]:));

(b) when g9 is separable, X(. is It-strongly measurable on A to CL(W, (C)), i.e.

VwW, X(. )(w) J//(a//, Bl(9)).

Proof. See Appendix F.
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From topological and measurable parameter spaces A we turn to vectorial A. Our
next result asserts that if A is a vector space over IF, and the PD kernel K(. ) on A x A to
CL(W, W*) is sesquilinear, then the variety X(. ) on A to CL(W, 9) with covariance
kernel K(.. ) is a linear operator on A to CL(W, ), and that for normed A and
Lipschitzian K(. ), the operator X(. ) is continuous.

2.16 COROLLARY. Let (i) A be a vector space over g:, (ii) K( ) be a PD kernel on
A x A to CL(W, W*), which is sesquilinear on A x A, (iii) X(. on A to CL(W, 9) be the
variety with covariance kernel K(. ), P) being a Hilbert space over IF. Then

(a) X(. ) is a linear operator on A to CL(W, Q);
(b) when the vector space A is norrned and the kernel K(. ) is Lipschitzian, i.e.

sup
[K(h, h)l

03xA IA 12 <

we have X(. ) CL(A, CL(W, )) and Ixl  gl.
Proof. See Appendix G.

3. Propagators on semi-groups. Hilbertian varieties X(. parametrized over
groups or semi-groups A have been studied extensively during the last few decades in
connection with random processes and fields. It has been found that many such varieties
carry with them, quite naturally, certain operator-valued functions $(. ) on A, which act
as their propagators or controllers, 14 and that the nature of S(. ) is determined by the
covariance kernel K(. ) of X(. ) as defined in 2.8(c).

An important case in point is that of a stationary variety X(. ), i.e. one for which the
covariance kernel K(. ) on A x A is translation invariant:

(3.1) h, h’, A, K(A + t, A’+ t)= K(A, A ’).

The first theorem on the propagator of such a variety, due to Kolmogorov [15, 2],
asserts that for a stationary bisequence (xn) in , there exists a unitary operator U on
6ex onto 6ex, where 6e, is the subspace of (xn)_, cf. 2.8(b), such that ’rn, n
1, U (x,,) x,,+,,. This U is called the shift of the bisequence (x,)_, and (U": n ) is
called its shift group. The corresponding result for stationary curves and other stationary
varieties is due to Karhunen [13, p. 55] and others. For varieties X(. ) which are not
themselves stationary in the sense of (3.1), but for which some easily associated variety
Y(. ) is stationary, such as helices in , stationary 0-valued orthogonally scattered
measures and stationary W-to-O quasi-isometric measures, the corresponding
theorems are due to Schoenberg and von Neumann [34, p. 238] and the writer [20,
p. 94], [21, p. 494]. The view that whenever some form of stationarity is inherent in a
Hilbertian variety, it will possess isometric or unitary propagators is widely held, but no
general theorem to this effect has been formulated. In this section we shall consider a
wide concept of stationarity, 3.2(a), and state such a general theorem, Cor. 3.5, which
will subsume all earlier results.

For unrestrictedly nonstationary varieties the propagator has not received much
attention, and the only results we know are Getoor’s on conditions for a sequence in
to have a normal (or rather subnormal) shift operator [10]. They suggest that general
semi-group versions of Halmos’ theorem [11] on normal extensions can be viewed as
results on subnormal propagators of general Hilbertian varieties.

14 In those instances in which the members of A do not represent time or space-time or phase space, the
term controller is more appropriate than the term propagator, cf. (5.11)et seq.
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In order to cover all known instances of propagators and controllers we must
include Hilbertian varieties X(. ) over a domain A, which may or may not have a group
structure, but which can be acted upon by a semi-group or group F. An instance is where
A is the family of all subsets L of R of positive Lebesgue measure and F Ro/, and the
action of in 0+ transforms L into

tO)L T{t+I" IL}A.
Another instance with F 0/ is where A is a solid body spinning about an axis with
constant angular velocity, and 0)A is the position of the particle A in A seconds later.
Generally, tA is Tt(A), where (Tt:t F) is a family of transformations on A to A
parametrized on the semi-group F. Tt(A ) may be regarded as the position at instant of a
particle which was at A at instant 0. In these instances A F. On the other hand as
indicated earlier, we will have A F in many cases. The concepts of action, propagator
or controller, and stationarity, which cover all cases, are defined as follows:

3.2 DEFINITION. Let (i) X(. ) be a function on A to CL(W, (9), where A is any set,
W is a Banach space over : and g) a Hilbert space over :, (ii) F be a semi-group under +
(not necessarily Abelian)with neutral element 0. Then

(a) we say that F acts on A iff ::1 a binary operation on F A to A such that

Vs, tFandVhA, (s+t)h=s(th) and 0h=h.

(b) S(. is called a propagator or controller ofX(. ), itt S(" ) is a function on F to
CL(x, 6ex), where 6ex is as in 2.8(b), and

Vt F and VA A, S(t) X(A)= X(tO)A).

(c) X(. ) is called stationary (in the wide sense), iff its covariance kernel K(. )on
A x A, cf. 2.8(c), is translation-invariant in the sense that

Vt F and VA, h’ A, K(th, tO)h’)= K(A, h’).

The case in which A is itself a semi-group is of course subsumed in the last definition
by just letting be +.

3.3 PROPOSITION. Let (i) A, F, W, , X( ) be as in 3.2(i), (ii); (ii) the semi-group
F act on A; (iii) X(. ) possess a propagator or controller S(. ). Then

(a) (S(t): t F) is a semi-group of operators in CL(x, 6x), i.e.

S(0)= Iee,o and Vs, F, S(s + t)= S(s). S(t);

(b) when F is a group, we have (S(t): F) is a group ofone-one and onto operators
in CL(ff’x, x).

Proof. (a) By (iii),

(1) Vt F, S(t) CL(Sex, St,x).
Now let

(2) 7 t.J X(A )(W),

(3)

(4)

() be the linear manifold spanned by in .
Vt F, St Rstr.S(t),

the linear manifold spanned by
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Then obviously

(5) (S,) 7 Rstr.<>S(t) and

Now by (ii) and (iii)

(6) /t F and /h A,

From this we easily infer that

S(t) cls.(S,) 7 the closure of

S(t) X(A)= X(t@h ).

S(s + t)o X(h)= S(s)o S(t)o X(A),

and therefore that Ss+t Ss St. From this it follows in turn, since Range St
_

domain of S, and (S) is single-valued, that (S+t) (S) (St), and hence from (5) that

(7) S(s + t)= S(s)o S(t).

This last hinges on the result that if T1, T2 are continuous linear operators and the
domain of T2 contains the range of T1, then cls. (T2 T1) cls. T2 cls. T1.

Finally, taking 0 in (6), we get S(0)o X(A)= X(A), which shows that So
I, (S0)= I<> and therefore

(8)

By (7), (8)we have (a).
(b) When F is a group, we have t F,

S(- + t)= S(O)= S(t + (- t)),

i.e. by (7) and (8)

S(- t) S(t)= Isex S(t) S(- t).

This shows that S(t) is one-one on 6ex onto 6ex, and that S(t)-l=S(-t).
Thus (b).

Given a Hilbertian variety X(. )parametrized as in 3.2, the first question we must
answer pertains to the conditions which X(. ) must satisfy in order that it may possess a
propagator S(. ). We may then ask for the extra conditions that X(. ) must satisfy in
order that S(. ) may be of a specific type. The following general theorem gives a full
answer to the first question. In essence it is a completed, operator-extension for a not
necessarily Abelian semi-group F and a Banach space W of two lemmas of Getoor [10,
2.1, 2.2], and our proof is an extension of his own.

3.4 THEOREM (existence of propagator). Let A, F, W, , X( ) be as in 3.2(i), (ii),
and the semi-group F acts on A. Then

(a) the following conditions are equivalent:
() X(. has a propagator S(. ) on F,
(f3) X(. ) satisfies the following translational inequality" :i a function (.) on F to

o+ t functions w (.) on A to W, /r +, /h 1, , hr A and /t F,

i=1 , i=1

(1) the covariance kernel K( ) ofX(. ), cf. 2.8(c), satisfies the following transla-
tional inequality" a function /( on F to o+ / functions w (.) on A to W, /r +,
/h 1, , A, and /t F,

0 <- [{K(tA,,thi)}w(h,)]w(hi)<-7(t) [{K(h,,hi)}w(h,)]w(hi);
i=1/=1 i=1i=1
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(b) when (ct), (f) or (l) hold, the function S( )is unique, and ]S(t)[B
with the best choice of (.), y(. ), the subscript B denoting the Banach norm.

Proof. (a) We adopt the abbreviation wi w(h). Then the equivalence of (B) and
() follows easily from the equality, cf. 2.2(c),

i=1

(1)
i=1 ]=1

i= i=l

and the corresponding equality in which replaces for 1, , r. Hence it only
remains to prove that ()().

Let () hold. Then obviously so does () with the function fl(. ) IS(. )Is on F,
since by Def. 3.2(b), Vt e F

i=1 i=1

,:1 (t)] i1 X(i)Wi]
Next let (B) hold. Fix F and let

(2)
AA

(3) () be the linear manifold spanned by in ,
(4) St {(X(A )w; X(t h )w): h A and w W} x,
(5) (St) be the linear manifold spanned by St in x .
Then (St) is a linear relation on () to (); in fact

(6) (St) {( X(1)w; X(t@)w)’rN+,Ix,...,1A and w,..., w W}.
i=1 i=1

Since by (),

o o,
i=1 i=1

it follows from (6) that (N} is single-valued at 0, and therefore throughout its domain
(N}. Moreover, if x e {N}, say x 2= X(li)w, then by (6), the single-valuedness of
and (),

I(S,>xl   (t)lxl.
i=1

We have thus shown that

(7) (S,)CL((), ()) and

Since cls. ()= x, it follows at once from (7) and the extension principle for continu-
ous linear operators that

(8) S(t)2cls. (St)CL(x,x) and [S(t)]fl(t).
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Finally, since by (4), Vw W,

{S(t) X(A )}w St{X(A )w} X(t+A )w,

we have of course

(9) VtF, S(t) X(h )= X(t(/l ).

Thus $(. ) is the propagator of X(. ), i.e. we have (e).
This completes the proof of (a).
(b) Were T(. ) on F to CL(6ex, x) another propagator of X(. ), we would have by

Def. 3.2(b),

T(t) X(h )= X(tA )= S(t)o X(, ),

and therefore T(t)= $(t) on . It would follow that T(t)= S(t) on cls. (), i.e. on 9x.
Thus the propagator is unique. Also, we can take/3 (.)= IS(" )[B, cf. paragraph 2 of this
proof, and take y(. )=/3(. )2 in view of (1) and of ([3):>(/). Thus we have (b). [-1

An easy consequence of the last theorem is the following corollary on stationary
varieties in the wide sense of Def. 3.2(c), which subsumes all earlier results of its kind;
cf. second paragraph of this section.

3.5 COROLLARY (stationary varieties). Let A, F, W, g3, X(. be as in 3.2(i), (ii).
Then

(a) the following conditions are equivalent:
() X(. ) is stationary,
(fS) X(. ) has a propagator semi-group $(. ) on F such that Vt 6F, S(t) is an

isometry on 9x into 9x;
(b) when () or (fS) hold, the semi-group $(. ) is unique;
(c) when F is a group and (a) or (f3) hold, $(. ) is a group of unitary operators on 9x

onto x.
Proof. (a) Let (13) hold. Then obviously Vt 6 F, S(t)*S(t)= Iex, whence VA, A’ 6 A

K(t@,, t(,U) 7 X(t(A ’)*X(t(A )

X(h’)*S(t)*S(t)X( )

X(h ’)*X(h 7 K(h, ’);

i.e. we have (o0; cf. Def. 3.2(c).
Next let (a) hold. Then the condition 3.4(/) certainly holds with y(t)= 1, since

(1) 0 <- [{K(tAi, tA,)}(wi)](w,)=
i=1]=1 i=1 ]=1

Hence by Thm. 3.4, the variety X(. ) possesses a propagator semi-group $(. ) on F. To
complete the proof of ([3) it only remains to show that

(A) Vt 6F, S(t) is an isometry on 9x into Sex.

Proof of (A). First let x e (), where 7 t_J XA X(h)(W); say x ==1 X(li)(wi).
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Then as in the proof of Thm. 3.4, Vt A

IS(t)xl . X(tAi)wil
2

i=1

[{K(tA,, tAi)}(wi)](wi)
i=1 i=1

i= =1
2

i=1

Thus Rstr.<>S(t) is an isometry on () to (). From this it follows readily, since
cls. () x, that S(t) is an isometry on x to x. Thus (A) is proved. This completes
the proof of (a).

Parts (b) and (c) follow at once from (a) and 3.4(b) and 3.3(b).
When the semi-group F, which acts on the parameter space A via the operation

is topological, the concept of a continuous kernel K(. ) on A x A makes sense. It is
natural to ask if the propagator S(. ) of a variety X(. ) on A having such a covariance
kernel K(.. ) will itself be continuous. The answer is armative as the following
corollary shows"

3.6 COrOLlarY (strongly continuous propagator). Let
(i) A, F, W, , X(. ) be as in 3.2(i), (ii);
(ii) the semi-group F in (i) be topological, i.e. F be a Hausdorff space and the

operation + be continuous on F x F to F with respect to the topology o[ F and the
corresponding weak product topology [or F x F;

(iii) the covariance kernel K(.. ) o[ X(. be strongly continuous on A x A to
CL(W, ) in the sense that

A, A’ A, slim K(t A, t’A’)= K(A, A ’);
(t, ’)(0,0)

(iv) a [unction B(" ) on F to o+ which satisfies the condition 3.4() and is
bounded on a neighborhood Vo o[ 0 in F.

Then S(. ) is strongly continuous on A to CL(x, x).
Proo[. Grant temporarily that

(I) slim S(s) I.
s0

Then, cf. 3.2(b), Vx x and s, A,

Since by (I) the RHS0 as s 0, we have slim0 S(t + s)= S(t) as desired. Hence it
only remains to prove (I).

Proo[ o[ (I). Let s F and x 7 xa X(A )(W), say x X(A )(w). Then by 3.2(b)
and 2.I2(a)

Is
[{K(s x, sx)-K(sx, x)-K(x, sx)+K(x, x)}(w)](w)

(1)

Now by (iii), the first factor on RHS(1) tends to 0 as s 0. Hence by (1), lim,o S(s)x x
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in (9. It follows from the linearity of the S(s) that this limiting equality holds for all
finite linear combinations of x in , i.e. we have

(2) ()G Dom. slim S(s) and Rstr. () slim S(s)=
sO sO

Now by Thm. 3.4(b) and (iv)

vs v0, IS(s)l fl(s)<= too, say.

We conclude from the lemma on strong convergence, just following this proof, that
Dom. slims_0S(s) is a closed subspace, and slims_oS(s) is a continuous linear
operator. Since cls. ()= 6ex, it follows from (2) that the domain is 6ex; thus

slim S(s) CL(Sex, 5x).
s-O

Moreover, from the second half of (2) and the principle of uniqueness of continuous
extension, slim.0 S(s)- I. Thus (I) is established and the proof is over.

In the last proof we have appealed to the following lemma, the proof of which we
leave to the reader.

LEMMA. Let (i) F be a topological space, (ii) be a Banach space, (iii) S(. ) a

function on F to CL(, ), (iv) a I’, and ::1 a neighbourhood Va ofa suptva[S(t)ls <, (v) L slim,_a S(t).
Then

t 7 Domain ofL is a closed subspace of,
and

L CL(L, ) and ILls --< lim IS(t)l <.
4. Propagators on involutory semi-groups. We now turn to the fruitful concepts

of an involutory semi-group and of PD functions thereon due to Nagy [26, p. 20, 21].
4.1 DEFINITION. (a) F is called an involutory semi-group (briefly, *s.g.) iff (i) F is

an (additive, not necessary Abelian) s.g. with neutral element 0, (ii) F possesses an
involution (.)* satisfying

Vs, tr, (t*)*=t, (s+t)*=t*+s*, 0"=0.

(b) A function R (.) on a *s.g. F to CL(W, W*), where W is a Banach space, is
called positive definite (PD) iff the kernel K(.. ) defined by

s, F, K(s, t)= R (t* + s)

is PD on Fx F to CL(W, W*) in the sense of 2.5.
Adopting the terminology of operator algebras, we define

F(n){t’tF and t*+t=t+t*},

(4.2) Fsa {t" F and t t*},

Fo+={t"tF and 3sFt=s*+s},

and to .refer to the members of F(,), Fsa and Fo+ as the normal, self-adjoint and
nonnegative (_ 0) elements of F.

is In the special case in which W IF, F is a group and t* t; this definition reduces to the classical one.
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Obviously,

(4.3) 0 1-’o+
_

1-’sa -- l’(n) F,

but 1-’sa will be a (sub-) semi-group iff its elements commute. In particular, I’sa is a
semi-group when F is Abelian. It is also easy to check that

is normal =)> Vn 6 No+, nt is normal,

(4.4) is sa :::> Vn No+, nt is sa,

t >- 0 :=)> Vn No+, nt >- O.

Our major objective is to show that in the analogue of Thm. 3.4 for the action of an
involutary semi-group, we can replace the translational inequality 3.4(/) imposed on
K(. ) in order to get the propagator by the much milder requirements:

(a) VA, A’ AandVtF,K(A,t*(A’)=K(t(A,A’),
(4.5) (b) =l a function V[" ) on F to No+ VA A and Vt F,

0 "< K(t@A, 0)A ) "< y(t). K(A, A ).

We shall refer to these as the transfer property and the mild translational property.
The replacement of 3.4(/) by (4.5) is a considerable simplification, since any kernel

of the type described in 4.1(b) automatically satisfies (4.5(a), and the inequality

O<-K(t(A, t(A)(w)(w)<= y(t) K(A,A)(w)(w),

which is an equivalent rendering of (4.5)(b), is much simpler than (3.4)(/).
The genesis of (4.5) calls for explanation. Nagy’s principal thm. [26, p. 21]

concerning the dilation of a PD function R(. ) on a *s.g. F contains a premise (c)
affirming a translational inequality of the type 3.4(’y). Now in 1955 Bram [6, Thm. 1]
proved the redundancy of a similar premise appearing in Halmo’s theorem on normal
extensions (cf. [26, p. 19]). This major advance raised the question of a possible
mitigation if not elimination of Nagy’s inequality (c) itself. Recently the writer learned
from Dr. Arveson about a proof he had obtained in 1971, but not published, that the
Nagy inequality is replaceable by the requirement that R (.) be bounded on F. This
proof leaned heavily on Stinespring’s work on C*-algebras [32]. The writer in his own
investigations of the single-valuedness and continuity of the propagator then found the
conditions (4.5).

It will be understood in what follows that
(i) X is a function on A to CL(W, ), where A is any set, W is a Banach space

over : and a Hilbert space over :,
(4.6) (ii) @ U x X(A)(W),

(iii) F is a *s.g. (not necessarily Abelian ) With neutral element 0 that acts on A
(cf. Def. 3.2(a)).

We first assert that the transfer property (4.5)(a) alone yields single-valued, closed, but
possibly discontinuous propagators on domains containing the e.d. linear manifold ().
This result is an important step towards our goal, but has some interest of its own:

4.7 TI-IORM (existence of closed, densely defined "propagator"). Let A, W, g),
X(. ), @, F be as in (4.6). Then the following conditions are equivalent:

(et) Vt F, :la (s.v.) closed linear operator S(t) fromx tox with domain @t - ()such that

VA A, S(t) X(A)=X(tA) and Rstr.S(t*)__. S(t)*,

(f3) the covariance kernel K( ) ofX( ) possesses the transfer property (4.5)(a).
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Proof. Let (a) hold, and e F. First observe that

$(t)* is a s.v. closed linear operator from 6ex to x with an e.d. domain
(1) N, <>.
For S(t)* is always closed; S(t)* is s.v., since is e.d.; * is c.d., since S(t) is s.v.; and
(>- t*, since by (et)

_
*.

Now let h’cA. Since by (et), S(t*)=S(t)* on therefore X(A’)*. S(t*)=
X(A’)*. S(t)* on . But the last operator is invariably a suboperator of [S(t) X(A’)]*
which by (o) is X(th’)*. Thus

x(;’)*, s(t*)= x(t(R)’)* on .
Replacing by t* and applying both operators to the vector X(A )w N, where h A and
w e W, we get

X(h’)* S(t)X(h)(w)= X(t* @h’)* X(h)(w).

But by (o), S(t)X(A )= X(th), and so

X(h ’)*. X(t A )(w) X(t*(h ’)*. X(h )(w).

As this holds Vw e W, we have

X(h’)* X(t + A) X(t* ’)* X(h ), i.e. (4.5)(a).

Thus ([3) holds.
Next let ([3) hold. Fix e F, and define St, (St) as in (4), (5)of Proof of 3.4, and define

(1’) S(t) cls. (St) the closure of (St) in ff’x x fix.

Then

(2) $(t) is a closed linear relation from 5Vx to 9Vx.

We assert that

(I) S (t) is single-valued.

Proof of (I). First observe that by the transfer property (4.5)(a),

(3) Vt F andVh, h’ A, X(t*A’)*.X(A)=X(A’)*.X(tA).
Now let the ordered pair (0; y)s S(t). Then Vn sN+, ](x; y)e (St) such that

(4) x-0 and yy ingVx, asn-m.

Now with an obvious notation let (cf. (6) in Proof of 3.4)

rn
x,= Z X(XT)w’, Y,= Z X(thT)wT.

i=1 i=1

Then from the linearity of X(t*O)h)*, X(A)* and equation (3),

VA A, X(t* 03 h )* (x,,) X(A )* (y,,).

From (4) and the continuity of the operators X(t* )h )*, X(A )* on 6ex, we get on letting
n --> oo,

o x(t* (R)x )*(0) x(;)*(y).

Thus y is in the null space of X(A )*, i.e., cf. 2.2(c), VA A, y +/- X(A )(W). It follows that

y _1_ {X(h )(W): h e A} x.
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But since y, e ()_ 6ex, therefore by (4), y e S/’x. Thus y 0. This means that S(t) is
single-valued at 0, and, being linear, it is single-valued throughout its domain. Thus (I)
is proved.

Combining (2)and (I)we have

(5) $(t) is a (s.v.) closed linear operator from 6ex to 6ex with domain t- ().

Also, cf. (4) in proof of 3.4, IA A and fw W

{S(t) X(A )}(w) S,{X(A )w} X(tO)A )(w).
Thus

(6) t F and /h A, S(t) X(A )= X(tO)A ).

We now turn to the inclusion relation in (or), which alone remains unproved. Since
the e.d. set () is contained in ,, it follows that $(t)* is s.v., and by (I), S(t)* has a
domain ,* e.d. in 6ex. Now grant for a moment that

(II) (S(t)x, x’)= (x, S(t*)x’).
Then by the definition of the adjoint

ioeo
x’* and S(t)*x’ S(t*)x’,

Rstr.S(t*) S(t)*.
Hence to complete th.e proof of (ct) we need only prove (II).

Proofof (II). Fix x’ , say x’ X(A ’)(w’). Now for x s , say x X(A )(w), we find
that

(S(t)x, x’)= (S(t)X(A )w, X(A’)w’)

[(X(A’)* X(tO)A)(w))](w’) cf. 2.2(c) and (6)

[(X(t*A’)*. X(t)(w))](w’) by (3)

(X(t)w, X(t* O) A’)w’) cf. 2.2(c)

(X(t)w, S(t*)X(A’)w’) by(6)

(x, s(t*)x’).
This shows that (II) holds /x e , whence it follows easily that (II) holds ’x (). Now
let x st. By (1’) ::1 a sequence (x,,) in () such that x,,-->x and S(t)x,--> S(t)x.
Replacing x by x,, in (II), we conclude at once on letting n --, oo that (II) holds for x. Thus
(II) is established.

This completes the proof of (or). El
The following corollary of Thm. 4.7 plays an ancillary role in our quest for

continuous propagators.
4.8 COROLLARY. Let A, W, , , F be as in (4.6), and let (4.5)(a)prevail. Then ]’or

the S(. ) obtained in Thin. 4.7 we have
(a) /t F and Yx, x’ (), (S(t)x, x’)= (x, S(t*)x’);
(b) (Rstr.<>S(t): e F is a semi-group of linear operators on () to () and

S(t*)=S(t)* on ();
(c) /’x e () and Vt F,

Is(t)xl2 ]s(t*)s(t)x] Ixl Is(t* + t)xl Ixl;

(d) Vx (), Vp E F0+ and Vn

IS(p)xl
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Proof. (a) Let F and x, x’ (). As (4.5)(a) holds, we know from 4.7 that

Rstr.(>S(t*)
___

S(t)*.
This means that the equality in (a) holdsx () and Vx’ . From this it follows easily
that the equality also holds for all x’ which are linear combinations of elements of 59, i.e.
Vx’E ().

(b) Define &, () as in the proof of 4.7. Then

(1) Vt e F and VA e A, &. X(A)= X(th).
Hence

Ss+t X(h )= X{(s + t)O)A}= X{s(tO)h )} & X(tO)A )= (& St)" X(A).
The domain of each & X(A) being. W, it follows that

&+t=&St on 1.3 X(A)(W), i.e. on.
From this it follows in turn, since Range S,

_
domain of &, and (&) is single-valued,

that
(&+,) (&). (S,)

_
Sex x ex,

i.e. that
S(s + t)= S(s)o S(t) on ().

Taking t 0 in (1), we obtain So I, whence (So) I<>, i.e. S(0)= Ix on (). Finally,
(a) tells us that S(t*) S(t)* on (). Thus (b) is proved.

(c) Let x e() and eF. Then x’=S(t)x e(@), and so by (a), the Schwarz
inequality and (b), d

Is(t)xl (s(t)x, x’)= (x, s(t*)x’)<= Ixl [s(t*)s(t)xl Ixl Is(t* + t)x[.
(d) Now let p Fo/ and x e (). Then by (c) and the fact that p p*, cf. (4.3), we

get

(e) is(p)xl= ixl. iS(2p)x[.

Thus (d) holds for n 1. By (2),

(3) IS(p)xl (IS(p)x[=) [xl IS(2p)xl.
Now grant the result (d) for n, and replace p by 2p in it; this yields

1$(2p)x[2" _<_

Substitution on the RHS(3) yields the result (d) for n + 1. By induction (d) holds for all
nN+. l-]

We now impose: both the requirements (4.5)(a), (b)on K(.. ), and assert the
continuity of the operator $(t) restricted to the (nonlinear) set , as well as some
equalities governing IS(t)l:

4.9 LEMMA. Let A, W, (C), X(. ), , F be as in (4.6), and let both (4.5)(a), (b)
prevail. Then for the S(. ) obtained in Thm. 4.7, we have

(a) Vt F,

sup (Is(t)xl/lxl)c(t) 7 o
(b) Vt F,

a(t*)=a(t), a(t*+t)=a(t)2;
See the first part of Note 2 added in proof.
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(c) Vp e Fo+ and Vn N+,
a(p)2" a(2p).

Proof. (a) Fix F and consider any x , say x X(h)(w). Then by 2.10(b)
and (4.5)(b)

IS(t)x IS(t)X(A)(w)l- IX(t 0A)w[ ,/{K(t(R)x, t(R),)(w)(w)}

_-< x/{y(t)K(,

It follows that a(t)
(b) Again fix t F, and consider any x @. By 4.8(c)

(1) IS(t)xl2 <-IS(t*)S(t)xl [xl--< (t*)ls(t)xl Ixl.
On canceling IS(t)xl we easily get a(t)<=a(t*). The replacement of by t* yields
a (t*) -< a (t). Thus

a(t*)=a(t).(2)

Again from 4.8(c)

IS(t)xlz IS(t* + t)xl Ixl a(t* + t)lxl,
whence a(t)2-< a(t* + t). But from the s.g. property, (1) and (2),

IS(t* + t)xl- IS(t*)S(t)x[ <= a(t*)a(t)lxl- a (t)2[x l,
whence a (t* + t) _-< a (t). Thus (b) is proved.

(c) Let p Fo+ and n +. Then 4.8(d) at once yields

a(p)2" =< a (2"p).

On the other hand, from S(nt)x S(t)"x, x @, we get

IS(nt)xl <= a(t)lS(t)"-xl <="" <= a (t)"lxl,
whence a (nt) <=.a (t)". In particular,

a (2"p) =< a (p)2".
Thus (c) is proved.

4.10 MAIN THEOREM (existence of propagator). Let (i) X be a function on A to
CL(W, S)), where A is any set, Wis a Banach space over : and 9 is a Hilbertspace over :,
(ii) F be a (not necessarily Abelian ) involutory semi-group with neutral element 0 that acts
on A (ef. Def. 3.2(a)). Then

(a) the following conditions are equivalent:
(a) X( ) possesses a propagator S( ) on F to CL(9x, 9x) such that

Vt F, S(t*) S(t)*,
(fS) the covariance kernel K(. ) of X(. ) possesses the transfer and mild trans-

lational properties (4.5)(a), (b);
(b) when (fS) holds and "g( ) is as in (4.5)(b), we have Vt 6 F, IS(t)l--< 4-; when

(or) holds, the best possible choice ]’or y(. ) in (4.5)(b) is y(t)= IS(t)l2.
Proof. (a) Let (ct) hold, and A, M A and F. Then obviously

K(A, t*A’)=X(t*A’)*. X(A)=X(A’)* S(t*). X(A)

X(A ’)*. S(t)X(A )= X(A’)* X(tO)A )= K(A’, t@A ).
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i.e. we have (4.5)(a). Also,

K(tA, tA)=X(tA )* X(tA)= X(A)*. S(t)* S(t)X(A ).

Now S(t)*. S(t) being nonnegative hermitian on 6ex to oWx with norm 15(012, we have

0 <_ S(t)*. S(t)<_

Hence, cf. 2.4(b),

Thus

0 _< X(A)*S(t)*S(t)X(h) <_ IS(t)lZK(h, ).

K(th, th ) <_ IS(t)I2K(A, ),

i.e. we have (4.5)(b) with y(t)= IS(t)l. Thus (13) holds.
Next let (13) hold. Then by (4.5)(a) and Thm. 4.7, Vt 6 F, :1 a (s.v.) closed linear

operator S(t) from 6ex to 6ex with domain @, (@), i.e. with an e.d. domain in 6ex, such
that

(1) t F and VA A, S(t) X(A)= X(tO)h ).

But now that (4.5)(b) prevails, we also claim that

I$(t)xl
sup sup =a(t).(I) Vt6F,

Ixl Ixl
Proofof (I). Fix F, and consider any x (@). Since @ is closed under multiplica-

tion by scalars, we have x Y’,] x, where x , and so by 4.9(a)

(2) IS(t)xl I S(t)xi[ <= [S(t)xil<-_a(,) ]xil a(t)cx,

where cx > 0 is independent of t.
Now suppose (t)#a(t). Since

_
(@) and therefore a(t)=(t), it follows that

a(t)< fl(t)-< o. Hence

=ir > 1, and :Ix 6 () 9 Ixl-- a and ra(t)< IS(t)xl.

Letting p 7 t* + t, it follows from 4.8(c) that

r2a (t)2 < IS(t)xl2 IS(t* + t)xl- ISp)xl,

whence from 4.8(d)and (2)

(3) {r2a(t)2}z" <- IS(p)xlZ" <-1$(2"p)xl <-_ a(2"p) c.
But by 4.9(c) and (b),

2n+la (2p) a(p)2" a(t* + t)2" {a (t)2}2" a(t)

Thus (3) reduces to
2n+lr a(t)2 < ce(t)2"+ 2"+1

"Cx, i.e. r <-Cx.
But this is impossible since r > 1 and r2"+1 +, as n -. Hence (I) is proved.

Condition (I) shows of course that

Rstr.<>S(t) CL((@), (@)).
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From the closedness of $(t) and the extension principle for continuous linear operators
it follows, since 6ex cls. (), that

(4) $(t) cls. Rstr.<>S(t) CL(9x, St’x) i.e. S(t) CL(Sex, 6x).

By (4) and (1), $(. ) is a propagator of X(. ).
Finally, since by (4) $(t) and $(t*) are continuous on 6ex, the equality in 4.8(b) valid

on () holds throughout cls. (@)= Sex; i.e.

Vx, x’ 5x, (S(t)x, x’)= (x, S(t*)x’).
This shows that S(t*) $(t)*, and the proof of (a) is over.

(b) Let (13) hold. Then from the extension principle for continuous linear
operators, and (I) and 4.9(a), we have

IS(t)[ =/3(0 a(t)_-< ,f-y(t).
Next let (a) hold. Then as just shown in the derivation of ([3), we can take y(t)= ]S(t)lz.
This is the best choice of y(t) in view of the last inequality. Thus we have (b). l-I

The following result states how the nature of the *s.g. F affects that of the
propagator S(. ). It is an obvious consequence of the assertion $(t*)= $(t)* in the last
theorem.

4.11 COROLLARY. Let (i) A, W, f3, X(. ), F be as in (4.6); (ii) the covariance kernel
K( ) ofX( ) have the transfer and translationalproperties (4.5)(a), (b); (iii) S( ) be the
propagator ofX(. )on F to CL(SC’x, x). Then t F, we have (cf. (4.2))

(a) is normal S(t) is normal,

is s.a. S(t) is s.a.,

t>- 0 S(t)>- 0;

(b) t* 2t ::), S(t) is a (_1_) pro]ection;

(c) t* + 0 z:), S(t) is isometric,

t* + 0 + t* S(t) is unitary;

(d) F is a group and t* S( ) is a groupofunitary operators onSYxonto Stx.
These relations correspond to the (i)--(iv) of Nagy [26, p. 21] for whom A F, W is

a Hilbert space, and the covariance K(..) of X(. ) is derived from a PD function R (.)
as in 4.1(b). In view of the frequent occurrence of the case A F, it is convenient to
introduce the following concept and to rephase Thm. 4.10 in terms of it.

4.12 DEFINITION. Let (i) A be an (additive) *s.g. with neutral element 0, (ii) W be
a Banach space over : and a Hilbert space over :, (iii) X(. ) be a function on A to
CL(W, ). We say that X(. has the covariancefunction R (.)on A to CI(W, W*)iff

vx, x’ A, n + x )= ’)*X(x ).

4.13 MAIN THEOREM (existence of propagator).{} Let A, W, g), X(. ) be as in
4.12. Then

(a) the following conditions are equivalent:
(a) X(. ) possesses a propagator S(. ) on A to CL(SCx, rex) such that

VtA, S(t*)=S(t)*,

See the second part of Note 2 added in proof.
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(f3) X( ) possesses a covariance ]unction R (.) having the translational property"
a [unction ,(. )on A to Ro+

/A, tA, 0-< R (A * + t* + + A ) <_ /(t) R(A*+A);
(b) when (f3) prevails, we have /t A, IS(t)l--<; when (o) holds, the best choice

]’or the 3’(" ) in (f3) is ,(t)= Is(t)l=.
Proof. The possession by X(. ) of a covariance function is equivalent to its

possession of a covariance kernel K(. ) having the transfer property (4.5)(a); and the
inequality in (13) is equivalent to that in (4.5)(b). Hence 4.13 is a mere rephrasing of
Thm. 4.10 in the setting A F.

Next, we consider the case in which the parameter space A is a Banach*-algebra
over ll: with unit 1. A is of course a *s.g. under multiplication with neutral element 1. A
PD function R (.) on (this *s.g.) to CL(W, W*) would come under the scope of Thm.
4.13 (with + in 4.13 interpreted as multiplication)were R (.) to satisfy the inequality in
4.13(13). We shall now show that if the PD function R (.) on A (considered as a vector
space) is linear, Ill 1 and la*]- lal, then the inequality does indeed prevail. Further-
more, from the kernel theorem in its vectorial format 2.16 we shall deduce that the
variety X(. ) with covariance function R (.) is itself a continuous linear operator on (the
Banach space) , and thence by appeal to Thm. 4.13 that so is its propagator S(. ). Our
theorem reads as follows:

4.14 THEOREM. Let (i) be a Banach algebra over with unit 1 Ill 1 and an
isometric involution *; (ii) R(. ) be a linear operator o,n (the vector space) to
CL(W, W*), where W is a Banach space over :; (iii) R (.) be a PD function on (the
multiplicative *s.g.) A to CL(W, W*); (iv) X( be the variety on to CL(W, ) with
covariance function R (.), being as in the Kernel Thin. 2.10. Then

(a) R (.) is continuous on , IRI IR (1)1, and

la, , 0 <_ R (a* t* ta) <_ ItlR (a’a);
(b) X(. ) CL(A, CL(W, .)) and Ixl 4IR (1)1 Ix(1)l;
(c) X(. ) possesses a propagator S(. ) on to CL(6ex, SO’x), i.e.

/a, , X(ta) S(t). X(a);

moreover, t , S(t*)= S(t)*, and S(. ) is a linear contraction o" norm 1 on to
CL(6ex, 6ex); thus the propagator S(. ) is a *-representation of in CL(6ex, 6ex). 16

Proof. (a) Write "a "< b" for "b a A0+". Then, cf. [28, pp. 188-189], ’p 0+
and /p ->]pl, 0_< p _< 1, whence /a , 0<_ a*pa <_ oa*a. Takingp t*t,p ]t12 and
noting that Itl 2 --It*l Itl => I/*/I, we get

(1) Ya, , 0 <_ a*t*ta <_ Itl2a*a.
Now (iii) tells us that the kernel K(.. ) given by

(2) /a, b , K(a, b)7 R(b*a)
is PD on A to CL(W, W*). From 2.7(a), (c) we therefore conclude that a, t

(3) 0 <_ R(t*t) and Ig(a*t)l<-_le(a*’a)l Ig(t*t)l.

Thus the linear operator R (.) carries nonnegative elements of into nonnegative
elements of CL(W, W*), and is therefore "nondecreasing" with respect to the relation

16 That is, S(" is a continuous involution-preserving multiplicative linear operator on to CL(x, 6ex).
It easily follows that $(. is a cyclic representation when dim W 1, e.g. when W :.
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_<. Hence from (1), we get

(4) Va, te&, 0 <_ R(a*t*ta) <_ ltl2R(a*a).
Taking a 1 and applying 2.4(g), we get IR (t*t)l <- Itl2. IR (1)l. So, from (3) with a 1, it
follows that

IN (t)la -< IN (1)l IN (t* t)l =< ItlalR (1)12,
whence IR (t)l--< ]tl IR (1)1, and so

IRI_-< IR(1)I--IR(1)]< IRI i.e., IIRI--IIR(1)I

We thus have (a).
(b) From the distributive laws of A and the linearity of R (.) on A, we easily see

that the kernel K(. ) in (2) is sesquilinear on A A to CL(W, W*), and taking a 1 in
(a) and using 2.4(g), we get

0 <-_ Ig(t, t)l <- Itl:lR (1)1.
Hence K(. ) is Lipschitzian, and since the last inequality becomes an equality for 1,
we have IKI [R (1)1. Now_ (iv) and 4.1(a), K(.. )is the covariance kernel of X(- ).
Hence by 2.16(b), IXI /IKI 4[R(1)I. Thus (b) holds.

(c) From (a) we see that R (.) satisfies the translational inequality in 4.13(13) with
y(t)- It]. Hence by 4.13, X(. ) possesses a propagator $(. ) on to CL(6ex, 6x) such
that

(5)
We now assert

(i)

gt , S(t*)= S(t)* and Is(t)lltl.

Va, bl, Va, 3[:, S(aa+flb)=aS(a)+3S(b).

Proofof (I). Let A /. Then by fully exploiting the propagation equality for S(. )
and the linearity of X(. ) we get

S(aa + b). X(A )= {aS(a)+/3S(b)} X(h ).
Thus for the operator

D 7 S(aa + b3)- aS(a) S(b)

we find that D X(A)= 0. As this holds VA e A, we conclude that

7 U X(A)(W)_ 7 null space of D.

Since D is linear and continuous on 6ex, it follows that 6ex 7 cls. (@) c_c_ , i.e. D 0. This
proves (I).

Finally, $(. ) being a semi-group, cf. 3.3, we have

(6) Va, b, S(ab)= S(a). S(b), S(1)=Isex and Is(1)l= 1 Ill.
By (5), (I), (6)we have (c). 1-1

The last theorem is restateable in the following form in which it can be directly
compared to an important theorem which Stinespring proved ab initio in 1955 [32,
Thm. 1]:

4.15 THEOREM. Let (i) and (ii) be as in Thin. 4.14. Then
(a) the necessary and sufficient condition that

Va cA, R(a)=J*S(a)J,
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where J CL(W, o),o being a Hilbert space over g:, and $(. is a *-representation of
into CL(9o, o) is that R (.) be PD on (the multiplicative *s.g.) ;

(b) when R (.) is PD on , and X(. ) is a variety on with covariance function
R (.) (cf. 4.12 and 2.10) then we can in (a) take o Sx, $(" )= the propagator ofX(. )
and J X(1).

Proof. (a) Sufficiency. Let R (.) be PD on , and X(. ) be as described in (b). Then
all the premises (i)-(iv) of Thm. 4.14 are fulfilled. Hence by Thm. 4.14, X(. has a
propagator $(. ) which is a *-representation of in CL(6ex, 6ex). With 9o and J as
described in (b), the *-representation is in CL(9o, 0), and

J*S(a)J X(1)*S(a)X(1)= X(1)* X(a)= R(a),
as desired.

Necessity. Let J, g)0, S(. ) be as described in (a) and define a s A, Y(a) S(a)J.
Then Y(. ) is a variety on A to CL(W, )o). Since S(. ) is a *-representation of A, we
have /a, b s A,

Y(b)*Y(a)=J*. S(b)*. S(a)J=J*. S(b*a)J= R(b*a).
Thus R (.) is the covariance function of Y(. ) and therefore obviously R (.) is a PD
function.

(b) This has been shown in the sufficiency part of the proof of (a). [-I

4.16 Remarks. The only difference between Thm. 4.15 and Stinespring’s [32,
Thm. 1] consists in our saying "Banach algebra with unit of norm 1 having isometric
involution" instead of "C*-algebra"; "Banach space" instead of "Hilbert space"; and
"PD on A" instead of "completely positive on A". Now in his proof of Thm. 1,
Stinespring shows that a linear operatorR (.) on A to CL(W, W), (W Hilbert space) is
PD on iffR (.) is "completely positive" (Def. in [32, p. 211]). If we treat this result as
a separate lemma, then we may regard 4.15 as an explication and generalization of
Stinespring’s Thm. 1. Thm. 4.15 is more explicit in that in (b)the auxiliary Hilbert space
0, the *-representation S(. ) and the operator J are identified. It is a generalization in
that it allows W to be a Banach (rather than Hilbert) space, and A to be isometric-
involutory (rather than C*).

Another important theorem of Stinespring [32, Thm. 4] asserts that for a com-
mutative C*-algebra every positive linear operatorR on to CL(W, W), W a Hilbert
space, is a PD function on the * s.g. R is "positive" means of course that a >- 0 in
& ::> R (a)>- 0 in CL(W, W). In the light of this we can obviously assert the following:

4.17 COROLLARY. Let (i) be a commutative C*-algebra with unit 1, (ii) R (.) be
a positive linear operator on to CL(W, W), where W is a Hilbert space. Then the
conclusions (a)--(c) of Thin. 4.14 are valid; moreover, /t , $(t) is normal.

5. Dilation theorems. So far Whas been a Banach space, and the parameter space
A any arbitrary set, considered either singly or along with a semi-group F acting on it.
For dilation theory (as now conceived) Whas to be a Hilbert space, and A itself has to be
a semi-group. In this setting we have the following general result which shows that all
propagators are dilations and vice versa:

5.1 GZNERAL DILATION THEOREM. Let
(i) A be a semi-group under + (not necessarily Abelian ) with neutral element 0,
(ii) W be a Hilbert space over
(iii) K( ) be a PD kernel on A x A to CL(W, W) for which K(0, 0)= Iw.

Then
(a) if a variety X(. ) on A to CL(W,

being as in 2.10, has the propagawr S( ), then S(-)* S( ) is the dilation ofK( ,-) in
the Hilbert space x c_ ;
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(b) if S(" ) is a semi-group on A to CL((3, (9) and S(-)*. S(. ) is a dilation of
K(.,-), then a restriction So(" )c_ S( ) is the propagawr ofa variety X( ) havingK( )
as its covariance kernel.

Proof. (a) If S(. ) is the propagator of X(. ), then by Def. 3.2(b), VA e A, X(A)=
S(A)X(0). Hence

K(Z, X(Z’)*. X(h)= X(O)* S(h’)*. X(O).

Since Iw K(0, 0)= X(0)*. X(0), i.e. X(0) is an isometry on W to 6ex, it follows by
Def. 1.2 that S(-)*S(. ) is a dilation of K(.,-).

(b) By Def. 1.2, =1 an isometry J on W to a Hilbert space such that

(1) VA, a’ e A, K(A, h’)= J*S(A’)*S(A )J.

Clearly the variety X(. )7 S(. )J on A to CL(W, )) has K(.,-) as covariance kernel.
And, since $(. ) is a semi-group,

Vt, A eA, X(t + ) 7 S(t + )J S(t)S( )J S(t)X(A )

and

s
___

 ex.
Hence, cf. Def. 3.2(b), So(" ) Rstr.xS( ) is a propagator of X(. ). FI
The next result tells us when [he dilation will be strongly continuous.
5.2 COROLLARY (strongly continuous dilation). Let
(i) A, W, K(.. ), X(. ) and S(. ) be as in 5.1,
(ii) the semi-group A in (i) be topological (cf. 3.6(ii)),
(iii) the PD kernel K( ) be strongly continuous on A x A, i.e.

VA, A’eA, slim K(t+h, t’+h’)=K(h,h’),
(t,t’)-,(O,O)

(iv) the function T( ) occurring in 3.4(/) be bounded on some neighborhood Vo of 0
in A.

Then the dilation S( ) ofK( O) is strongly continuous on A, and the dilation S(-)*S( )
ofK(. ,-) is strongly continuous on A x A.

Proof. We appeal to Cor. 3.6 taking F A and therefore identical to +. Since
X(. ) has a propagator, the conditions in 3.4 prevail; moreover by 3.4(b), B (t)= ,f-T(t).
Thus (i)-(iv) entail all the premisses of Cor. 3.6. Hence by Cor. 3.6, $(. ) is strongly
continuous on A to CL(Yx, 5x). It follows easily that S(-)* and $(-)*S(. ) are strongly
continuous on A and on A x A.

Thm. 5.1 establishes the validity of the Procedure 1.4. For once we have accom-
plished the hard step (i), i.e. associated with the given function R (.) on A to CL(W, W)
satisfying R(0)= Iw the appropriate PD kernel K(.. ) on A x A such that R(. )=
K(., 0), Thm. 5.1 assures us that the propagator or controller S(. ) of the variety with
covariance K(.. ) is a dilation of R(. ). Cor. 5.2 tells us when for a topological
semi-group A, this dilation will be strongly continuous.

We shall now deduce improved explicit versions of several dilations theorems from
the standpoint of Procedure 1.4 by appeal to 5.1 and 5.2. We begin with the following
simplification of Nagy’s Principal Theorem in which his premise (c), [26, p. 21], .is
mitigated; cf. remarks following (4.5):

5.3 THEOREM (simplified Nagy thm.). Let (i) A be an involutory (additive but not
necessary Abelian ) semi-group with neutral element 0; (ii) Wbe a Hilbert space over g:;
(iii) R(. ) be a PD function on A to CL(W, W) (cf. 4.1(b)) such that R(0)= Iw, and
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having the (mild) translational property" :! a function y(. ) on A to o+
VA, tA, 0<_ R(A*+t*+t+A)<_ y(t). R(A*+A).

Then
(a) a Hilbertspace o over :, a linearisometry Jon Wto 3o and a semi-group

S( ) on a to CL(o, $)o)

VA 6 A, R (A)= J*S(A)J,

i.e. R (.) has the dilation S( ) in g)o. Here g)o 5x, J X(O) and S( ) is the propagator
of X(. ), where X(. ) is a variety on A having the covariance function R(. ) (cf. 2.10,
4.12);

.(b) /Z A, S(A*)= S(Z)* and IS(A)[ _-< x/y(Z).
Proof. By (iii) and Thm. 4.13, a variety X(. ) on A to CL(W, g)) possessing the

covariance function R(. ((9 being as in 2.10) has a propagator S(. ) satisfying
the conditions in (b). By Thm. 5.1, this $(. ) is the. dilation of K(., 0), where
K(A, h’) R (h ’* + h ), i.e. a dilation of R (.) in x. Thus (a) holds with g)o Sex - (9 and
J X(0), and so does (b). 71

In the same way, starting from Thms. 4.14, 4.15 (instead of 4.13) we arrive at
the following dilation theorem for Banach algebra. This is essentially a restatement of
Stinespring’s [32, Thm. 1] for C*-algebras:

5.4 THEOREM. Let (i) & be a Banach algebra over : with unit 1 [1[- 1 and an
isometric involution *, (ii) R (.) be a linear operator on (the vector space) & to CL(W, W)
where is a Hilbert space over g:, (iii) R (.) be a PD function on (the *s.g.) & to CL(W, W)
and R (1) Iw. Then

(a) a Hilbert space g)o, a *-representation S(. ) of & in CL((3o, o), and a
linear isometry J on IV to gOo such that

ta &, R(a)=J*S(a)J.
This S(" ) is a dilation ofR (.) in o.

(b) In particular, (a) holds when & is an Abelian C*-algebra with unit 1 andR (.) is
any positive linear operator on A to CL(W, W).

Proof. (a) By (i)-(iii) and Thm. 4.15, we have

(1) Va e&, R(a)=J*S(a)J
where S(. ) is a *-representation of & in CL(90, o) and J CL(W, 90). By 4.15(b),
J X(1), where X(. is a variety with covariance function R (.). But now

X(1)*X(1)=R(1)=Iw,
i.e. J is an isometry. Hence by (1), $(. ) is a dilation of R (.).

Part (b) follows from (a) in view of Stinespring’s [1, Thm. 4]; cf. 4.16, 4.17. V1
An important application of Thm. 5.4 is to the Abelian C*-algebra A C(X; C),

of complex-valued continuous functions on a compact subset X of a Hausdorff space
(sup norm). It transpires that for certain (unclosed) subalgebras of A, linear operators
on [ to CI(W, W)of a certain type extend to positive linear operators R (.)on A. The
application of 5.4(b) to this extension R(. on A often yields a valuable dilation
theorem for the original operator on D. This observation and the revelation of its scope
are due to Arveson [5, 0.1, 1.22 et seq.], who are able to relate the Silov boundary of X
relative to D to his concept of the "support" of the resulting dilation S(. ). We shall only
mention here the pioneering theorem of Lebow [16, p. 84], which emerges as an easy
corollary of Arveson’s theorem, but which seems to have been seminal to this research.

5.5 THEOREM (Lebow). Let (i) T CL(W, W), where Wis a Hilbert space over C,
(ii) the (necessarily compact) spectral setXc C of The such that the algebra ofrational
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functions on C with poles in C\X is a Dirichlet algebra. Then
(a) a Hilbert space , an isometry J on W to , and a normal operator

" 6 CL(, )) such that
Vf , f() J*f(T)J.

(b) tr(’)_OX, where tr() the spectrum of :
Here the fact of X being a spectral set of T and the maximum modulus principle

yield
Vf , I/(T)I--< max If(z)l max If(z)l,

zX zOX

This together with the fact that [ is a Dirichlet algebra enables us to obtain by
extension a positive linear operator R (.) on A 7 C(X, C) to CL(W, W) such that

() Vf, f(T)=R(f).
The application of 5.4(b) to R (.) now yields

(2) V/cA, R (f) J*S(f)J.
Since A is Abelian, each f in A is "normal" and so therefore is S(f); of. 4.11(a). The
desired equality follows from (1) and (2)on letting " 7 S(1) and remembering that the
propagator $(.) is a multiplicative s.g. The relation between r(’) and OX follows from
Arveson’s relation between the "support" of S(. ) and the Silov boundary ofX relative
to ).

It follows from a classical theorem of J. L. Walsh that the D in 5.5 is a Dirichlet
algebra when C\X is connected; cf. [16, p. 66]. Lebow’s Thm. in this special case
embraces several classical dilation theorems; cf. [16, p. 86].

From our standpoint the pioneering work of Stinespring, Lebow and Arveson as
well as some of the earlier work of Halmos and Nagy falls under step (i) of the Procedure
1.4" it is a quest for significant PD kernels. Their researches tell us that kernels which are
derivable from positive or completely positive operators on a C*-algebra, or ones
whose extensions are so derivable, are PD. This knowledge obviates the need for ab
initio demonstration of positive-definiteness in individual cases. We should point out,
however, that not all situations are reasily amenable to the Lebow-Arveson algebraic
approach. A recalcitrant instance is the strongly continuous contractive semi-group
(Ct: Ro+). But as Nagy showed, cf. [26, p. 32] and [27, p. 30], it generates a stationary
PD kernel, and Procedure 1.4 works.

We turn next to the dilation of a W-to-W nonnegative hermitian operator-valued
measure, where W is a Hilbert space (Naimark’s Thm.). Step (i)of Procedure 1.4, to
determine the PD kernel corresponding to such a measure, is accomplished in the
following lemma, valid for a W-to-W* operator-valued measure of this type, W being
any Banach space.

5.6 LEMMA. Let (i) be a pre-ring over a space 12, (ii) Wbe a Banach space over ,
(iii) M(. ) be a W-to-W* nonnegative hermitian operator-valued, finitely additive,
measure on , (iv) VA, B , K(A, B)M(A (3 B). Then K(. is a PD kernel on

to CL(W, W*).
Proof. Let r e t+, Ca," , C e CL(W, W) and A,. , A e . We must first

show that

(I) ’, CK(Ai, Ai)Ci >" O.
i=1/=1

Now to the sets A,..., A in correspond disjoint sets B Bq in , where
q 6 +, such that we have the partitioning

(1) A= B,, {1,...,q}= J N.
nNi i=1
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It follows easily that

A f-)Ai U B,,, with B, disjoint,
Ni f’)N

and therefore from the finite-additivity of M(. ),

K(A,,Ai)= Y M(B,)= E M(B,)XN,CN(n),
Ni CIN n=l

where Xs stands for the indicator of set S. Thus

Y. CXN,(n) M(B,)" . CaXN, (n)
n=l i=1

q

C(n)*M(Bn)C(n) >_ O, by 2.4,
n=l

since C(n ) = CiXN, (n ) CL(W, W).
This establishes (I), i.e. the first condition in Def. 2.5. The second is easily checked,

since K(A, B) K(B, A) is hermitian. I-]

Now let , W, M(. and K(. be as in Lemma 5.6 and let , be as in the Kernel
Thm. 2.10, and T(.) on to CL(W, )be the variety with covariance kernel K(. ), so
that

(5.7) VA, B , T(B)* T(A M(A r3 B ).

We have studied this set function T(. ) extensively in [21] in the case where W is a
Hilbert space and the measure M(. ) is strongly countably additive (s.c.a.) on . We call
T(. ) a W-to-O countably additive quasi-isometric (c.a.q.i.) measure on , with control
measure M(. ) because (5.7) entails that

VA e, cls.[ T(A){x/M(A)}-I] is a partial isometry,

the superscript 1 indicating the generalized inverse, and also entails that for an s.c.a.
measure M(. ) on , T(. ) is s.c.a, on . Thus for a Hilbert space W and an s.c.a.
measure M(. ), the variety having the K(. of 5.6 as covariance kernel is a W-to-O
c.a.q.i, measure on g with control measure M( ). This completes step (ii) of Procedure
1.4, for in the Naimark dilation theorem M(. ) is given to be s.c.a, on a tr-algebra N
over 12 and M(Y)= Iw.

The situation just described comes within the scope of Thm. 5.3, since even a
pre-algebra over is an Abelian semi-group under (3 with neutral element f, and
therefore a *s.g. with A* A, and M(. ) has the translational property 5.3(iii) as is easy
to check. By Thm. 5.3 the variety T(. )on has a propagator. But more insight into its
nature is provided by the theory of c.a.q.i, measures. To see this, let @ be just a 6-ring
over f, and the W-to-W nonnegative hermitian measure M(. be s.c.a, on @, W now
being a Hilbert space. Let also

loc {B" B c and VA , B r3 A @},

(5.8) VBlc, tT(B){T(A)(W)" A @ 1"3 2},,

VB oc, QT(B) the orthogonal projection on /IT(fl) onto ./tIT(B).
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We then have the following theorem:
5.9 THEOREM. (a)r(" ) is a countably-additive, orthogonally scattered (c.a.o.s.)

subspace-valued measure on the or-algebra Nlo. (b) Or(" ) is a s.c.a, pro/ection-valued
measure on IIc for the Hilbert subspace r()) of

Proof. The proof given in [21, 10.25] is correct, but needlessly involves integra-
tion. A clearer, integration-free proof (which should have appeared in [21, 8])is given
in Appendix H. [-I

5.10 DEFINITION. Let T(. ) be a W-to-g) c.a.q.i, measure on a 6-ring N, and
///r(" ), Qr(" ) be as in (5.8). Then

(a) ///r( ) is called the spatial measure of T(. ),
(b) Qr(" ) is called the spatial spectral measure of T(. ).
For dilation theory we need besides Thm. 5.9(b) the relation:

(5.11) VA and VB s loc, QT(B)" T(A) T(A f’) B).

This is immediate from the relations

T(A)(W) T(a C )(W)+ T(+/-\)(W)

T(A (3 B)(W) A_ T(A\B)(W).

Since f3 is the "+ operation" of the semi-group , (5.11) shows that the spatial spectral
measure QT( ) is the controller of T( ) in the sense of Def. 3.2(b).7

Now let 3 be a it-algebra and M(fl)- Iw. Then Nlo 3, and all the premises
of Thm. 5.1 are satisfied with A N. We thus immediately get the following explicit
version of the Naimark theorem [26, p. 6]:

5.12 NAIMARK’S THEOREM (explicit form). Let
(i) Wbe a Hilbert space over :,
(ii) M( ) be a W-to- Wnonnegative hermitian operator-valued s.c.a, measure on a

tr-algebra 3 over fl such that M()= Iw,
(iii) the (PD) kernel K(. ) on 3 x 3 be defined by

VA, B s 3, K(A,B)TM(A B),
and g) be as in the Kernel Thrn. 2.10 for this K(. ),

(iv) T( ) be the W-to-g) c.a.q.i, measure on 3 with control measure M(. ), i.e. the
variety with covariance kernel K(. ),

(v) Qr(" ) be the spatial spectral measure of T(. ) on 3 (cf. Def. 5.10).
Then

VBE, M(B) T(Y)*QT(B)T(O).

Hence Or(" ) is a dilation ofM(. ).
5.13 Remarks. Thm. 5.12 shows that the dilation space for the operator-valued

measure M(. ) is the subspace r(l"), i.e. 5er, of the Hilbert space S) given by Thm. 2.10
for the kernel K(. ) arising from M(. ). As is clear from Thm. 2.10 the corresponding
subspace of any other Hilbert space of equal or greater dimension than can also be
taken as the dilation space of M(. ). One such space is

the completion of &2. w, 2,w L2(fl, 3, M; W).

17 Here the term controller is more appropriate than propagator, since the semi-group does not
represent time or space-time or phase space.
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For the definition of 2,w see [21" 9]. 18 For the Hilbert space 2.w, the Hilbertian
variety we get is the indicator c.a.q.i, measure Mx(" ), defined in [21, 10.13]. The
dilation of M(. ), i.e. the spatial spectral measure of M(. ), now turns out to be the most
familiar spectral measure over L2 spaces, to wit multiplication by the indicator functions
of set in .

6. Image-extensions. In this section we shall deal with image-extensions in the
sense of Def. 1.5. In our scheme in which projections give way to isometries, this
concept corresponds to the classical one of extension to a larger Hilbert space (as
opposed to dilation). Our purpose is to show that our simplified version 5.3 of the Nagy
Principal Theorem, with only the mild translational requirement, is potent enough to
yield the improved (translation-requirement-free)version of the Halmos theorem on
normal extensions due to Bram [6, Thm. 1]. Apart from this one aspect, our proof
follows the one due to Nagy [26, 10]. Like Nagy we need the following lemma, the
proof of which we leave to the reader; cf. [26, p. 20].

6.1 LEMMA. Let (i) Wand be Hilbert spaces over g:, (ii) J be a linear isometry on
W to 3, (iii) T CL(W, W) and T CL(9, g)). Then the following conditions are
equivalent:

(or) JTJ-I
_

’,
if3) T= j-lj and (J), 7 Range ofY,
(1) T J*J and T*T J**’J.
6.2 THEOREM Let (i) A be an (additive) Abelian semi-group with neutral element

0; (ii) ’h s A, Tx CL(W, W) where W is a Hilbert space over g:. Then the following
conditions are equivalent"

(et) (Tx" h A) is a semi-group in CL(W, W), and / functions w(. ) on A to W,
r and /h 1, 1r A, . (Tx,{w(Ai)}, T,,{w(Ai)}) >= O,

i=1 1=1

() ] a Hilbert space o over g:, B a linear isometry J on W into o and B a
semi-group (x" A s A) of continuous normal operators on 3o to o such that

h A, JTxJ-1 -i.e. the normal operator x is an extension of the image JTxJ-1 in CL(,) of Tx in
eL(W, W), range ofJ.

Proof. Let (ct) hold. Then, following Nagy, define + and * in A 2 AA and R(. )
on A2 by

(2) R(A1; A2)7

Obviously,

(3) A2 is a *s.g. with neutral element (0, 0),
and exactly as in [26, p. 36] we deduce from the inequality in (o0 that

(4) R (.) is a PD function on A2 to CL(W, W).

18 2,w is always an inner product space. Only for so-called "adequate" measures M(. ), is 2,w
complete [21, 9.9]. For important further work on this question see Mandrekar and Salehi [24].
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We now claim that R (.) fulfills the mild translational requirement of Thm. 5.3, viz.

::l a function y(. on A2 to Ro+ 9 V( 1; 2) and (tl; t2) A2,

(5) R{(Xx; ,2)* +(ta; t2)* +(ta; t2)+ (/x; X2)}

r(t; t2)" R{(X; X2)* +(X; X2)}.

Proo[o[ (5). By (1) and the commutativity of + in A2, the argument of R(. )on the
LHS of (5) is

(t +t2+/ +1; t + t2+/ +12).

Hence by (2) and the semi-group properties of (Tx" A A),
* TxLHS(5) Ttx+t+Xl+XZ* Tt+tz+x+xz Tl+XZTtl+tZTt

< *

the last step stemming from the triviality that for A,HCL(W, W), 0 5 H
0 5 A’HA 5 IHA*A. By letting y(h; tz) [T+[, it thus follows that

LHS(5) (t; ta). R (1 + 2 1 + 2).

This proves (5).
By (3)(5) and Thm. 5.3(a), 3 a Hilbert space 0o, an isometry J on Wto

a s.g. S(. ) on Aa to CL(0o, 0o) such that

(6) V(ax; a:)eA: TLT.,TR(a;X)=J*S(Xl;X:)Z
Since Aa is Abelian, each (;) is "normal" and so therefore is each S(/; Aa); cf.
4.11. By letting

(7) W e A, #, 7 S(X; 0),

it follows at once that

(8) (x" A)is a s.g. of continuous normal operators on

Also from 5.3(b)and (7),

S(Xl; x:)= s{(x; 0)* +(x; 0)}= {s(x; 0)}*. s(x; 0)=
Thus (6)can be restated:

(9) w,a’ e, T,T.
Taking ’= 0, we get

(10) W e A, T, J*

By (9), (10) and the last lemma,

() JT.J-1

By (8)and (11)we have ().
Next let () hold. Then VA A, JTxJ- x. Hence by the last lemma,

() w e, T.=-#.=J*#.Z and

From (12) and the fact that (x" A) is a s.g., it is easy to deduce that

(13) (Tx" A)is a s.g. in CL(W, W).
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Also, Vw, w’ W,

(Txw’, Tx,w)w=(J-lxJw’,J-lx,Jw)w by(12)

(xJw’, x,Jw)o, as j-i isometry

(14) *x,Jw’, *xJw)o,

the last step being a consequence of Fuglede’s thm., which guarantees that ’x and
commute, since, by (13), x and x’ do. It follows from (14) that

i=1 i=1 i=1 1=1

(15) 12CU{w(,)} -->o.
i=1

By (13)and (15)we have (ct).
It is worth restating Thm. 6.2 in terms of subnormality. Let (Tx’A A) be a

semi-group of subnormal operators on a Hilbert space W; cf. [6, Def. p. 75]. Then for
each A in A, there exists a Hilbert space S)x and a continuous normal operator
thereon such that W_ g)x and Tx

_
]Vx. But the spaces x need not be equal, nor when

they are, need the T form a semi-group. This suggests a definition to cover the
exceptional case:

6.3 DEFINITION. Let A, W, T be as in 6.2(i)(ii). We say that the family (Ta" A e A)
is semi-group-subnormal iff =1 a Hilbert space (9o and :1 a semi-group (x" A A) of
normal operators in CL(g)o, g)0) such that W_c (9o and VA A, Tx

___
iP.

It is clear that if in 6.2(13) we "identify" W and j (thereby obtaining W
_
o and

Ta
___
x), then we can restate Thm. 6.2 more briefly as follows
6.4 THEOREM. Let (i), (ii) be as in 6.2. Then (Tx" A A) is semi-group-subnormal

iff. 6.2(ix) holds.
Now for single operators T, 7, the statements "T e CL(W, W)" and "(Tn" n e No+)

is a s.g. in CL(W, W)" are equivalent, as are the statements "ig" e CL((C)o, S)o) is normal"
and "(’n" n N0+) is a s.g. of normal operators in CL(o, o)". Also, of course,
T_ ’=:> /n No+, T c__ ’". Hence for A No+, Thm. 6.4 reduces to the assertion that
T 6 CL(W, W) is subnormal iff Vr N+, Vkl, , kr 6 No+ and VWl, , wr 6 W,

(Tk’(wj), Tk’(wi))>--O.
i=l j=l

This is a restatement of Bram’s Thm. 1; cf. [6, p. 77]. Its derivation shows that Thin. 6.2
constitutes in our new setting an extension to arbitrary Abelian semi-groups of the Bram
theorem.

Appendix A. Proof o Main Lemma. 2.6. We shall show that (a):([3) and
(3):>(y). The abbreviations wi w(Ai) and C C(A) will be tacitly understood in
what follows.

Let (et) hold. Only the first conditon in (13) has to be proved. Let w(. be on A to W,
r N+ and A 1," , A A. Take any fl,. , fi W’\{0}, W’ being the dual of W. Then19

=iwo6 W/]= 1,’.’, r, /(wo) 0.

19 The quickest way to see this is to observe that the hyperplanes N/ null space f. have void interiors,
and hence by the Baire theorem their union cannot be equal to W.
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Since f. CL(W, IF), therfore obviously

)
c,.(. ) 7 CL(W, W)

It follows that

and G(Wo) wj.

LHS(f3)= . [K(A,, Ai)Ci(wo)](Cj(wo))
i=l i=l

--[/i=1 ]lCg(li, .i)Ci}(Wo)](Wo), cf. 2.2(c)

0 by (a) and Def. 2.3(b).
Thus (B) holds.

Next let (B) hold. Only the first condition in Def. 2.5 has to be proved. Let C(. be
on A to CL(W, W), r e+ and h ,..., A e A. Then obviously

H7 CK(Ai, Ai)Ci CL(W, ).
i=11=1

Now let w, w’ W and wi Ci(w), w[ Ci(w’). Then

(1)

Similarly

[H(w)](w’)= , [CK(hi, hi)Ci(w)](w’)
i=1/=1

[K(Ai, Aj)(wi)l(w;).
i=l i=l

(2) [H(w’)l(w)= [K(hi, hj)(w’ w
i=l ]=l

By (1), (2) and the second condition in (13), it follows that [H(w)](w’)= [H(w’)](w), i.e.
H is hermitian. Also by (1) and the first condition in (13), [H(w)](w ) >- O, i.e. H is
nonnegative. This yields the first conditon in Def. 2.5. Thus (a) is proved.

To turn to (3) and (/), let A x W, ai (Xi, w) , c e , for 1,. , r. Then
by the definition of k(.. ),

(3) k(i, ai)= [K(A,, Ai)(w,)](wi).

Since K(A, Ai)(w) is semi-linear on W, we also get

i=1 j=l i=1 j=l

(4) [K(Ai, Ai)(ciwi)](ciwi).
i=1 j=l

Now let () hold. Then the first condition therein entails that RHS(4) 0, and so
LHS(4) 0. Also, the second condition in ()implies via (3)the conjugate symmetry of
k(.. ) on x . Thus (T) holds.

Finally, let () hold. Then LHS(4) 0 and so RHS(4) 0. Setting c c 1,
we have the first condition in (). The second condition in () follows by (3) from the
conjugate symmetry of k(. ) on x . Thus () is proved.
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Appendix B. Proof of Congruence Theorem 2.9. Let a// A x W, and

(1) V(A, w)e, x(A, w)TX(A)w, y(A, w)7 Y(A)w.

Then x (.), y (.) are functions on to (3, , respectively, and obviously

(2) xg&, , Y.
Also by (1), 2.2(c) and (ii), Va (a, w)e and Va’= (a’, w’)e ,

(x (), x(’)) (x(a)w, x(a’)w’) [{x(a’)*x(a)}(w)l(w’)

[{ Y(A’)* Y(A )}(w)l(w’)= (Y(A)w, Y(A ’)w’)

(3) (y (a), y (a ’)).

By (3) and a known result, cf. Parzen [29, p. 472], a unitary operator V on onto y
such that

(4) Va E , y (a) V{x (a)}.

It follows readily from (1), (2) and (4) that this V meets all our demands.

Appendix C. Prooo Kernel Theorem 2.10. (a) Recall the basic properties of the
reproducing kernel Hilbert space of a PD kernel k (. ) on x to , where is any
parameter space. We know, cf. Aronszajn [3, p. 343-345],

{k(a, ): } is a fundamental subset of ,
(1) Vf and Va , , k(a,. )) =f(a) ,

Vffl, if2 e , (k(ax, ), k(az,. ))= k(al, a2),
2Va e , Ik(a,.)l k (a, a).

Now, cf. 2.6(), we take for k(.. )the -valued PD kernel on (A x W)x (A x W)
given by

(C.1) k{(ax, Wl), (12, w2)}=[K(al, az)(Wl)l(w2)6.

Here A x W. Next we define Va e A and Vw e W,

(C.2) T(aa)(Wl) 7 k{(a, W), ("-)} [K(A,’ )(Wl)](-)eAx
Then for the reproducing kernel Hilbert space of the k (. ) given in (C. 1), the results
(1) become"

(b) {T(a)w" (a, w)e A x W} is a fundamental subset of ,
(C.3) (c) Vfe and V(a, w)eAx W, g r(a)w)=f(a, w),

(d) V(al, w), (12, w2)eAx W,
(T(A1)W1, T(h)w),= [K(A1, A2)(Wl)I(w2),

.(e) V(A, w)e A x W, Ir(x)wl [K(A, a)(w)l(w).

We now interrupt the proof to assert the following lemma:
C.4 LMM. VA cA, T(a)e CL(W, ) and IT(A)] 4K(A, a). Thus T(. ) is a

function on A to CL(W, ).
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Proof of C.4. Let A A. Then by (C.3)(b), ’qw W, T(A)w ,. Hence

(1) T(A ) is a function on Wto.
It follows from (C.3)(a) that T(A)w :aw., indeed from (C.2), ’(A’, w’) A x W,

(2) [r()(w)](’, w’)= [K(, ’)(w)l(w’).
Hence Vwa, w2 W and ’ca, c2 IF, and we have

[r(A)(cw + cw)](’, w’)= [(A, A’)(cw +cw)l(w’).

Since K(A, A’) is a linear operator on W to W*, we easily infer that

T(A )(ca w + c2w2)I(A’, w’) [ca T(A )wa + c2 T(A )w2](A’, w’).
This shows of course that

(3) T(A ) is linear on Wto .
Finally, since T(A) CL(W, (C)), we have, cf. 2.2(c),

IT(A)12 IT(A)* T(A)I K(A, A),

whence

(4) IT(A)[ 4K(A, A).

By (1), (3)and (4)we have the lemma. 71
To resume the proof of Thm. 2.10(a), let A, A’ A. Then by C.4, T(A), T(A’)

CL(W, S). Hence, el. 2.2(c),

T(A ’)* T(A ) e CL(W, W*),
and Vw, w’ W,

[{T(M)* T(A )}(w)](w’) (r(A)w, r(A’)w’)

[K(A, A’)(w)](w’) by (C.3)(d).

It follows that

(C.5) ’CA, A’ A, T(A’)* T(A )= K(A, A’).

Now let be any Hilbert space over : such that dim. >= a 7 dim. ,. Then ! an
isometry V on to . Let

VA A, X(A)7 V T(A).

Then obviously ’CA, A’ A and Vw, w’ W,

X(A ) CL(W, O),

X(A’)*X(A)= T(A’)* V* VT(A )= T(A’)* T(A ),
(C.6)

Ix(A)w] V{T(A)w}I= IT(A
Ix(A)[ IT(A)I.

It follows from (C.6) that the function X(. ) is on A to CL(W, ) and has all properties
listed in (C.5), (C.3)(e) and C.4 for T(. ). This proves Thm. 2.10(a) and (b). l-]
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Appendix D. Proof of Corollary 2.12. (a) We have, writing X for X(A),

LHS(a) IX (w)[2 + [Xx,(w)l2 (Xx (w), Xx,(w))- (X),(w), Xx (w)).

Since by 2.2(c)and 2.8(c)

(x, (w), x,,(w)) [(x*,x, )(w )](w ) [K(, ’)(w )](w ),

we easily obtain (a).
(b) Since X(Z)-X(Z’) CL(W, ), we have, cf. 2.2(c),

But the operator-product on the RHS is, cf. 2.8(c),

K(A, A )+ K(A’, A’)- K(A, A’)- K(A’, A ).

Hence we have (b). []

Appendix E. Proof of Corollary 2.13. (a) Let K(. ) be continuous on A A to
the Banach space CI(W, S)), so that V(Ao, A) A A,

IK(A, A’)-K(Ao, A )ln 0, as (A, A’)- (Ao, Z).
From this it follows easily that

RHS 2.12(b)- 0, as A’ A.

Hence from 2.12(b),

IX(A’)-X(A)IB 0, as A’ - A.

Thus (a) is proved.
(b) Let K(.. ) be strongly continuous on A A to CL(W, 9). Then V(Ao, A)

AA,

(1) I{K(A,A)-K(Ao, A’o)}(W)Iw.-->O, as (A, A’)--> (A0, A ).

But from 2.12(a),

(2) IX(A )w -X(A’)wI2o <= I{K(A, A )+ K(,’, ,’)-K(A, ,’)-K(,’, A )}(W)Iw ]wl.

Since by (1), RHS(2)--> 0, as h’--> A, we are done. lq

Appendix F. Proo[ of Corollary 2.15. (a) Let Sex be the subspace of X(. ); cf.
2.8(b). Then the linear manifold

(1) /7 (X(h)(w)" (h, w) A W) is e.d. in Sex.

Now let w W, and grant momentarily that

(I) V(A’, w’)e A x W, (X(.)w, X(h ’)(w’)) e /(07/, BI(IF)).

Then since the last is a vector space, it follows that

(2) Vx /J, (X(.)w, x) J//(//, B10:)).

But the last space is also closed under sequential pointwise convergence. Since for any
y , there is by (1) a sequence (x,)] in such that Peexy lim,_oo x,, it follows from
(2) that

(X(.)w, y)= (X(.)w, Pse,,y) lim (X(.)w, x,)(, Blff)),

as desired. Hence it only remains to prove (I).
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Proof of (I). By 2.2(c) and 2.8(c)

(3) (X(A)w, X(h’)w’) [{X(h’)*X(h )}(w)l(w’) [K(A, h’)(w)](w’).

Now for w E W and any Banach space , let w denote the restriction to CL(W, f) of
the evaluation at w, i.e.

VTE CL(W, ); ’w(T) 7 T(w).
Obviously each wis a continuous function on the space CL(W, ), equipped with the
strong operator topology r, to the Banach space , and therefore

(4) Yw 6 W, gw ///(o’-alg(’s), BI()).

Now note that ’is the restriction of the evaluation at w to CL(W, :), i.e. to W’ and that
the strong operator topology of CL(W, IF) is precisely the so-called weak* topology -*
for W’. Hence, with BI(W’)7 the Borel algebra for the norm topology,

Vw W, Eyg(o-alg(r*), BI(:))_cA/(BI(W’), Sl(:)).

Letting Vz IF, C(z) ., it follows easily that Vw’ W.

(5) 8’w, 7 ’,, C a funct, on W* to : (BI(W*), B10:)).

Combining (ii), (4), (5)we see that

(6) VA’ 6 A and Vw, w’ E W, : ,////(o-//, Bl([F))gw’ gw K’
i.e., since by (3),

(x(.)w, A’)(w)l(w’) K(A’),

we have (I). This completes the proof of-(a).
(b) It is known (cf. e.g. [23, 2.8(a)]) that q/-scalar measurability is equivalent

to membership in J4(M, cr-alg(Ww)), where Ww is the standard base of the weak
topology for . Also, for separable g), o-alg(Ww) Bl(g)); cf. e.g. [23, 2.5(b)]. It there-
fore follows from (a) that Vw

Appendix G. Proof of Corollary 2.16. (a) Let A1, A2A and 1, 2E. Then
Vh’ e A,

X(A’)* X(ClA 1-F2A2)-K(IA1

cIK(A 1, ,’)+ c2K(h2, h’)

c X(A’)*X(A X(A )

X(A ’)*{c1X(A1) -[- c2X(A2)},

where the second equality stems from the sesquilinearity of K(. ). Thus X(A’)* D
0, where

(1) D 7 X(C1Xl "Fc2A2)-ClX(A1)-c2X(A2) CL(W, ).

Hence, cf. 2.2(c),

D(W)
_

null space of X(A ’)* {X(A ’)(W)}+/-.

As this holds VA’ A, we have, in fact

D(W)_ 71 [{X(A ’)( W)}-1 [{X(h ’)( W): A’ A}]-= 5.
A’A
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But by (1), Vw W, D(w) Yx, i.e. D(W)_ 5x. Hence D 0 on W, i.e., cf. (1), X(. ) is
linear on A to CL(W, (9).

(b) By 2.10(b), VA A, [X(A )l2 [K(A, h )[. Dividing both sides by [h [2, 0 # h A,
and taking the sup, we see that IX]E= [K[ <, and therefore that the linear operator
X(. ) is continuous on A. lq

Appendix H. Proof of Theorem 5.9. (a) Let Vn+, B,, loc, B,, be and
B B,,. Then we have only to show that

(I) dAT(B,,,).I_ d/IT(B,,), for m # n,

(II) tlT(B ) , IT(B,, ).

Proof of (I). Let m # n, A e f3 2s’, A2 e f’) 2s". Then hlllh2. Hence by (5.7),
T(A)*T(A2) 0; consequently, Range T(A2)__. null space T(A)* {Range T(A)}+/-;
cf. 2.2(c). This shows that

VAI f3 2n’- andVA2 f) 2n-, T(A1)(W)_L T(A2)(W).

Hence by (5.8), we have (I).
Proofof (II). Since Vn +, f-I 2s"

_
2s, it follows from (5.8) that T(B,)

_
t/T(B), whence

BOO

(1) ,T(B,,)ET(B).

Next, let A e f’l 2s. Then
A=U (ACIB,,), Af-IB.e and Af3B.II.

Since, cf. [21, 8.6(e)], T(. is s.c.a, on @, it follows that

Vwe W, T(A)(w) E T(AfqB,,)(w)E, T(A fq B,, )( W).

Therefore

T(A)(W)
___

Y’. T(A B,,)(W) E E t/r(B,,).

Now the spatial sum on the RHS is a linear manifold, and by (I) it is closed. Hence

(2) JIlT(B) 7 {T(A)(W). A i"12s}
_
Z JilT(B,,).

By (1) and (2), we have (II), and (a) is proved.
(b) Since VB loc, QT(B) is just the orthogonal projection on ///T(12) onto

r(B), (b) follows at once from (a).

Notes added in proot.
Note 1. Thm. 2.10 is not needed before 4.15, and is stated in 2 only for logical

coherence, it is obvious that the covariance kernel K(. ) of a Hilbertian variety X(. )
on A to CL(W, (9) is PD on A x A to CL(W, W*). Thm. 2.10 is the, much deeper,
converse of this result, which, as indicated in 1, is crucial for dilation theory (4.15 et
seq.).
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Note 2. We state here some useful but obvious conclusions, which we missed
drawing from our results in 4.

In 4.8(d), by dividing by Ix z", taking the 2"th root and then letting n- eo, we
obviously get the inequality:

[S(p)xl< lim IS(2"p)xl2-"(4.8.1) Yx e(@}\{0} and Yp

Combining this with 4.8(c), we also get

(Vxe()\{O} and VteF,
(4.8.2)

IS(t)xl
ixi-------

_-< li_ Is(2p)xlz-"

where p t* + t.
d

In case A F, cf. 4.12, and X(. ) has a covariance function R (.), we should have
noted, before turning to Thm. 4.13, that the covariance kernel K(. of X(. has the
transfer property 4.5(a), cf. 4.12 and 4. l(b), and so the results in 4.7 and 4.8 apply; thus
we have:

4.12.1 THEOREM. Let (i) A, W, g) and X(. be as in 4.12, and @ as in (4.6), (ii)
X(. ) have a covariance function on A to CL(W, W*). Then

(a) /teA, :la (s.v.) closed linear operator $(t) from fx to 3x with domain

YA e A, S(t) X(A )= X(t + A) and Rstr.S(t*)_ S(t)*;
(b) the results 4.8(a)-(d), (4.8.1) and (4.8.2) hold for this S( ).
Note 3. After this paper was submitted we learned of the paper by T. Ito, On the

commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ., 14 (1958),
pp. 1-15.

Prof. Ito considers the extensions of the Halmos and Bram theorems for semi-
groups of continuous linear operators T on W to W, parametrized over an abelian s.g.
A. He works in the framework of projections rather than isometries; consequently he
does not consider image-extensions (1.5 above). Apart from this one difference,
however, his Thm. i and our Thm. 6.2 are equivalent. But whereas we deduce Thm. 6.2
directly from our strengthened version 5.3 of Nagy’s Thm., Prof. Ito gets his Thm. i by
adapting the method of Bram’s original proof to his semi-group set-up.

Note 4. After this paper was submitted we received from Professor F. H.
Szafraniec a reprint of his paper, Dilations on involution semi groups, to appear in the
Proc. Amer. Math. Soc. In essence his theorem replaces our condition 4.1303) by an
interesting equivalent condition (S). We present here this theorem in our notation,
along with a demonstration based on our 4.12.1 and 4.13.

THEOREM (Szafraniec). Let A, W, g), X(. ) be as in 4.12. Then the following
conditions are equivalent"

() X(. possesses a propagator S(. on A to CL(Sex, x) such that tt e A,
S(t*)=S(t)*,

(f3) X(. possesses a covariance function R (.) with the property that
a function tr(. ) on A to o+ and c e+(S) Vs, teA, IR(t)]<=c tr(t) and tr(s+t)<-tr(s)tr(t).

Proof. (or), (13). Let (or) hold. Then ’qt e A,

[R (t)l- [X(O)*S )X(O)[ <-IX(0)[2. [S(t)l.
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If we let or(t) [S(t)l and c IX(0)]2, it follows from the semi-group property of S(. )
that (S) holds. Thus we have 03).

([3) : (o). Let ([3) hold. Then X(. has a covariance function R(. ), and so, el.
2.10(b),

(1) VA cA and Vw W, Ix(,)wl2=R(,*+a)(w)(w)<=IR(,*+,)[ [wl.
Also by Thin. 4.12.1, the closed, densely defined, propagators S(t), A, satisfy (4.8.2),
i.e. with p t* + we have

d

(2) ’qx {@) and ’qt A, ]S(t)x[2 <= l,i___moo Is(2"p)x]2-"lxl 2.

(3)

(4)

and

Now let a A, w W and x X(a)w. Then by (1)
d

IxI2= Ix(a)wl2- R(a* + a)(w)(w),

Is(t)xl2 [x(t + a)wl2-- R(a* + t* + + a)(w)(w),

]S(2"p)xl -IX(2"p + a)wl2 <= IR (a* + 2"+ap + a)l Iwl2

<-c r(a*),(a){cr(p)}z"+’lw]2, by ($).

Taking the 2"+1st root and letting n oo, we get

(5) lim IS(2"p)x z-" =< or(p).

Substituting from (3)-(5) in (2) yields

R(a*+t+t+a)(w)(w)<-_r(t*+t) R(a*+a)(w)(w).
As this holds w W, we have

(6) 0<_ R(a*+t*+t+a)<_ r(t*+t). R(a*+a).

(6) shows that with y(t) or(t+ t), the condition 4.13([3) prevails. It follows
from Thm. 4.13(a) that ((x) holds.

We see from this that Thm. 4.13 can be augmented by the addition of the condition
(S) to the conditions (or), ([3) in 4.13(a), and the proof just given incorporated in that of
4.13. It also seems clear that our 4.13 is provable within Professor Szafraniec’s
framework. Thus, in a way, Thm. 4.13 and Szafraniec’s Theorem are equivalent. It
should be noted, however, that for the more general case A # F, in which the involutory
s.g. F acts on an arbitrary space A, there is no condition on K(. ) analogous to (S) on
R (.), and consequently Szafraniec’s Thm. does not survive. It would therefore seem
that our Thm. 4.10 is still the most potent result" it covers the most general case and
subsumes all known theorems.
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GENERALIZED POWER SERIES EXPANSIONS FOR A CLASS OF
ORTHOGONAL POLYNOMIALS IN TWO VARIABLES*

TOM KOORNWINDER5. AND IDA SPRINKHUIZEN-KUYPER5.

Abstract. This paper continues the analysis of a class of orthogonal polynomials in two variables on a

region bounded by two straight lines and a parabola touching these lines, which was introduced by the first
author. An explicit series expansion for these polynomials is obtained, which generalizes Constantine’s
expansion of hypergeometric functions of (2 x 2) matrix argument in terms of James’ zonal polynomials. In
two special cases the orthogonal polynomials turn out to be Appell’s hypergeometric F4-functions and
certain hypergeometric functions in two variables of order three, respectively.

1. Introduction. This paper continues the analysis of a class of orthogonal poly-
nomials in two variables over a region bounded by two straight lines and a parabola
touching these lines. The basic results on this class of polynomials are given in a paper
by the first author [21], where the polynomials are introduced, and in another paper
by the second author [28]. See also the survey papers [23] and [25] by the first author.

These orthogonal polynomials in two variables, which in this paper will be
denoted by ,,,k g, r/), can be considered as highly nontrivial generalizations of the
Jacobi polynomials P’(x). The main purpose of this paper is the derivation of an
explicit series expansion for l,,,,k g, r/) which generalizes the hypergeometric power
series expansion for Jacobi polynomials. Such an expansion should have the form

1.1 R ,,,,’I3"Y[L’I,G,’I)-- E t.," n,kCX’13’3’;m,lJm,l’Ca’13’[’,,, 7f
m,l

where the coefficients "’,,;,,,l and the functions y,l g, ) have to be more elementary
special functions with well-known explicit expressions. It turns out that if either k 0
or k n the functions f,l can be chosen as monomials and the coefficients then
become quotients of products of gamma functions. For k n the polynomial can be
identified with a terminating Appell’s hypergeometric Fn-function in two variables,
and for k 0 we obtain a certain hypergeometric function in two variables of order
three.

However, if k # 0 or n then a certain choice of monomials for f,l leads to rather
awkward expressions for the coecients in (1.1). In this general case the best choice
for f,l seems to be the so-called James-pe zonal polynomial Z,l(, ), which can be
expressed in terms of Gegenbauer polynomials. Then the coefficients in (1.1) can be
expressed in terms of a hypergeometric 4F3-function of unit argument. In doing this
choice we were motivated by the fact that R"’,,, ,, ) can be identified with a
hypergeometric function of (2 x 2) matrix argument. Constantine [10] proved that
hypergeometric functions of matrix argument have a nice explicit expansion in terms
of the zonal polynomials introduced by James [18]. In the (2 x 2) case these zonal

Zm,l(, n ).polynomials can be identified with our polynomials o

We already pointed out that the polynomials R’’.. (, n) become more simple
on the boundary lines n 0 and n k of the region {(n, k) 2ln k 0} for which
, g, ) is defined Similarly, the analysis of the polynomials on the boundary of

the orthogonality region in the (, ) plane is easier than in the interior of this region.
In particular, R’’v(.,.,., 0) and R’’wt.,ots,) turn out to be Jacobi polynomials of
argument 1-2 and 1-, respectively. Our proofs exploit these degeneracies in the

* Received by the editors July 21, 1976.
5" Mathematisch Centrum, Amsterdam, the Netherlands.
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(n, k) and (:, r/) planes. The two pairs of differential recurrence relations derived in
[21] and [28] will also be used as essential tools.

The results in this paper are not only an interesting part of the analysis of the
polynomials R,,g , r/), but they may be important for a wider class of readers. First,
there is a close relationship with the theory of Jacobi polynomials. Many results for
Jacobi polynomials will be used in this paper, and, on the other hand, some known
results for Jacobi polynomials can be better understood from our two-variable point
of view. Second, we bring some unity in the bewildering variety of special functions in
more than one variable by identifying hypergeometric functions in two variables (in
particular F4) and hypergeometric functions of (2 2) matrix argument with special
cases of our polynomials.

In 2 and 3 of this paper we summarize the results on Jacobi polynomials and
on the polynomials R,, , ) which will be needed. In 4 the James-type zonal
polynomials are introduced. The boundary values of the polynomials R,, tg, rt) are
considered in 5. Section 6 contains the expansion of the polynomials R n,k’’Wetg, r/) in
terms of James-type zonal polynomials. In 7 we consider expansions of the form
(1 1) with another natural choice for the functions ,,l tg, r/). This leads to the
identification of ’’;,,,, ,, r/) with Appell’s F4-function. Finally, in 8 we derive
expansions of R,,k tg, r/), k 0 or n, as double Jacobi series with positive coefficients.
Sections 7 and 8 can be read independently of each other and of 4 and 6. However,
5 is needed for all the subsequent sections.

In a forthcoming paper we will extend the correspondence between .,’’
and Appell’s function F4 to the nonpolynomial case. An expansion in terms of
James-type zonal polynomials will be given for those solutions of the system of partial
differential equations for F4 which are regular in the singular point (1, 0). For special
values of the parameters these second solutions are precisely the hypergeometric
functions of (2 x 2) matrix argument.

2. Properties of Jacobi polynomials. In this section we collect all results on Jacobi
polynomials which will be needed in this paper. The standard formulas for Jacobi
polynomials have been taken from Szeg6 [29, Chap. 4] and Erd61yi [13, Chap. 10]. A
useful survey of many recent results on Jacobi polynomials is given by Askey [2].

Let a,/3 >-1. Jacobi polynomials P’t(x) are orthogonal polynomials on the
interval (- 1, 1) with respect to the weight function (1 x) (1 +x) and with the
normalization P’t)(1) := (a + 1),,In! We will use the renormalized Jacobi polynomi-
als R’t(x) :=

Differentiation formulas:

(2.1)

(2.2)

(2.3)

d2

a + + 2 x -x R’’t x

+n(n +o + + 1)R’t)(x) 0,

-x ! n(n +a+ + 1) 1(+1,/3+1)(X if n >0,R’t)(x) 2(a + 1)

0 ifn =0,

d
(1 --X)-- 1-1- X)--/3X"X [(1 --/)c +1(1 "- X)/3 +115 (c +l’/3+l)(x)]

=-2(a + 1)R,(’t(x).
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(2.4)

Series expansions:

R.’e)(X)=zFa(-n, n +a+ + 1; a + 1; 1/2(l-x))
(-n)(n+++l) -x

k=0 ( + 1)kk 2

2 F -n,-n-; +l’X
(2.5)

(2.6)

=2-" (-n)k(-n-)k
k=0 (a + 1)kk!

(X + 1)"-k(x- 1)k,

(l--X)" (a + 1). (2k +a +/3 + l)(--n)k( +/3 +2)kRk,t)(X).
2 (a +/3 + 2). k =0 (k + a + fl + 1)(n + a +fl + 2)kk

Value for x 1"

(2.7) R’,)(-1) (-1)"(or / 1)."

L]near and quadratic transformations:

(2.8)

(2.9)

(2.10)

R (,ff’t (-x
R(.,t)(- 1) R’)(x),

R(2")(x) R’-’/z)(2x2- 1),

R2.+(’ (x) xR"/z)(2x 2 1)

Gegenbauer and Chebyshev polynomials:

(2.11) Rff’V)(x) (y+1/2). ./21 (--n)zk (2X).-Zk
(23’+ 1). kZ0= (--n--y+1/2)kk’.

(2.12) R(n-1/2’-l/2)(COS 0)= cos nO,

(2.13) R(nl/2’I/2)(COS 0)= sin [(n + 1)0].
(n + 1)sin 0

It follows from these last two formulas that

(2.14) R (1/2"--1/2)(1/2(t //--1)) .._1/2(t / t--"),

tn+l __t--n--1
(2.15) Ra/Z’l/2)(1/2(t + t-a))

(n + 1)(t- t-a)"
Formula (2.12) is a special case of

n’ Y.
)!

cos [(n 2k)0 ],(2.16) Rff’V)(cos 0)
(2T + 1). k=O k (n -k

which formula results in

(%,)[1[/ n ( /1/2)k( /1/2)n-kln-2k(2.17) R. tt’+t-1))=(2y+ l). k=O k!(n-k)!
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Quadratic norm: Let

(2.18) (.0n(’,t3) .’--

Then

(1-x (l+x)tdx
(R (x))2(1-x (l+x)tdx

(2.19) to,(, (2n +a +/3 + 1)(c + 1),(a +/3 +2),
(n +a +/3 + 1)(/3 + 1),n!

Christoffel-Darboux formula"

(2.20)
2 o"’R(’’O(x)R’’(Y)
k=O

Limit formulas:

(2.21)
-,o R(,7’)(- 1) 2

(2.22) lim R(,7"t)(x)= (1 +x)"
(2.23) lim Rff’’)(x)= x".

These three results follow from (2.4), (2.7), (2.8) and (2.11).
Another pair of differential recurrence relations:

(2.24) (1 _x)l_, d ,, (c-1,/3 +1)(x-x[(1 -x)’R )(x)] -aR,, ),

(2.25) (l+x)-d )t+lR (’

dx
[(1 +x --l’/3+l)(x)] O--1(/’ +ce)(n +/3 + 1)R("’t)(x).

It follows from Slater [27, (2.5.31)] that

-n, 1/2(c +/3 + 1) 1/2(a +/3 + 2) n +a +/3 + 1"(2.26) R(,7"t3)(x)R")(x) 4F3

In particular:

(2.27) (R(’(x))2=F2(-n,+1/2, n+2+l;+l,2+l; 1-x2).

Appell’s hypergeometric function F4 is defined by

(2.28) F4(a, b" c, c’; x, y):= Z , (a)m+,,(b),,,+,,
,,=o =o (c),,, (c’),m !n

x’y", Ix a/2 + lyl 1/2 < 1.

A result of Watson (cf. Slater [27, (8.4.4)], gives

(2.29) R(,7"t3)(x)R")(y)=F4(-n, n +o +fl + 1;

a + 1,/3 + 1; 1/4(l-x)(1 +y), 1/4(1 +x)(1 y)).
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THEOREM 2.1 (cf. Bateman [4, pp. 392, 393] and Koornwinder [22, 2])./f

(2.30) g,)(x [1 --I-x k
Ck, 2--)k=O

then

(2.31)

and

(2.32) Ck
(- 1)" (/3 + 1). (--n )k (n +a + + 1)k

1).(/3 + 1)kk!

The product formula and addition formula for Gegenbauer polynomials (cf.
Erd61yi [12, 3.15(19) and 3.15(20)])"

(2.33)
R’,’)(x)R (,,’,V)(y r(, + 1)

r/r(v + 1/2)

,,) 2)1/2 t2)/-1/2R (xy +(1-x (1 y2)1/2t)(1 dt,

(2.34)

(2.35)

Rv,V)(xy +(1-x2)a/2(1-y2)1/2t)
(-1)k(-n)k(n +23,+ 1)k

22kk =0 (’y + 1)k (Y -- 1)k

(1 x2)k/2R(,L+kk’V+k)(x)(1 y2)k/2R(V+k’v+k)t", -k
tO(kV-1/E,v-1/E)R(kV-1/E,v-1/E)(t).

The product formula for Jacobi polynomials (cf. Koornwinder [22, (3.7)]):

R(,,t)(x)R(,=,t3)(y 1/2F(2aF(c + 1)
-/)r( + 1/2)

I0110 R"’)(1/2(1 +x)(1 +y) +1/2(I-x)(1 -y)r2

+ (1 x2)1/2(1 y2)l/2r cos & 1)

(1 r)"-a-r/(sin b) dr d4,

THEOREM 2.2 (Cf. Szeg6 [29, Thm. 7.32.1]).
(a) I[ >-_ # and a >--1/2 then

1 -l <-x <- 1,

(b) If a <= and # >=- 1/2 then

IRL’)(x)I_-<IRL’)(-1)I for -1 <-x <-_ 1.

The coefficients in

(2.36) R"’t)(x) _, g,,;ka’13;a’bRka’b)(x)
k=O
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are called connection coefficients. We have

(2.37) ,;a, n !(/3 + 1). (a a ).-k (n +a + + 1)kW’)
gn;k (Ce + 1),, (a +/3 + 2),(n-k)!(n +a +fl + 2)k’

cf. Szegb [29, (9.41)]. Hence

(2.38) g.;k >0 ifa>a.

In the general case the connection coefficients are given by

,t;,b (n + a + fl + 1)k (a + 1)kn!
gn ;k (k +a +b + 1)k (c + 1)k(n-k)!k!

(2.39)

3F2(-n+k’n+k+a++l’k+a+l; 1)"2k +a +b+2, k +a +1;

cf. Feldheim [14] or Askey and Gasper [3, (2.5), (2.6)].
THEORE 2.3. If a < b, a + =>a + b, and -a <b a then g,.,k’t ;,b >--0 and the

inequality is strict except if a b, and n k is odd.
This theorem is essentially a part of Theorem 1 in Askey and Gasper [3]. The last

statement in Theorem 2.3 is a slight refinement of their result. It follows immediately
from the recurrence relation (2.2) in [3].

The coefficients in

m+n

(2.40) R(,,,,,t)(x)R,,t)(x) y’, (,,t)(,,) k(,,t)(X)m,n,kk
k =lm-nl

A (a,a)are called linearization coefficients. We have ,.,k 0 if m + n + k is odd and

(,) (23 + 1) (m +n+k)/2Am,,k

(2.41)
(a +)(+._/(a +)(.+_/(a +)(+_./m nk

(1/2(m +n-k))!(1/2(n +k-m))!(1/2(k +m- n))!(2a + 1),, (2c + 1),, (23 + 1)k

if rn + n + k is even. Formula (2.41) was first stated by Dougall [11] without proof. See
Askey [2, Lecture 5] for a survey of several proofs of (2.41) which were published
afterwards.

(,,s) >0.THEOREM 2.4 (cf. Gasper [ 15]). If a >-_ fl and a + fl >-- 1 then Am,n,k--

In 16] Gasper extended this nonnegativity result for the linearization coefficients
to a slightly larger region of the (a,/3) plane.

LEMMA 2.5. Let the polynomials p,(x), n O, 1, 2,..., be orthogonal on the
interval (a, b) with respect to the strictly positive weight function w(x). Then any
polynomial of the form

f(x) :- , c, p,, (x), with c, O,
m=k

has at least k zeros of odd multiplicity on (a, b ).
Proof. Suppose that f(x) has only zeros Xl,""", x of odd multiplicity on (a, b)

with <k. Then f(x)(x -Xl)" (x -xt) is either nonnegative or nonpositive on (a, b)
and not identically zero. But

ib f(X)(X --Xl) (X --Xl)W(X) dx --’0.
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This is a contradiction. 1-]
Finally we mention Saalschiitz’s formula (cf. Slater [27, 2.3.1]):

(2.42) 3F2(a,b,-n c, l+a+b c n, 1)
(c-a),(c-b),

n-0,1,2,....
(c).(c -a -b),

3. Some earlier results for the orthogonal polynomials ,,,k , ). The purpose
of this section is to summarize some of the results on the polynomials IJn,k ,t4 D

obtained in Koornwinder [21] and Sprinkhuizen [28]. We will change the notation
used in these two papers by introducing new coordinates s := 1- 1/2u, r/:- 1/4(1-u + v)
and by renormalizing the polynomials such that they are equal to 1 in the vertex
(sc, r/)= (0, 0). A motivation of this new notation will be given in 4.

Let f be the region

(3.1) 11 := {(s, r/)[rt >0, 1-se+r/>0, :2-- 4r/>0, 0< <2},

which is bounded by two straight lines and a parabola touching these lines (cf. Fig. 1).

I)

( ,0)
FIG.

Let

(3.2) w,e,v(s, r/):= rt(1-s +r/)t(sc2-4rt)
DEFINITION 3.1. Let a,/3, 3’ > 1, a + y + > 0, fl + y + > 0. Let n, k be integers,

n > k > 0. Then R ,,wt 2
n.k , ) is a linear combination of monomials 1, , , 2, , 3,

2, ,, ,-, ,-kk such that

(i) fa R ’’r’e

if m 0 and if either m < n or m n, < k

(ii) o,,wo O)= 1n,k k

If e,k , V) is defined as in [21] then
_,,,w Z, 1-2+4)(3.3) o.e.we en,k -e..k , 1)

where the value of -’’w" 1) is given in [28 (7 3)]Fn,k a,

For y the polynomials -..k g, ) can be expressed in terms of Jacobi
polynomials by

(a,) a,fl)(
(3.4)

R.’-x/2(x +y, xy) {R. (1 2x)R 1-2y)

+R’>(1 2x)R2’e >(1 2y )},
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ot,,l/2[.,. --(0 -’[" 1)
R,,,k ’* +y’xy)=(n-k + 1)(n +k +a +/3 + 2)(x -y)

(3.:5) {R,,+ 1-2x)R 1-2y)
(’,)’ 1-R(’)(1-2x)x+l ,, 2y)}.

By comparing (2.20) with (3.5) we can conclude that

’’xn-(x, +y),(-x)(1-y))
(3.6)

-( +2)(+ +2) Xo (x)’(Y)"

Let ... denote the partial derivative O/Ox Ox2".. Ox. Consider the second
order differential operators

(3.7)

(3.8)

(3.9) E:’ := {(1-) 0u-2n
(3.10) E’’ := 4(w,,(,

The operators D’’ and E’’ can be written more explicitly as

+
4( + 1)( +

+4( + 1)( +

E’’ 4(2-4n){Eg’- (T + 1)(2Oe + 0n)}+4( +
(3.2)

-4( +B +2+3)( + 1) + 8( + 1)( ++).

It was proved in [21, 5] and [28, 4] that these differential operators act on
, tg, B) as follows:

DZR,O.we,o , O,
(3.13) k(k + +B + 1)(n +T +)(n+ +B +T +)DZR, t,,

(3.11)

+ 1,/3 +R,,-1,,- t;, r/)

ilk >0,

a,/3,y0 + ,/3 + 3(3.14) D+ -,,-.k- "/(:, r/)=4(a + 1)(a +a/+2)Rn,/ (, ’0), k >0,

-... ..,n)-O,

(n-k)(n-k +23’+ 1)(n +k +a+/3 + 1)(n +k +a +/3 +2y +2)
8(y + )( +y +)

ifn >k,

(3.16) n > k.
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For the calculation of the coefficients in these four differentiation formulas we used
’’w2 1)" cf. [28, (7.3)] Note that these coefficients are nonzerothe explicit value of P,,k

if a,/3, T satisfy the inequalities of Definition 3.1.
THEOREM 3.2 (cf. [28, Thin. 8.1]). In the power series

R ,/,T[/: m--l

m,l

the coefficient c., is nonzero only if m <- n and m + <-_ n + k (cf. Fig. 2).

FIG. 2

(n,k)

This theorem also follows from the results of 4; cf. Remark 4.4.
Analogous to (2.7) and (2.8) we have

(3.17) R’’w 1)=n,k
+

(a + l)k(a + 7 +),,

(3.18) n,k I,S, 7Q

R’’w 1)n,k
R.,’k’’v(2-- , 1-- +r/).

Note that the mapping (, r/) (2-, 1 + r/) is a nonorthogonal reflection which
maps fl onto itself, (0, 0) to (2, 1) and which leaves the points of the line : 1
invariant.

Finally we mention the quadratic transformation formulas

(3.19) t, ,,,,’ lY,--1/2,o[,3L. 2-.+,.-(, n)=,-., -4n, -4n),

(3.20) o ....-,++1,-(, )=(1-)Rv’l/:’roe.,-4,-4n).
The quadratic transformation (, ) (2 4, 2 4) maps both connected com-
ponents of {(, n) [ 1} onto . In fact, (0, 0) and (2, 1) are both mapped to (0, 0),
(1, 0) is mapped to (2, 1), and (1, ) is mapped to (1, 0).

Note that formulas (3.19), (3.20) and (3.4) together imply that

-1/2’-l/2"v[1--Xy, (X y)2)={Rn+k k*] n-k kA]*’n+k kY1,

-1/e,l/2,v(1 xy, y
(3.22) (x .+k+l .-k ty)+RE}(x)R (v’vn+g+l(y)}.

4. James-type zonal polynomials. As was pointed out in 1, the main problem to
be solved in this paper is the derivation of an explicit expression of R,,k t;, r/) in
terms of certain polynomials Z.,,(sc, r/) called James-type zonal polynomials. In this

Z.,,t(sc, r/), we give some motivation for thesection we introduce these polynomials
choice of these polynomials and we derive some simple properties of the expansion
coefficients. To a large extent, the contents of this section coincide with Koornwinder
[25, 4.4].
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DEFINITION 4.1. Let 3’ >-1- Let n, k be integers such that n -> k _-> 0. Then the
Z,,k(, ’1) is defined byJames type zonal polynomial

3" (23’ + 1)n-k (n+k)/2R (3",3")11(4.1) Z,,,(sc, n) :=
(y +1/2),_ n ,,- tsr/-a/2:)

It follows from (2.11) that

[(n-k) (-n + k)2i -k-2i k +i(4.2) 3"Z,,,k(, *1) Y.
(-n + k +-l),i sc r/

=0 -T

Note that

(4.3) 3" + polynomial of degree less than n,Z,,,(, n) C-%
3" n-k k(4.4) lim Z,,k(, r/)= r/

From (2.14) and (2.15) we get the special cases

(4.5) Z/2(x +y, xy) (1 +n,k)-X(xny k +xkyn),
,--.l/2r y -x(4.6) Z,,,,k tX + y, Xy) (X y)-X(X"+ k ky +).

From (2.17) we derive

(n -k)! (y +1/2),(y +1/2),,-k-,
(4.7) Zk(X +y, Xy)=(T+1/2)n_k i=o i!(n-k-i)! xn-iyk+i.

Note also the boundary values

3" {" ifk =0,
(4.8) Z,,,k(, 0)=

0 if k > 0,

(4.9) Z,,,k(, 1/4:2)= (23’ + 1),-k +k

(v + 1/2).- ()"

In view of (4.3) we may conclude that any polynomial

P(’, r/):= E Cm,lm-ln
1=0 =l

has a unique expansion

T TP(, 1 E Cm,lZm,l(, n
/=0 =l

for each 3’ >- 1. This can be considered as a generalized power series expansion.
Note that v

Cm,0 C,,,0 by (4.8).
’’ byIn particular, let us define the coefficients C,,;m,

DEFINITION 4.2.

(4.10) D a,13,3"[ a,13,3" ’7 3’ [
n,k I,, T E Cn,k ;m,ll-- m,lt,g, n )"

/=0 =l

We claim that the generalized power series expansion (4.10) is a suitable analo-
gue of the ordinary power series expansion (2.4) for Jacobi polynomials. This also
justifies the introduction of the new coordinates :, rt in 3. Below we give a number of
arguments for considering the expansion (4.10).
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(a) It follows from (3.4), (3.5) and (2.4) that R,,.k 1/2(X-+-y, xy) has a natural
,0,/2(X + xy) in terms ofexpansion in terms of x"y + xy m -->_ l, and, similarly, R,, y,

(x- y)-l(xm+ly--xtym+), m _--> I. In both cases the expansion coefficients can be given
explicitly. By (4.5) and (4.6) this leads to the expansion (4.10) in the case ,/= +/-1/2 and
we obtain

’’t’-1/2-- {(--n) (-k)l(n +or +[3 + 1)m(k +a +/3 + 1)/Cn,k;m,l
(4.11)

+(-k)m(-n)t(k+a +8 + 1)m(n +a +/3 + 1)t}{2(a + 1),.(a + 1)m !I!}-,
c,/3,1/2

C.,k ;m, --{(--n 1)m+l(-k)(n +a +/3 + 2)m+l(k +a +/3 + 1)l

(4.12) -(-k)m+(-n 1)(k +a +/3 + 1)m+a(n +a +/3 + 2)}

{(n-k + 1)(n +k +a +/3 +2)(a + 2)m(a + 1)(m + 1)!/!}-1.

(b) It was pointed out in Koornwinder [25, 4.4] that

(4 13) R,IT," (x+y, xy)=2F1 -n,n+a++-}’a+; x 0

0 y

where 2Fl(a, b; c; X) is the hypergeometric function of matrix argument X which was
introduced by Herz [17]. Constantine [10] proved that there are natural power series
expansions of such hypergeometric functions in terms of so-called zonal polynomials
which (in the (2 x 2) case) are spherical functions on GL(2, 1)/O(2) belonging to finite
dimensional irreducible representations of GL(2, ). These zonal polynomials were
introduced by James [18]. Furthermore, James [19, (7.9)] showed that in the (2x2)
case these zonal polynomials coincide up to a constant factor with our polynomials

oZm,l(X "Jc y, Xy). By using formula (25) in Constantine [10] it follows that

(4.14)

Z , (a)m(a -)l(1 b)m (b --)(-)1 3
m--l 0

=0 l=,.., (C)m (C -3;i3-11 !-l-I -lii Zm’l(X + y’ xy).

Now (4.13) and (4.14) together give

..o,,13,o (-n)m(-n-1/2)l(n +o + +)m(n +o+ + 1)l()m-I
(4.15) .,. ;m,, (0 "---)m(Ol 1)l(-)ml!(m-I)!

(c) It can be proved that there is an interpretation of the polynomials
R (q-3)/2,(d-q-3)/2,0[e

,,k tg, rt) as so-called intertwining functions on the group O(d), which
are right invariant with respect to O(2)x O(d-2), left invariant with respect to

O(q) x O(d-q), and which belong to some irreducible representation of O(d). In
particular, for q 2 we obtain the spherical functions on the Grassmann manifold
O(d)/O(2)x O(d-2). According to James and Constantine [20] group theoretic
considerations give a motivation for expanding these intertwining functions in terms
of zonal polynomials. In particular, it follows from James and Constantine [20, (15.4)]
that

(-n)m(n+a++2)m(1/2),,, if 0,o,,t,o (Or + -)mm !m(4.16) C.,0;m,t

0 if/S0,
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for integer or half-integer a and/3.
(d) It will be proved in 7 that

n,k ,q,, ’0lim
R Zk(,(4.17) - R,’v(2, 1) Zk(2, 1)"

Note that the pair of formulas (4.10) and (4.17) is analogous with the formulas
(2.4) and (2.21) for Jacobi polynomials.

A final motivation for considering the expansion (4.10) is given by the following
differentiation formula, which is easily verified.

D r-z.,0(:, n) 0,
(4.18)

D T-Z,,,k(, /)=1/4k(n +T +)Z,,-,,k-,(:, /) if k >0.

On comparing this result with (3.13) we obtain the recurrence relation

,,t,, k(k +a +13 + 1)(n + T +1/2)(n +a +/3 +y+)(4.19) Cn,k;m,l-- l(a + 1)(m +3’ +1/2)(a +V +) Cn-l,k-1;m-l,l-1,

1>0, k >0.

Since D_R,o tg, /)= 0, it also follows that

(4.20) ---..o ,,;, n) ,...o;,,,,o,ot;, n),
m--O

,,t,v 0 if > 0. Formulas (4.19) and (4.20) together imply:i.e. Cn,O;m,l
THEOREM 4.3 ,,,,t,v

,,,,k ;,,, 0 only if < k (cf. Fig. 3).

n,k)

FIG. 3

Remark 4.4. Theorem 4.3 together with formula (4.2) provides a new proof of
Theorem 3.2.

Remark 4.5. It follows from (4.10) and (4.8) that

(4.21) R ,,we 0) ’’v tm
n,k tS " n,k ;m,0;

m=0

Hence, in view of (4.19), we know the general coefficients ,t,
t,n,k ;m,l as soon as we know

the explicit power series expansion (4.21) of the boundary value R2,’(sc, 0) for all
values of a,/3, y, n, k. In particular, we know the coefficients C,,,,;m, as soon as we
know the explicit power series expansion of R,,,’a’tx,, 0) for all values of a,/3, T, n. This
power series expansion will be obtained in 5.
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Remark 4.6. It follows from (4.20) and (4.9) that

(4.22) o,,t,we 1/4:2)= Z c ’’t’’ (2v+l)m
...o , ..o;.o ().

Hence, the general expansion (4.20) of o-,,o g, ) is known as soon as we know the
explicit power series expansion (4.22) of the boundary value R,,o’’weg, k2). This power
series expansion will also be obtained in 5.

5. Some boundary values. In this section it will be shown that the polynomials
,,, ,,, ) become Jacobi polynomials on the boundary lines 0 and 1-+ 0,

and that R ’’we,,0 tg, ) can be expressed as a Jacobi polynomial on the parabola 2
4 0. In the case of general degree (n, k) certain Jacobi expansions of the boundary
values of R,,k tg, ) will be considered, for which the Fourier-Jacobi coefficients can

+k,Obe expressed in terms of the corresponding coefficients for R,-k,o+k’v(, 0) and
a,O,v+n-kre
k,k tg, k2), respectively.

The key for deriving these results is the following lemma.
LEMMA 5.1.
(a) On the line 0 the second order par6al differenal operator D’’v reduces to

a first order ordina differen6al operawr involving only derivaves O d/d, which is
given by

d +v+3/2(1(5.a) D’O’l,=o=4( + )-++/(1-)- -)

(b) On the parabola 2_4n 0 the operatorE’’v reduces to a first order differen-
tial operator involving only derivatives Oe + 0n d/d, which is given by

(5.2) ’’[_..=o=4(v+ 1)-++/(2-)-++/o++/(2-)++/
d

Proof. The proof follows immediately by substitution of =0 in (3.11) and
2-4n 0 in (3.12), respectively.

Formulas (5.1), (5.2) and (2.3) imply that

(5.3) D’’vl,=oR,_(+v+3/2’+1)(1- 2) 4(a + 1)(a +y +)R (+v+1/2’)(1 2),
D (a +v+3/Z,O+V+3/2)(1(5.4) z:’""le_4,=o,,,_ -)

8(y + 1)(a +y +)R(#+v+1/z’+v+1/2)(1-).
Now we can prove the important

THEORE 5.2.

(5 5) R ’’vtx 0)= R(+v+a/2’)(1-2)
(5.6) R ,,we ) R(+v+1/2, ++1/2)(1 ),n,0 k%

(5.7) "’"’" ’’ - 1) g++1/,(2_ 3).
R ’’v9 1)

Proofi Comparison of (3.4) with (.) and of (3.) with (.4) and complete
induction with respect to n results in (.) and (.). The boundary value of R’’,(, )
for-0 follows from .) and (3.8).

Next w will consider Jacobi expansions for the polynomials , ,) on the
boundary curves 0 and 0. Let us define the coecients ’’ and b’’n,k ;m n,k ;m

by
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DEFINITION 5.3.

(5.8) o ,t,we 0)= a’’t’v ’+v+/z’t)(1- 2),n,k ,(, n,k ;m

(5.9) o ,e,we 2) (+y+l a/2)(1_ ).n,k ;max

Formulas (5.3) and (3.14), (5.4) and (3.16) yield the following equalities for the
a,l&y l,. a,l,y [.,.coefficients an,k ;m,a. > 0) and bn,k;m.tt > k), respectively

+1,/3 +1,’,/ if m > 0,a,/3,y a l,k -1;m -1(5.10) a.,k;.,-- 0 if m 0,
h a,fl,y+l

(5 11) ..,,v ,._a,;.,_a if m >0,,.., ;m 0 if m 0.

(5.12)

(5.14)

(5.15)

Thus we obtain

Use of (5.10), (5.11) and complete induction with respect to k and n-k, respectively,
results in

c,/3,’,/
a.,k ;m 0 only if k < m < n,
,t,v
,,,k ;m # 0 only if n k < m < n + k,
a,/3,y +k,fl +k,y

an,k ;m an-k,O;m-k
a,13,y+n-k

n,k ;m b k,k ;m /k.

LEMMA 5.4. We have

(5.16) +k,/3+k,’/D (a +3,+1/2,/3)(1 2so),R ’t3"wen,k ,S, 0)"- t,tn-k,O;m-k.l,
m=k

n+k

(5.17) R,,k’t’weg, 1/4:2) .,t,v+.-ko (+v+l/2,t +v+1/2)(1 :),t k,k ;m +k
m=n-k

n,k ,S, - 1) ...+k,oz+k,YD (13+y+
u,-,0;m-k’" 1/2")(2 3).(5.18) o -,e,w- 1) =Ix n,k ,/-,

The last part of the lemma follows from (5.16) and (3.18).
,,v and b ’’v in the case of special values ofNext we give some formulas for an,k ;m n,k ;m

the parameters.
a,/3,-1/2From (3.4) and (2.40) it follows that b,,,k;m can be expressed in terms of the

linearization coefficients A ’t’.,k,., of the Jacobi polynomials:
a,/3,-- 1/2 (a,fl) (a,fl)(5 19) b,,,k;,, An,k,mtUm

If a fl then application of the quadratic transformation formulas (3.19) and (2.9),
(3.20) and (2.10), respectively, results in

a,a,--1/2 --1/2,--1/2,a(5.20) bn+k,n-k;2m U.,k;m

a,a,-1/2 -1/2,1/2,ot(5.21) bn+k+l,n-k;2m+l an,k;m

From (3.18) and (5.9) with c =/3 it follows that

(5.22) b .... -- ....
n,n ;2m + t + 1,n ;2m 0,

Combination of (5.19), (5.20), (5.21) and (5.22) gives an expression for the lineariza-
--1/2,+1/2,ation coefficients of order (a, a) in terms of a,,k;,,, In 6 we will derive the explicit
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values of the coefficients an,k;m and thus we will find a new derivation of the lineariza-
tion coefficients for the Gegenbauer polynomials.

It follows from the quadratic transformation formulas (3.19), (3.20), (2.9) and
(2.10) that

(5.23) ,,,,,, %-1/2,a
n,n;2m tn,O;

(5.24) 1 a,-1/2,3,
,-’n,n;m 2n,0;m

a,a,/+ ",/, 1/2,c(5.25) bn,n;2m t*n,O;m

For the proof of (5.25) we used (5.11) once.
From Lemma 5.4 and Lemma 2.5 we can derive a corollary about the number of

zeros of Rn,k , r/)on the boundary.
COROLLARY 5.5.
(a) R ,o,we 0) has at least k zeros of odd multiplicity for : (0, 1)n,k S

(b) R ’3’we
,,k , S 1) has at least k zeros of odd multiplicity for (1 2).

(c) R ,,wt 1/4so2) has at least n -k zeros of odd multiplicity for s (0, 2)n,k I,

6. Expansion of the polynomials .,k iS, /) in terms of James-type zonal poly-
nomials. In this section we will derive the explicit value of the coefficients .’.,k’’:,,,.l in
formula (4 10) giving the expansion of --.,k , ) in terms of the James-type zonal
polynomials Z,t(c, ). We will proceed in the following way. From the boundary

-"’ and hence the boundary valuevalue ."’w..o, :) we obtain the coefficients .,0;m,0,
,’,W 0) as a Jacobi series we derive the coefficients a"’,’’t’we,,0g, 0). By rewriting R,,o -, n,O;m

,t,v Next the Jacobi series ofdefined by (5.8). This also gives the coefficients a,,,k;m.
o,,we 0) can be rewritten as a power series and we obtain the coefficients Cn,k ;m,0-Ix n,k

Finally ,t, +1,/3
,.,k;.,.l can be expressed in terms of Cn-l,k-l;m-l.O.

At the end of this section several interesting corollaries will be discussed. We
mention the expression of R..0 tx + y, xy) as a generalized hypergeometric function

’t’(1 0) in terms of a 3F2-function ofin the two variables x and y, the expression of R.,k
argument 1, and a new derivation of the linearization coefficients for Gegenbauer
polynomials.

Let us consider r, ,,we
-,,0 u, r/). Combination of (5 6), (4.22) and (2.4) results in

,, (-n),(n +a +fl +2y + 2),(y +),.
(6.1) c"’;"’ (oe+y+-),(2y+l),,m!
So we have the first explicit expansion (cf. (4.20))"

(6 2) R ’’we.,o , rt)
(-n),.(n +a +fl +2y+2)m(y+)mTv e

m=0 (a + y +-)m(2y + 1)ram! Z-m,O,g-, rl).

Remark 6.1. If 3’=-1/2 then the right hand side of formula (6.2) has to be
interpreted as the limit case for 3’ --1/2. A similar interpretation has to be used on
many other places.

Similar to (6.1), it follows from (5.5), (4.21) and (2.4) that

(6.3) .t. (-n ).. (n + a + fl + y +-),,, ;,,,,o (a + y +),,m
Hence, by (4.19) we have

(6.4) ,,,,o,- _(-n),,(-n-y-1/2)t(n +a +fl + y +),,,(n +a +/3 + 1)(y +-)m-l,,, ;,,,l (a + 3’ + 23-),,(a + 1)(/+),,l!(m--l)!
and thus the expansion (4.10) for the polynomials R,,,’’’vtx,, r/).
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LEMMA 6.2. The power series expansion of o-,,,o s-, /) for l 0 is given by

3Fz{-n, n + a + + 23, + 2, y +1/2;
(6.5) R,ff’( 0) a+y+,2y+l; g]"

Proof. The proof follows immediately from (4.21) and (6.2).
,,we O) are,t,v in the Jacobi expansion (5.8) of R,,,oLEMA 6.3. The coefficients

given by
n!(n +a +fl +2y +2),.(m +a +/3 + 2)._,. (y +1/2),. (y +1/2),,_,.a,/3,-,,,(6.6) a.,o;m

(2V+ 1),, (m +c +/3 + V +-)m(2m +a +fl +V+),,_,.m!(n-m)!"

Proof. It follows from (6.3), (2.6) and (5.8) that

,t,v (-1)" (-n )., (n +a +/3 +2y+2).,(y+1/2).,
a"’;" (m +a +/3 + y +).,(2y + a)mm!

3F2(-n+m’n+m+a++2y+2’m+y+1/2; 1)2m +a+ +y+,m +2y+l;

which can be evaluated by using (2.42).
TI-IEORE 6.4. The explicit form of the Jacobi expansion (5.8) is

(6.7)
R ,t,we 0)=n,k l,g

(n-k)! (n+k+a+fl+2y+2).,-k
(23’+ 1).-k .,=k (m +k +a+ +Y+)m-k
(m +k +a+ +2)._.,(y+1/2).,_k(Y+1/2)._.,R+v+/z,t(l_2).
(2m +c +/3 +y+)._.,(m-k)!(n-m)!

Note that
a,/3,3,(6.8) a.,k ;., > 0 if

Proof. Use formulas (5.16) and (6.6).
THEOREM 6.5 The coefficients ’’.,k;.,,o in the power series expansion (4.10) of

R,,t3,wt O) are given by

(6.9)

1).’;’= ( + y +-}),m \ -n, -n m y 1/2 2 ,/ + 1;
Pro@ We will give two different proofs.
(a) It follows from (6.7) and (2.4) that

c,,,v (y+1/2).-k(n +k +a +fl +2y+2).-k(n++ +T+)m(--n)m
,,,k ;.,,o (23’+ 1).-k (n +k +a +/3 + y +-).-k (a +y +).,m

7F6(-n + k,-n +m, 3’ +1/2,-n-k-a-/3-1,-n-a-/3-y-,
1.-2n -a -/3 -y-23-, -n -1/2a -1/2/3 -1/2V +a,

-n, -n + k "y +-, -n k a fl 7 1/2, -n m a fl "y 1/2,
-2n -a -/3 23, 1, -n -1/2a -1/2f1-1/2y -43-; 1).

By using a result of Whipple (cf. Slater [27, (2.4.1.1)] this well-poised terminating 7F6
can be rewritten as a Saalschiitzian terminating F3 and the theorem follows.

(b) Combination of (3.14), (5.1) and (4.21) gives the recurrence relation

(6.10) Cn,k ;m,O C
Ol + "

Cn-l’k-1;m’O
Ol + "+" n-l,k-1;m-l,O
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for n >= k > 0, n _>-m > 0. For k 0 the Y3 in (6.9) becomes a terminating SaalschSt-
zian 3F2 which can be evaluated by using (2.42). In view of (6.5) the theorem turns out
to be true for k 0. Clearly, the theorem is true for m 0. Using (6.10) we can now
prove the general case of (6.9) by complete induction with respect to k. [3

COROLLARY 6.6. We have the expansion

where

(6.12)
17

a,/3,/
n,k ;m,l

(-k)(-n)..(-n-y-1/2)t(n +a +fl +y+),..

In this expansion Z.t (s, r) is defined by (4.1).
Proof. By using complete induction with respect to k the result follows from (6.9)

and (4.19). F1
Remark 6.7. In a number of special cases of m, l, n, k, a,/3, the expression

(6.12) can be simplified. If one of the equalities m n, k, m l, k =0 or n k
holds, then the coefficient ,t,v

n,k;,,,,l can be written as a quotient of products of gamma
functions depending linearly on m, l, n, k, a,/3, % If , + 1/2 then we get back (4.11)
and (4.12).

We would like to write R,, tg, rt) as a linear combination of elementary expres-
sions (a/b),fm-rtl, where a and b are products of gamma functions depending linearly
on m, l, n, k, a,/3, y. The best possible result would be a double sum, which indeed can
be obtained for R ’t’w,,0 t, r) and for R,,, ,., 7) (see 7). However, (6.11) expresses
,, tg, r/) as a quadruple sum of elementary terms. It is not clear to the authors how

this can be simplified.
We conclude this section with a number of corollaries to the results earlier

obtained in this section.
Combination of (6.2) and (4.7) gives:
COROLLARY 6.8. We have

(6.13)

With the use of the notation of Burchnall and Chaundy [7, 1] this becomes

R,t3,w.. (-an, n +a +fl +2y +2: y+1/2;
.,o t +y, xy) =F +y+, 2y+l

a hypergeometric series in two variables of order three (cf. Erd61yi [12, 5.7]).
According to Carlson [9, (1.8)] it follows from (6.13) that

( [_1R ,a,w,
,o .+y, xy)=9,, n+a+/3+2y+2,-n-fl y-1/2;

1

where the function t(J,, jij, t; y; v, v’) is defined by Carlson [8, 2].
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COROLLARY 6.9 The value ofR ,,,k re, rl in the vertex (1, 0) is given by

(6.14) R "’t’w’ 0) =(-1)k(/3+l)k (-n+k,n+k+a+13+Zy+Z,y+1/2; 1).n,k ,
(Ol ql_ ,)/ ._ )k

3F2 k + a + y +, 2y + l

Proof. With (3.14) restricted to (:, n) (1, 0) and from the use of (3.11) with
(sc, r/)= (1, 0) it follows that

(6.15) R -,,w. 0) /3 + 1 o +1,t + 1,v(n,k l, ’’n-l,k-1 1 0).
a+T+-

The corollary follows by iteration of this result and by using (6.5).
Two special cases of (6.14) are n k and a =/3. In these cases we have, respec-

tively,

(-1)"(/3+1),(6.16) , ",,vc 1 0)

.... ._ (a + 1). (1/2)
R, +k,,,-kt 1 0) (-- 1)

(6.17)

+k +1,n-k( 1, 0) 0.

Formula (6.17) can be proved by application of Watson’s formula (cf. Slater [27,
(2.3.3.13)] or directly from (3.19), (3.20) and (3.17).

COROLLARY 6.10. If a >-- [3, y >-- 1/2 and max (a,/3 + y + 1/2) _-> 1/2 then
IR.,k (, rl)l < 1 /:or rl O, 0 <, < 1,

(6.18)
or l -sC + r/ O, 1-<:_-<2.

Pro@ We use (6.7) together with the nonnegativity of the coefficients for y =>- 1/2
and the inequalities for Jacobi polynomials (cf. Theorem 2.2). The inequalities for
a,/3, 3’ imply that a + y + 1/2 =>/3 and a + 3’ + 1/2--> }. Hence

IR,,k (sc,0)I<l for0< <1.

In particular, o-,,k l, 0) < 1. Since a =>/3 we also have IR.., (2.1)1 -< 1 by (3.18).
Again by (3.18) we have

,,k w--sc, 1-sc
R"’t’w 1)n,k

=IN n,k

--< max {IR 0)l, o-.,k tl 0)1},
since max (a,/3 + 3’ + 1/2) --> 1/2- Hence

"’’v "’’ 1, 0)1} < 1 [-]IR., (2-sc, (2, 1)1 IR n,k

COROLLARY 6.11. ff a --, a B, V- and if one of the equali’es a fl,- or y holds then

(6.19)

Proof. Use Corollary 6 10, formula (5 9) or (5 17) the nonnegativity of " ,t,v inu n,k ;m

the cases given in the corollary (cf. (5.22), (5.23), (5.24), (5.19) and Theorem 2.4), and
the inequalities for the Jacobi polynomials (Theorem 2.2).
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Remark 6.12. We need the restricting equalities a =/3, /3 =-1/2 or y =-1/2 in
Corollary 6.11 because in other cases the nonnegativity of ,,,,.k" ,t,v;, is not yet proved. It is
the authors’ hypothesis that the coefficients b ,t,,,k; are positive for a > -1/2, a >/3 and
y _->- 1/2. If this is true then formula (6.19) would hold for all a,/3, y such that a _->- 1/2,

v__>-1/2.
Remark 6.13. Combination of formulas (6.7), (5.19), (5.20), (5.21) and (5.22)

(a,a)results in a new proof for the linearization coefficients A,,k,m for the Gegenbauer
polynomials (cf. (2.40) and (2.41)).

We can use (6.11) with coefficients given by (6.12) in order to derive the following
pair of differential recurrence relations, which are the analogues of (2.24), (2.25) for
Jacobi polynomials.

COROLLARY 6.14. We have

(6.20)

(6.21)

Proof,. Formula (4.18) can be extended to

(6.22) v /
"q l-’DZn Z,,k(, /1 1/4(k + a )(n + a + y +-)Z,,k(, q ).

Substitution of (6.22) in (6.11) gives (6.20). Combination of (6.20) and (3.18) gives
(6.21).

7. Another expansion of the polynomials R:’t’(:, /) and their relation with
Appell’s function F4. In this section we will consider an expansion of R n,k ,, TI ) in
terms of the polynomials.

(7.1) (1 -)mR}’t)(1 + 2(1 --)-ln), m =>1.

These polynomials play a similar role with respect to the operator E_’ as the
James-type zonal polynomials do with respect to D_. In particular, it will be proved
that the expansion of R ’’vt,,, ,, ) only contains polynomials for which m I. It will
follow from this expansion that R,,, ,., /) can be expressed as an Appell function F4,
which seems to be a quite important result. This section will be concluded with an
interpretation of Zm,l(, "0) and the polynomials (7.1) as limit cases of aXm,lr’’’t’Wtg, r/) for
fl - o0, y - o0, respectively.

Let us consider the polynomial (7.1). By (2.4) its power series expansion in 1
and r/equals

(7.2) (1 )"Rk’t)(1 + 2(1 )-1rt)= (-k)i(k +a+ + 1)i(l_)n_i(_,rl)i"
i=0 (Og + 1)ii

on the boundary line /= 0 the polynomial reduces to

(7.3) (1 sC)"R’t)(1 + 2(1 :)-ln)
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By the use of (7.2) the polynomial restricted to the axis of reflection : 1 becomes

+ +t + ).
(7.4) (1 --:)"Rk(’’t)(1 + 2(1 --:)-r/) (a + 1), rt" if n k,

’=1
0 ifn >k.

In view of (7.2) we conclude that any polynomial in : and rt has a unique
expansion in terms of the polynomials (7.1) (a,/3 fixed). In particular, we will consider
the expansion of -,, , rt) in terms of these polynomials.

DzvIriTIOy 7.1 The coefficients ,...;.. are given by

(7.5) R ,t,we
,,,k g, r/)= ’, ,,,,t, z, )-,R/(,,t)(a + 2(1n,k ;m,lk ).

/=0 m=l

Remark 7.2. If 1 then substitution of (7.4) in (7.5) results in

(7.6) o ,,Wl- )= ’’ (m +a +fl + 1)
ln,k n,k ;m,m m"

=0 (a + 1)
e following theorem gives a motivation for considering the expansion (7.5).
THEOREM 7.3. We have

E’(1-)g’)(1 + 2(1-)-1)
(7.7) ((n-k)(n +k +a +fl + 1)(1- )"-g’a)(1 +2(1-)-)

.0 ifn=k.
Proof. Use (3.9) and (2.1).
On comparing (7.7) with (7.5) and (3.15) we obtain the recurrence relation

i]’ n > k,

_(n-k)(n-k +23’+ 1)(n +k +ct +fl + 1)(n +k +a +/3 + 2/+ 2).,.0.v+
n,k ;m,l 1,k ;m 1,1

(7.8) 4(3’+ 1)(a +y+)(m-l)(m +l +o +[3 + 1)

if m > and n > k.

Since "’’,..v[...., r/)= 0, it also follows that

(7.9) --n,n ,, "rl)= . 1-)mR 1 + 2(1-)-,n,n ;m,m,
m--0

THEOREM 7.4. The coefficients -,,k’’’;,,, in (7.5) are nonzero only i]’ rn- =<n- k
and m + <-n + k (cf. Fig. 4).

Proofi The inequality m +l-<_n +k follows from (7.1) and Theorem 3.2. The
inequality m- -< n- k is a consequence of (7.8) and (7.9). I-1

(n

FIG. 4

,k)



GENERALIZED POWER SERIES 477

In view of (7.6), (7.8) and Theorem 7.4, we obtain the coefficients ,,k;,,,,t as soon
as we know the expansion of R’t’v/"-(1,,,-m+t,k ) as a power series in 7. Here we restrict
ourselves to the case n k. It follows from (7.9) that

(7 10) R ,t,. 0) 3,t, 1
?t,/’/;m,/’?1 )m.

m=O

From (5.5), (2.7), (2.8) and (2.4)we know

R’’v::.,.,, 0) (--)m(n + +fl +T+)m(l__)m"(7.11)
R ’’Tr1 0) o ( + 1)m,

Comparison of (7.10) and (7.11) yields (by the use of (6.16))

(7. n’’ -(-)" + ).(-n)(n++++)
-"’";’- +r+.+)m

So we have the expansion

(7.13)
R,’’(, n)_ (-n)(n +a+ +T+)(I_)R,(1+a__n)nZ,’,, 0)- =o # +)m

In the case =- formulas (7.11) and (7.13) together are equivalent with Theorem
2.1. For 1 we obtain

, ,, n) (-n)(n +a + +T+)(m +a+ + 1)
R.,.’’v;, 1 ,0) =0 (fl + 1)m (a + 1)ram

(7.14)

=3(-n’n+a++’+’(a++l)(a++2)" 4na+l, fl+l,a+fl+l;

This formula generalizes (2.26).
Now we can prove the following interesting theorem which connects R,,, ,,)

with Appell’s function F4 (cf. (2.28)).
THEOREM 7.5. We have

(7.15)
R,t,l 0)

-f4(-n, n +a +/3 +T+; a + 1,/3 + 1; T/, 1-+T/)

y,. (-n)iH(n +a+ +y +-),+ ).n (1-: +n
,H__<, (e + 1),(/3 + 1)i!]!

Proof. It follows from (2.5) that

(1 )mR(,,,’’)(1 + 2(1 sc)-’r/) (/3 +

Substitution of this formula in (7.13) proves the theorem.
This theorem generalizes (2.29).
Next we will prove that the polynomials

and (1-:)"R’)(1 + 2(1-:)-1n)

can be obtained as limit cases of R,’(:, r/) for/3 az, T c, respectively. Thus,
because of (2.21), the expansions (4.10) and (7.5) are quite similar to the expansion
(2.4) for the Jacobi polynomials. First we note
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LEMMA 7.6. We have

.,o tg,(7.16) lim
-,,,0 z., 1) (23, . Z"V’(:’ ")’

(7.17) lim R’’t’’(:.,. ,, /1 (1 )"Rff’t(1 + 2(1 :)-lr/).

Proof. Use (6.2), (3.17), (7.13) and (6.16).
THFOR 7.7. We have

., t, n Z.,(:, n),(7.18) lim
R,,,,wt, 1) (2V + 1),_

(7.19) lim R ,, (, n) (1 )"R (1 + 2(1 )- ).

Proof. In order to prove (7.18) use complete induction with respect to k. For
k 0, (7.18) becomes (7.16). From (3.17) and (3.14) we have

-, tg, ) 1 D,a,, .--1,--1 kg, n)
R ,0,wo ’,, , 1) 4( + 1)( + y +) --n-l,k-1 , 1)

For + m, (3.11) together with the induction hypothesis gives

lim lim
0 R a’o’Y[ a+l,+l., , 1) u+ R.-1,- "(2, 1)

(r + ).-
Z&(, n).

(2y + 1),_
In order to prove (7.19) we use complete induction with respect to n-k, the case
n-k =0 being clear from (7.17). It follows from (3.16), (3.12) together with the
induction hypothesis that

lim o

Remark 7.8. Let us consider the recurrence relations

(7.20)

(7.21)

By the use of the expansion (7.5), Theorem 7.4 and the orthogonality of the poly-
nomials o-,,k g, r/) it is directly proved that the coefficients b,,, in (7.20) are nonzero
only if (m, l) 6 {(n + 1, k), (n, k + 1), (n, k), (n, k 1), (n 1, k)} (cf. Fig. 5). Similarly,
the coefficients Cm,l in (7.21) are nonzero only if (m, I) {(n + 1, k + 1), (n + 1, k),
(n+l,k-1), (n,k+l), (n,k), (n,k-1), (n-l,k+l), (n-l,k), (n-l,k-1)} (el.
Fig. 6). This can be proved by use of the expansion (4.10) and Theorem 4.3. The
proofs sketched here are much shorter than those given in Sprinkhuizen [28, 9].

X X X X

X (R) X X (R) X

X X X X
FIG. 5 FIG. 6
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8. Connection coefficients. In this section we shall consider the connection
coefficients in the formula

(8 1) R ’’t’’’’ "n,k , E Cn,k ;m,lR m,l , ).
m,l

It will turn out that for k 0 or k n these coecients coincide with certain con-
nection coecien for Jacobi polynomials. If k n and (a, b, c)= (a, , -), or k 0
and (a, b, c)= (-,-, y) then we obtain explicit expressions of -,,k , ), k 0 or
m, as double Jacobi series. In these cases there will follow important inequalities. We
conclude this section by deriving integral representations for o ,,vr-,,k , ), k 0 or n, in
terms of Jacobi polynomials.

First note the following corollary of eorem 3.2.
LEMMA 8.1. e coecients C,,k;, in (8.1) are nonzero only if m n and

m + n + k (cf. Fig. 2 in 3).
THEOREM 8.2.
(a) e coecients C,k ;m, in the formula

g,,wn,k , n) Cn,k ;m,lR m,l , n
m,l

are nonzero only g m n and k (cf. Fig. 3 in 4).
(b) e coecients C,,k ;,l in the formula

are nonzero only if m n k and m + n + k (cf. Fig. 4 in 7).
Pro& In both cases we can first use Lemma 8.1. Part (a) of the theorem follows

by (k + 1)-fold application of the operator DZ to both sides of the formula and by use
of (3.13). Similarly, in view of (3.15), part (b) of the theorem is proved by (n- k + 1)-
fold application of E’ to both sides of the formula.

Let the coecients g;’ be defined by (2.36).
THEOREM 8.3. ere are expansions

(8.2) *’n,0D,,Ztt, )= gn;m-++1/2,++1/2;a +V+ 1/2,h +V+/2R m,Oa’h’tt, ),
m=0

(8.3) R’’,,,,,)= ++/’;++1/2’R’’,,,)gn;m
m=0

Pro& It follows from eorem 8.2(a) that R,,o s, ) can be expanded in terms
oof ,-,o s, n), m 0, 1 ..., n. Now restrict to and apply (5.6) and (2.36).

is proves (8.2). Similarly, for the proof of (8.3) use eorem 8.2(b), restrict to 0
and apply (5.5) and (2.36).

The coecients in (8.3) are positive if T > c (cf. (2.38)). See Theorem 2.3 for the
cases that the coecients in (8.2) are positive.

THEOREM 8.4.
(a)

R,(++/e’++’/e(x)= c,;R
m=0

then

R’’a’Wl xy, 1/4(x )2) c. )R.,o ,- -Y ;,.R(.,v’V)(x ’V)(Y
m=O
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and
+3,+ 1/2,fl +’g+ 1/2;%,,/

Cn ;m gn ;m

(n +a +/3 +2y +2),,( + 1),,,n
(m +23/+ 1),, (a +y+),,(n-m)!m!

(-n+m,n+m+a++2y+2, m;/+l; )3F2 1
2m +2y+2, m +c +y+-"

If either a > and a + fl >-_-1 or a >-1/2 and n-m is even then in the above
formulas c, ;,, > O.

(b) If

R(n+’+l/2’O)(X) Cn;mR(ma’C)(X)
m=O

then

R’,’ff’v(1-1/2(x+y),1/4(1-x)(1-y))= c,;,,R’)(x)R’O)(y)
m=O

+’+ 1/2,/3
Cn ;m gn ;m

n !(/3 + 1),,(y +1/2),-m(n +a + +Y

and

(a + y +),,(a +/3 +2),(n-m)!(n +a + +2),,,

If y >- 1/2 then in the above formulas c, ;,, > O.
Proof. Part (a) of the theorem follows from (8.2) and (3.21). The coefficients are

given in (2.39) and Theorem 2.3 implies the positivity result. For part (b) use (8.3),
(3.4) and (2.37). 1-1

Theorem 8.4(a) gives an explicit expression for R’,ff’v(:, rt) and it shows that
R"’O’Wl-xy,1/4(X,,o _y)2) is the generalized translate of the Jacobi polynomial
R(+’r+l/Z’t+v+l/Z)(x) expressed as a Gegenbauer series of order (% 3’) (see Askey [2,
Lecture 2] for the definition of generalized translates).

Similarly, Theorem 8.4(b) gives an explicit expression for _.,,,,, ,, r/) and it
shows that R’,’ff’(1 1/2(x + y), 1/4(1 x)(1 y)) is the generalized translate of the Jaeobi
polynomial R ,+v+/z’t)(x) expressed as a Jacobi series of order (a,/3). Hence we also
have a new expression for the generalized translate of the Jacobi polynomial kernel
(el. Bavinck [5, 5.8], [6]). This kernel gives a summation method for Fourier-Jacobi
expansions. If 3’--> in Theorem 8.4(b) then, using (7.17), we obtain Bateman’s
bilinear sum, which can be interpreted as the De la Vall6e-Poussin kernel (cf. Askey
[1]).

For y =1/2, Theorem 8.4(b) implies (3.6), and thus the Christoffel-Darboux for-
mula (2.20) for Jacobi polynomials.

COROLLARY 8.5.
(a) Let a > fl, a + fl > 1, (a, fl) (- 1/2, 1/2). Then R,,o’’we, O) > 0 for [0, 1 ]

except if a fl, n is odd, 1. If a >= fl, a + fl >- 1, 3/>- 1/2 then
)1__<

(b) Let a <-, a + >-_ 1, (a, ) (- 1/2, 1/2). Then (-1)"R,g,v(, 1) > 0 .for
[ 1, 2] except if a , n is odd, 1. ff a <- B, a + >= 1, y >- 1/2 then

IR ,g, w)[ <= IR ’’o’w’,,,o 1)1 onft.-
(c) If /’>-1/2 then R2;ff’v(,1/42)>O for e[0, 2]. fly>=1/2, max (a,/3)=>-1/2,
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IR ",#,vc { 1

Proof. (a) It follows from Theorem 8.4(a) that

,,0 tl x ,0)= c,.,m(R’V)(x))2.
m=0

If a >/3, a +/3 ->-1 then c,;, and c,;,-1 are both positive. By Szegb [29, Thm. 3.3.3]
Rff’V(x) and o (v,vr,

-,-a t) cannot have common zeros. Hence R,ff’v(1 x 2 0)>0 for
0_-<x-<1. If =/3 >-1/2 then c,;, and c,;,-2 are both positive. The positivity results
again from [29, Thm. 3.3.3] together with (2.9) and (2.10). The second statement
follows from Theorem 8.4(a) and the fact that 1 if 3, ->--1/2 and -1 -<x =< 1;
cf. Theorem 2.2.

(b) Use part (a) of the corollary together with (3.18).
(c) It follows from Theorem 8.4(b) that

R ’’V{l-x, 1/4(1-x)2) c,,;,.(R(m"’t)(x))2./1,/l
m--0

A similar argument as in the proof of (a) gives the positivity result. The second
statement follows from Theorem 8.4(b) together with the inequalities for Jacobi
polynomials (cf. Theorem 2.2). F!

The above corollary confirms part of the hypothesis that for a =>/3 ->- 1/2, 3’ =>-1/2
the inequality

IRf’v(s, n)l --< 1
is valid on f; cf. Sprinkhuizen [28, 7].

Let us conclude this paper by deriving integral representations for R.,o , )
and R ’’’"(-,,, ,, /). Combination of Theorem 8.4(a) and formula (2.33) gives

(8.4)

r(7 + )R’,’v(1-xy, 1/4(x _y)2)=, 1/2F(Y +1/2)

R(na+/+l/2"13+/+l/2)(Xy +(1 X2)1/2(1 y2)l/t)(1--t2)3’-1/2 dt, 3/>-,
-1

which can be considered as a generalization of the product formula (2.33).
Similarly, Theorem 8.4(b) and formula (2.35) imply the following generalization

of the product formula (2.35)’

(8.5)

R"’O’’(-1/2(x.,.,.- +y), 1/4(1-x)(1-y))
2F(a + 1)

rX/:F(a )F(/3 + 1/2)

R (n +v+l/2’t>(1/2(1 +x)(1 + y) +1/2(I-x)(1 y)r

+ (1-x2)/2(1 y2)/2r cos b- 1)

(1 r2).-8- r 2/+ (sin )zt dr dck,



482 TOM KOORNWINDER AND IDA SPRINKHUIZEN-KUYPER

Both in (8.4) and (8.5) the left hand sides can be considered as the first term of an
orthogonal expansion of the integrand. The full orthogonal expansion (a generalized
addition formula) can be obtained by means of the techniques described in Koorn-
winder [24], i.e. by using integration by parts and differential recurrence relations for
Jacobi polynomials. In particular, from (8.4) we get

R(+v+a/2"t3+v+l/2)(xy +(l-x2)1/2(1-y2)1/2t)

(8.6)
(-1)k(-n),(n +a +/3 +2y+2)k yZ)k/222k(ce + +)k(’y+ 1)k

(1--X2)k/2(l--

,,+k,, -1/2,-1/2)R-1/2,-,)2)(t),xy, 1/4(x
which is a generalization of the addition formula (2.34) for Gegenbauer polynomials.
See Manocha [26] and Carlson [9, 3] for related generalizations of this addition
formula.

Notes added in proof.
1. The hypothesis quoted in Remark 6.12 has been proved by the second author

[30]. It is shown there that (6.19) is valid if c ->-1/2, c >=/3, cz +/3 + 1 >=0 and y >---12.
2. See Koornwinder [31] for a proof that the polynomials under consideration of

order (1/2(d-5), -1/2, 0) can be interpreted as spherical functions on the Grassmann
manifold O(d)/O(2) O(d-2) (cf. the remarks after (4.15)).

3. Our Corollary 6.6 was independently obtained by K. Ringhofer, Universitiit
Osnabriick, B.R.D. (private communication). He also showed that these orthogonal
polynomials naturally arise in the decomposition of the Kronecker product of two most
degenerate discrete representations of the conformal group SO0(4, 2) (still unpublished
work).
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WIRTINGER’S INEQUALITY*

C. A. SWANSONf

Abstract. General forms of Wirtinger-type inequalities are proved in both one and n dimensions.
Since singular endpoints and unbounded intervals are allowed, a large class of new one-dimensional results
are generated as well as previously known results. In the (usual) case that the admissible functions are
identically zero on the boundary 0G of a bounded domain G in E", the sharp form of Wirtinger’s inequality
in G is proved without any regularity hypotheses on OG. If the admissible functions are not so restricted, the
companion inequality is proved for domains with C boundaries.

1. Introduction. Generalizations of the classical one-dimensional (quadratic)
Wirtinger inequality are proved and the results are extended to bounded domains in
n-dimensional Euclidean space. The one-dimensional theorems include all previously
given verisions of quadratic Wirtinger-type inequalities, by either specialization or
multiple application in subintervals. The proof of the basic Theorem 1, allowing
singular endpoints and/or unbounded intervals, is much easier and more direct than
that given for special cases of it by Beesack [1], Diaz and Metcalf [2], Fan, Taussky
and Todd [3], Hardy, Littlewood and P61ya [4], and others. The class of admissible
functions (to which our inequality applies) consists of absolutely continuous functions
in appropriate weighted L2-spaces. Restriction of this natural class to C1() yields
classical Wirtinger inequalities on closed bounded intervals L

For analogous inequalities in bounded n-dimensional domains G, the admis-
sibility class is taken to be o=C(()fqH(G), where Hz(G) denotes a standard
Sobolev space (described in 3). This is a natural extension of the class used in
Theorem 2 in the case of bounded intervals L The one-dimensional method is not
easily extended since limits of quotients uZ(x)/v(x) as x approaches the boundary
cannot be found directly by L’H6pital’s rule. The results in Theorems 5 and 6 are
obtained, according as 0 is restricted to functions vanishing identically on OG or not
so restricted, by two independent methods. In the first of these (Theorem 5), we use
the fact that a function u 0 with u =0 on OG can be approximated arbitrarily
closely by functions of class C(G), and this requires no special boundary regularity
hypothesis (Lemma 4). In Theorem 6, we use the Hopf maximum principle, and
accordingly must require that OG be of class C2.

The question of how much boundary regularity is needed seems to have been
largely ignored in the literature, or else too much or too little regularity has been
presupposed. The proof offered by Wong [9] of an inequality of type (23) or (25)
contains an error, described following Theorem 6. Weak forms of (23), (25), not
characterizing the case of equality, are essentially contained in the author’s earlier
papers [6], [7], [8].

Wirtinger-type inequalities have a close connection with the Euler-Lagrange
differential equations associated with variational problems of mathematical physics, in
particular the isoperimetric problems. The well-known characterization of the
smallest eigenvalue of a Sturm-Liouville system as the minimum of the corresponding
Rayleigh quotient implies weak Wirtinger inequalities, but this approach does not give
insight into the sharp results contained herein.

* Received by the editors June 4, 1976.
? Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
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2. One-dimensional Wirtinger-type inequalities. Let L be the differential opera-
tor defined by

(1) Lv (Av ’)’ +Bv

in an open interval I (a, b), which is permitted to be unbounded, where A and B are
continuous functions in I and A(x)>0 in L The domain of L is defined to be the
set of all real-valued functions v in I such that all derivatives involved in (1)exist and
are continuous at each point in L We shall consider solutions v L of the differential
inequality

(2) -Lv >- AoCv
in L where A0 is a real number and C is a positive continuous function in L

The notation L(I) will be used for the set of all real-valued measurable functions
u in I such that Au is Lebesgue integrable in L Also AbC(I) will denote the set of all
real-valued functions which are absolutely continuous on every closed subinterval of L
For a positive solution v of (2), we consider functions u AbC(I) such that the
limits below exist and are finite"

A(x)U2(X)l)t(X A(X)U2(X )/)t(X)
(3) S(u, v)= lim S2(u, v)= lim

x-a+ l)(X) x->b- l.)(X)

Tt-IrOlZM 1. Let v be a positive solution of (2) in I ]:or some real number A0.
Then every u AbC(I) such that u L(I) (3 L(I), u’ 6 L,(I), and the limits (3) exist
and are finite satisfies the inequality

(4) I(B+AoC)udx<-_IA(u’)2dx+Sl(U,V)-.Sz(u,v).
Furthermore, equality holds if and only if u (x is a constant multiple of v (x throughout
L

Proo[. The differential identity

Av + =A(u’)-Bu+Lv

can be integrated over a subinterval (y, z) of I, a < y < z <b, to yield, since u is
absolutely continuous,

(5) [A(u’)2- (B +AoC)u] => A v

y

equality holding if and only if (u/v)’= 0 a.e. in L i.e. u(x)= (const.)v (x) identically in L
Taking limits as y --> a + and z --> b we obtain the conclusion (4).

As one specialization of Theorem 1, consider the case that I (a, b) is bounded,
thd continuity of A, B, and C extends to [a, b l, and v is a positive eigenfunction
corresponding to the smallest eigenvalue Ao of the problem

Lv+AoCv=O in L
(6) sav(a)-A(a)v’(a) O,

Szv(b) + A(b)v’(b) O,

where s and s2 are constants. (The cases S c, s2 c by convention correspond to
boundary conditions v(a)=0, v(b) =0, respectively.) For finite s and s2, conditions
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(3) become

(7) Sl(U, v)= slu2(a), S2(u, V)=-s2u2(b).

In the case of null boundary conditions v(a)= 0 and/or v(b)= 0, we need the addi-
tional assumptions that u(a)= 0 and/or u(b)= 0 to conclude that Sl(U, v)= 0 and/or
S2(u, v) 0. If u C[a, b this follows from L’Hhpital’s rule since a solution v of the
differential equation (6) can have only simple zeros. However, as the proof of
Theorem 5 shows, the additional hypothesis that u e C[a, b] is unnecessary.

THEOREM 2. Let v be a positive-valued eigenfunction in a bounded interval I
corresponding to the smallest eigenvalue o of (6). Then every absolutely continuous
function u on [a, b] such that u’ e L2(a, b)satisfies the Wirtinger-type inequality

b b

(8) (B+AoC)u2dx<= I A(u’)2dX+SlU2(a)q-s2u2(b),

equality holding if and only if u (x) Kv (x) throughout [a, b for some constant K. (If
u (a)= 0 and/or u (b)= O, it is understood that the corresponding boundary conditions in
(6) are v(a)= 0 and v(b)= 0.)

Beesack’s Theorem 1.1 [1] is obtained from Theorem 2 by substituting A(x)=- 1,
ao=0, s2_-<0, s=m (i.e. v(a)=0 in (6)), u(a)=0, and a =0. Then (8) implies the
inequality

b b

(9) fa (u’(x))g dx >= fa B(x)ue(x) dx’

with equality holding if and only if u(x)=(const.)v(x) (and if and only if u(x)=-O in
the case s2<0). Beesack’s theorem 1.1" replaces the hypothesis u(a)=0 by the
"orthogonality" conditions 5b B (x) dx >-_ 0 and u (a) 5b B (x)u (x) dx <- O. This follows
immediately upon application of (9) to ul(x) u(x)-u(a). Theorem 1.2 of Beesack
allows v(x) to have a simple interior zero x0e (a, b). The proof of Theorems 1 and 2
goes through if u (x) is replaced by u l(X) u (x)- u (Xo), since we need merely to split
the integral in (5) into integrals over subintervals (y, x0), (Xo, z) and use L’Hhpital’s
rule to conclude that

A(x)u(x)v’(x)
(10) lim 0.

o v(x)

Other classical and modern versions of Wirtinger’s inequality all follow from
Theorem 2 by specialization, or modification by the addition of hypotheses, or
multiple application on subintervals. The following corollary is the central theorem
used by Diaz and Metcalf [2], also given in modified form by Hardy, Littlewood and
Pdlya [4].

COROLLARY 3. Every real-valued function w C[a, b] satisfies the inequality
b

(11) fa [W(X) w(a)]2dx4(b-a)2I [W ’(X)]2 dx,

equality holding if and only if

( Tr(_x a ))w(x)= w(a)+K sin
\2(b --i

identically on [a, b for some constant K.
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This is the special case of (1), (8) in which A= 1, B=0, C-1, ho
zr2/(4(b-a)2), s=oo (i.e. v(a)= 0), s=0 (i.e. v’(b) 0). We apply Theorem 2 to

u(x)=w(x)-w(a), v(x) sin [er(x -l]2(b S

to get (11) immediately.
Several auxiliary theorems of Diaz and Metcalf are obtained by repeated appli-

cations of Corollary 3 on subintervals of [a, b]. One very interesting result is the
classical Wirtinger inequality for periodic C functions u on [0, 7r]: If u(0)= u(27r)
and " u (x dx 0, then

2-n" 2-rr

equality holding if and only if u (x)= K sin (x -6) identically on [0, 27r] for some real
numbers K and 6. This follows by application of Corollary 3 to four subintervals of
(0, 2zr) [2].

The following examples illustrate the case of unbounded intervals L
Example 1. In Theorem 1, suppose that I (1, c), A(x) x e-, B (x) 0,

C(x)=e-, and ,o 1. If u L(1,m), u’ LA2(1, aZ), u(x)=o(x/x--1) as x - 1 +, and
u is absolutely continuous on 1, a] for arbitrary a > 1, the conclusion of Theorem 1 is
that

u 2(x) e dx <- [u’(x)]2x e dx,

equality iff u(x) K(x 1) throughout 1 =<x <c for some constant K. (The limits (3)
are easily seen to be zero for v (x) x 1.)

Example 2. Take I (0, o), A(x) C(x) exp (-x2), B(x) 0, A0 2. If u and
u’ are in L(0, ), u is absolutely continuous on [0, b] for arbitrary b >0, and
u (x) o (x) (x - 0 + ), Theorem 1 gives

uZ(x) exp (-x 2) dx <-- [u’(x)]2 exp (-x 2) dx,

equality holding iff u (x) Kx in 0 =< x < for some constant K.
In the following example, the differential equation (1) is singular at an endpoint

of the (finite) interval L
Example 3. In Theorem 1, take I (0, 1), A(x)= 1-x 2, B(x)=0, C(x)= 1,

ho 2, v(x)= x. If u e L2(0, 1), u’ e L(0, 1), u is absolutely continuous on [0, 1], and
u (x) o (x/x)(x 0 + ), then

Io 1Iolu(x) dx= (1-x)[u’(x)] dx,

equality holding iff u (x) =- Kx for some constant K.
It is of course an easy matter to write down similar examples when one or both of

the boundary limits (3) are not zero. Combination of several inequalities of type (4) on
subintervals 11, I2, of I on which corresponding functions v l, v2," are positive
yields various interesting inequalities, for example extensions of the classical Wir-
tinger result for periodic C functions cited above.

3. Extensions to n dimensions. Let G be a bounded domain in n-dimensional
Euclidean space E" with boundary 0G. Points in E are denoted by x (xa,..., x,,)
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and differentiation with respect to x is denoted by D, 1, , n. Let C(G) denote
the set of all infinitely differentiable functions u" E -E with compact support
contained in G. The space (G) is defined as the completion of C(G) in the norm

I1" defined by

(12) Ilull=- lul2/ 2 ID,ul dx.
i=1

As usual cl*(a) denotes the set of all u e CI(G) with Ilull finite, and H(G) denotes
the completion of CI*(G) in the norm (12). The following lemma [5] is an extension of
a well-known result to arbitrary domains G.

LEMMA 4. If U e C(t) f3 H(G) and if u is identically zero on OG, then u
Elliptic differential operators L defined by

(13) Lv . D(AqDv + 2 _, BDv + Cv
i,j=l i=1

will be considered in G, where it is assumed that each Aq e Cl(t), each Bi e C(t),
c e C(G), and that the matrix (Aij(x)) is positive definite (or semidefinite) in G. The
domain of L is defined to beC2(G)f3 ItI(G).

Let E be a continuous real-valued function on G such that the quadratic form

(14) Q[z]= Aqzz-2z,,+l F. Bz +Ez 2
n+l

i,j=l i=1

is positive definite (or semidefinite). If (Aii) is positive definite, a well known
sufficient condition for O[z] to be positive semidefinite is det O-> 0, where O is the
matrix associated with O[z ]. The following notation will be used"

(15) F[u Ia [Y’, A,,D,uD,u 2u B,D,u + (E C)u2] dI,
i,j

(16) [u, v] .. v AiiDi Di 2uv BiDi +Eu2,

(17) Ha[u, v] I O[u (x), v(x)] dx

whenever they are well-defined. The domain of the functional F is taken to be

o C(() H(G).
In analogy with the one-dimensional case, we consider positive-valued solutions

v eL of the differential inequality

(18) -Lv >= AoCov
in G, where L is given by (13), A0 is a real number, and Co is a continuous positive-
valued function on G. There is no loss of generality in taking Ao 0 (as in Theorem 5
below) since the function C in (1) can be replaced by C1 C +AoCo.

THEOREM 5. Suppose that a continuous real-valued function E on G has been
chosen so that the quadratic form (14) is positive definite (or semidefinite) throughout a
bounded domain G. If there exists a positive solution v L of the differential inequality
-Lv >-0 throughout G, then every function u o which vanishes identically on OG
satisfies the generalized Wirtinger inequality Flu] >= O. Furthermore, in the case that (14)
is positive definite, the inequality reduces to an equality if and only if Lv 0 in G and
u (x) Kv (x) for some constant K, and K 0 ifE # O.
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Proof. Since u 6 C(()71H(G) and u is identically zero on OG, Lemma 4 implies
that there exists a sequence of functions u. C(G), m 1, 2, , such that lim Ilu,.
ul] 0 (rn c). Since v / and v > 0 in G, we can use Picone’s identity [7]

(19) q[U,n, V]+Y’, Di AqDiv Fl[Um]+ um Lv
i,j l)

where Ff[u] denotes the integrand in (15). Since [u, v] is positive definite or
semidefinite, -Lv >-0, and u,---0 outside a compact subset of G, integration of (19)
over G yields the inequality

(2O) F[um >- Ho[u,n, v >-- O.

On account of the uniform boundedness of each Ao, Bi, C and E in G, the Cauchy-
Schwarz inequality gives the estimate

(21) IF[u3 F[u ]l k (llull / llull)llu

for some constant k independent of m. Since Ilu - ull-o as rn o, it follows from
(20) that Flu >= O.

In the case Flu ] 0, equation (19) shows that the inequality -Lv >= 0 must reduce
to an equality in G, and (21) shows that F[um]0 as m -. For an arbitrary domain S
with S c G, inequality (20) implies that

(22) O<=Hs[um, o]F[um].

Since v is uniformly bounded away from zero on S and v e /, the Cauchy-Schwarz
inequality can be used to derive the following analogue of (21)"

IHs[u,,, vl-Hs[U, vl[-<kl +
S S S

where the subscript S on the norms indicate that the integration in (12) is over S only.
Since F[um]O it follows from (22) that Hs[u, v]=0 and hence that each Di(u/v),

1,. , n, and Eu are identically zero in S when the form in (16), (17) is positive
definite. Since S is arbitrary, this means that u(x)= Kv(x) for some constant K, and
K 0 if E 0. Conversely, it is easily seen from (19) that F[u] 0 if Lv 0 and
u (x) Kv(x) (K 0 if E 0).

If L is a symmetric elliptic operator, i.e. Bi -= 0 in (13) for 1, , n, then E can
be taken identically zero in (14)-(17), and the Wirtinger inequality reduces to

(23) I(T Cu2 dx fG AqDuDiu dx,
i,]=1

with equality holding in the positive definite case if and only if u(x) Kv(x) for some
constant K.

Theorem 2 also can be extended to n dimensions, but it must be assumed that 0G
is of class C2, so that the Hopf maximum principle can be applied. (There is no
analogue of Lemma 4 available when u fails to be identically zero on 0G.) We assume
also that (Aq) is uniformly positive definite in G.



490 c.A. SWANSON

Let v 6 f-) cl(O) denote a positive-valued eigenfunction corresponding to the
smallest eigenvalue Ao of the problem

Lv D(AqDiv) + Cv -AoCov in G,
(24)

i,i=1

S[v]=-- Fv + AquiDiv 0 on 0G,
i,]=l

where F is a continuous function on OG and (u) denotes the exterior unit normal to
0G.

THEOREM 6. Suppose that (Aq) in (24) is uniformly positive definite in a bounded
domain G with C2 boundary at every point. Let v be a positive eigenfunction of (24)
corresponding to the smallest eigenvalue A0. Then every function u o satisfies the
inequality

(25, I(C+oCo)u2dx<-Ic Ai,DiuD,udx+Io Funds
i,]=1 G

where s denotes the measure on OG. Furthermore, equality in (25) holds if and only if
u (x) Kv (x) for some constant K.

Proof. Since OG Ce and v(x)0 in G, it follows that v(x)>0 on (, for if
v(x) 0 at a boundary point x, then (24) would imply that the transverse derivative

Dv Aq’iDv 0
i,j=l

at x, contradicting the Hopf maximum principle. Thus the identity (19) can be
integrated over G to give

IG
2

IO u2
Flu i>=

u
Lv dx + Y’, Aij’iDiv ds

V GV ,]
(26)

fACu2 dx- fo FuZ ds"

In view of (15) (in the case B---0 and E --0), the inequality (26) is equivalent to (25).
Furthermore, by (16) and (19), equality holds in (26) if and only if D(u/v)=-O in G for

1,. , n, i.e. if and only if u (x)= Kv(x) for some constant K.
Wong [9] has stated results similar to Theorems 5 and 6, giving "proofs" involv-

ing generalized Riccati transformations. The proof.of his Corollary 2.2, for example
requires U 0 throughout G (v 0 in our notation) in order that his Corollary 2.1
can be applied; thus Corollary 2.2 is not correctly proved and the proof cannot be
repaired without additional machinery (like Lemma 4 above). In the one-dimensional
case, of course, as described in Theorem 2, the boundary limits can be found from
L’H6pital’s rule since solutions v of (6) are known to have only simple zeros (by the
uniqueness of the solution of an initial value problem). In higher dimensions, two
alternative procedures have been indicated in the proofs of Theorems 5 and 6. Wong
also assumes throughout that OG is piecewise smooth: This is too much when u is
identically zero on OG, as in Theorem 5, and too little otherwise, as in Theorem 6. We
remark that the case of F in (24) being finite on a proper subboundary F2 of OG and
F oo on the complementary subboundary F1 (i.e. v-=0 on F) remains unsettled:
Wong’s proof is not valid.
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The case of unbounded domains G in E can be handled by techniques similar to
those used by the author in [7]; one has boundary limits analogous to the limits (3)
replacing the boundary integral in (25), yielding an n-dimensional version of the
inequality (4).
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AN IMPLICIT FUNCTION THEOREM AND ITS APPLICATIONS TO
NONLINEAR ELECTRICAL NETWORKS*

T. MATSUMOTO]

Abstract. An implicit function theorem is given for the equation G(x, y, t) 0, where G is continuously
differentiable in (x, y) and measurable in t. Also discussed is the differential-algebraic system dx/dt=
F(y, t), G(x, y, t) 0, where G is defined above and F is continuously differentiable in y and measurable in
t. It is shown that the results are useful in the analysis of nonlinear electrical networks.

1. Introduction. During the course of a study of electrical networks, the author
was naturally led to differential-algebraic systems of the form

dx
(1) d- F(y, t),

(2) O(x, y, t) 0

where F is an n-valued function defined on " l and G is an "-valued function
defined on n’. In order that the differential-algebraic equation (1)-(2) be
well defined, there must first exist a y satisfying (2) for a given (x, t). Such a y, in circuit
theory, is called an operating point at (x, t). Secondly, a single-valued function y(x, t)
must be determined via (2). In electrical networks G is often discontinuous in so that
the problem is nontrivial. We will first give conditions under which there is a unique
operating point to (2). Then, supposing that G and Gx, Gy are continuous in (x, y) and
measurable in t, we will state and prove an implicit function theorem for (2). We will
also indicate how the results can be applied to electrical networks.

2. Results. Let G be an "-valued function defined on "x "x/, where I is
a compact interval.

Assumption 1. G(., ., t) and Gx(’, ", t), Gy(., ., t) are continuous and G(x, y, .)
and Gx (x, y, .), Gr (x, y, .) are (Borel) measurable.

We will first give conditions under which for a given (x, t), there is a unique y (x, t)
satisfying

(2.1) G(x, y (x, t), t) O.

PROPOSITION 1. Let (x, t) be given and suppose that the following hold:

(A) lim (llyll IIG(x, y, t)ll+(y, G(x, y, t))) >0.

(B) For each y

det [Gy(x, y, t)] # 0.

Then there is a unique y(x, t) satisfying (2.1).
Proof. It follows from condition (A) that there is a bounded open subset D of "such that G(x,., t) has no zeros in "-D and for every y in the boundary OD of D,

Ilyll IlG(x, y, t)ll / (y, G(x, y, t)) > O.

* Received by the editors February 19, 1976, and in final revised form November 12, 1976.
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Geometrically, this means that for every y in OD, the vectors y and G(x, y, t) never
point in opposite directions. Hence the homotopy

(2.2) (y, z) zy + (1 z)G(x, y, t)

has no zeros on OD x [0, 1]. In order to prove the statement we will make use of some
properties of the degree of a function. If a continuously differentiable function f from
m into itself has zeros in a domain D of I", the degree is defined by

degree (f, 0, D) Z sgn det [Dyf(y)]
yeA

where A {y R [f(y)= 0}. The determinant is assumed nonzero at each point of A.
If for some y in A, det [Dyf(y)] 0, then pick a sequence {pk} in R" with pk -0 such
that for all y in A={yRmlf(y)=p}, det [Dyf(y )] - 0, k=l,2,.... Such a
sequence exists because the set {y I"1 det [Dyf(y)] 0} has Lebesgue measure zero.
Finally one defines

where

degree (f, 0, D)= lim degree (f, p, D)

degree (f, p, D) Y sgn det [Dyf(y)].
yAt

It can be shown that this limit process is well defined [1]. One of the important
properties of the degree is the homotopy invariance. Namely, if (y, z) defined by
(2.2) has no zeros on OD x [0, 1], then

(2.3) degree (ia, 0, D) degree (G(x,., t), O,D)

where ia is the identity map of N’. Clearly, there is no loss of generality in assuming
that D contains the origin of Nm SO that

(2.4) degree (ia, O, D)= 1.

It follows from this and (2.3) that

degree (G(x, ., t), O, D)= 1.

If a function has a nonzero degree, it has at least one zero [1] so that there is at least
one y satisfying (2.1).

In order to prove uniqueness set

(x, t) {y ’[G(x, y, t) 0}.

It follows from condition (B) that det [Gy(x, y, t)] never changes sign for all y. Hence

1 =degree (G(x,., t), 0, D)= Z sgn det [Gy(x, y, t)]
y(x, t)

(2.5)
number of elements in (x, t),

which proves uniqueness.
Remarks. Note that conditions (A) and (B) imply sgndet[Gy(x, y,t)]=+l. If

condition (A) is replaced by

(A*) lim ([[y[[ [[G(x, y,t)ll-(y, G(x, y, t))) > 0
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then

degree (G(x,., t), O, D)= degree (-ia, 0, D)=-1

so that sgn det [G(x, y, t)]=-1 holds. If conditions (A*) and (B) hold, then

(2.6)

-l degree (G(x, ., t), O, D)= sgndet[Gy(x,y,t)]
y (x,t)

(-1) x number of elements in (x, t).

Hence the existence and uniqueness is guaranteed by (A*) and (B) also.
The following is a sufficient condition for (A).

(A’) lim (y, G(x, y, t)) > O.

This condition can be considered as a generalization of the concept of passivity in
electrical networks. Namely, G(x,., t) is passive at (x, t) if (y, G(x, y, t)) > 0 for all y.
Condition (A’) might be called eventual passivity of G(x,., t) at (x, t) in the sense that
(y, G(x, y, t)) > 0 outside a bounded subset of

A result related to this problem is obtained in [2], where it is shown that if

(2.7) lim IlG(x, y, t)l[ oo

and if condition (B) of Proposition 1 holds, then there is a unique y(x, t) satisfying
(2.1). There are functions that satisfy (A) and (B) while they do not satisfy (2.7) and
(B). Consider, for example,

G(x, y, t) x + Arctan y +
where all variables are scalar and Arctan y is the principal value of arctan y. Clearly,
this function does not satisfy (2.7). However, for -r/2 < x + < r/2, G(x,., t)
satisfies condition (A). Furthermore

Gy(x, y, t)= 1/[1 + (y)2] 0

so that condition (B) is satisfied. It should be noted that (2.7) does not necessarily
imply (A’), so that condition (2.7) alone does not imply the existence of at least one
zero of (2). For example

G(x, y, t) x + (y)2 +
satisfies (2.7) for every (x, t) but it does not satisfy (A’) for any (x, t). Clearly this
function may not have zeros.

We will next give our implicit function theorem.
PROPOSITION 2. If for every (x, t) conditions (A) and (B) of Proposition 1 are

satisfied, then there is a unique function y (. on x I into " satisfying

G(x, y (x, t), t)=O.

Furthermore
(i) y (., t) is continuous and y (x,.) is (Lebesgue) measurable,
(ii) yx (x, t) exists and is given by

y(x, t)=-[Gy(x, y(x, t), t)]-Gx(x, y(x, t), t).

A fortiori the left hand side is continuous in x and (Lebesgue) measurable in t.
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For the proof, the Scorza Dragoni lemma [3] turns out to be useful.
LEMMA (Scorza Dragoni). Fix x. For every e > 0 there is a closed subset I of I with

the following properties.
(or) G(x, ., .) is jointly continuous on ffm h.
( IX (I- I) < e, where tx is the Lebesgue measure on R.
Proof of Proposition 2. By Proposition 1, y (., .) is well defined. In order to prove

(i) of Proposition 2 we first fix x and show the measurability of y (x, ). It follows from
the lemma that for an arbitrary positive integer i, there is a closed subset Ii of I such
that G(x,.,.) is jointly continuous on mI and i(I-Ii)<l/i. Define Iik--
{t I1 I/Y (x, t)[[ _--< k}. Clearly, then I U kC=l Ilk. We claim that y (x,.) is continuous on
Ik. To show this let t, - t, t,, t Ik. Then the corresponding sequence {y (x, t,)} satisfies

Ily (x, t )ll k, n 1, 2, ,
so that there is a subsequence {y(x, tnj)} with

y(x, t.)- y* e ]]m.

It follows from the definition of Ii that G(x, .,.) is jointly continuous on miik SO

that

lim G(x, y(x, tnj), t,) G(x, y*, t) 0.
j-

Since y (x, t) is unique, we must have y* y (x, t). Hence y (x,.) is continuous on Ik SO

that it is measurable on the countable union

U U Ilk- U Ii.
i=1 k=l i=1

Finally noticing that U "=1 I is increasing in n, we see that

x I- U I =limx I U <lim
1

0o

Hence y(x, t) is (Lebesgue) measurable in on/.

The property with respect to x and (ii) follow from a standard implicit function
theorem.

It should be noted that in [2], G(x, y, .) is assumed continuous.
Given the fact that y(x, t) is determined by (2), one can substitute it into (1)"

ax/a 
so that various techniques in differential equations can be used.

3. iiefis. In this section we will show how the results of the previous
section can be applied to electrical networks. An electrical network is an intercon-
nection, however complicated, of elements of four basic kinds. They are resistors,
capacitors, inductors and independent sources. Let O, and I be the number of
resistors, capacitors and inductors, respectively. Except for independent sources,
there are four kinds of variables in a network. They are capacitor charges (denoted by
qc), inductor fluxes (), branch voltages (v) and branch currents (i). Given a network,
a unique linear graph is defined which shows the topology of the network. A tree for
the linear graph is called a proper tree [4] if it contains all the capacitors and all the
independent voltage sources in the network and the cotree contains all the inductors
and all the independent current sources in the network. For the sake of simplicity we
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assume that a proper tree exists. It is easy to relax this assumption. Pick a proper tree
and partition branch voltages and branch currents as

v (VR, VL, VC, VG) and (iR, iL, ic, iG)

respectively, where R, L, C and G denote link resistors, inductors, capacitors and tree
branch resistors, respectively. There are three constraints that must be satisfied by a
network.

Constraint 1. Kirchhoff laws:

(3.1) )R --FRcVC--FRCVG+ eR(t),

(3.2) /)L --FLcVc-- FLGVG+ eL(t),

(3.3) ic FCiR+FLCiL +]c(t),

(3.4) i FaiR+FLaiL +](t),
where FRC, FRG etc. are matrices that are uniquely determined once a tree is chosen.
eR(t) and eL(t) are independent voltage sources and ]c(t) and/’G(t) are independent
current sources. T denotes the matrix transposition.

Constraint 2. Branch characteristics:

(3.5) f(VR, VG, iR, io, VC, ic, VL, iL, V, t)= 0

(3.6) g(vc, qc, I, t)= 0

(3.7) h(iL, qr, ’1, t)= 0

where f, g and h take values in RP, R and [x, respectively, v,/z and r/are parameters
(capacitance, inductance, temperature etc.), and is time.

Note that dependent sources [4] are included in (3.5) and that couplings among
elements of different kinds are allowed so that (3.5)-(3.7) cover a very general class of
network including transistors, vacuum tubes and various electronic devices.

Constraint 3. Maxwell’s equations:

(3.8) dqc/dt ic, dqL/dt

In order to put these constraints into the form described in 2, substitute
(3.1)-(3.4) into (3.5) and obtain

(3.9) f*(v, iR, VC, iL, , t)= O.

Next set x (qc, qgL), y----(V, iR, VC, iL) and s (v,/x, r/). Then (3.9), (3.6) and (3.7)
can be written as

(3.10) G(x, y, , t) O.

Note that y is a p + , +A vector and that G takes its values in !’+v+x. It follows from
(3.2), (3.3) and Maxwell’s equations (3.8) that

(3.11)

where

dS- I.)L LeL(t)J
=F(y’ t)’

(3.12) W
--FLo 0 --FLc

Thus (3.10)-(3.11) is the differential-algebraic system discussed in 2.
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The functions F and G of (3.10)-(3.11) are sometimes discontinuous in t. This
happens, for example, when square pulses are applied to a network and when the
branch characteristics are discontinuous in t. The first question in electrical network is
the existence and uniqueness of y(x, t) satisfying (2.1), i.e., the operating point. The
next question is the existence and uniqueness of solutions to (3.10)-(3.11) given the
fact that y(.,.) is well defined. Another important problem is the calculation of the
derivative OxlO which is called the sensitivity of x with respect to . We will show that
results of 2 are useful for the above problems.

PROPOSITION 3. Consider the network described above:

dx [jc(t)](3.11) d-; Wy + Le(t)J -=F(y, t)

(. 10) (x, y,:, t) 0.

Let Assumption 1 be satisfied with (x, y) replaced by (x, y, ) and let jc(t) and eu(t) be
measurable. Suppose that for eery (x, :, t), the function G(x, ., , t) satisfies conditions
(A and (B of Proposition 1.

Let

B(x,,t)= g qc

Iffor a given (xo, o, to) there is a region X x A x J containing (xo, o, to) and there is an
integrable unction rn (.) on J ilh

]]f(y (x, , t), t)]l<=m(t), ]][Gy(x, y(x, , t), , t)]-lB(x, , t)]]<=m(t)
(x,,t)XxAxJ,

then there is a unique solution to (3.10)-(3.11) on a nonvanishing interval containing to,
for each . Furthermore, the solution is continuous in .

Proof. It follows from Proposition 1 that y(.,., t) and y(.,., t) are continuous
and y(x, :, .) and y(x, ,. are measurable. Note that by (3.11)

F, (y (x, :, t), t)= Wy, (x, :, t).

It follows from (ii) of Proposition 2 that

(3.13) y(x, , t)=-[Gy(x, y(x, :, t), , t)]-aB(x, , t).

Hence if the above inequalities are satisfied, then IIFII and IIFll are dominated by an
integrable function. The result follows from a standard existence theorem for
differential equations. See [5], for example.

PROPOSITIOY 4. Let D(x,,t) be the block diagonal matrix diag(f*, g,,h,).
Suppose that the conditions of Proposition 3 are satisfied. If, in addition, the norm

]l[ Gr (x, y (x, :, t), :, t)]-lD (x, :, t)[[, (x, , t)eX x A xJ

is dominated by an integrable function on J, then x is differentiable with respect to .
Furthermore Ox/O =- (the sensitivity ofx with respect to ) satisfies the following linear
differential equation for almost every t:

(3.14) dq/dt W[Gy]-I[Bq +D]
where B is defined in the statement of Proposition 3 and W is defined by (3.12).
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Proof. It follows from (3.11) that

(3.15) F(y(x, , t), t)= Wy(x, , t).

Again, by (ii) of Proposition 2,

(3.16) ye(x, , t)=- [Gy(x, y(x, , t), , t)]-lD(x, , t).

Now, if the conditions of Proposition 4 are satisfied, then (3.15) and (3.16) imply that
IIFell is dominated by an integrable function. Hence a result in differential equation
(see [5], for example) tells us that x is differentiable with respect to sc and Ox/O =-0
satisfies

(3.16) ye(x, sc, t)=-[Gy(x, y(x, , t), , t)]-lD(x, , t).

Formula (3.14) follows from substitution of (3.13) and (3.16) into (3.17).
Remarks. There are many nontrivial networks that satisfy the conditions of

Proposition 1. Uniformly positive definite networks [6], for example, satisfy those
conditions. The differential equation (3.14) is called the sensitivity equation. The
sensitivity Ox/O plays many important roles in electrical networks. (3.14) is a fairly
explicit formula which has not yet been obtained. When one solves (3.14) numerically,
one of the most time consuming operations would be the one involving [Gr]-1. It
should be observed, however, that an algorithm involving this matrix is already
available. Because in the process of solving (3.10), one often uses the Newton-
Raphson iteration"

[Y]k+l [Y]k -[Gr]-1[G]k
where [Gy] and [G]k mean that [Gy]-1 and G are evaluated at [Y]k. It should also be
noted that Gy has a relatively simple form:

ay IOf*/OVG Of*/OiR Of*/OVC
Og/OVc

0 O-hd
Note that for each (s, t), the set N(sc, t)={(x, y)lG(x, y, s, t)=0} can be viewed as a
manifold under certain assumptions. Hence (3.10) and (3.11) will define a vector field
on a manifold. In [7], [8] and [9] electrical networks are looked at from that point of
view.

Another successful application of the degree theory to electrical networks is
found in [10], where operating points of resistive networks are discussed.

Acknowledgment. The author is indebted to Prof. Y. Ishizuka and the reviewers
for comments.
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A POSITIVE POLYNOMIAL EXPANSION PROBLEM IN MINIMUM
VARIANCE SMOOTHING*

LEO W. LAMPONE"

Abstract. In studying stability properties in minimum variance smoothing of discrete data, one is led to
consider positive expansions of one set of polynomials in terms of another. Both sets of polynomials are
characterized by orthogonality and normalization conditions with respect to different distributions on
(0, c). We show positivity in the case where the distributions are related by dr(x)= (x +a) du(x), c >
0, a -> 0, generalizing a recently proved conjecture of R. Askey. In an application, stability of a large class of
minimum variance smoothing formulas is established.

1. Introduction. Consider the problem of smoothing a sequence of observations

(1.1) Vr=f(r)+er, r=0, +/- 1, +/-2,’’’,

where f is a fixed but unknown polynomial of degree less than or equal to 2k and
is a sample sequence from a real-valued stationary time series with zero mean and
continuous spectral density

(/) Z Cr COS (rA) (--r Cr).

We apply to (1.1) a symmetric moving average

(1.2) Ur WsVr-s, r=0,+l,+/-2,’’’,

where the coefficient vector

(1.3) W= Wo

satisfies

(1.4a) n < <--SW$ W

2] i k.(1.4b) ws 6o,j, 0

Thus, the output from (1.2) is u (r)+ where

r=E Wser--s,

The process {} is also stationary with zero mean and variance

(.5 (w _.
r,s

r=O, +/-1, +/-2,....

* Received by the editors September 2, 1976, and in revised form November 29, 1976.
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If n > k and {e,} is of rank greater than or equal to 2n + 1, then (1.5) is a positive-
definite form and consequently there is a unique vector W satisfying^(1.4) for which
o-2(W) is minimal. The smoothing formula (1.2) which results from W is denoted by
Trench in [8] as MV(n, k; ); this stands for "minimum variance smoothing formula,
with respect to , of span 2n + 1 and degree 2k + 1."

Considerable research has been devoted to this estimation problem. The
trigonometric polynomial

C(O) w, cos (sO),

is called the characteristic function of the smoothing operation (1.2). Schoenberg [5]
has given reasons for calling a smoothing formula (1.2) stable if C(O) satisfies

(1.6) [C(0)l< 1, 0<0=<r.

We thus observe that r2(W) can be written

(1.7) o-2(W) - C2(0)(0) dO.

In [8], Trench showed that by making the substitution x sin2 (0/2), the problem of
minimizing (1.7) subject to (1.4) can be reformulated as minimizing the integral

(1.8)
1 o p(x)F(x) &

over the convex set of polynomials of the form

(1.9) p(x)= 1- Z bx.
j=k+l

In (1.8), F(x)=x-1/2(1-x)-/2(x), where (sin2 (0/2))= (I)(0). He showed that the
minimizing polynomial ,, (x) is the unique polynomial of the form (1.9) satisfying

(1.10) p(x)xiF(x) dx =0, k + 1 _<-j =<n.

Also, /,(sin2 (0/2)) is the characteristic function of the smoothing operation
MV(n, k; do). Suppose that F(0) [sin- (0/2)][1 +A sin2 (0/2)](0) where , c, c2
are nonnegative numbers. We ask if stability of MV(n, k; dp) implies stability of
MV(n, k; F). Note that replacing (0) by F(0) in (1.7) is equivalent to replacing F(x)
by x[1 +Ax]F(x) in (1.8). We consequently write

.(x): a()(x)

where/3 (x)-- 1 and ,(sin (0/2)) is the characteristic function of MV(n, k; F). Thus,
if D,,(O) represents the characteristic function of MV(n, k; F) and Q(0) the charac-
teristic functions of MVO’, k; ), k < n, and C(0) 1, then

(. 2()) )fii( ()): a,,)Q(O)(1.11) D.k(O)=n sin E a) sin2 (k

j=k j=k

Since i=ka))= 1, we see that the condition a))>0, k jn, is sufficient to
guarantee stability of MV(n, k; F) given stability of MVQ’, k ), j k + 1. This con-
dition will follow from a general result which we now state as Theorem 1.1. The
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balance of this paper will then be devoted to the proof of Theorem 1.1, with its
application to the smoothing problem being summarized in 4.

THORFM 1.1. Suppose du(x) is a distribution on (0, oo) and k, is a fixed non-
negative integer. Define p, (x)= 1. For n > k, let p, (x) be a polynomial of degree n

defined by the conditions:

(1.12) p,k(X)X du(x)=O, O<=j <-n-k- 1,

and
(r)

(1.13) P-k (0) 80,r, O<_r<_k.

Define qnk (X similarly with respect to the distribution

Then we can write

dr(x)= (x +a)c du(x),

(1.14)

where

(k)>o(1.15) as,

c>0, a->0.

O<_k<_s<__n.

Before beginning the proof of Theorem 1.1 some observations are in order. It is
to be understood that du (x) and dv (x) have moments of all orders on (0, oo) and that
n =<N-1 if du(x) is a discrete distribution over only N points. By definition the
polynomials q, (x) satisfy

(1.16) q,k(x)xJ(x+a du(x)=O, O<-_j<n k-l,

and

(1 17) (r)
qk (0) 6o,r, 0 --< r _--< k.

From (1.13) we see that P,k (X) has the form

(1.18) p,k(X) =1- b(k)x
=k+l

From (1.12) it is clear that the bs( ), k + 1 =<s =<n, are uniquely determined by the
system of equations

x du (x) h (k) +x du(x), O<=]<-n-k-1.
=k+l

(The coefficient matrix of this system is a Gram matrix.) Moreover, the orthogonality
conditions (1.12) imply that p,(x) has at least n-k zeros in (0, oe); hence, Descartes’
rule of signs implies that the coefficients in (1.18) alternate in sign. It follows that

(1.19) (- 1)s-k-lb (k) >0,,. k + 1 =<s =<n.

The inequality (1.19) in particular shows that p,k (x) is indeed a polynomial of degree
n. In a similar fashion, the polynomials q, (x) are uniquely defined. We point out that
Trench obtained (1.19) by a different argument in [8] where he also showed that
p, (x) has exactly n- k zeros (all simple) in (0, oo).
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The sequences {p,,o} and {q,,o} are orthogonal over (0, 00) with respect to du(x)
and (x +a) du(x) respectively, and normalized so as to be positive at zero. It was
conjectured by Askey [ 1] and proved by Trench [10] that this implies (1.15) for k 0.
The sequences {p,,} and {q,,1} are specific classes of quasi-orthogonal polynomials.
(See [4].)

We now prove a series of lemmas and preliminary theorems with the intention of
ultimately displaying the coefficients u,-) in (1.14) as the solutions of a suitable linear
system. In what follows we assume that 0<c < 1. Once Theorem 1.1 is proved for
these values of c, it follows for all positive c by iteration.

2. Properties of the polynomials P.k (X). We begin by establishing a recurrence
relation satisfied by the polynomials p. (x).

THEOREM 2.1. The polynomialsp (x) satisfy the recurrence formula
(2.1) p,,k(X) --Bff’)p,,k-l(x)+A)p,,-a,k-l(X)
where A > 0 and Bff’ > O, 1 <-_ k < n. Moreover,

(2.2) (- 1)"-k x"-kp,,k (X du (x > O, n >- k.

Proof. Define

(2.3) L,,k(X; a)=ap,,,k-l(X)+(l--a)p,,-1,k-l(X)

where a is a constant. Then Lnk(X; a) is a polynomial of degree n such that
(r)L,k(O, a) 6o,r, 0 --_< r --<_ k 1. Also,

L,k (x du (x O, O <=j <-- nOg )X 1.

We now choose a so that L)(O; a)= O; that is, so that

(2.4) ,,,, k-1) /. (k-l),. +(1-au,._ =0.

With c chosen in this way, Lnk(X;Ot) satisfies conditions (1.12) and (1.13). Therefore,

(2.5) L,k (x a) --- P,k (x).

Since (2.5) implies that ab (-),().. we see from (1.19) that a <0. This completes
the proof of (2.1). Now from (2.1)

(2.6)

x "-kp.k (x) du (x) A (,k) X "-kp,,_ 1,k-1 (X) du (x)

B x-p,_(x du (x

A7 x"-kp,_,k_l(X) du(x),

by the orthogonality conditions (1.12). Repeated application of (2.6) yields

(2.7) xn-kpnk(X du(x) A(nk)A (k-l) A(1) n-k
.-1 .-k + X p,,-k,O(X du (x

where 0) _-<j k. SinceA,_k+j> 0, 1 _--<

I xJp,-k,O(X) (X) O, <--_ j <= n 1,du 0 k
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it follows that

x"-p"_,o(x du (x
b o) [p,,-k.o(X)]2 du (x).
n-k,n-k

Now, (1.19) and (2.7) imply (2.2). This completes the proof of the theorem.
Knowledge of the signs of the coefficients in a certain linear combination of the

polynomials P,k (X) will be needed later. This information is contained in the following
lemma.

LEMMA 2.1. Let be a nonnegative integer and suppose 0 < c < 1. Set a u + c
and define hk-1,k (X a) x (x + a )c. For s >-_ k let

where

(2.8)

Then, for s >= k

hk (X a) h-l.k (X a fl (a )pk (X

(a) r----h-a’k(X; a)x‘-k du(x)

(2.9) h,(x; a)x du(x)=O, O<-j <-s-k.

Also, ilk +l=<u<s we have (- 1)’-k-/3,(a) >0.
Proof. If we use (1.12), equation (2.9) follows from (2.8) by an easy induction

argument. Also, h,k (x;a) has the explicit form

hk(X; a)=x(x +a)- i(a)pi(x).
=k

We now assume that k + 1 =< u < s. Then the derivative of h (x; a) is

h’(x; a)=x-(x +a)-(ax +ua)-x--a(x)

=xk[ax"-k-(X+a)-a(x+ c,) :__,(x)]
where

-k-a(X) i(a
j=k X

Equation (2.9) implies that hsk(X; a) has at least s-k + 1 zeros in (0, c). Rolle’s
theorem implies that h’sk(X;a) has at least s- k zeros in (0, c) and that consequently
the (s- k- 1)st derivative of

has at least one zero in (0, o). Let

f(x)= axu-k-l(x -1--t)c-l(x
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and rn u k 1 -> 0. Since (x + ua/(c + u)) (x + a) ca/(c + u), we have

f(x =a
i=0

a E m + c
)m+l-i )c+i-1 )m+ )c-1

i-1
 (x+a

where the summation term is absent if m 0. Thus

ff(x)=(a)r 2 +
c m )+_ c+i-1 (x+)+--

1 ci (-

Now, if 0 < c < 1 and 1 N Nm < r the following inequalities may be verified:

(2.10) (-1)-(c-l+t)>0’r
It then follows that for x > 0

(2.11)

(-1)(c-1)r >0 and (-1)-’-1(c+m)r > 0.

(-- lf-"-lf)(X) > O.

Let r s k 1; since m u k 1, our assumptions that k + 1 v < s and 0 < c < 1
imply that the inequalities (2.10) are valid and hence (2.11) yields

(2.12) (- 1)s--lfs-k-1)(X) >0, X >0.

Our earlier observation that the (s- k- 1)st derivative of f(x)-G-k-l(X) has at least
one zero in (0, oo) implies that

(2.13) fs-k-1)(Xo)+(a)b) s (s-k- 1)! =0

for some Xo (0, oo). It follows from (1.19), (2.12) and (2.13) that

(-- 1)"-k-lfls(a)>O, k + 1 <=v <s.

This completes the proof of Lemma 2.1.
The next lemma generalizes the classical result that a function fix), continuous on

an interval [a, b and satisfying
bIa f(x)x] O<--jdu(x)=O,

must have at least n + 1 zeros in (a, b).
LEMMA 2.2. Suppose f(x is continuous in [0, oo) and

(2.14) fix )x du (x O, ] O, k + 1,. ., n.

Then f(x has at least n -k + 1 zeros in (0, oo).
Pro@ The proof is by contradiction. Since I0 f(x) du (x)= 0, f(x) changes sign at

least once in (0, ce). Suppose f(x) changes sign only at points x,x_,..., x, where
1 _-< m _-< n -k. We first show that there is a polynomial g(x) of the form

(2.15) g(x) 1 + ax
j=n--m+l
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such that

(2.16) g(x) (x -Xl)(X -x2) (x -x,,)w(x)

where w(x) is of constant sign in (0, oo). To this end we impose the conditions
g(x,) O, 1 <= r <= m, and observe that this gives rise to the system of equations

(2.17) c(x,) -1, l<-r<=m.
j=n-m+l

This is a square system, the coefficient matrix of which has the form

(2.18)

n--m+l n--m+2
Xl Xl
n--m+1 n--m+2

X2 X2

n--m+l n--m+2
Xm Xm

The determinant of the matrix (2.18) has the form

(XlX2 Xm)n-m+l det(2.19)

1 x x’-

1 X2 X7-1

m--11 Xm Xm

which is nonzero since the determinant in (2.19) is a Vandermonde determinant.
Thus, the system (2.17) is nonsingular and consequently the coefficients {ai} in (2.15)
are uniquely determined. Since Descartes’ rule of signs implies that the number of sign
changes in the coefficients of g(x) is an upper bound on the positive zeros of g(x), we
conclude that g(x) has m zeros x, x2,’’’, x,, in (0, c). Therefore, g(x) has the form
(2.16) where w(x) has no roots in (0, c). Now,

d(x)(x-x,)(x-xa) (x-x)w(x)

is of constant sign in (0, oo); but

x,)(x x). (x x) (x) O,du

which is a contradiction. Hence, f(x) must have at least n- k + 1 roots in (0, oo), and
the proof is complete.

Since the linear span of {p,...,p,} is the same as that of {1, x +1,... ,x"},
(2.14) is equivalent to

f(x )pk (X du (x O, k<=yn.

This is used in the next theorem. This theorem generalizes the device used by Trench
[10] to prove the Askey conjecture.

TnzoRz 2.2. If a > 0 and a 1, , a n k 1, then

(2.20) (-1)"-a(a- 1) .(a-n+k+l) (x+a)ap,(x)du(x)>O, n>k.
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Proof. Define

G,,(x; a)=(x +a)"- Z di,(a)x,
]=0

where the coefficients {d, (a)} are determined by the conditions

G,,, (x a )p, (x du (x O, <_r<_n.

This implies that

’ 4,, (a X]pr, (X du (x (x + o )’pr, (x du (x ), k <- r <= n.(2.21)
=o

By the orthogonality conditions (1.12), the coefficient matrix of this system is upper
triangular. Recalling (2.2) we thus see that the {d, (a)} are uniquely determined. By
Lemma 2.2, G,,k (x;a) has at least n- k + 1 roots in (0, oo). This implies that

a(a- 1)... (a -n +k + 1)(xa + a)-"+ d,,-k,,, (a )(n -k)! =0

for some X (0, oo). Therefore, if a 0,. , a n -k 1,

(2.22) a(a- 1)... (a-n +k + 1)d,,_k,,,(a)>O.

Setting r n in (2.21) we see that

(2.23) d,,_,,,,(a) x"-’p,,,(x) du(x)= (x + c)p,k (x) du(x).

Now (2.2) and (2.22) complete the proof of the theorem.

3. Proof of Theorem 1.1o Let 4o, 4,""", 4,, be a sequence of polynomials
orthonormal over (0, oo) with respect to du(x) and normalized so that 4(0)>0 for
r_-> 0. (If du(x) has only N points of increase in (0, oo), then we have only N-1 of
these orthonormal polynomials.) Recalling (1.14), we may write

(3.1) q,k(x)cDr(x)(x +a) du(x)= a2 p]k(X)lr(X)(X q-Ol)
]=k

O<-r<=n -k.

By the orthogonality conditions (1.16) we have

q,,t,(X)Ckr(X)(X +0) du(x)
O,
Pn

O<=r<__n-k-1,
r=n-k.

To see that p, >0, we note that since 4(0)>0, Descartes’ rule of signs implies that
(-1)i4q)(0)>0, 0_-<]-<r. (As all zeros of 4(x) are in (0, oo), we actually have
(- 1)4)(- c) >0, a =>0.) Thus, using (1.16) we can write

(3.2)
I q,,, (x )ch,,_, (x )(x + a )c du (x

(n -k)

If4,.- (o)
)c

(n-/)!
x"-q.(x)(x +a du(x)

(- 1)"-4k)(0)(_ 1),- Io )c(n-k)!
x -q.(x)(x + du(x)>O,



508 LEO W. LAMPONE

from Theorem 2.1. Thus, (3.1) becomes

(3.3)

-,., (k)

(k)
tk+l,

.(c)

(k)
_

where

(3.4) ,k (C 4)i-k (x )pjk (X )(X + a )C du (x
k <=i,j

We now proceed to record information relative to the entries of ,,k (C).
LEMMA 3.1. For 0 < c < 1, the elements above the diagonal of d,k (c are negative.
Proof. Setting a r + c in Theorem 2.2 yields

(- 1)"-k (r +c)(r +c 1)... (r +c -n +k + 1) du(x) >0.
,tO

If 0 < c < 1 and 0 _-< r _-< n k 1 we obtain

Since

(-1) (x+a)+p.(x)du(x)<O,

(Dr(X)--- , lr)(--O)(X --0)
=o

O<=r<=n-k-1.

with (- lY4)(-a)>0, we see that the elements above the diagonal of (nk(C) satisfy
the inequality

I Psk(X)Cr(X)(X +Ce) du(x)

16Y)(-a)l(-1) (x +,)c+%(x) du(x) < O, O<=r<=s-k-1.

This completes the proof of the lemma.
We now consider the matrix q, (0).
LEMMA 3.2. ,k (0) is a lower triangular matrix with positive elements on the main

diagonal and zero elements in the first column below the main diagonal. Moreover,
recall (2.1):

P,,k (X B (,,k )p,,,k_ (X +A (,,k )p,,_ ,.k_ (X ), n>=k+l,
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where A)>0 and Bk)> 0. Define A)= 1 and B)=O,] >- 1. Then, for n >-k + 1, the
matrices ,k (0) satisfy the recurrence formula

(3.5) lffnk (0) (I)n-l,k-l(O)

Akk) O 0
0 A;k+l 0
0 --B(kk)+ Ak)

k+2

0 0 0

0 0
0 0
0 0

--B(k)_ A7
(The only nonzero elements in the matrix displayed in (3.5) occur on the main diagonal
and one position below the main diagonal.)

Proof. The elements above the main diagonal vanish because of the orthogonality
conditions (1.12). Elements in the first column below the main diagonal vanish
because

Pkk (X )tr (X du (x )r (X du (x O, r > O.

As for the elements on the main diagonal,

I? i-k (x )Pik (X du (x > O, k<i <

by a computation similar to (3.2). Now, recall (3.4) (with c 0)"

O,k (0) Ci-k (x )p;k (X du (x
k

Thus,

(I)n_l,k-l(0) (i-k+l(X)pj,k-l(X) du(x)
k-l <--_i,j<--n-1

If we now define

(p, q) p (x )q (x du (x

the right-hand side of (3.5) is seen to be of the form

(490, Pk-l,k-1) 0 0
0 (Pl, Pk,k-1) 0

(3.6)

0 (c,-k, Pk,k ) (tn-k, Pn-l,k-1)

( o
0 A(k)

’k+l

o -B

0 0

0
0
A (k)

k+2

0

0
0
0

0
0
0
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The diagonal elements of this product have the form

a 4,- (xp_,_(x du (x,
But _

(xlp_,_(x au (x

[A}k)pi-l,k-l(X)--B[k)pi,k-l(X)]i-k(X) du(x)

k<-_i,]<=n.

()Ai 0 0 0 0
0 A(i)

i+ 0 0 0
)_0 -B}I" ni+z 0 0

0 0 0 Bi_)l Ai)

Note also that

aq A)t‘ i-k (X)pj_ 1,t‘ -1 (X) du (x) B]t‘) i-k (X)P],k -1 (X) du (X)

[A)k)pi-l,k-l(X)--Btk)pi,k-l(X)]qbi_t‘(X) du(x)

i-k (x )pit, (X du (x ),

again with the use of (2.1). Thus, (3.5) is established and the lemma is proved.
If we now set

repeated application of (3.5) yields

(3.7) O.k (0) On-k,o(O)r(nl)k +1’’" 1-’(nk).
Since (1.12) implies that pj,o(X)= yji(x) (yi >0), we have

(I)n _k,0(0)

j-1

0 0 -B)/-)I
We shall need the following lemma.

(i)
j-

l <=i<=k, j>i,

-k(x)pk (X) du (x), k _<- -< n,

by (2.1) and the orthogonality conditions (1.12).
Now, in the matrix product (3.6) it is clear that elements above the main diagonal

and in the first column below the main diagonal are zero. Let aq, k <] <i _-<n,
represent the remaining elements in the product. Then
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LEMMA 3.3. For each nonnegative integer n let A. be a square matrix of order n + 1
such that, i[ n >- 1,

[An-I [3n l(3.8) A. [J+]0=,,i=.
L On /nn.

where a, [A, ,. ., A,,,_] and ft,’ [A ,,,. ., A,_,,]. Suppose that det A > 0, ] _-> 0,
and for each n > 0 we have

(3.9) A,v _-< 0, O<-_j<-n-1,

and

(3.10) A, _-<0, O<=i<-_n-1.

Then for each n >-_ 0, AS1 is nonnegative. If strict inequality holds for at least one j in
(3.9) and at least one in (3.10) ]’or each rt >0, then A- is positive.

Proof. The lemma is obviously true for n 0 Assume that A-1 is nonnegative
(positive) and consider AS. Let

det An-1
o-, 0.

det A,
Since A, has the form (3.8), we may express A as

A_=[AI+tr.(A--,fl.)(a.AI) o’. (A-,fl.)]O’, (a,All) O’n

From the induction assumption, we see that A is nonnegative (positive) and the
proof is complete.

v() is nonnegative, 1 < < k, j > i.Thus, Lemma 3 3 implies that the inverse of
_

Hence, equation (3.7) implies that (0) is nonnegative. Since the system of equa-
tions (3.3) is not diagonal if c 0, we consider the following system"

-0 -0 -] -.. (,)

0 0 ak,.
(3.11) (I)(0) -(O),k(C)

0 0 _(k)
IA _]

_p._ _h.
Since cI)(0) is lower triangular with positive diagonal entries, we see that A. >0.
The matrix ,(O).k(C) has negative entries above the diagonal since this was
true of .k (C). Also, the matrix (0).k() has the recursive form (3.8) of Lemma
3.3. Moreover, since det ,(O).k(C)>0 for small positive c, a continuity argument
shows it to be true for all positive c. We now prove that the elements below the
diagonal of 2t(O)()nk (C) are negative.

LEMMA 3.4. For 0<c <1 the elements below the diagonal of the matrix
dO-(O),k (C) are negative.

Proof. Define
/3(a)

(3.12) B.Ca)

L/.Ca)_/
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where the {fl(a)} are as in Lemma 2.1, and again a v + c. Recall from Lemma 2.1
that

satisfies

which may be written

h,,k(X; a)=x(x +a)- , (a)pk(X)
.i--k

h,,k (X a )x du (x O,

(3.13) h,k(X; a)4)(x) du(x)=O,

b(x) as in (3.1). Thus, (3.13) implies that

(.4 Y (a p(x4(xl clu(xl x(x +,;4)(x clu(xl,
]=k

(3.15) B,(a) O(0)

The system of equations (3.14) may be written

(o, x(x +c;)
(4). x(x +)

_(O._. x" (x +a)
From (3.4), the columns of q2(0)q, (c) may be written

Io p (xo(X(X +; atu (x

Io p,k(X)4),(X)(X +a) du(x)

jo P. (x)4)._ (x )(x + a )c clu (x_
That is,

2(0)O,, (c) [Ag, A+1, A, ].

But (1.18) and (3.15) imply that

(3.16a) A, B,, (c),

(3.16b) A =B.(c)-
j=k+l

k <

Let

bkB,,(j +c), k + l <=s <=n.

Eks

Ek+l,

A-

L 8ns

O<=j<-_n-k,

O<=r<=n -k,

O<=r<-n -k.
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in particular

Ak =B,(c)

l,kk

k+l,

[.. l?,nk

Since pr,0(x) yr(x) (y > 0), Theorem 2.2 implies that

Io 4(x)(x + du(x)<O, r >O.

Thus, recalling the characteristics of (0) we see that ejk < O, k + 1 <-] <-_ n. From
Lemma 2.1 and the inequality (1.19) b{13i+q +c) >0, 1 <=r<-n -j, for each j, k + 1 _-<
j _-< s --< n 1. Recalling (3.16) we see that es < 0, k -< s < r _-< n. This completes the
proof of the lemma.

It now follows from Lemma 3.3 that the matrix O,(O)O,k(C) has a positive
inverse. Recalling the system of equations (3.11) we see that, for 0<c < 1 the
inequalities (1.15) are obtained. By iteration of this result Theorem 1.1 is proved.

4. An application oi Theorem 1.1. At this point, recall (1.11). We see that by
setting

0_-<x <=1,
du(x)=

l. O, x > 1,

and dv (x) x c’[ 1 + Ax]- du (x), we have the following result:
THEOREM 4.1. Suppose MV(n, k; ) is stable for all n >=k + 1 >- 1. Let

2 0 c2

1-’(0) sln (-]]’[I+A sin2()] cI)(0)
[ 2/

where c 1, C2, A are nonnegative numbers. Then MV(n, k F) is stable for all n >- k + 1 >-
1.

Note that if we set Q(x)=x I-Ii=l [1 +Aix]’, ci -->0, Ai =>0, l<--i<=r, and A(0)=
Q(sin2 (0/2))(0), then iteration of Theorem 4.1 yields stability of MV(n, k; A) for all
n__>k+l__>l.
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AN ITERATIVE TECHNIQUE FOR OBTAINING SOLUTIONS
OF A THOMAS-FERMI EQUATION*

C. D. LUNING*

Abstract. A convergent iteration scheme is given for the boundary value problem y"= X-1/2y 3/2,
y (0) 1, -y (b) + by’(b) 0. An iteration scheme based on eigenpairs of Hilbert-Schmidt operators obtained
from a Green’s function representation for solutions of a linearization of the eigenvalue problem u"=
Ax-1/2u 3/2, -au(O)+u’(O)=O, -u(1)+u’(1)=0 is shown to converge to a solution. The solution of the
Thomas-Fermi equation for b A 2/3 is then given by y(x) u(A-2/3x). Since the linear operators involved
are Hilbert-Schmidt, the iteration lends itself to implementation through Galerkin methods.

1. Introduction. In 1927, in their work on potentials and charge densities in atoms,
L. H. Thomas [22] and E. Fermi [7] independently introduced the nonlinear second
order differential equation

(1.1) y"--x-1/2y 3/:"

known as the Thomas-Fermi equation. Three sets of boundary values, corresponding to
three different physical situations, are commonly associated with (1.1)"

a) the neutral atom with Bohr radius b

(1.2) y(O)= 1, -y(b)+by’(b)=O,

b) the isolated neutral atom

y(0) 1, lim y(x) 0,

c) the ionized atom

(1.4) y(0) 1, y(a) 0.

We note that the Thomas-Fermi equations are still used for atomic calculations
(see for example [4], [5], [21 ]), and the related Thomas-Fermi theory is still a subject of
physical research (see [13], [14]). In this paper we restrict our considerations to
equation (1.1) subject to the boundary values (1.2). We are not concerned here with the
physical ramifications of the Thomas-Fermi theory, but only with some of the
mathematical aspects of showing that a certain sequence of functions does converge to a
solution. In fact it is shown that for certain values of b, a sequence of functions obtained
from the solutions of a related linear eigenvalue problem converges uniformly on [0, b ]
to the solution of the Thomas-Fermi equation with boundary values (1.2).

Before describing the approach used in this paper, a short synopsis of other
approaches which have been used is given. The first boundary values to be considered
were those of the isolated neutral atom (1.3). For this case the existence of a unique
solution follows from a general theorem of A. Mambriani [15]. For computational
purposes, Thomas utilized Adam’s method of numerical integration of the differential
equation. Sommerfeld [20] developed the approximate solution

(1.5) y (x) 144x--3[1 + (144x-3)ml/3]m2/3

* Received by the editors December 11, 1975, and in revised form October 7, 1976.
Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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where m2<0<ml are the roots of m2+7m-6=0. Sommerfeld’s approximation is
quite accurate for large x but underestimates the solution near the origin (see [6]).
Analogue computers have also been used to find approximate solutions (see [1]), and
more recently Ramnath [ 18] has used a technique known as multiple scales.

Passing now to the other boundary conditions, solution by infinite series has been
used in conjunction with all three sets of boundary values (1.2), (1.3) and (1.4).
Equation (1.1) with the initial condition y (0)= 1 leads to the formal series solution

(1.6) y(x)= 1 +b2x +b3x3/2+ +bkxk/2+
where the coefficients b, k => 3, can be expressed as polynomials in the coefficient b. Of
course b2 is the slope of y at the origin. There is a critical value o, o approximately
-1.588, such. that if b2>w, then the series converges to a solution satisfying the
boundary values (1.2); if b2 w, then the series converges to the solution satisfying the
boundary values (1.3); and finally if b2<w, then the series converges to a solution
satisfying the boundary values (1.4). E. Hille [9], [10] has a discussion of the con-
vergence of the series (1.6). These papers also contain references to the numerous
numerical results which have been obtained from the series solution.

We mention that there has been an abundance of literature on the Thomas-Fermi
equation and related theories. Extensive reviews of this literature can be found in [8],
[ 16], [23].

The approach taken in this paper is decidedly different from those previously
described. As indicated before we restrict our attention to

(1.7)
y" X-1/2y3/2,
y(0)= 1, -y(b)+by’(b)=O.

An iterative procedure is used to generate a sequence of functions {y} which is shown
to converge to a solution of (1.7). The iteration is based upon the eigenvalues and
eigenfunctions of a related linear Sturm-Liouville problem. The proof is valid however
only for a limited range of values for the end point b.

We first consider the nonlinear eigenvalue problem

U AX-1/2U3/2
(1.8)

u(O)=l, u’(O)=a, -u(1)+u’(1)=O.

If u is a positive solution of (1 8) with corresponding positive eigenvalue A, then
2/3y (x) u (h-2/3x) is a solution of (’1.7) for b h The main result can be stated as

THEOREM 1. For a >-- 1, let Uo(X 1 + ax, andfo u/2 For each k 1, 2,.
let (Uk, hk ) denote the positive solution of

U" lX -1/2"c (X)U, O<x < 1,Jk-1
(1.9)

-au(0)+u’(0) 1, -u(1)+u’(1) 0

where Uk is normalized by Uk (0) 1 and where fk U ],/2. Then Uo(X) < Uk (X), 0 < X < 1,
/.2k </.2k+2<h2k+1 <a2k-1, and U2k(X)<U2k+2(X)<U2k+I(X)<U2k-I(X), O<x <1.
Moreover, there is a positive solution (u, a of (1.8) such that hk - a and Uk -+ U uniformly
on [0, 1].

As for the restriction on a, in 2, equation (1.9) is transformed into an equivalent
integral equation which has a pointwise positive function as its kernel when a >--1.
This then insures the existence of the required positive eigenvalues and eigenfunctions.
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We note that Moore and Nehari [17] have used a similar iteration in their
consideration of the nonlinear boundary value problem

(1.10)
y"+p(x)y2"+l= 0, a <x <b,

y(a)=0, y’(b) =0

where p is positive and continuous on (0, oo) and n is a positive integer. Their approach
is also based upon a sequence of eigenvalues and eigenfunctions of a related linear
Sturm-Liouville problem. Briefly they proceed as follows:Let {uv} be a minimizing
sequence of admissible functions for the generalized Rayleigh quotient

(1.11) ($b (yt(x))2 dx)n+l
dx"

For each v, iteratively define the sequence {/)v,}=l" /)v,1 Uv. For/ => 2, a,, is the least
eigenvalue of the system

v"+Ap(x)v 2",,,_v =0, a <x <b,
(1.12)

v(a)=0, v’(b)=0

and v., is the corresponding positive eigenfunction normalized by b (V’,, (X))2 dx 1.
It is then shown that a subsequence of the diagonal sequence {(v,, a,)} converges
uniformly to a positive solution (v, A) of

v"+Ap(x)v2"+l=o,
(1.13)

v(a) 0, v’(b) 0.

A solution of (1.10) is then obtained from the solution of (1.13) by y A 1/2%.
It appears possible to modify the Moore-Nehari approach to accommodate the

Thomas-Fermi equation. However, the Moore-Nehari convergence is of a subsequen-
tial nature whereas with our approach it is shown that the original sequence converges.

As for the remainder of this paper, in 2 some preliminary structure concerning the
related linear Sturm-Liouville problem is developed. In 3 the main result is proved. In
4 some uniqueness results are given. Also the dependence of the end point b on the

initial slope a is discussed. Finally mention is made of how the iteration might be
implemented through Galerkin methods.

2. Preliminaries. The form of the linear Sturm-Liouville problem used in the
iteration is

U"-- IX--1/2f(X )U
(2.1)

-au(0) + u’(0) 0, -u(l) +u’(l) 0

where f is continuous on [0, 1], f(0)= 1, f(x)-> 1-x, 0=<x-< 1. By using a Green’s
function, (2.1) can be written as the equivalent integral equation:

(2.2)
U(X) I01 K(x, t; a)t-1/2f(t)u(t) dt,

x(l+at), O<-t<=x,
K(x,t;a)=

(l+ax)t, x<-_t<-l.
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Let Ht denote the Hilbert space:

Ht= u" x )]u(x) dx<oo,

(2.3)
Ilul[- x-1/Zf(x)lu(x)[2 dx

On H define the linear integral operator T by

(.4) (u)(x) K(x, t; )t-//(t)u(t) t

and on L[0, 1] define the linear integral operator Mf by

Io(.5 (M)(x) x-/y/(x)K(x, t; )t-/4/l/(t)(t) at.

Since Me has a square integrable symmetric kernel, Mt is a self-adjoint Hilbert-Schmidt
operator on L2[0, 1] (see [ 19]). Since for a => 1, the kernel ofM is a positive function,
it follows that Mt has at least one positive eigenvalue and that there is a positive
eigenfunction associated with the largest positive eigenvalue (see [11]). For the
remainder of this paper it will be assumed that a ->- 1.
The spectral properties of Tt necessary for our computations are readily obtainable

from those of Mt by noting that if L[0, 1] is an eigenfunction of Mt with
corresponding eigenvalue u, then for the function u in defined by

(2.6) u xl/4f-1/2(x)

it follows from (2.4) and (2.5) that

(2.7) x-/4’/(x)(u) M()= ,,x-’/4f’/(x)u.

Thus T and Me have the same spectrum and their eigenfunctions are related by (2.6).
By combining these spectral properties with the definition (2.3) of the inner product in
Ht, we conclude that Tt is a selfadjoint Hilbert-Schmidt operator inH with at least one
positive eigenvalue. Associated with the largest positive eigenvalue is a positive
eigenfunction.

Since Tt is a selfadjoint Hilbert-Schmidt operator, it has a complete orthogonal
system of eigenfunctions in Ht. The smoothness of the kernel of Tt allows us to assume
that the eigenfunctions are C[0, 1]. If u is a C[0, 1] eigenfunction of T, that is if
Ttu uu then

(2.8)
U"-- II--Ix--1/2Z(x)u
-u(0)+u’(0) 0, -u(1) + u’(1) 0.

Thus u(0) 0 for otherwise u’(0)= 0 also which would imply u(x)---0, 0-x <-1 (see
[2]). We normalize the eigenfunctions of T by u (0) 1. Of course by the orthogonality
of the eigenfunctions, there can be at most one positive Ca[0, 1] eigenfunction of Tt.

We now prove a technical lemma to be used in the convergence proof. Let ha and
h2 be continuous positive functions on [0, 1] satisfying
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i) there is a 6>0 such that hl(x)<h2(x), O<-x <6,
ii) if there is an Xo e (0, 1) such that h l(X0) > h2(xo), then h l(X) ) hz(x), x 6 [Xo, 1].
LEMMA 1. If h and h2 are as above and if for 1, 2, vi is a positive continuous

solution of

y"= x-1/2hi(x)y, 0<x < 1,
(2.9)

then UI(X) <U2(X), 0<X <1.
Proof. By the assumptions on h and h2 we have h 1(0)v1(0)< h2(0)v2(0). From the

continuity it follows that there is an e > 0 such that for 0 < x < e, v(x)< v(x). Utilizing
the initial values, we have by integration that v.(x)<v(x), vl(x)< Vz(X), (0<x <e.
Assume Xl (0, 1) exists such that Vl(Xl)=vz(xl) and Vl(X)<Vz(X), 0<x <xa. Then
v (x 1) --> v (x 1) and since v (x) < v(x), 0 < x < e, there must exist x2 E (0, X 1) such that
vg(x2) >v(x2). That is, xl/Zhl(xz)vl(x2) >x1/Zhz(xz)vz(x2). Since vl(x2)< Vz(X2) it
follows that h(x2)> hz(x2). Thus by our assumptions, hi(x)> hz(x), x2<=x -< l. Using
(2.9), we immediately obtain v’(x) >v’d(x), V’l(X) >V’z(X) and Vl(X) >Vz(X), Xl <x <-1.
Let gl(x)=-vl(x)+xv’(x) and gz(x)=-Vz(X)+XV’z(X). Then gl(x)>-gz(xl) and
g’(x)>g’z(X), x<=x<-l. Thus gl(1)>g2(1). However from the boundary values,
gl(1) g2(1)= 0. Thus Xl does not exist and Vl(X)< Vz(X), 0<x < 1.

We conclude this section with an observation on the behavior of the eigenvalues of
equation (2.1).

LEMMA 2. Iff andf2 are two distinctfunctions satisfying the conditions off in (2.1)
such that f(x)<- fz(x) and if (Wl, x) and (w2, x2) are the positive normalized solutions
corresponding respectively to fl and f2, then [d,2 < [d, 1.

The proof of Lemma 2 is omitted since Lemma 2 is essentially Sturm’s second
comparison theorem, the proof of which can be found in many standard books (see
for example [3]).

3. The convergence of the iteration. We now prove Theorem 1. Let Uo, fo, {uk}= 1,

{Ak}= and {f}=l be as in Theorem 1. Since u,(x)>0 and u I,(0)= c, u(0)= 1, it
follows that for each k _-> 1, u (x) > 1 + cx Uo(X), 0 < x <= 1.

LEMMA 3. Az<A1, Azfl can intersectAlfo atmostonce in (0, 1), and Uz(X)<Ul(X),
0<x<l.

Proof. A 2 </ follows from Lemma 2 and the fact that fo(x) <fl(x), 0 < x _-< 1. Since
2A 22u1(0) < A Uo(0) and since A u’(x) is increasing and A aUo(X) is constant, it follows that

u(x) can intersect A 2Uo(X) at most once in (0, 1). Thus Azfl can intersect A lfo at most
once in (0, 1). We can now apply Lemma 1 with hi =Azfl and hz--Alf0 to conclude
U2(X)<Ul(X), O<x < 1.

LEMMA 4. A 2 </3 < 1, / 2fl can intersect A 3fa at most once in (0, 1), A 3f2 can
intersect Alfo at most once in (0, 1), and ua(x)<u3(x)<u(x), 0<x < 1.

Proof. A 2 </- 3 </ follows from Lemma 2 and the fact that fo(x) <fz(x) <fl(x),
0 < x < 1. Since fl(0)= f2(0)= 1, we have A2f1(0)< A 3f2(0). As soon as it is shown that
Azf(x) can cross A3fz(x) at most once in (0, 1), it follows from Lemma 1 that
Uz(X)<U3(X), 0<x<l. Suppose there exist ao and al, 0<ao<al<l such that
A2fa(ao)=3fz(ao), A2f1(a1)=A3fz(a1), A2fl(X)<-_A3fz(x), O<--x<=ao, Azfl(x)>
I.2fl(X)>A3fz(X), ao<x <a. Let

2 2(3.1) z=,.fl=,u, and z2=,f=,u2.
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Then

Zt(X) IIX-1/2fo(X)ZI(X), O<x < 1,

z’(x) h2x-/fa(x)z:z(x), O<x < 1,

(3.2)
z(ao) zz(ao), z(a) zz(aa),

az ](ao) > z 2(o), z (a 1) < Z [(a ),

z(x)>z(x), ao<x <al,

-z() +z() -z(1)+z[() 0.

Thus there is an x3 (ao, al) such that z(x3)> z(x3). By using the differential equa-
tions of (3.2) which Zl and z2 satisfy along with the fact that z(x3) > z2(x3), we conclude
that h2/1(x3)> h Xf0(X3). From Lemma 3, A2/1 and h lfO intersect at most once in (0, 1),
thus h2/l(X) > h l/o(X), x3 <x 1. Putting this in the differential equation satisfied by Zl
and z2 we conclude z2(x)>z(x), a <x < 1 and thus z )>z(x), aa <x < 1. Let
Wl(X)=-za(x)+xz(x), wz(x)=-z2(x)+xz[(x). Then w2(a)wl(al) and w[(x)>
w[ (x), al<x 1. Thus w2(1)> w(1), which contradicts w2(1)= Wl(1)= 0. We thus
have the desired result that h2f can cross h 3f2 at most once in (0, 1).

The proof that h3fz can intersect hlfo at most once in (0, 1) and that u3(x)<ul(x),
0 < x < 1 is very similar to the proof of Lemma 3 and is omitted.

LZMMa 5. For each kl, h2<hzg+2<h2+1<h2-1, uz(x)<u2+2(x)<
u+(x)<u_(x), 0<x < 1.

The proof of Lemma 5 is omitted since it is accomplished inductively using
essentially the same arguments as in the proof of Lemma 4.

The sequences {h2} and {uz}= are increasing bounded sequences whereas
the sequences {h2+1}o and {uz+1}o are decreasing bounded sequences all of which
thus have limits. As k, let h,=limh2, u,=limuz, h*=limh2+a and u*=
lim u2+a. From (2.2) we have

(3.3) u, h, J0 K(x, t’, a)t-1/2"-.-11/2 (t)u,(t) dt.

Utilizing the dominated convergence theorem, it follows that

fou* * g(x, t; )t-/u/(t)u*(t) dr,

u, , K(x, t; )t-/u*/(t)u,(t) dr.

Of course u,(0) u*(0) 1, u,(x) N u*(x), 0 Nx N 1, and I, NI *. From (3.4) it follows
that

*" *X-/ /’, u*,
(3.5) 0 < x < 1,

,X-/*/
and that both u, and u* satisfy the boundary conditions

(.6 -u(0 + u ’(0) 0, -u( + u ’( 0.

LEMMA6.,= * U,(X)=U*(x),O<x<I
Pro@ If u,(x) u*(x) then by Lemma 2,1, <I *. From the equations (3.5) and the

(x) < u *’(x) andinitial values it follows that there is a > 0 such that u,(x) < u*"(x), u,
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u,(x)<u*(x), 0<x <6. If there is an Xo(0, 1) such that u,(xo)=U*(Xo), u,(x)<
u*(x), 0<x <x0, then there is an Xl (0, Xo) such that u(xl) > u*"(Xl), that is

a,X’I/2u:I/2(Xl)bI,(Xl) > a *XI/2uc/2(Xl)lg:(Xl)
from which it follows that ,,u/2(x)>A*u*/2(x), a contradiction. Thus if u,(x)
u*(x) then u,(x),<u*(x), 0<x<l. By utilizing this along with A,<A* in (3.5),

gwe conclude u,(x)<u*"(x), 0<x<l Let g,(x)=-u,(x)+xu,(x), (x)=
-u*(x)+xu*’(x). Then g,(0) g*(0) =-1 and g’,(x)<g*’(x), 0<x < 1. Thus g,(1) <
g*(1). However from the boundary conditions it follows that g,(1)= g*(1)=0. Thus
u,(x) u*(x), 0_-<x =< 1 and then of course A, A*.

We have shown that the sequence {(u, )}=a converges to a positive solution of
(1.8). To complete the proof o Theorem 1, we need only show that the convergence of
{uk } is uniform. The sequence o functions {uk } is uniformly bounded on [0, 1] by Uo and
ul. From (3.3), it can be shown that the sequence {u} is equicontinuous on [0, 1] and
thus the convergence of u to u is uniform on [0, 1].

4. Uniqueness results and eigenvalue bounds. In this section we show that the
positive C1[0, 1 solution of (1.8) is unique. We first consider the initial value problem

(4.1)
y,, X-1/2y 3/2,
y(O) 1, y’(O)- a,

for fixed/3 >0. If yl and y2 are two positive continuous solutions of (4.1) and if there is
an xo>O such that yl(xo)>y2(xo), then for xl =sup{x <x0; yl(x)=y2(x)}, it is clear
from (4.1)that y(x)=y2(x), O<=x <=Xl and y’(x) > y’(x), y’l(x)> y’2(x), yl(x) > y2(x),
X>Xl.

LEMMA 7. The C1[0, 1] solution o[ (4.1) is unique.
Proof. If y and )’2 are two distinct C[0, 1] solutions of (4.1), let xl be as above. We

show xa does not exist. Choose x2 >x so that yl(X2), y ](X2), y2(X2), y(X2) all exist. Then
for 0<x <x2

o_-<yi(x)-y(x)+/3x-1/:(yl/:(x)-y/:(x))
_-< (x/2 +/3)x-1/2(y i(x) y(x) + 2y /2(x)(yl (X) y2(X))).

Since y is continuous on [0, X2], there is k > 0 such that

0 <- y tl(X)- yt2(X) d- [3X-1/2(y31/2(X))
<-- kx-a/2(y l(X)- y2(X)d’- ytl(X y (X)),

0<x <x2. Let P(x)=yl(x)-yz(x)+ y’l(x)-y’z(X), p(x)=P(x2) exp (2k(x1/Z-x/2)).
Then p(x) satisfies p’= kx-a/zp, 0<x <x2, p(Xz)=P(x2)>O. Moreover p(x)<-P(x),
0<x _-<x2 for otherwise there are and h such that O<t-h <t<--x2, p(t)=P(t) and
p(x) > P(x), t-h <=x < t. However

P’(x) dx yi(x)-y’(x)+x-/a(y/(x)-y/(x)) dxP(t)-P(t-h)
-h -h

k x-1/2p(x) dx <-k x (x) dx p’(x) dx
-h -h -h

p(t)-p(t- h) P(t)-p(t- h).
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Thus p(t h) <-_ P(t h), a contradiction. However p(x) <= P(x), 0 < x <= X2 is obviously a
contradiction since

lim O(X) P(x2) exp (-2kx/2) >0
x0

and lim,_0 P(x) 0. Thus y Y2.
THEOREM 2. The positive C1[0, 1] solution (u, A) of (1.8) is unique.
Proof. Suppose (u, A) and (, ) are two positive C1[0, 1] solutions of (1.8). If A

then we can proceed as in the proof of Lemma 6 to arrive at a contradiction. Thus A X
and by Lemma 7, u .

We now give some bounds for the eigenvalues A of (1.8), and describe the behavior
of the end point b as c goes from -1 to +oe. First we show that increasing a decreases A
and of course decreases b.

THEOREM 3. Ira >2 >- --1 and if (u l, 1) and (u2, 12) are respectively the positive
solutions of (1.8) with initial slopes u](0) al and u(0) c2 then A1 <.

Proof. If A ->-12 then, since ul(0) u2(0), u](0) > u(0) and u’(x) A lx-1/Zu31/Z(x),
u(x) IzX-I/Zu/Z(x), it follows that ul(x) > Uz(X) and u(x) > u(x), 0<x =< 1. Thus
-u(x)+xu’l(X) and -Uz(X)+XU’z(X) can not both be zero at x 1, contradicting the
boundary condition.

By combining Theorem 3 with the result of Theorem 1 that A (c) < A (c) we obtain
the estimate that for c =>- 1

(To,, )o(4.2) -l(a)_->A-(a -1) >A ]-1(c -1) sup, ,-,o (, )o
where fo (1 -x) 1/2. By tting (x) 1 and by performing the integrations in (4.2) we
obtain the bound < 6(6/5. For the case a 0, we have fo(X) (1 +x)a/2 1 and

(4.3) A 1( > A ]() sup
(Tt’ b)o.

o (, 4)to
By letting fo 1 and x /4 and by performing the integration in (4.3), we obtain

16 16a(4.4) A-’(a)>+ 4"
From (4.4) it is evident that as a +, A 0+. Since b A 2/3, we now have some
estimate on the range of possible values of b for which the iteration is guaranteed to
converge.

At each step of the iteration we have A (a) is a continuous function of a for a 1
(see [3]). If we utilize

(T,)--1(4.5) ,
+1 sup,- (, )t

it is straightforward to show that A, (a) converges uniformly to A (a) on compact subsets
of [-1, ) and thus A (a) is a continuous function of a.

We conclude with some comments on the possible implementation of the iteration
for actual computational purposes. This problem seems to be well adapted to an
application of Galerkin’s method. In Galerkin’s method if {,} is a complete orthonor-
mal system in a separable Hilbert space H and if T is a compact selfadjoint linear
operator on H with simple spectrum then for LN the linear hull of {1, , ON} and PN
the orthogonal projection onto LN, the eigenvalues and eigenfunctions of PNTconverge



ITERATIVE TECHNIQUE 523

to the eigenvalues and eigenfunctions of T as N oo (see [ 12]). If Galerkin’s method is
applied to the operator T of (2.4), then it is necessary after every iteration to
reorthonormalize the sequence {bn} since the inner product in Hr changes with the
generation of each new function fk. It appears more appropriate to apply Galerkin’s
method to the operator Mr of (2.5) on L2[0, 1] and then use equation (2.6) to relate
these eigenfunctions to the corresponding eigenfunctions of T. We are proceeding with
actual numerical computations along this line using a complete orthonormal system of
polynomials in L2[0, 1]. The results of these investigations will be reported in a future
paper.
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SHORT PROOFS OF THREE THEOREMS ON ELLIPTIC INTEGRALS*

B. C. CARLSONf

Abstract. Duplication, reduction, and addition theorems are proved for a symmetric elliptic integral of
the first kind by change of integration variable. Some comments are made on the reduction theorem and its

relation to the addition theorem.

1. Half a dozen canonical forms for the elliptic integral of the first kind have been
proposed by various authors [8, pp. 49-50], most recently [1]

(1) R(x, y, z)= [(t+x)(t+y)(t+z)]-/ dr.

By standardizing the interval of integration, instead of the branch points of the
integrand, one retains permutation symmetry in the finite branch points, thereby
eliminating the linear transformations that plague Legendre’s integral [4]. Such permu-
tation symmetry is a property also of Weierstrass’ canonical form, which is closely
related toR [1, (3.10)]. The Landen transformation of (1)is discussed in references [1]
and [2], the duplication theorem in [4] and [10], upper and lower approximations in [5],
numerical properties in [2] and [9], and the addition theorem in [10, 8]. Most of these
may be compared with corresponding properties of Legendre’s integral proved in [7],
for instance.

A significant merit of (1) is the recently discovered reduction theorem,

(2)
[(t + aa)(t + b)(t + c)(t + d)]-1/ dt [(t + x)(t + y)(t + z)]-/a dr,

x ab + cd, y ac + bd, z ad + bc, a, b, c, d > O,

which has important consequences for tables of elliptic integrals [6]. This formula was
found by using the addition theorem, but its simplicity calls for a more direct proof. In
the present note we shall prove (2) by a change of integration variable which allows
other limits of integration without complicating the proof. The appropriate change of
variable was found by a method which suggested similar proofs, also presented below,
for the duplication and addition theorems. In each case permutation symmetry sim-
plifies the algebraic manipulations. After proving the three theorems we shall say how
the appropriate substitutions were found and comment further on the reduction
theorem.

THEOREM 1 (Duplication theorem). Let p, x, y, z be real numbers. Assume that
p + x, p + y, p + z are nonnegative and at most one of them is O. Define
(3) q =p+(p+x)l/2(p+ y)l/2+(p+x)l/2(p+z)l/2+(p+ y)l/2(p+z)1/2,
all square roots being nonnegative. Then

(4) [(s -I-- x)(s + y)(s -I- Z)]-1/2 ds 2 [(t + x)(t + y)(t + zl]-1/2 dt.

Proof. The appropriate change of integration variable is

(5) [(s + x) + (s + + x) + (s + z) -x.

* Received by the editors July 21, 1976.
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Expansion of the product shows that the right side of (5) is symmetric in x, y, z and that
s =p implies q. For brevity define

X= (s +x)/, Y= (s 4- y)1/2, Z (S 4- Z)1/2.

By symmetry,

(X+ Y)(X+Z)- x (Y+ Z)(Y+X)- y (Z+ X)(Z+ Y)- z,

(t + x)(t + y)(t + z)= (X+ Y)2(X+ Z)2(Y+ Z)2.
Differentiation of (5)yields

dt-" 21-(X-14- Y-1)(X 4- Z) 4- 1/2(X 4- Y)(X-14- Z-1) (2XYZ)- (x+ Y)(X 4- Z)(Y 4- Z),
ds

whence

[(s + x)(s + y)(s + z)1-1/2 ds 2[(t + x)(t + y)(t + z)1-1/2 dt.

Integration of this equation proves (4).
THEOREM 2 (Reduction theorem). Let a, b, c, d, p be real nonnegative numbers and

assume that at mostone o[a, b, c, d is O. Define x ab + cd, y ac + bd, z ad + bc, and

q 2[(p + a2)(p + b2)(p + c2)(p + d2)] 1/2 + 2p2 + p(a 2 + b 2 + c 2 + d2) 2abcd.(6)

Then

(7) [(s + a2)(s + b2)(s + c2)(s + d2)]-1/2 ds [(t + x2)(t + y 2)(t + Z2)]-1/2 dt.

_Proof. Let

(8) [(s 4- a2)X/2(s + b 2)1/2 + (s + c2)1/2(s 4- d2)1/2]2 (ab + cd)2.
Expansion of the squares shows that the right side of (8) is symmetric in a, b, c, d and
that s p implies q. Define

A=(s+a2)l/2, B=(s+b2)l/2, C=(s+c2)1/2, D=(s+d2)1/2.

By symmetry,

(AB + CD)2 x2 (AC+BD)2 y2 (AD +BC)2 z 2,
(t + x2)(t + y2)(t + z2) (AB + CD)2(AC+ BD)2(AD +BC)2.

Differentiation of (8)yields

dt= (AB + CD)(A-1B +AB-1 + C-1D + CD-1)
ds

(ABCD)-I(AB + CD)(AC+BD)(AD + BC),
whence

[(s + a 2)(s + b2)(s + c2)(s + d2)]-1/2 ds [(t + x2)(t + y2)(t + z 2)]-1/2 dt.

THEOREM 3 (Addition theorem). Let x, y, z be real nonnegative numbers and
assume that at most one of them is O. Let p be positive and define

(9) q p-2[(p + x)l/2(p 4- Y )l/2(p 4- z )1/2 4- (xyz)1/212 P x y z.
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Then

(10)

(11)

[(S + X)(S + y)(s + Z)]-1/2 dS [(t + x)(t + y)(t + Z)]-a/2 dt.

Proof. Let

XyZ[S-1/2(S-1 -i" x-l)1/2 @ (S -1 "4- y-1)l/2(S-1 @ Z-1)l/2]2- X.

Expansion of the square shows that the right side of (11) is symmetric in x, y, z, and
similar expansion of (9)shows that s =p implies q. Define

W- s-1/2, X-- (s -1 -- x--l)1/2, Y= (s -1-4- y-1)1/2, Z (S -1 "" z-l)1/2.

By symmetry,

xyz(WX+ YZ)2 x xyz(WY+ZX)2 y xyz WZ -- XY)2 z,

(t + x)(t + y)(t + z)= (xyz)3(WX+ YZ)2(WY+ZX)2(WZ+XY)2.

Differentiation of (11)yields

2 dt dt
--s d---=d(s_l----=xyz(WX+__ YZ)(W-1X+ WX-l+ Y-1Z+ YZ-1)

xyz (WXYZ)-I(wx+ YZ)(WY+ZX)(WZ + XY).
Since

it follows that

WXYZ s-2(xyz )-1/2[(s q- x )(s --]-- y )(s + z )]1/2,

[(s "- X)(S "1- y)(S "- Z)]-1/2 ds --[(t + x)(t + y)(t + Z)]-1/2 dt.

Integration of this equation completes the proof of (10).

2. All but one of the integrals in Theorems 1, 2, and 3 can be expressed in terms of
the standard integral (1), since

(12) [(s+x)(s+y)(s+z)]-l/2ds=2Rv(x+p,y+p,z+p),

as one sees by taking s -p as a new integration variable. Other integrals are reduced to
this form by putting )= o -q. Thus (10) can be rewritten in the form

(13) Rv(x +p, y+p,z +p)+Rv(x +q, y+q,z +q)=Rv(x, y,z).

The sum of two elliptic integrals on the left side is the sum of two arguments in the
addition theorem for elliptic functions. The symmetry of (13) in p and q matches the
symmetry of the rationalized form of (9),

(14) (pq -xy -xz yz) 4xyz(p + q + x + y + z).

The special case p q of (13) and (14) coincides with the special case p 0 of (4),

(15) Rl(x,y,z)=2Rv(x+h,y+h,z+h), A-’-X1/2yl/2-[-X1/2Z1/2-byl/2z 1/2.

The rationalized form of (3) is

(16) 2(2p+q+x+y+z)=(q+Y)(q+z)+ (q+z)(q+x)+ (q+x)(q+y).
q+x q+y q+z
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Substitution (5)was found by combining the previously known (15)with (12)to
obtain

If [(s+x)(s+ y)(s+z)]-1/2 ds=2RF(x +p, y+p,z +p)

=4RF(X +p+tr, y +p +tr, Z +p + o-)

2 [(t + x)(t + y)(t + Z)]-1/2 dt,

where q =p + tr and the second equation of (15).gives

o" (x +p)I/Z(y +p)/2 + (x +p)X/Z(z +p)X/2 + (y +p)X/Z(z +p)X/2.
We have arrived at (3), which is essentially the same as (5).

Substitution (8), with s and replaced by p and q, was found by putting s + p in

+ )(s + b)(s + c)(s + t)]-/[(s ds,a

applying the previously known (2), adding q to the variable of integration, and requiring
p and q to vanish together.

In [6] the reduction theorem was proved by using, the addition theorem. Con-
versely Theorem 3 can be proved directly from Theorem 2, and substitution (11) was
found in the course of doing so, as follows. On the left side of (10) we take s -1 as a new
variable of integration to get an integral having the same form as the left side of (7) with
a 0. The limit of integration on the right side of (7) is then found from (8) more
conveniently than (6). Multiplying the variable of integration on the right side by xyz (in
the notation of Theorem 3) yields both (10) and (11).

Although we have assumed all quantities to be real, Theorems 1, 2, and 3 remain
valid for complex values by the permanence of functional relations provided no
singularities of the integrands are encountered. In particular Rv(x, y, z) as defined by
(1) is holomorphic if x, y, z lie in the complex plane cut along the nonpositive real axis.

3. The reduction theorem has an interpretation in terms of capacities, since each
side of (2) is twice the reciprocal capacity of an ellipsoid [3, (4.2)]. The theorem asserts
that an ellipsoid in R4 with semiaxes a, b, c, d has the same capacity as an ellipsoid in R3
with semiaxes ab + cd, ac + bd, ad + bc.

One does not expect (2) to have an analogue in more than four variables. The group
$4 of permutations of a, b, c, d has an invariant subgroup V consisting of the identity
and three products of two-cycles: (ab)(d), (ac)(bd), and (ad)(b). The permutations
belonging to V leave urichanged the combinations x ab + cd, y ac + bd, z ad + bc,
while the factor group $4/V is isomorphic to the group $3 of permutations of x, y, z. It is
V which makes $4 solvable and in Galois theory allows the general quartic equation to
be solved by radicals. Since Sn is not solvable if n >4, one cannot expect to find
analogous combinations of more than four variables,

Although the polynomials in the reduction theorem are explicit products of linear
factors, one can readily deduce the following unfactored version involving quartic and
cubic polynomials with the same invariants.

THEOREM 2A. Let a be real and strictly positive. Assume that the quartic polyno-
mial as4 + bs 3 + cs 2 + ds + e is strictly positive ifs > 0 and either is positive or has a simple

thank Professor Irvin Hentzel for suggesting this argument.
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zero at s O. Assume 0 <= p <= c and define

(17)
f=c+6aa/2e l/z, g=bd+4cal/2el/2+8ae, h =(bel/2+dal/2)z,
q 2a 1/Z(ap4 + bp3 + cp2 + dp + e)1/z + 2ap + bp 2al/Ze 1/2.

Then

Io" Io(18) (as4+bs3+cs2+ds+e ds= (t3+ftZ+gt+h dt.

Proof. Put s a-1/2r so that the polynomials on both sides of (18) become monic.
They can now be identified with the polynomials in (7), and coefficients can be
compared.
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ASYMPTOTIC BEHAVIOR OF SOME DETERMINISTIC
EPIDEMIC MODELS*

FRANK J. S. WANGt

Abstract. We consider the asymptotic behavior of the solution of a system of nonlinear Volterra integral
equations which arises in study of the spread of a disease for which it is assumed that the rate of a susceptible
becoming infected depends only on the proportion of infectives, the rate of an infected individual recovering
from the disease depends only on the length of time since the disease was contracted, and that recovered
individuals are permanently immune from further attack.

We examine the limiting behavior of the solution which gives us results on the total size of the epidemic,
i.e., the proportion of the total number of individuals that finally contracts the disease.

1. Introduction. Deterministic models have a long history of use in the description
of the spread of an infection. A basic reference is the monograph of Bailey [1] which
contains a description of both stochastic and deterministic epidemic models. Many
widely used models assume division of a fixed population into three disjoint classes"
susceptibles, infectives and individuals who are removed from the susceptible infective
interaction by isolation, death or permanent immunity due to previous infection.
However, most of these models make the assumption that the infection rate is
proportional to the proportion of infectives and the removal rate is independent of how
long the individual has had the disease. These assumptions are clearly far from being
realistic. Wang [9], [ 10] suggests a general model for the study of the spread of disease
and examines the relationship between the stochastic and deterministic versions. The
present paper studies the asymptotic behavior of the deterministic model proposed by
Wang.

Let us suppose that a population of size N has at any time t a proportion s(t) of
individuals susceptible to a certain disease, a proportion x(t) of individuals actually
infected, and a proportion y(t) 1-s(t)-x(t) of recovered individuals that are perma-
nently immune from further attack. We assume that the probability of a particular
susceptible individual becoming infected during (t, t + dt) is a (x (t)) dt for some function
a such that a (0) 0, and that the probability of an infected individual staying infected
for at least a length of time is F(t) for some decreasing function F(t) such that F(0) 1.
Wang l-9] constructs a process with the above properties and proposes a continuous
deterministic model given by the system of equations

x(t)=r(t)+ a(x(u))s(u)F(t-u)du,
(1)

s(t) 1-x(O)- a(x(u))s(u) du.

Here, r(t) represents the proportion of infectives who are already infected at time zero
and are still infective at time t. This model generalizes Bailey’s general epidemic model
(Bartlett [2]) in which he makes the traditional assumption that the infection rate is
proportional to the proportion of infectives, i.e., a (x) a x for some constant a, and F
is exponential with parameter/3. In Bailey’s general model, the system (1) reduces to

x’(t) =a x(t) s(t)-flx(t),

s’(t) -ax(t)s(t).

* Received by the editors April 23, 1976, and in revised form November 10, 1976.
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This system has been studied by many authors (e.g. Kermack and McKendrick [7],
Bailey [ 1 ], Kendell [6], Waltman [8], Hoppensteadt [5], Hethcote [4]). In studying the
behavior of solution of (1), we are interested in the asymptotic behavior of y (t).Denote
the limit of y(t) as c by y provided it exists. Then y is the proportion of the total
number of individuals that finally contracts the disease. It is usually called the size or the
intensity of the epidemic (see Waltman [8]). We give conditions under which y is strictly
less than one and obtain an upper (lower) bound for y by approximating a from above
(below) by a convex (concave) function a+(a-). When a(x)= a .x is linear, the total
size of the epidemic is the unique positive solution of the equation

where
y +c e-’y- 1 =0,

m a F(s) ds

is the inverse of the generalized relative removal rate and

c (1 x (0)) exp. mx (0) a r(t)

In this case, our model is a special case of a more general model (SIER) studied by F.
Hoppensteadt [5] and P. Waltman [8]. In the SIER model, the class S is modified to be
"susceptible and unexposed to the infection", and a class (E) of "exposed but not yet
infective" individuals is added to the three disjoint classes x, s and y. The limiting
behavior of the functions s(t), x(t), E(t) and y(t)= 1-s(t)-x(t)-E(t) of the SIER
model are considered in the monograph by P. Waltman [8].

2. Limits of solution. We shall make the following assumptions on the functions a,
r and F:

Aa: We assume that a(0) 0, that a(x) is continuous and nonnegative on [0, 1],
and that a’(x) is continuous on [0, 1].

A2: We assume that r(t) is a nonincreasing continuous function, and that r(t) 0 as
r(t) dt < 00.t -> 00. We also assume that 0 _-< r(t) _-< 1 and 0

A3: We assume that F(0)= 1, that F(t) is nonnegative monotonic nonincreasing
and tends to zero as oo. We also assume that

THEOREM 1. Suppose the conditions A1, A2 and A3 are satisfied. Then the system
(1) has a unique solution pair (x (t), s (t)), where x (t) and s (t) are nonnegative, bounded by
1. Furthermore, x(t) tends to zero as t->oo and s(t), being a monotonic decreasing
function, tends to some limit s as t-> oo.

Proof. Let us first assume that a is Lipschitz continuous on [0, oo). Then the
existence and the uniqueness of the solution can be proved by a standard contraction
method (e.g. Wang [9, Lemma 5.2]). Since it follows from (1) that

Iots(t) (1-x(O)) exp.- a(x(u))

and 1 -x(t) _->s(t), it is clear that s(t) and x(t) are nonnegative, bounded by 1, and that
limt_oos(t) s exists. Suppose s =0. Then A2 and A3 imply that x(t)-O as
Suppose s > 0. Then

o
a(x(t)) dt < c.

This, together with (1) and A3, again implies x(t) 0 as t .
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Since O<-_x(t) <- 1, the solution of (1) is independent of the behavior of a(x) over
the set of all x > 1. Thus, by redefining a on (1, o) if necessary, we could assume that a
is Lipschitz continuous on [0, ). This completes the proof.

One of the classical results concerning the asymptotic behavior of the solution of
the renewal equation

(2) z(t) g(t)+ z(s)f(t-s) ds

where f and g0 are given nonnegative functions, is that z(t) grows exponentially as- if g(t)- O, f is of bounded total variation over [0, c) and

f(t) dt > l

(Feller [3]). The proof of the next theorem uses this well-known result.
THEOREM 2. Suppose the hypotheses A1, A2 and A3 are satisfied. Let (x(t), s(t)) be

the unique solution pairofthe system (1). Then s (t) tends to a nonzero limit s as t -, and

0<s_-< a’(0)" F(u) du

Proof. Choose a number M>0 such that a’(0)>M, and define b(x)= a(x)-Mx.
Since tb(0)=0 and b’(0)>0, b(x) is positive for all sufficiently small x_->0. Since
x(t)-.O as t-->, there exists a number T>0 such that 4(x(t))>=O for all _-> T.

We now rewrite the first equation in (1) as

(3) x(t)= h(t)+ M s x(u)F(t-u) du

where
T

h(t)=r(t)+ Jo a(x(u))s(u)F(t-u) du

+ [a(x(u))" (s(u)-s)+s" 4(x(u))]" F(t-u)du.

Make a change of variable t-T= and define z()=x(c + T), g()=h(c + T) for
c _-> 0; then the equation (3) for _-> T becomes

z(c)- g(c)+ M" s z(u)F(c-u) du.

Since s(t) decreases to s monotonically and ck(x(t))--> 0 as --> c, h (t) is nonnegative and
tends to zero as t-->o. This implies g is nonnegative and g(t)-->O as t-->c. Since
z(t)=x(t+ T)-O as t-->, the well-known classical result on the linear renewal
equation (2) implies that

Ms.F(t)dt<=l, or s=< F(t)d

Since the above inequality is true for all M such that a’(0)> M, the same inequality
holds withM replaced by a’(0). To show that s > 0, we choose a numberN> 0 such that
a’(0) <N and define (x)=a(x)-N x. Since (0)= 0 and ’(0)< 0, (x)< 0 for all
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sufficiently small x -> 0. This implies

(4) qt(x(t)) dt < 0

for T large enough. Integrating both sides of the first equation in (1), we see that it
follows from the Fubini theorem that

io (iox(t)dt= r(t)dt+(1-x(O)-s) F(t)d <.

Thus

(5) 0< x(t) dt <

for all T=> O. Since

inequalities (4) and (5) imply that the integral on the left side of the preceding equality is
finite. This implies

a (x (t)) <odt

and hence

s (1-x(0)) exp
[

a(x(t)) >0.

This establishes the theorem.

3. The total size of the epidemic. In this section we examine the size of the
epidemic y 1- s. It is clear from Theorem 2 that

y >-_ 1- o’(0). F(t) d

A different lower bound and an upper bound for y can be obtained. We define

k (t) exp
t

(x (u))

then

s(t)=(1-x(O))k(t) and (1-x(O))k(oo)=l-y.

Let c + be an arbitrary convex function such that

+(x)>-_(x) forallx e[0, 1],

and define

m o/(F(u))du,

a x(O) t+(r(t)/x(O)) dt.
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Then it follows from the convexity of a + and Jensen’s inequality that

a(x(t)) <-a+(x(t)) <=x(O)a+(r(t)/x(O))

+ (1-x(O)) a+(F(t-u)) d[1-k(u)].

Integrating both sides of the above inequality and applying the Fubini theorem, we
obtain

a(x(t)) + re(I-x(0)). (1 k (oo)).dt<=a

This implies

where

Let

0__<y +c e-’y- 1

c (1 x (0))" exp {mx (0) a }.

p(y) y + c g-my 1.

Then p(1)>0, p(x(0)) <0 and p">0. By elementary steps we conclude that p(y)= 0
has a unique solution y/ such that 1 _-> y* >-_x(0) and that y <- y/. Let a- be a concave
function such that a --< a for all x e [0, 1]. An argument similar to the preceding one
shows that y- -<_ y where y- is the unique root in [x (0), 1] of the equation

y + ( e
-ny 1 0,

with

and

rh a-(F(u)) du,

(1-x(0)) exp lx(0) a-(r(t)/x(O))

In particular if a (x)- a x is linear, y is the solution of the equation

y+c e-mY-1 =0

where rn and c are as stated at the end of the introduction.

Acknowledgment. The author would like to express his thanks to the referee, for
pointing out the results of P. Waltman and F. Hoppensteadt.
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ON THE INTERVAL OF EXISTENCE FOR NONLINEAR TWO POINT
BOUNDARY VALUE PROBLEMS*

PAUL B. BAILEY]" AND MICHAEL J. NORRIS

Abstract. The existence question for a nonlinear, two point boundary value problem (continuous and
Lipschitzian) can be reduced to that of the corresponding unforced problem with one zero boundary
condition. For fixed left-hand end point, the set of right-hand end points for which existence fails consists of
isolated points and isolated intervals.

Certain bounding curves arise in the case of failure of existence for an interval of right-hand end points,
and smoothness and dependence on initial conditions of these curves are determined in part. Also some
relationships between the given problem and the problem with initial and terminal points reversed are
established.

1. Introduction. In the case of a linear two point boundary value problem

(1) y" + py’ + qy (

(2) y(a)= A, y(b)=B

with p, q, and q continuous on [a, b], the question of whether or not there exists a
solution for arbitrary real numbers A and B and arbitrary real valued functions can be
answered in terms of the so-called homogeneous problem

(3) y" + py’ + qy 0

(4) y(a)= 0, y(b)= 0.

Thus, if the homogeneous problem (3), (4) has only the trivial solution y(x)=O, then
the inhomogeneous problem (1), (2) has one, and only one, solution for arbitrary A,
B, and q (x).

The same question for nonlinear equations of the form

y"(x)+/(x, y(x), y’(x))= 0,

where f is continuous and satisfies a Lipschitz condition in y and y’--i.e., there exist
constants K and L such that

(6) If(x, y, y’)- f(x, z, z’)[ <_-- Kly z[ + Lly’- z’[
for all x, y, y’, z, z’mis not so simply answered, of course. For one thing, uniqueness is
not so intimately associated with existence in the nonlinear case as it is in the linear.
Nevertheless the existence question for the problem (5), (2) can be answered in terms
of the corresponding "unforced" (we can no longer say "homogeneous") problem

(7) y"(x)+/(x, y(x), 0, 0)= 0

(8) y(a)= 0, y(b)=B.

It will be shown that (5), (2) has at least one solution for every A and B if and only if
(7), (8) has at least one solution for every B. Furthermore, the set of points b for which
this holds consists of isolated points and isolated intervals. Specifically, given b there
exists a positive 6 such that existence fails throughout (b, b + 6)or existence holds

* Received by the editors October 29, 1974, and in final revised form November 29, 1976.
? Applied Mathematics Department, Sandia Laboratories, Albuquerque, New Mexico 87115. This

work was supported by the United States Energy Research and Development Administration (ERDA)
under Contract AT(29-1)-789.
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throughout (b, b + 8) and, at .the same time, existence fails throughout (b- 8, b) or
existence holds throughout (b- 8, b).

Existence failure at an isolated right-hand end point b is, of course, the only type
of failure possible for linear problems. However, since failure for a whole interval of
end points can easily happen in nonlinear problems, this situation is examined in more
detail, some of the main results being illustrated by several examples. Certain bound-
ing curves arise in the case of failure of existence on an interval, and smoothness
characteristics and dependence on initial conditions of these curves are determined in
part. Some relationships between the given problem and the problem with initial and
terminal points reversed are established, primarily for the symmetric case cor-
responding to the first boundary value problem (FBVP) with conditions of form (2).

Although we discuss only the first boundary value problem, all results, except
Theorem 3(iii) are also valid for the second boundary value problem (SBVP) where
the boundary conditions are of the form

(2’) y’(a)= m, y(b)= B.

At most trivial changes are needed in the statements or proofs of the theorems.

2. Preliminaries. It will be assumed throughout that the function f(x, y, y’)
appearing in (5) is real valued, continuous, and satisfies a Lipschitz condition (6) on
any finite interval relevant to the discussion. This means, in particular, that the class of
functions being considered includes linear functions as in (1). For this class of Lip-
schitz functions it is well known [1] that initial value problems (IVP) for (5) always
have unique solutions, that these solutions exist on the whole real line, and that they
and their first derivatives on any finite interval depend continuously, uniformly on any
interval, on their initial conditions.

Another important and well-known [2] result which will be needed several times
is that any first or second boundary value problem for (5) (when f is continuous and
Lipschitzian) has one, and only one, solution if the interval [a, b] is sufficiently small;
how small depends only upon the Lipschitz constants. One obvious consequence of
this is the fact that the solution y(x; m) of (5) and y(a)= A, y’(a)= m has y(b; m)
+ and y’(b; m)+c as m+ for b-a positive and sufficiently small and
y(b; m)o q:, y’(b; m) +o for b-a negative and sufficiently small.

Moreover, in terms of the norm defined by

(9) Ilull(x)-lu(x)l / lu’(x)l
one has the following useful result:

LZMMA 1. If q (X), O(X) are continuous, and if u (x), v (x) satis[y

(10) u"(x) +f(x, u(x), u’(x)) o(x)

(11) v"(x)+f(x, v(x), v’(x))= q,(x)

on an interval [a, b ], then

(12) I[u-vIl(x)<-Ilu-vll(a). exp (klx-al)/ k-(M/N) (exp (klx-al)- ),

k max {K, L + 1}, M max I (x)l, N max
xe[a,b] x[a,b]

Pro@ In the terminology of [1, pp. 8, 19], u and v are e-approximate solutions of
(5) with e M and N, respectively, [3
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3. Existence intervals. Since solutions to initial value problems for (5) are con-
tinuous functions of the initial conditions, the set of values which can be obtained at
x b by solutions of (5) which satisfy the fixed initial condition, y (a)= A, constitutes
an interval of real numbers. This interval may be a finite interval (possibly a point), a
half line, or the whole real line. In the last case we say that existence holds at x b. (In
the linear case the only possibilities are a single point or the whole real line.) The
following theorem shows that the nature of this interval of values attainable at any
particular point b is independent of the initial value, A, at x a and also independent
of the "forcing term," -f(x, 0, 0) (which in the linear case (1) was denoted by 0(x)).

THEOREM 1. Iffor a particularA and o (x ) there exists a numberA (or A_ ) such that
every solution, y (x ), of
(13) y"(x)+f(x, y(x), y’(x))= (x)

(14) y(a)=A

also satisfies y(b)=<A (->_A), then ]’or any A and any o there exists an A (or A_ ) ]’or
which the inequality holds.

Proof. Denote by y(x; a,A, m, q) the solution of (13), (14) and y’(a)= m. Sup-
pose y (b; a, A, m, () =< A for all m. By Lemma 1,

ly(b; a,A’, m, O)-y(b; a,A, m,

<=IA-A’I. E+k-(M+N)(E-1),
hence

E exp (k ]b a

y(b;a,A’,m,O) <-y(b;a,A,m,o)+[A-A’l E+k-I(M+N)(E-1)
<-, +IA-A’[ E + k-(M+N)(E-1),

where the right side does not depend on m. Obviously the same simple argument
works in the case that y (b; a, A, m, ()-> _A. [3

When the set of values which can be reached at x b includes a half line
containing all positive (negative) numbers of large magnitude we will say that upper
existence (lower existence) holds at b.

Unlike the linear case, wherein existence fails only for a discrete set of right-hand
end points, existence can fail for a whole interval of end points in the nonlinear case.
An easy example is the case

(15) y"+ly[=0, y(0)=0, y(b)=B.

It is easy to write down the general solution to this differential equation, and it is
obvious that upper existence fails whenever b -> 7r. (See Fig. 1.1 of [2, p. 9]).

However, even nonlinear problems cannot have existence fail at a set of right-
hand end points having a limit point, b, unless existence fails on a whole interval of
points with end point b.

THEOREM 2. If upper (lower) existence for (5), (14) fails at x bl, b2, bn,
having a finite limit point, bo, then there is an interval ofpoints (bo, b*), or (b*, bo), such
that upper (lower) existence fails at every point of the interval.

Proof. Suppose the theorem is false. Suppose, for instance, that bn b0 from the
right, that to each b, there corresponds a B, such that every solution y(x)of (5), (14)
passes below/,, i.e., y(b,,)-<_/,,, and that between every b,, bn+l there is some c, for
which upper existence holds.

Now we know that if n is large enough, b,, b,+l are sufficiently close together that
any first boundary value problem on [b,/a, b,] has a unique solution. In particular,
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there is a unique solution, yn(x), of (5) through the points (bn+l, Bn+l) and (b,, B,).
Choose a number C, such that the point (c,, Cn) lies above (c,, yn(c,)). Since upper
existence is being assumed to hold at c,, there is a solution y(x) of (5), (14) satisfying
y(c,)= C,,. But since upper existence fails at bn+x and b,, this solution passes below
yn(x) at bn+x and b,. Necessarily this y(x) must meet y,(x) at least twice in the interval
[bn+x, bn], which violates the uniqueness for first boundary value problems that is
known to hold if [bn+l, b,] is small enough.

The contradiction establishes the theorem in this case, and obviously the other
cases can be treated in exactly the same way. Iq

Theorem 2 is still valid if (14) is replaced by

(14’) y’(a)= m.

However, Theorem 2 need not hold in the case of the second boundary value problem
(5), (14), y’(b)=n. For, as the following example shows, one can have a linear
equation of form (5) for which a can be chosen so that any solution, y, satisfying (14)
(or (14’)) has y’(b)=0 for a sequence of points {b,} converging monotonely to b0
from above while for b in (bn+l, bn) as y runs through the indicated family of solutions
y’(b) runs through all real numbers.

Example 1. Let C be any function which is continuously differentiable on (c, c)
with C’ having a limit from the right at c. Then there exist continuous functions, f and
g, on (-c, ) and a number, a, such that for any solution on (-o, ) of

y"=fy +gy’

y’- Cy is constant on (c, ) and fire derivative of that solution with y(a)= 0, y’(a) 1
has zeros on (c, ) at exactly the zeros of C. Since the equation is linear, existence will
fail on (c, ) at the zeros of C and hold elsewhere on (c, c).

Proof. C also has a limit from the right at c. Take an extension of C (leaving
notation unchanged) which is continuously differentiable on an open interval (d, c),
with d < c, and satisfies C(b)= 0, C’(b)< 0 at some point, b, of (d, c).

Let f be equal to C’ on [b, ) and C’(b) on (-c, b). Let g be equal to C on [b, c)
and C(b), so 0, on (-c, b). Then f and g are continuous on (-c, o).

If y is a solution of the differential equation, then on [b, ) one has y"=
C’y + Cy’, (y’- Cy)’ 0. For A 0 let y (x; A) be that solution with y (c; A) A and
y’(c; A) C(c)A. Then

y’(x; A)= C(x)y(x; A),

y(x; A)= A exp C(sc) dsc.

Since y(x; A) has no zeros on [b, ), y’(x; A) has the same zeros there as C(x).
Now y’(b; A)= C(b)y(b; A)= 0, so on (-, b)

y (x; A) y (b; A) cos (4-C’(b)(x b)).

Thus for a=b-zr(24-C’(b))-1 one has y(a;A)=0 and y’(a; A)=
y(b; A)x/-C’(b)= A exp (-, C(s) d)x/-C’(b). Taking A so that y’(a; A)- 1 yields
y(x;A) as the solution which is 0 and has derivative 1 at a. I1

4. Bounding curves.
DEFINITION. If upper (lower) existence fails on a proper interval L then cor-

responding to each initial value, A, at the fixed end point x a there is an upper
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(lower) bounding curve, y B(x) (_B(x)), finite, defined on I by

B(x)= sup {y(x)" y is a solution of (5), (14)}

(_B(x) inf {y(x): y is a solution of (5), (14)}).

Note that while upper and lower existence can both fail at an isolated point, they
cannot both fail over the same proper interval, as the following theorem shows.

TI4EOREM 3. Ii all solutions o]’ (5) through some point, (a, A), are bounded both
above and below at x b, then

(i) all solutions through (b, B) are bounded above and below at x a,
(ii) b is an isolated point o]’lailure o]’ existence,
(iii) a is an isolated point o]’]’ailure o]’ existence ]’or b taken as the initial point.
Proo]’. Suppose all solutions through (a, A) are bounded above by B and below by

_B at x b. Let B be fixed with B > B. Since no solution through (b, B) can go through
(a, A), and since two such solutions with one going above (a, A) and one going below
(a, A) would lead to such a solution through (a, A), then either A is an upper bound
or A is a lower bound for all such solutions at x a. We may assume without loss of
generality in what follows that A is an upper bound.

Consider the mapping T which takes initial conditions, (A’, m’), at x a, via
solutions of (5), into terminal values, (B’, n’), at x b. This is a homeomorphism
which maps the line, A’= A, in the (A’, m’)-plane into some curve, F, bounded by the
two lines, B’ _B and B’= B, in the (B’, n’)-plane.

Now it will be shown that F cannot be bounded above or below in the n’
direction. For if F were bounded above by the line n’= M, for example, then since the
region outside the semi-infinite rectangle containing F formed by the lines, B’= _B,
n’= M, and B’=/3, is arcwise connected the same must be true of its image under the
inverse mapping, T-1. Hence this image must lie completely to one side of A’= A,
and the previous assumption on A for/3 assures that the image lies to the left of
A’=A. Consequently the images, Fj, for ]=1,2,3,..., of the lines A’=
A + 1, A + 2, A + 3, , all lie inside the semi-infinite rectangle containing F.

Let ’i be the supremum in the n’ direction of Fi and 3’* mini__<j3,i. Since the
norm of a solution at a is unbounded for the family corresponding to the line,
A’= A +, the norm of such solutions at b must be similarly unbounded. Thus, for
<-J, Fi must intersect the line, n’= ,/j- 1, and at least two of these Fj’s must cut this

line at points, (Bj1, "y:}- 1) and (Bj2, "y}- 1), with IBj2-Bjal <- (B-B_)/(J- 1), which
goes to 0 as J oo. Thus the norm at x b of the difference of the solutions of (5)
corresponding to (Bj1, 3’* 1) and (Bj2, yj* 1) goes to 0 as J - cx3, and by Lemma 1
(with q 0 0) the norm at x a of this difference must go to 0 as J --> oo. This last is
impossible since the norm at x a of any such difference is at least 1 for two solutions
corresponding to points on A’ A +/’1, and A’= A +/’2, respectively, with ]1 ]2. This
contradiction shows that F is not bounded above nor below in the n’ direction.

Since the image under T of the line, A’- A, is a curve, F, lying between the lines,
B’--_B and B’=/, and unbounded above and below, T-1 must map points on
opposite sides of the strip containing F into points on opposite sides of A’= A. In view
of our original assumption on A for B, it follows that all solutions through (b, B*) with
B*< _B must be bounded below by A at x a. By Theorem 1, for any fixed B** all
solutions through (b, B**) must be bounded above and below at x a.

Finally for y a solution through (a, A), let z be the solution with z (b)= _B _-< y (b)
and z’(b) y’(b). Were z (c)> y (c) for some c with [c b sufficiently small to guaran-
tee uniqueness of solutions to second boundary value problems, it would be a con-
tradiction. Hence z _-< y on an interval, I, about b. Since F is not bounded above or
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below, the set of y’(b)’s, hence of z’(b)’s, must be unbounded above and below. By the
remark above (9), at any point, c, with Ic- bl sufficiently small the set of z(c)’s must be
unbounded above, and for c also in I the set of y(c)’s must be unbounded above. Thus
upper existence holds in some deleted neighborhood of b, and similarly lower exis-
tence holds in some deleted neighborhood of b. Then b is an isolated point of failure
of existence.

Part (iii)follows immediately from (i)and (ii)when we reverse roles of a and
b. El

Theorem 3(iii) actually need not hold when

(14’) y’(a)= rn

is used in place of (14), even though Theorem 3 (i), (ii) does. Example 1 provides an
instance of failure of Theorem 3 (iii) when the zeros of C on (c, oo) are considered
initial points and a is considered as terminal point.

Theorem 2 shows that the three sets of points at which upper existence, lower
existence, or existence fail, respectively, consist of isolated points of the set and
intervals. Indeed the details of the proof of Theorem 2 show that two components of
one of the first two sets are separated by a positive distance depending on the
Lipschitz constants valid over a suitably large interval. Theorem 3 shows that the
intervals of the first set are disjoint from those of the second. The next theorem shows
that the isolated points of the first two sets are also isolated in the third set.

THEOREM 4. An isolated point of the set at which upper (lower) existence fails is an
isolated point of the set at which existence fails.

Proof. Let b be an isolated point of the set at which upper existence fails. If there
exists M such that y’(b)<-M for every solution, y, of (5) through (a, A), let z be the
solution of (5) such that z(b)= B(b) >- y(b) and z’(b) M _-> y’(b). Suppose z(c)< y(c)
for some c in (b, Co] with Co > b and Co sufficiently close to b to guarantee uniqueness
of solution to second boundary value problems on subintervals of [b, Co]. Then there
exists c’ in [b, c] with y(c’)= z(c’), y > z on (c’, c), y’(c’)>-z’(c’). Thus there exists c"
in [b, c’] with y’(c")=z’(c"), a contradiction of uniqueness of solution of second
boundary value problems. Thus y-< z on [b, Co], and upper existence fails on [b, Co].
Since the latter contradicts the isolated character of b, it follows that no such M exists
and the y’(b)’s are not bounded above. A similar argument assures that they are not
bounded below. The argument used in the proof of Theorem 3 (ii) now yields that
lower existence also holds in some deleted neighborhood of b. Thus b is an isolated
point of the set where existence fails.

The results on sets of points of existence failure are readily translated into terms
of existence holding. For any point b, Theorem 2 yields an open nonvoid interval
adjacent to b on right (and similarly on left) in which existence holds everywhere or in
which upper existence fails everywhere or in which lower existence fails everywhere,
and Theorem 3 assures that at most one of the failure types occurs at any point of the
interval. If, in addition, upper (lower)existence holds at b, then the procedure of
Theorem 2 assures that upper (lower) existence cannot fail on both the left and right
intervals; so b is in a nondegenerate interval for which upper (lower) existence holds.
(Actually in this case a minimum length for a containing interval can be determined
from the Lipschitz constants.) Thus the set of points where upper (lower) existence
holds consists of nondegenerate intervals. Then the set of points where existence holds
consists of intervals, possibly degenerating to points. The component intervals of the
set for which some specific existence condition holds are isolated in the sense that
Theorem 2 shows no finite interval contains infinitely many of them.
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Example 2. In the case f(x, y, Y’)=IYl, (x)=0, a =0, A=-I, one can easily
compute the family of solutions and find that upper existence fails on the interval
[,r, +oo) but the upper bounding curve now is the envelope of the family of solutions
which have the following form where they are nonnegative, with the relevant values of
c for each x indicated"

y=sin(x-a)cscha, x-rr<=a<-x, a>O.

This envelope is easily found to be (in parametric form)

x zr + arctanh (1 /m ) arctan (1 /m )

m -1
Y= +1’ re>l,

which is a curve passing through the point (r, 1) and decreasing monotonely to zero at
+oo. The slope of this upper bounding curve B (x) tends to -eo as x r from the right.
(See Fig. 1.)

Example 3.
y if y >_-0

f(x, y’)y,
4y if y_-<0

a=0, A=I.

Obviously the family of solutions can again be found easily, and we obtain the result
that lower existence fails on the interval [zr/2, 7r] (as well as on others) and that the
lower bounding curve there is again found to be simply the envelope of the family of
solutions which have the following form where they are nonpositive on [,r/2, 7r], with
the relevant values of a for each x indicated:

y (x) 2
z- sin (2x 2cz ) sec a,

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

-0.6

-1.2

-1.8

-2.4
0.0 1.0 2.0 3.0 4.0 5.0 6.0

FIG. 1. The solid lines indicate some o]: the solutions of the equation ofExample 2, and the small circles
lie along the envelope.
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This envelope is easily found to be (in parametric form)

x 37r/4-arctan m + 1/2 arctan (1/2m)
y -1/2 cos (arctan (m)) see (arctan m).

In this case the lower bounding curve y _B(x) is a symmetrical curve about the
vertical line x 37r/4, passing through (7r/2,-1), (37r/4,-1/2), (Tr,-1), with infinite
slope at each end of the interval. (See Fig. 2.)

I’

2.17

1.

-2.0

-4.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

FIG. 2. The solid lines indicate some of the solutions o]’ the equation ofExample 3, and the small circles

lie along the envelope.

Example 4. This example was constructed to show that an upper or lower
bounding curve could fail to have a first derivative at an interior point. Let

[y+l if y >-3,

f(x, y, y,)=2y-2 if 2<=y<=3,

if 0<= y <=2,
t.4y ify <-0,

and take a 0, A -1. Some of the solutions, y(x; a, A, m), of (5) through (a, A) are
shown in Fig. 3. The small circles in the middle of the figure lie on the envelope of the
family of solutions. In the upper right-hand corner of the figure a duplicate copy of the
envelope has been inserted so that its form may be seen more clearly. In this example
one can see that the envelope has a loop, which is necessarily missing from the lower
bounding curve. This is an obvious consequence of the definition of lower bounding
curve and in this example at least is clearly the cause of the lack of a first derivative of
the lower bounding curve.

The complete analysis for the above example and some slightly simpler ones has
been carried out, but the details are rather tedious and are omitted.
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[ ’IV’ |
I0.0’

0.0

8.0

-4.0 0.3 0.6 0.9 1.2 I..5 1.8 2.1 2.4 2./ 3.0 3.3 3.6 3.0
FIG. 3. The solid lines indicate some of the solutions of the equation ofExample 4, and the small circles

lie along the envelope. For greater clarity the envelope has been duplicated in the upper righthand corner.
Evidently the lower bounding curve in this case is not differentiable at the point where the envelope crosses itself.

As one can see by looking at Example 4, the upper or lower bounding curves
need not be differentiable; but where they are, it turns out that they are envelopes of
the family of solutions in the sense of Theorem 5 below. (They may be actual solutions
of the differential equation in some cases. See example in (15).)

THEOREM 5. Let upper existence fail for b on the interval [bl, b2], with bl < b2, for
the family, S, ofsolutions of (5)and (14). IfB is the bounding]unction on [bl, b2], and,
for b in [bl, b2], Sb is the subfamily ors consisting ofsolutions which take value, (b), at
b; then

(i) B is continuous,
(ii) ]’or b in (bl, b2), Sb is not empty,
(iii) / has right and left derivatives, R and L, on (bx, b2).

For b in (bl, b2), BL(b) <- y’(b)<-BR(b) for every y in Sb, and them exist elements of Sb
for which the equalities are attained. B has a derivative at b in (b, b2) if and only if Sb
consists of a single function. If Sbl is empty, B has right differential coefficient of-oo at
b l; and if Sb2 is empty, B has left differential coefficient of c at b2. If Sbl or Sb2 is not
empty, the corresponding one-sided differentiation is as described for interior points.

(iv) For b in (bl, b2)

lim B-(c)= lim B-R(C)=B(b)<--_R(b)= lim /(c)= lim R(C).
c->b- c->b- c-->b+ c->b+

For b b or b bE and Sb, not empty, the appropriate one-sided results hold. For Sb,
empty, the limits, in the sense ofproper divergence, are -oo or oc as appropriate.
B and BR are bounded on any closed subinterval of (b, b2). B and BR have the

same points of discontinuity in (b, bE), specifically the points at which they are unequal
(i.e., {b (cardinal of Sb) > 1}). This set of discontinuities is countable.

(v) The lower derivatives, BR,- and B,_, ofBR and BL, respectively, satisfy

BR,-(X)+f(X, B (x), BR (x)) >-_ 0

B._(x)+f(x, B(x), BL(x))>--O
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on (bl, b2). (The inequalities also hold at bl and b2 if meaningful when the second
derivative is taken as one-sided.) For any closed subinterval, L of (bl, be) there exists a
constant, Mx, such that BR(X)+Mxx and BL(x)+Mtx are increasing on L BR and BL
have equal derivatives almost everywhere on (bl, be).

In the case of lower existence failure on [bl, b2] an exactly corresponding set of
results holds.

Proof. There is a positive number such that first and second boundary value
problems have unique solutions on any subinterval of [bl, b] with length at most this
number. To simplify statements of arguments let K(x) be the intersection of [bl, b2]
and the closed interval with this length centered at x. Note that, for xa, xe in [ba, b2], x
is in K(x2) if and only if x2 is in K(Xl).

(i) Given b in [ba, b2) and e >0, take ya in S so that yl(b)>-;O(b)-e/2. Then for
h positive and sufficiently small B(b + h)_>- yl(b + h) > y(b)-e/2>-B(b)-e.

For some positive h’ with b+h’ in K(b) take yz as a solution of (5) with
ye(b)=B(b) and ye(b +h’)=B(b +h’). As was seen in the proof of Theorem 2,
uniqueness of solution to FBVP assures B-<_y2 on [b, b+h’]. For h positive and
sufficiently small B (b + h)-<_ ye(b + h)-<_ ye(b)+ e B(b)+ e, Thus B is continuous
from the right at b.

Similarly for b in (ba, be], B is continuous from the left at b. Thus B is continuous
on [ba, be].

(ii) Let b(bl, b2). For each positive integer, n, choose y,, in S such that
y,(b)>-B(b)-l/n. Let 7, be the solution of (5)such that , (b ) B(b)-1-< y,, (b ),

by,( )= y,(b). Uniqueness of solution for SBVP assures 37,-<_ y, _-<B on K(b). By the
remark above (9), in order to have 37,’s bounded above by B on K(b) it is necessary
that the 37(b)’s, that is, the y,(b)’s, be bounded. By choosing an appropriate sub-
sequence, we can assume without loss of generality that {y,(b)} converges. Thus
and {y’,} converge to y and y’ where y is a solution of (5) satisfying the boundary
condition at a. Since y(b)= B, y 6 Sb. Thus Sb is not empty.

(iii) For Cl, ce in (bl, be) with Cl < c2, let yi $c,, 1, 2. Since ye(cl) --< y(cl) and
y(c2)=< ye(c2), there is a c3 in [c, c2] with y1(c3) y2(c3). Uniqueness of solution to
FBVP assures ye -< y to left of c3 on K(c3) and yl =< ye to right of c3 on K(c3). Thus

CY(C3)< Y2( 3); and uniqueness of solution to SBVP assures that y < y on K(c3).
Note that the above argumentwould still hold even though ci were permitted to

be bi provided Sb, were not empty.
For c in (ba, be) let yc be an arbitrary element of So. (There might be many

elements in some of the $’s; so there might be many choices for this function mapping
(bl, be) into $, and any specific function is taken.)

In the following discussion in (iii) of right differentiation, b [bx, be) and abscissas
are restricted to be in K(b) and not less than b unless otherwise noted. Abscissas
specifically introduced by name, other than b itself, are to be greater than b.

If c C2, then b g(c3) and is to left of C3 for any c3 in [Cl, C2] and, by result
above, one has y(b)_<y(b)and y’(b)-<y’:(b). Thus y(b)is decreasing in c and
bounded above by/(b) and y’(b) is increasing in c. In addition, unless b is b, the
yc’(b)’s are bounded below by y/,(b).

Case 1. b is bl and yc(bl)’S are not bounded below. Let Zc be the solution of (5)
with zc(bl)=B(bl)>-y(b) and z’(bl)=y’(bl). Then for c<-c2, the standard
arguments shows z: _-> z _-> y. Thus

B(Cl)-B(bl)= y(Cl)-Z(b)<- z(Cl)-Z(b),
and the upper right differential coefficient of B at bl is at most z,.(b), or yc(bl). Thus
the upper right differential coefficient of B at bl is -o3.
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Case 2. y(b)’s are bounded below, thus covering the case that b is not b. Now
{y(b)} and {y(b)} converge as c approaches b. Thus on any finite interval (not just
K(b)), {y} and {y} converge uniformly to y and y’ as c approaches b, where y is a
solution of (5)satisfying the boundary condition at a.

If y(b)<B(b), then there exist e and 8, both positive, such that y <_-B-2e on
[b, b +6]. Thus, for c sufficiently close to b, y <-B-e on [b, b +6], a contradiction
since Yc (c) B (c). Thus y (b) B (b) and y Sb.

Now

B(c)-B(b)<_Yc(c)-y(b)=y’(b+O(c-b)), 0<0c1< 1,
c -b c-b

B(c)-B(b)>_ y(c)- y(b)
c b c b

y’(b + 0c2(C b)), 0 < 0c2 < 1.

Given e > 0 there exists a positive 6 such that c-<_ b + 6 yields

ly’(c)-y’(b)l<=e/2.

Thus for c <= b + 6,

ly(b + Oc1( b))- y’(b)[ ly(b + Ocl(c b))- y’(b + 01(c b))[
+ [y’(b + 01(c b)) y’(b)[

E E

-2

E
ly’ (b + 02(c- b))- y’ (b)l <- -.

Hence / has right derivative, B-R(b), at b equal to y’(b). For z in Sb, />-z and
/(b) z (b). Thus B-R (b) >- z’(b), and we have already shown that equality holds for

Finally note that if b is bl, existence of a lower bound for the y’(bl)’S guarantees
that Sbl is not empty.

The corresponding results for left differentiation are obtained analogously. On
(bl, b2), B has a derivative if and only if BL BR, thus if and only if So consists of a
single function.

(iv) By (iii), at any c in (bl, b2), either right derivative, BR(c), or left derivative,
B-(c), can be replaced by y:(c) where y is chosen suitably from So. If b (bl, b2) and
c (b, b), it has been seen that {y} converges uniformly on any finite interval to y’ as
c b +, where y’(b) B(b). Thus

B( (c)-B(b)= re( )-y’(b)= (y’(c)- y’(c))+(y’(c)- y’(b)),

and since both of the terms on the right may be made as small in magnitude as desired
by restricting c to be sufficiently close to b,

lim B(,)(c ) B(b ).
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If there existed a sequence, {c,}, converging monotonely to bl from the right for
Cwhich {yc.(c,)} was bounded below, then since yc.(C,) < Yck(-) for Ck in K(bl) and

Cn _>-k, {y.( n)} would be bounded above. By extracting a convergent subsequence and
Cre-indexing one may assume that {y.( ,)} converges to m, say. Then

C C{(cn, Yc.(C,), y.( ,))} is equal to {(c,, B(c), y.( ,))}, which converges to
(b,B(b), m). Thus {yc.} would converge as usual to a solution, y, in S, and
would not be empty.

If S, is empty, it follows from the above that

lim y;(c)
c"-bl+

that is,

lim Bd)(c -.
c--’,bl+

If Sbl is not empty, the argument used for interior points holds.
It is easy to see that, on any closed subinterval of (bl, b2), BR attains its maximum

and BL its minimum. Since BL <--_ Bn, both are bounded on the interval.
Plainly from the established results BL and Bn are continuous at b if BL(b)-

BR(b), and each has a positive jump discontinuity from the appropriate side if
BL(b)Bn(b). It is known [3, p. 392] that the set of points at which the right
derivative exceeds the left derivative is countable. (That the set of discontinuities is
countable in the present situation may be verified in other ways, a slightly stronger
result being a consequence of (v).)

(v) For c in (bl, b2), let YcS with y’(c)=Bn(c). Then if b, c (bl, b2) and
cK(b),

/n(c)-/n (b) y(c)- y,(b) y;(c)- y ,(c) +
y ,(c)- y;(b)

_>
y ;(c)- y;(b)

c-b c-b c-b c-b c-b

since y;- y; has the same sign as c b on K(C3) for some C3 between b and c. Thus the
lower derivative, BR.-(b), of BR at b satisfies

Bn,_(b ) >- y[,’(b ),

Bn,_(b)+f(b, B(b), Bn(b))>= y(b)+f(b, B(b), Bn(b))
y(b)+f(b, y,(b), y;(b))= O.

If Sbl is not empty, the argument holds at bl provided the lower derivative of Bn at bl
is considered as taken from the right.

If I is a closed subinterval of (ba, b2), Bn(x) is bounded on I and so is
If(x, (x),/n (x))l, say by (Mr 1) for the latter. Then n(x)+Mtx has lower deriva-
tive on I which is positive, so Bn(x)+Mtx is increasing there.

The analogous results hold for BL, with a common M, being chosen for both.
As increasing functions, Bn(x)+Mzx and BL(X)+Mtx have derivatives almost

everywhere, and thus so do Bn and BL. The established relations between Bn and BL
Show that both can have derivatives only at points where Bn BL and that the
derivatives are equal when both exist.

In the case of lower existence failure on [b, b2] the corresponding results can
obviously be proved in exactly the same way. 71
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While it is of course true that each solution of (5) is bounded on every finite
interval, an upper or lower bounding curve of the family of solutions passing through a
given point (a, A) may very well be unbounded, as the following example shows.

Example 5.

(16)

(17)

where

y" +f(y) 0, y(0)=

y(b)=B,

f(y)=) y -2x/-y for y 1
(18)

-y for y-<l.

Clearly f is continuous and Lipschitzian, since -1-<f’(y)-< 1 on each half-line. We
shall show that upper existence fails for b > rr, and that B (x) tends to +oo as x - r+.

Notice first that if v(x) is defined by

v"=-v+2, v(0)=l, v’(0)=m>0,

then

v (x) 2 cos x + m sin x,

so v(rr) 3. Let y(x; m) denote the solution of (16) which agrees with v in value and
slope at x 0. Then y (x; m)satisfies

y">--y + 2

(at least as long as y >- 1) so by well known comparison theorems (for example [2, p.
80])

y(x;m)>-v(x)

In particular, y (rr; m) >_-- 3 for m > 0.
Now since

then

on [0, 7r).

ld
+/(y)= 0,

2 dy

dy +[m2 283/2 _.] 1/2x -Y +SY
Denote by X the first value of x > 0 for which dy/dx 0, and let the corresponding
maximum value of y be Y. (Both are functions of m.) Then

Y --1/2X__.I [m 2 5 2 83/21+Sz
and for X -< x <_-(first zero of (y- 1) after X)

Y(19) x=X+I [m25--z2+z8 3/2]
By definition of Y,

-1/2

dz.

2 5 y2 8 y3/2m --- +- =0,
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SO

Also, for 1 -< y -< Y,
Y -1/2

m-5-z +Sz 3/2

In particular,

Y -1/2

dz

-1/2

/. -3 y179(1- t3/2) dr.

X 1_t2 8 /2

/. -3yi]2(1-/3/2) dt (1 t2)-/2 dt -By symmetry from (19), when y(x; m) is next equal to 1, x 2X, which tends to rr as
rn +oe. Thus for large positive m, y (x; rn) rises to a maximum of Y at X, then drops
to the value of 1 again at x 2X, which is nearly r, where it has slope -m. Such a
solution necessarily has a zero quite close to x or, and must remain negative
thereafter in view of the definition of f. From this it follows that upper existence fails
for every b >

Lastly, let us show that y(rr; rn) +o0 as m +ee, since this will imply that
B(x)-.+ as x rr+. Since (19)can be written in the form

f 2t11-v-t4+vt31-1/2 dt+ 2tll-v-t4+vt31-/2 dt(20) X
yl/2

with u y-1/2 and v 8u/3, it will be sufficient to show that the solution y(u) of the
equation

(21) 7r= I, 2tll-v-t4+vt3[-/2 dt+ 2tll-v-tg+vt31-1/2 dt
yl/2

is not bounded as u 0.
Using the relation

we can write (21) as

or

(22)

Iu 2t(1- t4)-1/2 dt r/2-arcsin u 2,

uy 1/2

arcsin u 2 + t[ 1 v 4 + 1)t3]-1/2 dt

t4 3]-1/2 1/2}2 t{[1-v- +ot -(l-t4) dt,

-1
U
2 I1

yl/2

u arcsin + u S[1 --/.) U4S4 "1" VU 3S3]-1/2 as

=-- t(1-t3)(1-t4)-l/2[1-v-t4+vt3]-1/2

{(1- t4)1/2 +[1-v--t4+vt3]/2}-a dt.

Obviously the right-hand side of this equation has a positive limit as u 0. But if y (u)
is bounded as u 0, the limit of the left hand side is zero, which is a contradiction.
Thus y(u) must be unbounded as claimed. VI
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5. Dependence on initial conditions and reciprocity. Plainly, if b is any point such
that for solutions from x a existence fails at x b, then, vice versa, for solutions
from x b existence fails at x a. Theorem 3 shows that in this situation if both upper
and lower existence fail from a to b, then both upper and lower existence fail from b
to a. Moreover, when the boundary condition at a is (14), both cases are of existence
failure at an isolated point.

While such reciprocity, when the roles of initial point and terminal point are
reversed, has not been established for all possible types of existence failure, it does
hold also in the case that b is in the interior of the set where upper (lower) existence
fails; that is, when b is considered as initial point then a is in the interior of one of the
sets of one-sided existence failure.

The result is a consequence of the sequence of theorems which follow providing
information on the behavior of the bounding curves with respect to initial conditions.

THEOREM 6. If there exists an open interval, Io, about b such that upper (lower)
existence fails from a to b’ whenever b’ Io, then there exists a subinterval, I, about b and
an interval, J, about a such that upper (lower) existence fails from a’ to b’ whenever
a’ J and b’ L

The proof of this theorem consists essentially of showing that although the
difference at x b between the solutions through (a, A) and (a’, A), respectively, both
with derivative, m, at the initial point may tend to +oo as Im], the hypotheses
assure that the solutions through (a, A) have values at x- b which tend to -oo even
more rapidly as [ml oo, provided la’-al is sufficiently small.

The next two lemmas provide suitable estimates of the rates of growth of
solutions to both initial value problems and boundary value problems with respect to a
given slope.

LEMMA 2. If y is a solution of (5), then

ly(x)- y(a)- y’(a)(x a.)l
(23)

<--[a, +Kly(a)l+(Klx-al+L)ly’(a)llk-1 exp klx-a[- 1)Ix-al

where Dx =maxx,ta,,l [f(x’, O, 0)], K and L are the Lipschitz constants in (6), and
k max {K, L + 1}.
Proof. For use in Lemma 1 take u (x) y (x) and v (x) y (a) + y’(a)(x a). Then
v"(x)+f(x, v(x), v’(x))= f(x, y(a)+ y’(a)(x-a), y’(a)), v(a)= u(a), and v’(a) u’(a).
Thus liu-v[l(a)=O, o(x)=0, and (x)=f(x,y(a)+y’(a)(x-a),y’(a)). Thus, with
M 0, (12) gives

(24)

Now

Ily-vll(x)<-Nk-(exp klx-a[- 1).

N= max I/(x ’, y(a)+y’(a)(x’-a), y’(a))[
x’[a, xl

(25)

-<_ max [If(x’, O, 0)l+lf(x’, y(a)+ y’(a)(x’-a), y’(a))-f(x’, O, 0)l]
x’[a,x]

-< max [[f(x’, 0, O)l+Kly(a)+y’(a)(x’-a)l+L]y’(a)l]
x’[a,x]

<-_D. +Kly(a)l+(Klx-al+L)ly’(a)l

where D. max.,ta,.11f(x’, O, 0)l.
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Equations (24) and (25) give

(26) Ily-vll(x)<=[D +Kly(a)l+(Klx-al+L)ly’(a)llk-l(exp k[x-al- 1).

In particular, ly’(x)- y’(a)] [y’(x)- v’(x)] <-_ ]]y v[[(x), and ]y’(x)- y’(a)] is bounded
by the right side of (26). Integrating from a to b while bounding Ix- a[ by ]b- a and
Dx by Db yields (23)with x b. VI

LEMMA 3. If y is a solution of (5), then

[y (a)- y(b)l <-- {(D + K[y(b)[)k-(E 1)+ [(K[b a[ + L)k-I(E 1)+ 1]ly’(a)l}[b al
(27)

+ {1-Kk-I(E

where D maxx,., If(x, O, O)l, E exp klb al, and Ib al is sufficiently small that
the denominator is positive. Also

(28) [y’(b)-y’(a)l<-
[D+Kly(b)I+(KIb-al+L)Iy’(a)[]k-I(E-1)

[1-(K[b-a[+L)k-(E 1)]

where Ib-a is sufficiently small that denominator is positive.
Proof. Using Lemma 2, with x b, we obtain

]y (b)- y(a)- y’(a)(b a)l--< [D + Kly (a)l + (Klb al + L)ly’(a)l]k-X(E 1)[6 a[,
[y (a)- y(b)[ _-< [D +K(]y (a)- y(b)] + ]y (b)])+ (K]b al + L)Iy’(a)I]k-a(E 1)1b a[

{(V + K]y(b)])k-X(E 1)+ [(Klb al + L)k-a(E 1)+ 1]]y’(a)]}[b

+Kk-I(E 1)]b-a] [y(a)- y(b)].

Transposing term on right involving ]y(a)-y(b)l and dividing yields (27).
From the remark following (26) in proof of Lemma 2 with a and x replaced by b

and a one has
ly’ (a) y’ (b )] <-_ [V + Kly (b )[ + (Kla b I+ L)ly’(b)[]k -1(E 1)

<-[V + Kly(b)] + (K[a b[ + L)[y’(a)[]k-l(E 1)

+ (Kla bl + L)k-I(E 1)ly’(b)- y’(a)[

and (28) follows.
Proof of Theorem 6. Let A be some finite open interval containing [a, b] (we are

assuming a < b; a similar proof holds if b < a), and let 6o be positive and sufficiently
small that [a 8o, b + 60] c A, [b 60, b + 6o] c I0, and first and second boundary value
problems have unique solutions on all subintervals of [b 60, b + 6o]. For simplicity of
notation we assume that upper existence fails from a to b’ whenever Ib’-bl < 60.

Let E exp k6o, F exp k (length of A), and D maxima If(x, 0, 0)].
For usage in later proofs the development is carried out for an arbitrary number,

e, in (0, 1). The fact that e < 1 is used in verifying some of the inequalities. Also the
reader should note that when a compact set rather than a single point, b, is being
considered if A and 6o have been chosen so that the conditions of the first paragraph
are met for all points of the set, then the choice of the quantities, E, F, D, 6(e), C1,
G(e), C2, and H(e), can be made uniformly for all points of the set. Also neither K
nor L has been taken as 0.
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Define

(29)
1 e.. [K6o+L+k]_l}6(e)=min , 60, le

It is now easy to verify that 0 < d <-8(e) assures kd < 1 and

(1 + e)-1 < 1-(Kd +L)k-l(ekd- 1)< 1
(30)

l<l+(Kd+L)k_(ekd_l)<l+e
(O<d<-6(e)).

It is convenient to study the behavior of a solution, y, of (5) with y(a’)= A by
considering the solution of (5) having A as value at a and y’(a) as derivative at a. For
comparison purposes the difference between A and y (a) is needed, and Lemma 3 with
b a’ and [a’- al < 6(e) gives

{(D +Kla[)k-(exp kla’-al- 1)

+[(Kla’-al+L)k-’(exp kla’-a I- 1)+ 1]ly’(a)l}la’-a
]y(a)-a[ <=

Thus taking

(3)

one has

(32)

{1-Kk-a(exp kla’-al- 1)la’- al}

=< 2{(D +KIAI)k-’( 1)+ 2ly’(a)l}la’ a 1.

C (D +K[AI)k-(E 1)

ly(a)-AI - 2(C1 + 2ly’(a)l)la’-

(If the boundary condition at a is (14’), then the corresponding condition is y’(a’) m.
One uses (28) of Lemma 3 with a’, a replacing a, b. Then (30) again assures the

-1 -I a’denominator exceeds (I +e k (exp k -a] I) is a factor, and for fixed m, the
remaining factor is bounded by a linear function of ly(a

The next step is to obtain the inequalities involving u(b) and u’(b) for a solution,
u, of (5) and (14). Let then B be the bounding function on [b-6o, b +6o] and,
temporarily, let c be b+6(e)if u’(b)>-O and be b-6(e)if u’(b)< 0. Lemma 2, with b
and c in place of a and x and G(e) for (ex.p k6(e)- 1), yields

u(b)+ u’(b)( b)-9(c)< u(b)+ u’(b)(c b)- u(c) <- lu (c)- u(b)- u’(b)(

<= [D + Klu(b)l + (K6(e )+ L)[u’(b)l]k-G(e )6(e ).

Since u’(b) and - b have same sign,

u(b)[1-Kk-G(e)6(e)sign u(b)]
<- ;(c)+Dk-O(e )6 (e )- [1 (K6 (e )+L)k -1 G(e )16 (e)l u’ (b)l.

By (30), both [1-Kk-lG(e)6(e)sign u(b)] and [1-(K6(e)+L)k-lG(e)] exceed
(1 + e)-1, and for lu’(b)l sufficiently large the right side is negative. In such case u(b) is
negative, and by (30) one has [1 +Kk-lG(e)6(e)]< 1 +e. Thus

u(b)<={:(c)+Dk-G(e)6(e)--6(e)lu’(b)[}/(1 + e)
for lu’(b)l--> 2[/ (c) +Dk-10(e )6(e)l/6(e ).

Letting

(33) C=Dk-IE
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one has

u(b)<-IB(c)/C2,(e)-1/21u’(b)[,(e)}/(1 / )
(34)

for lu’(b)l > 2[/(c)+ C2(E )I/a(8 ).

Having established the above result for derivatives at b of large magnitude, one
can now use it to show that derivatives at a of large magnitude lead to very negative
values at b.

Let u0 be the solution of (5) and (14) with u(a) 0. (If the boundary condition at
a is (14’), then take uo(a)= 0 and proceed in the same way.) By Lemma 1, with a and
b reversed and u a solution of (5) and (14),

[u (b)- uo(b)[ + lu’(b)- u[(b)l I[u uoll(b) _-> }lu Uo[l(a )e-’l-l -> F-1lu’(a)l.
Since u (b)- uo(b ) <- 9(b)- uo(b ), one could not have lu’(a)l>=2F(B(b)-uo(b))and
u(b)-uo(b)>1/2F-1lu’(a)[ holding simultaneously. Hence when lu’(a)l>-
2F(B(b)-uo(b))

(35i) u (b ) <- uo(b)- 1/2F-iu’(a )[ <- B(b)- 1/2 F-[u’(a )l
or

(35ii) [u’(b)- u;(b )l >-_ 1/2f-[u’(a )[.
(For either (35ii) holds or else we have both [u(b)-Uo(b)l>1/2F-11u’(a)l and u(b)-
uo(b)<-1/2F-lu’(a)l, which gives (35i).)

The above pieces are now brought together. Restrict a’ by

(36) la’- a[ <= 6(e )/(32F)< 6(e).

(For (14’) as boundary condition at a, one must have k-l(ekla’-al-1)_--<
8(e)/(16FK).)

Let

(37)
\[B(b)- uo(b), lu;(b)l + 2

max (B(b 6(e )), B(b + 6(e )))+ Cz6(e )’H(e)= 2F max
() )"

For y a solution of (5) with y(a’)= A, let u be the solution of (5) and (14) with
u’(a) y’(a). Then by Lemma 1 and (32)

y (b) -< u (b) + V[[y ul[(a) u (b)+ F]y (a)- u (a)[ u (b)+ Fly (a)-a
(38) <- u(b)+ 2F(C1 + 2[y’(a)l)la’- al

u(b)+ 2F(C1+ 21u’(a)l)la’-al.
If ly’(a)l<=H(e), then y(b)<=B(b)+6F-(Cl+2n(e))6(e). If ly’(a)l>H(e), then
(35) holds. If (35i) holds, then

y (b) <= B(b)-F-lu’(a)l +2F(C + 21 u’(a )l)la’ a

+ Ca 6(e)-1
_

=B(b)
16F -F (4-,(e))lu’(a)l<-B(b)+-i-6(e).
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On the other hand, if [y’(a)[>H(e)and (35ii) holds, then

u’(b)l -> F-a]u’(a)[- lu(b)l >- 2
max (/(b -6(e)), (b + 6(e)))+ C26(e)

and (34) holds no matter what the sign of u’(b). Thus, using (34) in (38), we obtain

y(b) -<
max (B(b 8(e )), B(b + 6(e )))+ C26(e )-1/21u’(b)16(e )

l+e

+ 2F(Ca + 2lu’(a)l)la’- a]
max (B(b-6(e)),B(b +6(e)))+Cz6(e) [u(b)[6(e)

l+e 2(1 +e)

1 F-1

4(1 + e )Flu,(a)16(el\t)l____Cx + 21u’(a)l)6(e )

max (B(b-6(e)), B(b +6(e)))
l+e "ff’(C2"l"lbl)(b)l-Jr’CiF-1)t(E)

F-1

e)2
[u (a)[6(e)

max (B(b 6(e )), B(b + 6(e )))
l+e ---(C2--]u)(b)I---6 CIF-1)((E ).

Thus if la’-al <-6(e)/(32F2), then y(b)is bounded above for y an arbitrary solution
of (5) with y (a’)= a.

Now consider the interval [b-6o/2, b + 60/2] where 6o is as originally chosen.
For any point in this interval the preceding procedure could be applied with 6o/2
replacing 60. In the procedure for any such point A, 6o/2, e, and the introduced
quantities, E, F, D, 6(e), Ca, G(e), and C2, would not change, and specifically
6(e)/(32FzC2) would not change. Thus there is an interval, J, about a such that for
a’J and b’ [b-6o/2, b+6o/2] upper existence fails from a’ to b’. [-1

If U (or L) is the set of points in the plane such that upper (or lower) existence
fails from the first coordinate to every point in some neighborhood of the second
coordinate, then Theorem 6 says that U or L) is open. Theorem 7 will show that the
bounding function, B(b’; a’, A’). (_B(b’; a’, A’)) is continuous on U x Reals (L
Reals).

THEOREM 7. B (b’; a’, A’)(_B (b’; a’, A’)) is continuous for (a’, b’) U (or L) and
A’ real.

Proof. Consider the case of U, the other being similar. Let (a, b) in U, A real, and
e in (0, 1) be given. Let J and I be closed bounded intervals about a and b respec-
tively such that J x I U. First consider A’ fixed at A.

Take A, an interval, and 80, a positive real, such that [b-260, b + 260] =/, the
(26o)-neighborhoods of J and I are contained in A, and first and second boundary
value problems have unique solutions on subintervals of I of length at most 260. Take
the introduced quantities of Theorem 6, except for H(e) and including uo(b’; a,A),
with the additional restriction on 6(e) that [(b(z; a, A)-(b; a, A)l <- e,

luo(b a, A)- uo(b’x a, A)l <-- e, and lU ’o(b’z; a, A)- U’o(b’x a, A) <- e whenever

[b -b’al<-6(e).
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Then B(b’+/-6(e);a,A)<=B(b’;a,A)+e <-B(b;a,A)+2e and luo(b’;a,A)[ <-

[u0(b; a,a)l+e whenever Ib’-Ol<-_6(e).
Let H(e, b’) be as in (37) of Theorem 6 with b’ replacing b and

H*(e)= sup H(e, b’)<-H(e, b)+ 2F max 2e, e +
b ’e b-6(e ),b+3(e )]

5e
<- H(e, b)+-ei2F.

Then if [a’-a[<=6(e)/(a6F2[C1 + 2(H*(e)+ 1)]) and [b’-bl<-_6(e)one has, as in
the proof of Theorem 6,

1
[y’(a; a’, a)l <-H(, b’)- y(b’; a’,a)<=O(b; a,a)+e +-F-6(e)

[ Clly’(a; a’,A)l>H(e,b’)- y(b’; a’,A)<-max (b; a,A)+e +-i-d-8(e),
B(b’a,A)+2e ( 1 )+ c+lu;0" a,ll++Cl

-1 (
l+e

where

6(e) <
e

[K6o+L+k]-1

=l+e

Thus there exists O such that [a’-al<-3(e)/(16F2[Cl+2(H*(e)+ 1)1)and Jb’-
b[<-6(e) assure y(b’; a’,A)<-(b; a,a)+oe.

Now if in addition to the restriction on a’ and b’ one has IA’-A[ <= e and the same
derivative at a’ for both solutions, then

y(b" ’)--,a,A <y(b’,a,A)+e klb’-’’llA’-- A <---- y (b’; a’, A)+F[A’-A
<-B(b; a;A)+(Q+F)e.

Thus la’-al<-(e)/(16Fz[C+Cz(H*(e)+l)]), Ib’-b]<=6(e), and
’A’assure that B (b’; a, <= B (b a, A)+ (0 +F)e.

To complete the proof of continuity, again let A’ be fixed at A and let e be
positive. Then there is a solution y (x; a, A, m) such that y (b; a, A, m) B(b; a, A).
Now take the solution, y(x; a’,A, y’(a’; a,A, m)), which is continuous in (x, a’)since
y’(a’;a,A,m) is continuous in a’. Thus there exists positive 6 such that
ly(b’; a’,a, y’(a’; a,a, m))-y(b; a,a, y’(a; a,a, m))]_-< e whenever ]a’-al+lb’-bl
<_-8. However, y(b;a,A, y’(a;a,A,m))=y(b;a,A,m)=:(b;a,A). Thus ]a’-a]
/ Ib’- b[ -<-, gives

SO

y(b", a’ A, y’(a", a, A, m)) >= B(b’, a, A)- e,

B(b’;a’,A)>-B(b,a,A)-e.

The perturbation from A to A’ is treated as above. 71
THFOREM 8. If upper (lower) existence fails from a to every point b in an open set

containing the compact set, C, then there is an interval J about a such that upper (lower)
existence fails from a’ to b’ whenever a’ J and b’ C. The bounding [unction ]’or
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(a’, A’) converges uniformly on C to the bounding function ]’or (a, A) as (a’, A’)
converges to (a, A).

Proof. Theorem 6 provides intervals Jb’ and Ib’ about a and b’ respectively for
every b’ in C. Compactness of C yields a single interval J about a which works for C.
For a’ J, (a’, A’) in a closed bounded rectangle about (a, A) and b’ in C, Theorem 7
gives uniform continuity of the bounding function in (a’,A’,b’) and the second
statement of the theorem follows.

The functions, BR(b’; a’,A’) and BL(b’; a’,A’), are of course defined on U (or
L), but they need not be continuous there since they may not be continuous in b’.
However, partial analogues of Theorem 7 and 8 may be obtained.

THEOREM 9. Let a, b, A, e be given such that (a, b) U (or L) and e >0. Then
there exists positive 6 such that [a’-a[, [b’-b[, IA’-A] all less than 6 assures
BL(b; a,A)-e -<.B(b’; a’,A’)<-Bg(b’; a’,a’)<-Bg(b; a,A)+e [_B(b; a,A)-e
_B (b’; a’,A’)<=B_(b’; a’,A’)<--_B_(b; a,a)+e]. If B(b; a,A)=B(b; a,A)
[B_(b;a,A)=B_(b;a,A)], that is, (a,b,A) is a point of continuity with respect
to the second position for the two derivatives, then (a, b, A) is a point of continuity for
the two derivatives.

Proof. The case for U is treated. Let a, b, A, e be given with (a, b) U and e > O.
If the first statement fails for B(b’;a’,A’), then there exists a sequence

A){a., b’., A ,} converging to (a, b, A) for which the required condition on/R (b
is violated.

Let . be a solution of (5) with y.(a’,,) A,, ,,(b’,,)=B(b’; a,, A,), and y(b)=
BR(b’,,;a’,,,A’,,). Since B(b’;a’,A’) is continuous in (a’,b’,A’), the sequence
{B (b ," a,’ A ’,,)} converges to B (b; a, A).

Applying Lcmma 2 to with a, x replaced by b ;,, b + h, one has

[y. (b + h)- y. (b ’,,)- y ;,(b ,)h < [D + Kly. (b ,)1
+(Klh + L)Iy ,(b )[]k -1 (e ’lhl

where Dx of (17) has been replaced by some common bound valid for a suitably large
interval. Then, on taking [h[ small enough and n large enough that (a, b’+ h)e U
and (a, b + h) U, we obtain

/(b + h; a , A) _-> yn (b + h) _-> 1 (Klh +L)k-l(e klhl- 1) sign (y ’(b )h)]y (b)h

-[1 + Kk-l(e t‘lhl- 1)lhl]ly,(b)l-Dk-l(e ’lhl-

If the y,(b)’s are unbounded above, take h positive and sufficiently small that the
coefficient of y(b)h is at least 1/2. Then the/(b,+ h; a,A)’s are unbounded above
since the sequence {y, (b ;,)} converges to /(b; a, A). However, {/(b , + h a ;,, A)}
converges to B(b+h; a,A), a contradiction. Similarly the y;,(b,)’s must be bounded
below (taking h negative), and by extracting a subsequence one can consider {y
to be convergent.

Now {y,} and {y} must converge to y and y’ wlere y is a solution of (5) and (14)
with y (b) B (b; a, A), the convergence being uniform on any finite interval. Then
{y(b’)} must converge to y’(b) which is in [Bc(b;,a, A), BR(b; a, A)]. This contradicts
BR ; a A’) violating the required condition for all n, and the original assumption
must be false. Thus the first statement holds for BR(b’;a’,A’). The proof for
BL(b’; a’, A’) is similar.

The second statement follows immediately from the first, with the parenthetical
remark provided by Theorem 5.
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THEOREM 10. If in addition to the hypotheses of Theorem 8, the bounding function
for (a, A) has a derivative at every point of C, then as (a’, A’) converges to (a, A) both
right and left derivatives of the bounding function for (a’, A’) converge uniformly on C to
the derivative of the bounding function ]’or (a, A ).

Proof. With J the interval of Theorem 8, restrict a’ to J, (a’, A’) to a closed
bounded rectangle about (a, A), and b’ to C. Then given e > 0 and b in C, by Theorem
9 there exists a positive 6b such that la’-a[, Ia’-al, and Ib’-bl all less than 6b
guarantees IBR(b’; a’,A’)-BR(b;a,A)[<e/2. A finite number of the intervals of
type Ib’-bl < (b cover C, say for bl, b2,""", bn. Let 6 be positive but smaller than
each 6b,.

If now la’--al and IA’-A[ are less than 6, for b’ in C there exists bi such that
Ib’--bil<6b,. Then BR(b’; a’,A’) and BR(b’; a,a) differ from BR(b; a,A) by at most
e/2, and from each other by at most e. [3

THEOREM 11. Given a, b, and A, then them exists an open interval I about b such
that upper existence fails at every b’ in I or lower existence fails at every b’ in I ifand only
if there exists a B and a neighborhood, I*, of b such that no solution o]: (5) through
(a, A) crosses I* {B}.

Proof. Since with either type of existence failure on I the bounding function
corresponding to (a, A) is continuous on I it is clear that the second condition follows
from the first.

Suppose the second condition holds. Then every solution of (5) through (a, A)
must remain below B on I* or must remain above B on I*. Since two solutions with
one remaining above and one remaining below would lead to a solution through
(b, B), either all must remain above or all must remain below. Thus for the family of
solutions, either upper existence must fail on I* or lower existence must fail on I*. [3

THEOREM 12. If there is some neighborhood of (b, B) which is not entered by any
solution o]’ (5) through (a, A), then there is some neighborhood, N, o]’ (a, A) such that no
solution of (5) through (b, B) satisfies a boundary condition corresponding to a point ol
N.

Proof. By Theorem 11 there is an interval I about b such that, for the family of
solutions corresponding to a and A, either upper existence fails at every point of I or
lower existence fails at every point of L Also (b, B) is on the unattainable side of the
bounding curve. Theorem 6 gives the bounding function defined in some neighbor-
hood of (a, b, A), and the continuity of the bounding function from Theorem 7,
assures that for (a’, A’) in a sufficiently small neighborhood of (a, A) the value of the
bounding function at (a’, b, A’) will remain on the proper side of B. Thus no solution
of (5) through an (a’, A’) in the indicated neighborhood of (a, A) passes through
(b,B). [3

THEOREM 13. If upper (lower) existence fails from a to b’ for every b’ in some
interval about b, then there exists an interval, J, about a such that either upper existence

fails from b to every point a’ in J or lower existence fails from b to every point a’ in J.
Proof. If B > B(b; a, A), then (b, B) satisfies the hypotheses of Theorem 12. Thus

b, a, and B (for a, b, and A) satisfy the second condition of Theorem 11, with A
replacing B. The equivalent first condition of Theorem 11 is the desired con-
clusion. [3

It should be noted that if the boundary condition, y’(b)= n, is considered, then
the results corresponding to Theorem 6-10, 12, 13 may not hold. In Example 1, C(x)
may vanish on an interval J and if b* is any point of the interval then a is a point of
existence failure for the problem with y’ specified as 0 at b* and a value for y to be
attained at a. Since the differential equation is actually linear, a must be an isolated
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point of existence failure. Thus if a’ is sufficiently close to a then b* is an existence
point for a’ for the original problem. Thus U (or L) does not contain a neighborhood
of (a, b*); and if upper (lower) bounding functions are thought of as having value
(-) where upper (lower)existence holds, then continuity and convergence pro-
perties fail at (a, b*).

Indeed, since the general solution in Example 1 satisfies y’(x) C(x)y (x) + Q for
x->b, Q a constant, if Z is any compact subset of the zeros of C(x), then for a’
sufficiently close but not equal to a existence will hold from a’ to every point in some
open set about Z.

Theorem 11 will hold in the converse direction, but the first condition will imply
the second only if every bounding function on intervals is locally bounded. A counter
example would then have to be sought amonst nonlinear equations.

Acknowledgment. The authors wish to thank one of the referees for significant
suggestions concerning earlier versions of this paper.
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ON THE SPECTRAL RADIUS OF INTEGRAL OPERATORS
DEFINED BY A CLASS OF DIFFERENCE KERNELS*

H. D. VICTORY, JR.’

Abstract. We consider the problem of estimating the spectral radius of integral operators defined by a
certain class of difference kernels. Under the conditions that the kernels are summable, positive, even about
x 0, and decreasing in ]x I, we obtain sharp bounds for the spectral radius of the associated integral operator
by using the Perron-Frobenius-Jentsch characterization of the dominant eigenvalue. Moreover, we show that
our bounds determine asymptotics for the spectral radius, which agree with the results of H. Widom, who used
the underlying self-adjointness for his results. We show how techniques in this paper work for systems of such
integral equations which lead to problems where self-adjointness may be absent.

1. Introduction. Many problems in applied mathematics lead to a study of
inhomogeneous integral equations of the following type:

(1.1) f(x) y k(x-y)f(y)dy+g(x),

for 0 -< 7. -< oo, 0 -< y < oe. The kernel function will be assumed to be positive, summable,
decreasing in Ix I, and even about x 0. Kernels with these properties appear in the
theories of radiative transfer, neutron transport, gas dynamics (Couette flow), elec-
trodynamic wave diffraction [ 11] and often have the Laplace transform representation

k(x-y)= I 4(t) e-lx-yltdt--

with a, (t)_-> 0, and satisfying a HiSlder condition on (a, c). Also such difference
kernels arise in the work of Hardy, Littlewood, and P61ya [7] when the assumption of
symmetry is added to their hypotheses [7, p. 227, Thm. 318].

We write (1.1) in abbreviated notation as

(1.2) ’(x) ,Ad(x) + g(x).

Under the hypotheses on k (x), it can be shown that A is a bounded linear operator on
Lp (0, 7"), 119 -> 1, and on C[0, 7"] where

(1.3)
}LP(O, r)= f: [f(x)l" dx <oo

C[O, r] {f: f continuous on [0, r]}.

The first result is derived by use of the fact that the convolution with an L function is a
bounded linear mapping of Lp into itself. The same result for C[0, 7.] follows trivially
from the summability of k(x). For 7. < oo, A, will be a compact linear operator on
Lp(O, 7.), since k can be approximated in the L norm by C functions with compact
support. The operators generated by these will converge to A, in operator norm and are
compact. Moreover, due to the positivity of k (x), we can see that A, leaves invariant the
cone of nonnegative functions in LP(O, 7") and C[0, 7"].

This paper is written with two objectives in mind. One is to use the Perron-
Frobenius-Jentsch characterization of the dominant eigenvalue [8, p. 929] to obtain
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sharp upper and lower bounds for it. As is well known, [8, p. 924], the dominant
eigenvalue is equal to the spectral radius of A, defined as

(1.4) [IA, Ilsp- lirn I[AII 1/".

From these upper and lower bounds, we can obtain asymptotics for [IAllsp when studied
as a perturbation of I]Al[p. The other objective is to show how this technique can be
applied to systems of integral operators where k (x) is an N xN matrix, each component
of which satisfies the assumptions discussed above.

For the scalar case, A, is a compact self-adjoint operator when defined on L2(0, -).
H. Widom [15, pp. 401-402, 412] made crucial use of these properties in obtaining
asymptotics for the positive eigenvalues of A. In our Fork tiere, we do not exploit the
self-adjointness of A in the scalar case. However, our techniques work for systems of
equations, where Widom’s methods do not apply, since self-adjointness is rarely
present.

We remark that the Perron-Frobenius-Jentsch theory has been exploited to
advantage by H. S. Wilf and N. G. de Bruijn [16, pp. 32-34] in their analysis of the
Hilbert kernel. Indeed this paper shows that their techniques are easily generalized to a
wider class of kernels. Moreover, in 3, we show that the class of kernels considered
enables us to further analyze the parameter in p in [2(x) cos rx/(" / p), used in 16] to
obtain upper bounds.

In 2, we discuss properties of I[Allsp and its associated eigenfunction. We show we
can get sharp lower bounds on IIA llsp when k fulfills the assumptions discussed above. In

3, we show that we can sharpen the upper bound on ]IAIIsp with a few more
assumptions on k (x). In 4, we generalize our previous results to systems of integral
equations, and give applications. An analysis of some classical kernels is given in 5.

We would like to mention that this work was inspired by the results of J.
Bolmarcich [ 1].

2. General properties of IlA,Ils,. In the Introduction, we have remarked that A,
leaves the cone of nonnegative continuous functions invariant. We can say more" The
positivity of k (x) implies A, will map a nonnegative function to a positive one. We will
describe A, as a strictly positive oerator, following Karlin [8, p. 920]. These observations
lead to the following"

THEOREM 2.1. The maximum eigenvalue of A, is equal to its spectral radius, and its
eigenfunction 49, is of simple multiplicity, positive, and even about ’/2.

Pro@ We have seen that A, is a compact linear.operator on C[0, -]. Because the
cone K of nonnegative continuous functions has an interior, and A, maps K into its
interior from the remark above, we can deduce that its largest eigenvalue is real, of
simple multiplicity, and equal to IIA.Ilso [8, p. 924]. The eigenfunction is positive for
0_<x__<-.

A straightforward calculation, using the evenness of k about x 0, shows that 4, is
even about -/2. This completes the proof of the theorem.

The next result gives the behavior of IlA, llsp as a function of -. For --oo,
IIAII-- k(x) dx, a fact which follows from norm estimates on Af and from the
results of M. G. Krein [9, p. 224] which state that the spectrum of Ao includes

{A" A : (), sc real},

where is the Fourier transform of k, defined in (2.2).
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We will consider A, defined on C[0, r]. The proof of the following theorem
exploits the Perron-Frobenius-Jentsch characterization of IIAII [8, p. 929],

(2.1)
IIA, Ilsp sup {A >0" ::if- 0. A,f---Af},

IlAllsp inf {A > 0: If => 0: Af =< hf},
and is similar to that proved by T. W. Mullikin [12, p. 513-514] for a class of strictly
positive operators including those analyzed in this paper. We refer the reader to [12] for
the main ideas in the proof of the following:

THEOREM 2.2. [JArllsp is a strictly monotone increasing, continuous function of z.
The next result will produce a lower bound on IIAII which win imply that

lim [[A.,-l[sp

The techniques used in the proof of the following are similar to those used by Will and
de Bruijn [16, p. 32-34] in their analysis of the Hilbert kernel. To generalize their
results, one merely exploits the decreasing nature of k(x) and the fact that, for even
functions, the Fourier transform is the same as the Fourier cosine transform.

THEOREM 2.3. [[Ar[lsp ->/(/r) where 1 denotes the Fourier transform of k, defined
as

e  e (xl dx.

Proof. We use (2.1) along with the choice of ]’ cos rx/r to produce the lower
bound for IIA ll  o We refer the reader to [16] for details.

3. Upper bounds got IIA,II,p. With a few more assumptions on k(x), we can
produce sharp upper bounds on IIAlls. We have our main result:

THEOREM 3.1. Let k(x) be positive, even about x=0, decreasing in Ixl, and
summable. If k(x) d2k3/dx 2, where k3 is decreasing and positive with limx-.oo k3(x)
O, and such that

(3.1) /x*=sup -x(e"Xk3(x))<-O,x>=O >0,

then

(3.2) IImllsp =</(r/z +p (z)),

where p is a continuous function of z for z sufficiently large with

2/p * <=p(r) <= Tr/lx *.

(3.3)

Proof. We again use (2.1) with f2 cos 7rx/(r +p) to give our upper bound. Now

i2 k(x-y) cos
/2

Try
dy k (x y) cos. dy

r +p r +p

k (x y) cos dy
/2 I" .t_ p
-/e

"cry
k (x y) cos dy.

r +p
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We claim that

Try(3.4) k(x-y) cos
zry

dy ->0 and k(x-y) cos dy >-0.
2 7. +p r +p

We prove only the first inequality; the proof for the second is identical. By an argument
similar to that used in Theorem 2.3 [see 16, p. 34] we can conclude that

k(x y) cos dy
7"gy 0.

(’r+p)/2 7. "" P
So

(3.5) "/ry f
3(’r+p)/2

k (x y cos dy > k (x y cos
"try

dy.
/2 T -’l" p /2 7. q" P

An easy calculation yields
3+p/

k (x y) cos
2

Try
dy=

7. +p
71"7"1

-k2(7"/2-x) cos (7"+p)
(7" +p) 2(7"-p)

(3.6)

where

-’rrk3(-(7" +p)-x)-7.t’k3(7./2-x) sin
2(7. +p)

k3(y-x)cos
Try dy],7.+p

kE(X) =-I k(t) dt.

We wish to estimate the latter integral in (3.6). For y [7./2, (7" +p)/2], cos 7ry/(7" + p) >-
O, and we get

k3(y-x) cos dy+ k3(y-x)cosi.+pidy(--p) a,/z 7" +p a+p/2
(3.7)

7.g2 (7"+p) "try
(,+p/2

_<--
7" +p{ k3(7"/Z-x) sin

7/" 7" -p "r/2

So

(3.8)

+ k3((7" +p)-x) 7" +p
sin ..-n’y..

7r 7"+p

77.2 f 3(-r+p)/2
Try

k3(y-x) cos dy

>-- -Trk3(7"/2- x) +’n’k3(7"/2- x)sin

With (3.8), we have that

3(-r+p)/2

}.
(’r+p)/2

2(7" +p)
+ 27rk3(-}(7" +p) x).

(3.9)

3(.r+p)/2

k (y x) cos
/2

Try
dy>=,,

1 {7"+p 7"+p
-kz(7"/2-x)(7"+p)cos

2(7" +p)

7rk3(7./2 x) + 7rk3((7" +p) x) }.
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To insure this positive, we must demand that

7/"/"
(3.10) -kz(’r/2-x)(’r +p) cos rk3(’r/2-x) >-0

20"+p)

for Ix[-< -/2. This will be true if we can find p as a function of z for which

CSC X k3(x <-0 forx>O.(3.11)
dx

exp
’+P 20-+p)

From (3.1), we see that we must be able to find p P0-) such that

r rp (" +p) rp 1(3.12) csc Ix*, or sm
’+p 20- +p) r 20-+p)

Let us define /= 1/-. Then, as a function of /, p, we have

(3.13) F(rt, p)
1 +/p

sin
vrrtp 1

n---g- 2(l+np) ,=0.
For rt 0, we have that p 2//x*. We can easily see that F, F,, Fp are continuous near
r/= 0, p 2//x*, and that

G(0, /* r/; 0.

From the implicit function theorem, we can solve for p as a continuous function of rt, rt
suitably small, or as a continuous function of ’.

Professor G. M. Wing [17] has suggested the following argument to obtain upper
and lower bounds on p(r). We first show that we can define p() for all r" Suppose we
have p() a continuous function of for e [o, m). Can we extend p(r) to a continuous
function of [ro- e, m)? If Fp(, p) 0 at (to, po), where F(r, p) is defined in (3.13), then
such an extension can be made by the implicit function theorem. An easy calculation
shows that

( po ) o
(3.14) Fp 0"o, po) --rl sin \2(-po)] + 20o +po)

cos

This cannot be equal to zero, since otherwise,

"/7"po 7FT0
tan

2(Zo +po) 2(Zo +po)’

rpo
2(ro+Po)"

and this contradicts the fact that O<-rpo/(20"o+po))< r/2,since p0>0. So p(r)is
defined and continuous for all -_-> 0.

To get our bounds for P0"), we define

r
x (’,)

-,- +p().

Equation (3.12) becomes

(3.15)
sin X0-) 2
X(’r) /x’p0")"

Because [sin x (-)]/(X 0")) < 1, we get that p0-)_->2/# *, which produces our lower
bound.
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We get our upper bound by noting that [sin w]/(w) is a decreasing function of w for
O<-w<-cr/2. From (3.15), we get

(3.16) p(z)= 2/lx *(sin X(’))
" X()

We observe that x(0) cr/2, and hence [sin g(z)]/(X(z)) --> 2/cr. Thus p(-) -< cr/g.*.
We can draw the conclusion that

k (x y) cos
cry dy _< k (x y) cos

cry
dy

cr crx

,-/2 " +p(’) " +p(z) z +p(’)
cos r+p(’)’

and the theorem follows from (2.1).
Remark. From (3.1), we see that the class of kernels being considered are those for

which ix* > 0.

4. Generalization to systems. In general self-adjointness is absent in the study of
NxN systems. We consider (1.1) where k (x- y) is a matrix whose entries have the
properties described in 1. We will use the following Banach space of vector functions"

(4.1) CN[0, z] {f’fi continuous, [If[[ max. maXo,, [fi(x)[ }.
A partial ordering in this space is induced by the cone Yg’r of vector functions possessing
nonnegative entries. An operator A is strictly positive if Af is a vector function whose
entries are positive on [0, r].

Our main result will consider an operator AR for which

(4.2) Agf(x) k (x y )f(y dy.

A power No of An is assumed to be strictly positive. It is easy to deduce that A is
strictly positive when - is sufficiently large.

If we denote the Fourier transform of k by/, we can conclude that/(0) will be a
nonnegative matrix, a power of which is strictly positive. From the assumptions on
we have that Ark will have positve entries, each of which is summable. Also

(4.3)

O< AUk (x) dx Ak(0)= k*A’o-(O)

=/(0)Aro-’k (0)= (/(0))No+’.

These equalities follow from the fact that iterates of An are convolutions and from
properties of the Fourier transform of convolutions.

Because k has nonnegative and summable entries, /(:) will be a nonnegative
No+Imatrix for sc near zero, and/ (sc) will be strictly pqsltlve [8, p. 924]. Hence both

II/(0)llsp and IIk()]lsp will be the largest eigenvalues of k(0) and/(sc) respectively, and
these are of simple multiplicity. The results of Karlin [8, pp. 930, 932] apply"

(i) II(,)llp- II(0)l[so.
(ii) The entries of un(:) approach those of un(0) where un(sc) and un(0) are the

positive eigenvectors corresponding to and II (0)llsp respectively.
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We have the following theorem"
THEOREM 4.1. Let the matrix k(x) have entries which satisfy the hypotheses in

Theorem 2.3 and 3.1 with (3.1) replaced by

(4.4)
d }inf sup x (e"’JXk’(x))<-O,x >=0

1,-.-,N

(For those entries for which kij(x)=-O, we take tzij oo.) Then

(i)

(4.5) (ii)

(iii)

[[A,,-llsp is a continuous, monotone increasing
function of ’.

[lAb.[Imp is simple, and its associated eigenfunction
is even about z/2.
I1 (’,’,/"r) Is,, -< IIA..,- IIs,, --< I1, (’,,/(", +p (",")))1 I,,,,,

where p(z) is a bounded continuous function of z.
The proofs are a trivial modification of those for the scalar case. For example, in

showing IIt?(,/)ll_-< IIAII, we would show that the signs of the components of

/2

are negative for the upper bound; instead of (3.11), we would show the components of

d
exp

"rr
csc

7rp

d- z +p 2(zr +p----x k3(x) UR +p
are negative for the upper bound; instead of (3.11), we would show the components of
analysis.

Applications" Multigroup neutron transport theory. The kernel

1 I1 e_tlxlw dt
(4.6) k(x)= .-C,
arises in the analysis of isotropically scattering slabs when discrete energy levels are
assumed [2]-[5], [10], [13]. Here C is an N xN matrix, nonnegative, with C%>0. E is
a diagonal matrix whose entries are ordered in the following manner: 1 -< O’ll -< O’22 =<

--< O’vv. It can be shown that AR is a strictly positive operator from the assumptions
on C. The entries of k (x) satisfy the hypotheses in Theorem 4.1.

We observe that

1 e_tX dt
C.(4.7) k3(x) " O’i]t3

We must select the value of/x* for which the components of

1 e(_,,) dt
C(4.8) e"k3(x) - O’,]t3

are decreasing in x. For each i, we see that/z < o, will insure this. From an examination
of asymptotics for k3(x), similar to that in [6, p. 28],

1
(4.9) k(x e-"xC,j,

O’iiX
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and we see/x o’ii is sharp. Hence/x*= 1, and, moreover, p(z) can be obtained as
perturbation of 2//z* with terms bounded in z, for - large.

A perturbation argument similar to that of Rellich in [ 14, pp. 60-61] shows that

(4.10) Ilk(x)llsp=llk(o)llsp-1/2X /o(x 2)

where UL(0)’(0)= and UL(0)is considered a row vector. Hence
2 lur(O)k"(O)u,,(O)l(4.11) IIA.Ilsv II (0)lls 2z2 u(0)u (0)

So our techniques enable us to estimate the spectral radius for a class of non
self-adjoint operators which includes those with important physical applications. The
techniques of [15] cannot be employed here.

5. Analysis of some classical kernels. In this section, we will consider three
integral operators which are self-adjoint when considered on L2(0, z). It is interesting
to see how the Perron-Frobenius-Jentsch theory can be used to provide upper and
lower bounds for IlA.Ilso in lieu of variational techniques.

I. Radiative transfer [6]. We have

(5.1) k(x) d/(t) e -Ixltdt--
t’

and hence

(5.2) k3(x) 4’(0 e -Ixl’ dt
3’

where ,(t) has the properties described in the Introduction. It is easy to see that k(x)
satisfies the hypotheses of Theorem 2.3 and Theorem 3.1. We must select the highest
value of/x for which

d d rod x(-t) dt
(eak3(x)) Jl(5.3)

dx -x ,(t) e t3 O, x O.

An examination of the analysis of the multigroup transport kernel shows *= 1.
So p(r) can be studied as a perturbation of p(m)= 2, and we have

(5.4) (/z) ,[A[lsp (+(z))"
Noting that p(z) is uniformly bounded in z, we get for asymptotics for l]A[lp the
expression

(5.5) IIh.lls +

which agrees with [15].
II. Hilbert’s kernel. Hardy, Littlewood and P61ya [7] considered the following

bilinear form

ambn (= 2n) 1/2(m= 2m)
1/2

(5.6) <zr b a
m,n=l m+n
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H. S. Will and N. G. de Bruijn [16] wished to find the best possible constant for which

a,,b,, ( 2n) 1/2( 2m)
1/2

(5.7) <Mv b a
re,n=1 m -[-/’/ m=l

They showed [ 16, p. 32] that determining the constant MN was equivalent to determin-
ing the spectral radius of an integral operator of the form

./2 1 x
k (x y)f(y) dy where k (x)(5.8) A,f(x)

It can be shown that

(5.9) k3(x) 4 Z (-1) e-(2i+1)’/2/(2i + 1)2,

and condition (3.1) leads to

i=0

(5.10)
I0tan

-1 s )-12 ds
S

max -1
[0.1] tan x

As in the previous example, p can be obtained as a bounded continuous function of
Observing that/(sc) zr sech rr:, we can get the following asymptotics on

(5.11) IIA,II zr /2rz+ o (r-2),
which agrees with [15] and [ 16].

III. e Gaussian kernel, k(x)= exp (-x2). For this kernel, we have

(5.12) k3(x) e dsdt.

The condition that (d/&)(e"Xk3(x))NO leads to
--1, (sup :: e dsdt)

xeO e ds

The ratio in parentheses is a bounded function of x, since it is a continuous function of
x and goes to zero as x m. An easy calculation shows that

and thus

leads to

/(sC) , e-e:/4,

3/2

(5.14)

Acknowledgments. The author wishes to express his gratitude to Professor G.
Milton Wing, Visiting Professor, Texas Tech University, for our many valuable
discussions in the course of developing the results of this paper. He also wishes to
express his appreciation to the referee for pointing out reference [ 16] and for his many
valuable suggestions.



THE SPECTRAL RADIUS OF INTEGRAL OPERATORS 567

REFERENCES

[1] J. J. BOLMARCICH, The behavior of the maximum value offinite sections of a class of bilinearforms, J.
Math. Anal. Appl., to appear.

[2] R. L. BOWDEN, W. GREENBERG AND P. F. ZWEIFEL, Critical multigroup transport, SIAM J. Appl.
Math., 4 (1977), pp. 765-777.

[3] R. L. BOWDEN, S. SANCAKTAR AND P. F. ZWEIFEL, Multigroup neutron transport. I. J. Mathe-
matical Phys., 17 (1976,)pp. 76-81.

[4] , Multigroup neutron transport. II. Half range, Ibid., 17 (1976), pp. 82-86.
[5] E. E. BURNISTON, T. W. MULLIKIN AND C. E. SIEWERT, Steady state solutions in the two-group theory

of neutron diffusion, Ibid., 13 (1972), pp. 1461-1465.
[6] I. W. BUSBRIDGE, The Mathematics of Radiative Transfer, Cambridge University Press, London,

1960.
[7] G. H. HARDY, J. E. LITFLEWOOD AND G. POLYA, Inequalities, second ed., Cambridge University

Press, London, 1964.
[8] S. KARLIN, Positive operators, J. Math. Mech., 8 (1959), pp. 907-937.
[9] M. G. KREIN, Integral equations on a half-line with kernel depending upon the difference of the

arguments, Amer. Math. Soc. Transl., 22 (1962), pp. 163-288.
10] J. T. KRIESE, C. E. SIEWERT AND Y. YENER, Two-group critical problems for slabs and spheres in

neutron transport theory, Nuclear Sci. Engng., 50 (1973), pp. 3-9.
11 A. LEONARD AND T. W. MULLII,ZIN, Integral equations with difference kernels onfinite intervals, Trans.

Amer. Math. Soc., 116 (1965), pp. 465-73.
[12] T. W. MULLII<IN, Neutron branching processes, J. Math. Anal. Appl., 3 (1961), pp. 507-25.
13] T. W. MULLIKIN AND DEAN VICTORY, N-group neutron transport theory: A criticality problem in slab

geometry, J. Math. Anal. Appl., 3 (1977), pp. 605-630.
[14] F. RELLICH, Perturbation Theory of Eigenvalue Problems, Gordon and Breach, New York, 1969.
15] H. WIDOM, Extreme eigenvalues ofN-dimensional convolution operators, Trans. Amer. Math. Soc., 106

(1963), pp. 391-414.
[16] H. S. WILF, Finite Sections of Some Classical Inequalities, Springer Verlag, New York 1970.
[17] G. MILTON WING, private communication.



SIAM J. MATH. ANAL.
Vol. 9, No. 3, June 1978

Copyright (C) 1978 Society for Industrial and Applied Mathematics
0036-1410/78/0903-001251.00/0

GLOBAL VARIATION CRITERIA FOR THE L-STABILITY OF
NONLINEAR TIME VARYING SYSTEMS*

Y. V. VENKATESH’t"

Abstract. In the framework of the positive operator theory of Zames, multiplier (general causal+
anticausal) function form L2-stability criteria are derived for a class of nonlinear time varying feedback
systems represented by a time invariant stable part in feedback with a nonlinear time varying gain k (t)p ).
The criteria involve an upper global bound on the positive lobes of the normalized rate of variation,
0(t)= (dk/dt)/k, and, simultaneously, a lower global bound on the negative lobes of 0(t); a trade-off, which
is desirable in practice, between the two bounds is permitted. Finally, a method is described for partially
freeing the stability conditions from multiplier dependence, but the problem of deriving explicit geometric
stability conditions is still unsolved.

1. Introduction. Consider the feedback system illustrated in Fig. 1, where c is a
time invariant linear operator, (. is a memoryless monotone (or odd monotone)
nonlinearity, and k (t) is a time varying gain. We represent the system by the following
equation"

v (t) x (t) k (t)q (y (t)),
(1)

y(t)=(v)(t)= , gv(t-z)+ g(t)v(t-z)d"
i=1

for all t _-> 0. Here x (.), v (.) and y (.) are respectively the input to the system, the error
signal and output of the system. For assumptions on the components of (1), see 2.

We derive L-stability conditions in terms of the frequency response of and a
suitable multiplier function. The derivation is based on the theory of positive operators
on a Hilbert space but in view of the integral equation formulation (1), the simpler
energy balance" argument [ 1] is employed.

x(tl + v(t)

k (t) (y (t))
k (t)(

FIG.

y(t)

The problem of stability of feedback systems with a single time varying nonlinear-
ity was initially considered by Zames [2a], Sandberg I-3] and others. A well-known

* Received by the editors July 24, 1975, and in final revised form November 22, 1976.

" Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India. This work
was supported by the Alexander von Humboldt Foundation, West Germany while the author was at Institut
fiir Regelungs-und Steuerungssysteme, Universitit Karlsruhe, West Germany.

See Definition 4 in 2.

568
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criterion is the circle theorem which employs no more information than the range of
values of the time varying nonlinearity. A more flexible result for systems with a
monotone q(. was derived by Zames [2b] by employing an RC-multiplier and
restricting the rate of variation of k (t). For a reference to other contributions, see the
brief survey in [4a]. More recently, for linear systems, Sundaresan and Thathachar
[5a, b] established stability conditions involving upper and lower global bounds on
O(t) (dk/dt)/k in the manner of Freedman and Zames [1]. See also Freedman [6]. But
for nonlinear time varying systems, the following problem was left open.

Problem. Derive stability conditions in terms of lower and upper global bounds on
O(t) for the nonlinear time varying system represented by (1).

In fact, a footnote in [5a] conjectures the nonexistence of a solution to this
problem.

The main result of the paper is Theorem 1 ( 2) which gives L2-stability conditions
in terms of a multiplier function (containing causal and anticausal terms) and lower and
upper global bounds on O(t), a trade-off between the two bounds being permitted. The
proof of the Theorem 1 is based on two lemmas ( 3): the first lemma concerns the
positivity of two operators one of which is linear time invariant and the other nonlinear
time varying; the second lemma deals with the time varying gain factorization more
general than that of Freedman and Zames [1]. Lemmas 1 and 2, believed to be of
interest in their own right, are the main contributions of the paper. Once these lemmas
are established, the positivity theorem of Zames [2a] along with the lemma on
factorization of convolution operators defined on (-o, ) l-7] directly leads to the
stability conditions. But in the interest of completeness and in view of the integral
equation formation (1), the simpler energy balance argument is used ( 3) to prove the
mare stability result. Finally, an attempt is made ( 4) to free the stability conditions
from dependence on the multiplier function.

2. Preliminaries, assumptions and statement ot the main result.
DEFINITION 1. Let L2[0, c) be the linear space of real valued functions x (.) on

[0, c) with the property that

Iolx(t)l 2 < o.dt

Let L2[0, c) be normed with the norm

The definition of the extended space L2e is introduced via the notion of a truncated
function x(. ).

DzviytWiON 2. For any real valued function x(. on [0, ) and any T=> 0, let
IT(" denote the truncated function defined by

Ix(t) fort-< T,XT(t) /0 for t > T.

DEFINITION 3. Let L2e be the space of those real valued functions x (.) on [0, )
whose truncations IT(. belong to L2[0, ) for all T_-> 0.

DEFINITION 4. The system described by (1) is L2-stable if v G L2 [0, o) for
x 6 L2[0, c), and an inequality of the type Ilvll--< const. IIxll holds.
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Concerning the feedback system described by (1), we make the following assump-
tions:

A1. x (.) is in L[0, o).
A2. v(. and y(. are in L2e.
A3. g(" )is a real valued element of L[0, c), i.e., Ig(/)l dt < az. There is a

constant eo > 0 such that g(t) exp (eot) is also in L[0,
A4. {g} is a sequence in l, i.e., Y. Igl< c. {r} is a sequence in [0, ).
A5. k (.) is assumed to be absolutely continuous on the interval [0, az) and takes

values in [e, o) for some constant e > 0.
A6. 0(. is a real valued function on (-c, o). Further, 0(0)= 0, and 0(. is a

monotone nondecreasing, i.e., (trl- r)(0 (trl) 0 (o’2)) => 0 for all trl and 0"2. There exist
constants ql, q2 >0 with ql <q2 such that qlO-2 (o’)o- --<q2o"2 for all tr 0. This class
of nonlinearities is denoted by C. Let G(fio) denote the frequency function of , i.e.,
G(/’w) Z,=a g, exp (-/’oJ-,) +J g(t)exp (-jot)dt.

L2-Stability problem. Find conditions on k (t) and G0"w) which ensure that v(. is
in L2[0, c) with Ilvll--< const,llxll.

A solution to the stability problem involves some additional definitions.
DEHITION 5. Let P denote the class of operators E L2e L2e satisfying an

equation of the type

(t+rl)+ z(’)x(t r) dr(2) (x)(t)=x(t)+ ’, ZiX(t--o’i)+ ’. ZiX
i=1 i=1

where the sequences (z} and {z[} are in la, i.e., Y=a (Iz l + [zZl) < oo; sequences {o-},
are in [0, oo); z(. is a real valued function on (-Do, oo), and is in Ll(-Oo, oo), i.e.,
-o Iz(t)[ dt < c. The frequency function Z (jw)’is given by

Z(jo))-- 1 -- zi exp (-joacri)+ Z Z exp (jwr[)+ z (r) exp (-jwr) dr.
i=1 i=1

DEFINITION 6. Let

O(t)
dr ]’

O+(t) { O(t)O for all O(t) > O,
for all O(t) <= 0;

and

O-(t) { O(t)O
Evidently, O(t) O+(t) + O-(t).

DEFINITION 7. Let

for all O(t) < O,
for all O(t) >= O.

(3)

(4)

)s sup q (w) dw/ (y)y
y
yO

, inf o(w) dw/o(y)y
y
y0

Note that for q(. )E C, 0 <& -< 1.
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Throughout the rest of the paper, Re denotes "the real part of."
The main result of the paper is the following theorem:
THEOREM 1. If there exists an operator in P with z (.) <= O, z <= 0 and z <= 0 for all

1, 2,. ., such that
(a) for some positive constants ,

2 Iz, exp (o-) + ]z[ exp (’a’D + ]z(’r) exp (sc’r’) d’r
i=1 i=1

+ Iz(-)lexp(--)d’<=l/(l+6-8,);

(b) Re Z(]to e )G(]to e) >- 6 > 0 for all to in (-oo, oo) and some positive constant
e (which, in view of hypothesis (a) and assumption A3, is less than e0); and

(c) for some positive constants N1 and N2, and for all finite T> 0 and all to >- O,

1 to+T

J, O+(t)dt<-N1;(6)
T ,o

I /r O-(t) dt(7) -N2 -<-- ,o

and in addition one of the following two sets of inequalities is satisfied:
Set 1.

1 f t+rO+(t)dt <(8) (i) linoo- o
and

(9) (ii)

(lO)

(11)

and

Set 2. (i) for < ,

(ii) for > ’,

1 f to+T
lira ! O-(t) dt >=-,;
reo T ato

1 f to+T
lira J, O-(t) dt >- ,
T " to

lim
1 I t+r O+(t)dt=O,TcT to

1 f tO+T
lim O+(t)dt<=-(,
TT to

lim
1 fto+r O-(t) dt 0

r- T

(iii) ]:or , O(t) unrestricted;
then the feedback system represented by (1) is L2-stable.

Remark 1. Note that, apart from the flexibility in the choice of restriction on O+(t)
and O-(t) by picking up Set 1 or Set 2 conditions, there is an additional freedom in the
choice of sc and sr while satisfying the time domain inequality (5).
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3. Principal iemmas and proof of the main result. Before we state the lemmas, we
need the following definition.

DEFINITION 8. Let ’{" be the class of absolutely continuous real valued functions
k (.) on [0, ) with each k (.) having constants _k > 0 and k -> _k for which _k _-< k (t) -< k
for all => 0.

The following lemma concerns the positivity of two operators in cascade, one of
them linear time invariant and the other nonlinear time varying. Zames and Falb [7,
Lemma 8, Proposition 1] considered the positivity of a linear time invariant operator in
cascade with a time invariant nonlinearity.

LEMMA 1. If (a) the operator belongs to P with z (.) <= O, z <= 0 and z <- 0 ]’or all
1, 2,. (b) ]’or some nonnegative constants and , inequality (5) is satisfied; and

(c) for these values of and , with f(. ) Y{, f(t)k (t) exp (-set) is nonincreasing and
f(t)k (t) exp (’t) nondecreaing ]’or all >= O, then the following inequality holds:

(12) (t)(Ltx)(t)k(t)o(x(t)) dt >-_ 0

for all x in the domain of and for all T >- O.
Proof. See Appendix A.
Remark 2. For odd monotone q (.), Lemma 1 is applicable without, in hypothesis

(a) of Lemma 1, the nonpositivity constraint on z (.), z and z for all 1, 2,....
The next lemma deals with the factorization of time varying gains.
LEMMA 2. Ifthere exists a time multiplierfunctionf in Y{satisfying hypothesis (c)

ofLemma 1 forsome positive constants and, then hypothesis (c) of Theorem 1 holds.
Proof. See Appendix B.
Remark 3. Lemma 2 seems to be a significant generalization of the lemma of

Freedman and Zames [1, Lemma 4].
Based on Lemmas 1 and 2, Theorem 1 may now be proved.
Proof of Theorem 1. Consider the integral, for any T> O,

(13) p(T) f(t)x(t)(:v)(t) dt

which when we use (1) becomes

fOT fOT(14) p(T) f(t)v(t)(Cv)(t) dt + f(t)k(t)q(y(t))(y)(t) dt.

The first integral on the right hand side of (14) is, for some e > 0,

f(t)v (t)(2Cgv )(t) dt f(t) exp (-2et)v (t)(2Udv )(t) exp (2et) dt.

Suppose we choose f Y{ so that f(t) exp (-2el) is nonincreasing and e < e0 (see
hypothesis (b) of Theorem 1). Then we can invoke the second mean value theorem
(Hobson [8, p. 618]). According to this, there is a point T’ in [0, T] for which

i0 i0f(t)v (t)(Nv )(t) dt ]’(0) v (t)(2Udv )(t) exp (2et) dt

where f(0)>0 in view of our choice f6:T{. By hypothesis (b) of Theorem 1,
Re Z(/’w-e)G(jw-e)=> 6 > 0 for all w in (-c, ). Hence by Parseval’s theorem

T

(15) f(t)v(t)(Nv)(t) dt >= lllVll2
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for some constant 61 > 0.
Now consider the second integral on the right hand side of (14). By virtue of

Lemmas 1 and 2, this integral is nonnegative if hypotheses (a) and (c) of the theorem
statement are satisfied. Consequently, from (15), (14) and from an application of
Parseval’s theorem to the integral of (13), we have

  llv ll2_-< f(t)x(t)(3qv)(t) dt

(16)

--<llxll I1)11 sup IZ(jca)G(jw)l;

but sup-oo<<oo [Z(j_w)G(]o)[ is finite by virtue of the assumptions on Y and . Hence
with constant A f sup-oo<o,<oo IZ(]oo)G(]w)[, we get from (16) the inequality

which is valid for all T> 0. The theorem is proved.
Remark 4. Theorem 1 applies to nonlinear systems with odd monotone nonlinear-

ity under less restrictive assumptions on the multiplier: the nonpositivity constraint on
z (.) in Theorem 1 is no longer necessary. (See Remark 2 above.) Note that, when sc sr,
in hypothesis (c), choice of Set 2 imposes no constraint on O(t). In this form Theorem 1 is
believed to be a generalization of the circle criterion [2] for 0(. monotone.

4. Construction of a multiplier function Z(jo). It is assumed that G(jw-e) for
some constant e >0 satisfies the Nyquist criterion: that is, arg G(jw-) lies in the
interval (-Tr, 7r) for w (-, ). Note that e < eo by assumption A3, 2. If a multiplier
function Z(w) is so chosen that argZ(jw) and argZ(w)G(je0) lie in the interval
((-zr/2)+a, (Tr/2)-a) for all w(-oo, oo) and for some a>0, then
argZ(jto-e)G(jto-e) also lies in ((-Tr/2)+a, (Tr/2)-a) for some positive small
constants e and a. Thus it remains to verify hypothesis (a) and, with the maximum value
of constants s and sr so obtained, to satisfy hypothesis (c) of the theorem statement.

Define

(zr/2)- arg G(jw) for arg G(jw) >= 0,
$(w)=

(-zr/2)-arg G0"w) forarg G(jw)<0.

Then arg Z(jw) lies in the band formed bytwo functions 1 and2 defined as follows"

(17)
pl(W)=((-zr/2)+a, (o))-a) forarg G(jw)>=O,

$2(o)=((w)+a,(Tr/2)-a) for arg G(jw) < 0

for some a > 0.
Remark 5. The multiplier used by Freedman and Zames [1] in their final stability

results is a causal function, and the construction is based on the assumption that
arg G(jo) approaches zero as [w[oo. This assumption excludes consideration of
systems with arguments tending to +/-zr/2 or

We now examine two extreme cases.
Case 1. It is assumed that there is a minimum finite frequency W beyond which

larg G(jw) < zr/2 for all [w > W.
Case 2. It is assumed that arg G(joo) tends to -Tr as to oo.
Construction of multiplierfunction: Case 1. Let o(w) be a real valued continuous

almost everywhere ditterentiable function chosen in the band (17) for < w, and
outside the interval (-W, W), let o(W)= 0. If we set q)0(w)=-0(w), it becomes an
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odd function of to. It can be concluded that o(tO) and do/dto are in L2(-oo, oo) and
hence the inverse (limit-in-the-mean) Fourier transform 4o(t) ofjo(tO) is real, odd and
in LI(-OO, oo). Define b(t) on (-o, ) as follows:

(18) 4 (t) { 3,bo(t) or 0,
-ytho(t) for 0

for some constant y. Then b (t) is real, even and is in L(-c, oo). Its Fourier transform
(to) is even. Now let

A(t)-(t)+Cho(t)-(y+l)cho(t) for t-0,
(19)

(-y + 1)tho(t) for 0.

Its Fourier transform is given by

(20) A(jw) (to) /jo(O).

Further, let (A A)(t) denote the convolution product"

and let the subscript 1 in a norm denote the L-norm as for instance in

We now generate the multiplier function as follows:

Z(]w) 1 + A(]w)+(A(fio)/2!)+ +(A(fio)/n !)+
(21)

exp (A(/’w)).

For details on convergence see 1, Lemma 2]. It is easy to verify that arg G(o) o(W)
and hence in view of the construction of o(W) so as to lie in the band (17), hypothesis
(b) of Theorem i is satisfied. It remains to verify hypothesis (c) of the theorem. To this
end, let

Z l(t) inverse Fourier transform of exp (A(fio))- i for >= 0,
(22)

Z2(t) inverse Fourier transform of exp (A(]w)) 1 for t < 0.

Find and sr > 0 such that

(23) [IZ1 exp (t)l]l - ]IZ2 exp (--’t)l]l 1/(1 +6-6)

after suitably choosing y in (18).
Remark 6. For y 1 the multiplier Z(jto) is the one used by Freedman and Zames

[ 1] in which some additional constraints are imposed. The multiplier of [1] is a causal
function, i.e., z2(t)- 0 for < 0. The time domain inequality (23) becomes

]]4o exp (t)l]l-<1/2 log (1 + (1/(1 +6- ti)))

with the left hand side norm taken in the interval [0, o). Further, note that " c,
implying thereby that the behavior of the negative lobes of O(t) is unrestricted. In a
similar manner, for y 1, z (t) 0 for ->_ 0 and . This implies that the behavior
of the positive lobes of O(t) is unrestricted. Consequently, for those extreme cases, in
hypothesis (c) of the theorem, only the Set 1 bounds on O(t) are meaningful. For values
of 7 in (-1, 1), from inequality (23) there is obviously a trade-off between and ’" the
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larger the value of sc, the smaller is the value of r and vice versa. Note also that no
practical advantage is gained by choosing [3’1 > 1..

The following theorem is an alternative version of Theorem 1 for Case 1.
THEOREM 2. If larg G(fio )l < 7r/2 ]:or all Iool > w, afinite number, and there exists a

]:unction po(tO) in the band (17) within the interval (-W, W) and equal to zero outside
this interval, such that, with qbo(t)=inverse Fourier transform offo(W), (a) Zl(t) and
z2(t), defined by (22) and (21), are nonpositive; (b) inequality (23) holds [or some

sc, sr >0; and (c) hypothesis (c) of Theorem 1 is satisfied; then the feedback system
represented by (1) is L2-stable.

Remark 7. We note that Theorem 2 holds for the feedback system with an odd
monotonic nonlinearity qg(. by removing the nonpositivity restriction on Zl(t) and
z2(t), and thus a simpler geometric interpretation can be given:

COROLLARY. With fo(tO chosen in the band (17), (tan o(tO)) isfinite in (- W, W)
and zero outside this interval. Further (tan o(tO)) and its derivatives are in L(-, )
and hence the inverse (limit-in-the-mean) Fourier transform, Ze(t), Of (j tan o(tO)) is
real, odd and is in Ll(-O, o). ff there exists a positive such that

]z (t)l exp (t) dt <= 1/(2(1 + 6-6,))

andfor the value of so obtained, hypothesis (c) of Theorem 1 is satisfiedfor , then the
feedback system represented by (1) with an odd monotonic q(. is L2-stable.

However, in general, an interpretation of inequality (23) in terms of o(O) and its
derivative, as attempted by Freedman [6b] for the case of time invariant systems and
causal multipliers, seems to be difficult and constitutes an open problem.

Now we consider the case of arg G(w) tending to -Tr as ]w]o (Case 2) for
constructing a multiplier function.

Construction of a multiplier function: Case 2. Find the minimum value of the
constant 3’ such that arg ((1 +jyw)G(jw)) lies in the band [0, 7r/2) for [w]> W, a finite
number. Let Z(fio)= (exp A(jw)+jyw) with A(fio)constructed as for Case 1 but with
G(jw) replaced by (1 +fyw)G(joo) for Io1< W. Because of the additional term in the
multiplier, Theorem 1 and consequently Theorem 2 need a minor change which is given
in Appendix C.

Conclusions. The Zames positive operator principle is used to derive interchange-
able upper and global constraints on the rate of variation of the time varying gain for the
Lz-stability of nonlinear time varying feedback systems which are not necessarily
described by a differential equation. These results are more general than those available
in the literature and constitute a solution to the problems left open in [5]. A geometric
interpretation of the stability results of the paper is not complete as presented here and
hence seems to deserve further investigation.

In view of the relative slackening of the pace of publications in the area of time
varying system stability, one is tempted to conclude, following John von Neumann, that
we have reached the baroque stage. But on closer investigation one soon discovers that
(a) all the results available on stability when applied to Mathieu’s or Hill’s equation are
incapable of reproducing the well-known classical stability boundaries, and (b) in spite
of the attempts made by researchers in the field of instability, the instability counterpart
of, say, the stability criterion of Freedman and Zames [ 1] for linear time varying systems
is not known. See in this context the comments in Skoog [9, p. 93]. It should be a
challenging problem to derive the instability counterpart of Theorem 1 of this paper.
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Appendix A.
Proo[ ofLemma 1. We have

oT"f
(tl(Yx l(tlk (tlq(x (t)) dt

((t x (t + zx(t
i=1

T
--jt{(A.1) [(t)k(t) e 1/2x(t) ee + Y zi eex(t-oi)

i=1

+e fo }a z (’)x (t ’) dr q (x (t)) dt

a_}x (t) e,-a+ f(t)k (t) e 12

-I- E Zi e-Cax(t +r;)+e
i=1

o

}z(r)x(t-’) d" q(x(t)) dt

where :, sr are nonnegative constants.
Since [(t)k (t) e -a is nonincreasing, by the second mean value theorem, there is a

point T’ in [0, T] for which the first integral on the right hand side of (A. 1) becomes

f(O)k(O){ 1/2x(t) e :’ + Y (zi ei’)(x(t-ri) e e(’-’))
i=1

+ (z(r) e)x(t-’r) ee(t- d’r]q(x(t)) dt }
which, on interchange of the integration and summation operators (assuming the
validity of such an interchange) assumes the form

(A.2)
f(O)k (O){ fo

w’

1/2x(t) etqg(x(t)) dt +,Y"I= zi e :’’ x(t-’i) ee(t-)q(x(t)) dt

+ z(’) ee, dr ee(-’x(t-r)o(x(t)) dt

By virtue of Lemma 2 of [4b], it can be shown that the expression (A.2) is nonnegative if

, Izil e’ + Iz(r)l ee dr <
1

i= =2(1 +6,-i)"

As regards the second integral on the right hand side of (A.1), we note that
f(t)k (t) e et is given as nondecreasing. Hence by the second mean value theorem, there
is a point T" in [0, T] such that the second integral on the right hand side of (A.1)
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becomes:

f(T)k(T) e (t) e -ct -F E Zi e’x(t +m) e
|Jr L

+ z(r) e-’x(t-r) e-(-’ dr (x(t)) dt

Proceeding in the manner given for the first integral on the right hand side of (A. 1)
and using Lemma 2 of [4b], we conclude that the second integral on the right hand side
of (A. 1) is nonnegative if

Izll e< + Iz( )l e
i=1 =2(1

The lemma is proved.

Appendix B.
Proof ofLemma 2. We have

(B.1) -, <-O(t)+(d-(/] <-,
\at

[0, m).

Let

(B.2) - h l(t) + h2(t).

Then inequality (B. 1) is satisfied by choosing

h(t)=-O+(t); h2(t)=--O-(t).

Hence, from (B.2), for all to >= 0 and all t-> to,

((B.3) f(t) f(to) exp, 0+(r) + d
o

But f(. is in Yg and hence, for some positive constants t and/3 with 1 <,
(B.4) _-<exp

for all to _-> 0 and all t _-> to.
The inequality (B.4) can be satisfied in any one of the following ways: For all to _>- 0

and all t >-to, and for some positive constants M and M, and M and M4,
Case 1.

(B.5)

Case 2.

(B.6)

and

-oo<-Ma < (-(+-O(r))dr<-M2<oo.
to

(i) -m<-Ma <= (-O-(r)) dr <=M2 < o;
o

(B.7) (ii) -oO<-M3 <= (-(-O+(r)) dr <-M4 < oo.
o
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Case 3.

(B.8)

and

(B.9)

Case 4.

and

(B.11)

Case 5.

(i)

(i)

(i)

(ii)

--00 < -M1 (-’- 0-(r)) dr M2< 00;

(B. 12) (i)

--o0 <-M1 (:- 0+(g)) dr <=M4 <

and

-<-M1 =< (-(- 0-(-)) dr =<M2 <

(B.13) (ii)

-oo < -M3 <=

-oo<-M1 (-O-(r)) dr <-M2 <-eo;

-o<-M3 <

Case 1. Inequality (B.5) can be reduced to

< k (t) _< exp (M1 + ( sr)(t to))(B. 14) exp(-M2+(-)(t-to))=k(to
for all to->_ 0 and all t-> to.

When so> r and when sc <sr, we conclude from (B.14) that k(. )3’{. Hence Case 1
is ruled out for sc r. But when sc st, inequality (B. 14) merely implies that k (.) eY and
hence no restriction on O(t) is imposed.

Case 2. From inequality (B.6),

(B.15) -M2 +(t to) _-< 0-(r) d’r =<M1 +(t- to)

for all to_->0 and all t ->_to. But (B.15) is untenable because 0-(’) is always negative and
hence the left hand side of the inequality is violated for sufficiently large > to. (The
right hand side of (B.15) is, however, trivially satisfied). In an identical manner,
inequality (B.7) is untenable. Hence Case 2 is ruled out.

Case 3. From inequalities (B.8) and (B.9) respectively,

(B.16)

(B.17)

-M2-(t-to) < O-(-)d-<_M-(t-to),

-M4 -b (t to) <= O+(’r) drM+(-o)
to

for all to-> 0 and all _-> to.
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and
Hence by requiring that tto 0 +(r) dr and tto [0-(r)l dr be bounded for all finite t -> to,

1 f to+7"
lim O+(r)dr<-_,
T-+ y

lim
1 to+r O-(r) dr >=-,

T- - to

inequalities (B. 16) and (B. 17) are satisfied.
Case 4. From inequalities (B. 10) and (B. 11) respectively,

(B. 18) -Me + ( ()(t to) <- O-(r) dr <=M1 + ( ()(t to),

(B.19) -M4 = O+(r) dr <-_M

for all to _-> 0 and all _-> to.
When > ’, the left hand side of inequality (B.18) is violated (in view of the

negative nature of 0-(r)) for sutticiently large t >to. Hence inequality (B.18) is
incompatible for > ’. Consequently, we require that : <_-’.

When := ’, (B.18) gives

(B.20) -M -< 0-(r) dr _<-M1
O

for all to->0 and all => to. Inequalities (B.19) and (B.20) are definitely more restrictive
than the waiving of all restrictions on O(t) in Case 1 for ’. Hence we need consider
only : < sr. As in Case 3, if I’to IO-(r)l dr is bounded for all finite t => to, and

lim
1 fo+r O-(r) dr >= ,f

T- -then (B. 18) holds.
Case 5. As in Case 4, inequalities (B.12) and (B.13) are respectively equivalent to

requiring that

-M2 <- O-(’r) dr <-M1
0

for all to_->O and all t _->to; and, for sc>sr, o 0+(r) dr is bounded for all finite t _->to,
to+T

lim O+(r)dr<-_-.
T+oo .to

When sc < sr, k (.) Y(, and when st, the constraint so obtained on O(t) is stronger
than necessary as explained in Case 4.

The lemma is proved.

Appendix C. Consider the integral

pl(T) f(t)k(t) x(t)+y-d-f q(x(t)) dt
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where /is a positive constant. This integral can be rewritten as
T

-,(C.1) p(T) f(t)k(t) e (x (t) e + u et(dx/dt))o(x(t)) dt

where u is another positive constant which is to be suitably chosen.
If f(t)k(t) exp (-ut) is nonincreasing, there is a point T’ in [0, T] for which (C.1)

takes the form

(C.2) o(T) =(O)k (0) x(t) e + e’ (x(t)) dr.

On integrating by parts the portion of (C.2) containing the derivative of x, and
simplifying, we get

p,(T) =/(0)k(0) e"’ x(t)(x(t))-V (u) du dt

+[(O)k (0) e (u) du
o o

which on using (3) leads to the inequality

o,(T) dt +[(0)k(0), e"’ du
o

Thus Lemma 2 remains valid with replaced by (+ y(d/dt)) and the right hand
side of inequality (5) by (1 yu6)/(1 + 6 6). But then, at the same time, u should be so
chosen that f(t)k (t) exp (-m) and f(t)k (t) exp (-0) are nonincreasing for values of u
and which are almost equal to each other. Even though the choice of u equal to
would be appropriate, it is observed that the right hand side of the inequality (5) is
reduced correspondingly. The problem is then one of finding out an optimal u satisfying
inequality (5) with the modified right hand side and such that it is on a par with .

Note further that

and hence, in this case,

(exp

e changes to be made in the statement of eorem 2 are: (i) Substitute the
inverse transform of (1 +]yw)((exp A(]w))- 1) for the inverse transform of (exp A(]w)-
1); and (ii) replace the right hand side of (23) by (1-y6)/(1 +6-6).
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NONHOMOGENEOUS SECOND ORDER DIFFERENTIAL SYSTEMS
WITH INTEGRAL BOUNDARY CONDITIONS*

S. C. TEFTELLER?

Abstract. This paper is concerned with second order, nonhomogeneous differential systems involving a

parameter with integral boundary conditions. The existence of eigenvalues and oscillatory behavior of the
associated eigenfunctions is established. The results extend those of G. J. Etgen and the author which were
concerned with the homogeneous problem.

1. Introduction. The study of second order differential systems involving a
parameter together with various kinds of boundary conditions has been an important
part of mathematics for the past one hundred years, and subsequently the literature on
this subject is voluminous. The purpose of this paper is to extend some results for
these problems to differential systems which involve a "forcing term".

Consider the differential system

(NH)
y’= k (x, A)z,

z’ g(x, , )y +f(x, , ),

together with the associated homogeneous system

u’=/ (x, ,)v,
(H)

v’=g(x,A)u,

where k (x, A), g(x, A), and f(x, A) are real-valued functions on

X’a-<x-<b, L’A#-6<A<A#+6, 0<6_--<, -o<a<b<.

The system (NH) shall be considered together with two-point boundary conditions of
the form

(la)

(lb)

c(A)y(a, A )-/3 (A)z(a, A) 0,

1(/.)y(a, A)+ l(/)z(a, A) y2(A)y(b, A) + 62(A)z(b, A) +H(b, A),

where H(x, A) , h (t, h)y (t, A) dt, and a,/3, yi, 6i, 1, 2, and h are real-valued
functions on L and XL, respectively.

The problem (H), (la, b) has been studied by G. J. Etgen and the author [2] and
by C. Comstock and P. Dunne [1]. Each of these papers is an. extension of the
fundamental work of W. M. Whyburn [11]. Nonhomogeneous boundary problems
without integral terms have been studied by the author [7], [8]. This work will extend
that of the above-named authors.

Assuming that k (x, A) is nonzero in XL, the system (NH) may be written as

(2) (y’/k)’-gy =f
and the associated homogeneous equation is

(3) (u ’/, )’- gu o.

* Received by the editors February 26, 1976, and in final revised form October 26, 1976.
? Department of Mathematics, University of Alabama in Birmingham, Birmingham, Alabama. Now at

Exxon Production Research Company, Houston, Texas 77001.
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It is easily verified that the general solution of (2) is given by

(4) y(x,A)= Cl(A)- f(t,A)v(t,A) at u(x,A)+ c2(A)+ f(t,A)u(t,A) dt v(x,A),

where {u(x, A), v(x, A)} is a solution basis of (3) such that

(uv’-vu’)/k =- 1 on XL.

Substituting (4) into the boundary conditions, one obtains

ClB,(u) + c2B,(v) 0,

C 1B2(u) + c2B2(v) -B2(yp),

where B(u)=a(A)u(a,A)-(A)u’(a,A)/k(a,A), B(u) y(A)u(a, A) +3(A)
(u’(a,A)/k(a,A))-T2(A)u(b,A)-32(A)(u’(b,A)/k(b,A))-a h(t,A)u(t,A) dt, and
yp(X,A) is obtained from (4) by putting ca=c2=0. (Note that yp(a)=y’p(a)=O.)
Hence, as is the case for other nonhomogeneous boundary problems, the problem
(NH), (la, b) has a unique solution for those values of A for which the associated
homogeneous problem has only the trivial solution. Further, for those values of A for
which the problem (H), (la, b) has a nontrivial solution, the nonhomogeneous prob-
lem either has no solution or infinitely many solutions.

Max Mason [6] considered a nonhomogeneous equation of the form (2) together
with self-adjoint boundary conditions and obtained necessary and sufficient conditions
for existence of eigenvalues when the homogeneous problem had a nontrivial solu-
tion. For the problem (NH), (la, b), these conditions reduce to the condition that
B2(Yp) 0.

In either case, the homogeneous problem must be solved or shown to have only
the trivial solution before solutions of the nonhomogeneous problem can be deter-
mined. This seems to be an indirect and highly ineffective method of solution.

The following hypotheses on the coefficients involved in the boundary problem
will be assumed throughout:

(Ha) For each x X, each of k(x,A), g(x, A), h(x, A), and f(x,A) is continuous on
L.

(H2) For each A L, each of k(x, A), g(x, A), h(x, A), and f(x, A) is measurable on
X.

(H3) There exists a Lebesgue integrable function M(x) on X such that ]k (x, A)I --<
M(x), Ig(x,A)[<-M(x), Ih(x,A)l<=M(x), and ]f(x,A)l<=M(x) on XL.

(H4) k (x, A) > 0 on XL.
(H5) Each of the functions a (A),/3 (A), Ti(A), and 8i(A), 1, 2, is continuous on

L.
(H6) a2(A) +j 2(/ > 0 on L.
,(Hv) / (X) _-> 0 on L.
(Hs) T(A)+(A)>O on L, 1, 2.
(H9) g(x, ,) is not identically zero on any subinterval of X for each A L and is

not identically zero on any subinterval of L for any x X.

2. Preliminary results. We seek to establish the existence of values of A L for
which there corresponds a nontrivial solution of (NH) satisfying (la, b). Such values of
A are called eigenvalues of the boundary problem. By a nontrivial solution of (NH), we
mean a solution pair {y(x, A), z(x, )} of (NH) such that y2(x, ) + z2(x, A) 0 on XL.

As in [9], it can be shown that if hypotheses (H1)-(H3) are satisfied and if {y(x, ,.),
z(x, )} is any solution pair of (NH) such that y2(x, A) + z2(x, A) > 0 on XL, then there
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exists a pair of functions p (x, A), O(x, A) with the property that

(5)
y(x, A) p(x, A) sin O(x, A),

z(x, o(x, A) cos O(x, A ).

Furthermore, O(x, A) and O(x, A) satisfy the differential equations

(6)
(a) p’= p(k +g)(sin 0) cos 0 +f cos 0,

(b) 0’= k cos20-g sin2 0-(f sin O)/p,

with the initial conditions p(a) > 0; 0 =< O(a) <= 27r.
It is required that y2(x, A) + z2(x, A) > 0 on XL to insure that p’(x, A) and O’(x, A)

are defined on XL. The following theorem provides, conditions under which these
functions are well defined [8].

THEOREM 1. Suppose that p(a,A)+l>expbaM(s)ds on L, where p(x,A) is

defined by (6), and M(x) is the Lebesgue integrable bound of the coefficients. Then
p(x, A) > 0 and consequently, y2(x, A) + z2(x, A) > 0 on XL.

Hypotheses (H1)-(H3) allow application of fundamental existence theorems for
differential systems to obtain the existence of a solution pair {y (x, A), z (x, A)} of (NH)
on XL such that

(7) y(a, A)---/3 (A); z(a, A) c(A)

on L. Further, {y(x,A), z(x,A)} has the polar coordinate representation (5), with
{p(x, A), O(x, A)} solutions of (6) with the initial conditions

p(a,a)=[o2(a)W2(a)]l/2; sin O(a,a)(a)/[ot2(A)q-2(A)]1/2

(7’)
cos O(a,A)--a(A)/[az(A)+Bz(A)]’/2, 0 < 0 (a, A) <27r.=

Since/3 (A) => 0, we may assume 0 =< O(a,
Using this nonhomogeneous polar coordinate transformation, we may now state

an existence theorem for eigenvalues of (NH), (la, b).
TI-IEOREM 2. Let {p(x, A ), O(x, A)} be the solution pair of (6) defined by (7’) and let

{y(x,A),z(x,A)} be defined by (5). Assume the hypothesis of Theorem 1. Then
{y(x, A), z(x, A)}, satisfies (NH), (la) and y2 + z2>0 on XL. Further, O(b, A) _>-0 on L.
In addition to (H1)-(H9), let the following conditions hold:

(i) h(x, A )/g(x, A) is defined, integrable, nonnegative and nondecreasing on Xfor
each A L;

(ii) p (b, A) => p (x, A) on Xfor each A L;
(iii) a [h (t, A)f(t, A )/g(t, A )] dt is of one sign on L;
(iv) either

P(b’A)62(A)>=[T(A)+6(A)]l/2+ Ia [h(t,A)f(t,A)/g(t,A)]dt,

for each A L, or
b

P(b’X)[(a)+2h(b’X)/g(b’a)]<--[Y(A)+(X)]I/- I [h(t’)f(t’)/g(t’)]dtl’
for each A L.

If rn is the least nonnegative integer such that inf O(b, A)< mTr and n is an integer
such that sup O(b, A)> nTr, and if n >-m + 1, then there exist at least p, p n-m,
nonempty sets of eigenvalues To, T, Tp-1 for the boundary problem (NH), (la, b).
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Furthermore, the number of distinct eigenvalues for (NH), (la, b) is at least p/2 if p is
even and at least (p + 1)/2 ifp is odd.

Proof. Since many of the techniques used in this proof are similar to those used in
[2], the reader is referred to [2] for details.

If {p(x, h ), O(x, h)} is the solution pair of (6) defined by (7’) and {y(x, h), z(x, h)} is
defined by (5), then {y, z} is a solution of (NH) satisfying (7). Boundary condition (la)
is clearly satisfied by this solution pair.

The coefficient hypotheses imply that O(x, h) is continuous on XL. Since O(a, A) >-_
0 on L and since O’(x, A) > 0 when y (x, A) 0, for any h L, then O(b, A) _-> 0 on L.

Since O(b, ) ranges in value from less than mzr to more than mr, there exist
values of A, A0 and hp, such that O(b, ho)= mzr and O(b, hp)= nzr, and we can assume
without loss of generality that ho < hp.

From (5), boundary condition (lb) becomes

[T(A) + 612(A)] 1/2 sin[O(a,A)+7"(h)]=p(b,h)G(b,h)+H(b,h),(8)

where

sin 7" 1/(-[-i) 1/2, COS 7’----- 1/(’]/ -1- I 12) 1/2,
(9)

G(x, A) yz(h) sin O(x, A) + 62(A) cos O(x, h).

Define Q(A) by

(10) O(a p(b, h )G(b, h) +H(b, h ).

Fix h L and consider
b t"b

H(b, h) J, h(t, h)y(t, A) dt J, h(t, h)[(z’(t, h)-f(t, h))/g(t, h)] dt

.b

| [h(t, h)z’(t, h)/g(t, h)] dt- re(A),

where
b

(11) re(h)= J [h(t,h)f(t,,)/g(t,h)]dt.

Hypothesis (H9) together with condition (i) allow application of a mean value theorem
for integrals [5, Thm. 244, p. 164] to obtain

(12) h(b’h)Ib h(b’ A) Ibg(b, h
z’(t’ A dt <--H(b’ A + m(A <-g(b, h z’(t, A dt,

where Y and x* are such that
b b b b

minIxx z’(t’h)dt=I z’(t,h)dt and maXlxxX z’(t’h)dt=I, z’(t,h)dt.

Thus we have

(13)
o(b,A){G(b, 1)+ h(b, A)[ p(Y, A)

g(b, h )[cos O(b, h )-p(b, h
cos 0(, )] }-re(h)

<--p(b, A ){O(b, A) +h(b, h )[ p(x*, A)
)(b,;t) cos0(b,; )-cos O(x*, h)]}- m(h).
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Since n m +p, p >- 1, and since O(b, A) is continuous in A, there are p 1 values
of A, AI<A2< <Ap-1 on (Ao, Ap) such that O(b,A)=(m+.i)Tr,]= 1,2,. .,p-1.
Choose any integer , 0_-<j =p- 1, and assume cos O(b, As) +1. Then cos O(b, As/l)
-1. From (13) and (iS), it follows that

(14)

where

F(As)- m (As) Q(As) -< A(As)- m (As),

-A(AS+I)- m (As+l) _--< O(As+I _--< -F(As+I)

(15)
A(A) p(b, A )[62(A + 2h(b, A )/g(b, A )].

Suppose the first condition of (iv) holds on L. If m(A)->0 on L, then F(A)=>
(’y+8)l/2+m(A)>=(’y+8)l/2-m(A). Hence (y + 8)1/2 =< F(A)- m (A) and
-r(X)-m(;)-<-(r+61)/), so that [y(A)+82(A)]/2_-<O(A) and O(A+)=<
-[),(As+I) +t12(As+1)]1/2. A similar result holds if re(A)=<0 on L. Likewise, if (iii) and
the second condition of (iv) is assumed, we have that as A increases from A to AS+l
O(A) changes continuously in value from not less than [y12(A)+ (A)]1/2 to not more
than -[y(A) + 2(A)]1/2 (or vice versa) for 0, 1,-.., p 1.

We have thus established that the continuous curves (,/)1/ sin[0(a,A)+
-(A)] and O(A) must intersect at least once on the intervals [A, AS+I],J’--
0, 1,...,p-1. Hence the boundary condition (lb) is satisfied at least once on
[Aj, Aj+I]. Let T={A [As, AS+I]I(lb) is satisfied}, j=0, 1,... ,p-1. It could be the
case that the A which satisfy (lb) are alternate endpoints. Thus there will be at least
p/2 or (p 4- 1)/2 distinct eigenvalues for (NH), (la, b), depending on whether p is even
or odd. This completes the proof of the theorem.

Remarks. It should be noted that there may exist additional eigenvalues for (NH),
(la, b) outside of [Ao, Ap], and that each of the nonempty sets of eigenvalues T.,j
0, 1,. , p- 1 can be finite, countable or uncountable.

Conditions (iS) and (iv) of the hypothesis of the theorem concern the amplitudes
of the solution pair {y (x, A), z (x, A)}. Solving equation (6a), one obtains

p(x, A exp w(x, A p(a, A + if(t, A) cos O(t, A)] exp (-w(t, A )) dt

where

Since

w(x, A) [k(t,A)+g(t,A)](sinO(t,A))cosO(t,A)dt.

b bI (f cs O) exp (-w) dt <= Ix (f cs O) exp (-w) dtl
b

----<exp fa M(s) ds-eXP la M(s) ds,

it follows from the hypothesis of Theorem 1 that p(a, A) +xb (f cos 0) exp (-w) dt is
nonnegative on XL. If one assumes, for example, that w (b, A) => w (x, A) for x X, then
condition (iS) will be satisfied.

Further, one should note that the first of conditions (iv) tacitly implies that
62(A) > 0 on L, while the second implies 62(A) < 0 on L. Also, in keeping with [ 1], [2],
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the first of conditions (iv) will be satisfied if one can verify that w(b, A)_-> 0 on L and
that 62(A) _-> [T(A) + 6(A)]1/2 + ib [h(t, A)fit, A)/g(t, A)] dtl, on L.

The following corollary is stated for completeness. Since the proof is similar to
that of [2, Cor. 2], it is omitted.

COROLLARY. Under the hypothesis of the theorem, there exist p nonempty sets of
eigenvalues Jo,’",Jp-1 for the problem (NH), (la, b) such that if &6J.,j=
O, 1,..., p- 1, then O(b,&)>-(m +]- 1)yr. Further, if & Ji, then the corresponding
solution {y(x, pi), z(x, pi)} has at least m +]- 1 zeros on X, when j is such that m +j-
1=>0.

It is clear that if boundary condition (lb) is replaced by the condition

(lc) y(A)y(a,A)+(,)z(a,,)= y(A)y(b,A)+3(A)z(b,A)+J(b,A),

where J(b, A) b ](t, A)z(t, A) dt, then a similar theorem may be proved. Of course,
the m(A) term will not be involved in this result.

We now consider the system (NH) together with the boundary conditions

(16a) a(A)y(a,A)-(A)z(a,A)=O,

(16b) yl(A)y(a,A)-6z(a,A)= T2(A)y(b,A)-t32(A)z(b,A)+M(b,A),

where M(b,A)=bp(t,A)[o-(A)y(t,A)-(A)z(t,A)]dt, and o-(A) and (A) are con-
tinuous functions on L, and that y2(A):(A)-62(A)O-(A) 0 on L. Define the functions
s(x, A) and t(x, A) by

(17)
s(x, )= w()y(x,)-d)z(x,),

t(x, A) o-(A)y(x, A)-((A)z(x, A).

Then,

(18)
S’-- [(T2O- 2)S +(g Tk)g 2(/2 2o-)f]/(/2 2o-),

’= [(o-2k 2g)s + (t2g T2o-k)t :(’)/2 t20")f]/(’/’2 t20").

Assume, without loss of generality, that ’2- 62o"---= 1 on L and define S, T, K, G, U,
V, and by

(19)

S=se -4", T=te4", K=(6g-yk)e-24",

G (o’2k :2g) e24,, t (y20k 32:g) dt,

U 62fe -, V= fe4".

Using these functions, the boundary problem (NH), (1 Ca, b) is expressed as

(20)

(21a)

(21b)

S’=KT-U,

T’=GS-V,

A(A)S(a, A)-B(A)T(a, A) 0,

C(a)S(a, a )-D(a)T(a, a) E(A)S(b, ;t) + N(b, a),
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where

A a-fltr, B ")/2--t2a, C "}tl-tlO"

(22) D "f’2t lt2, E exp 4(b, A),
b

N(b, A) I, p(u,A)exp(-ck(u,,))T(u,A)du.

It is clear that by using the techniques developed to solve the problem (NH), (la,
b), we can obtain the existence of eigenvalues for the problem (20), (21). The
appearance of the additional forcing function U(x, A) presents no difficulties since a
polar coordinate transformation can be made for the system (20) [9]. Thus, by
imposing conditions on the coefficients of (20), (21) which are analogous to those of
(NH), (la, b), the existence of eigenvalues may be established. By reversing the
transformations defined by (17) and (19), the problem (NH), (16a, b) may be solved.

For closing remarks, we consider the question of being able to find integers m and
n having the properties described in the hypothesis of Theorem 2. Since k (x, A) > 0 on
XL, we consider the equation (2).

Let u(x,A) and v(x,A) be linearly independent solutions of (3) satisfying the
initial conditions

u(a,A)- 1, v(a, A)-=0,

u ’(a, A)/k (a, h =- O, v’(a, A)/k (a, ) =- 1,

on L. Then (uv’-vu’)/k 1 on L and the general solution of (2) is given by (4). If we
take y(x,h) to be the particular solution of (2) satisfying the initial conditions
y(a,h)=-fl(h), y’(a,h)/k(a,h)=a(h), then Cl(h)=fl(h) and c2(h)--=a(h). Further,

(23) [u(x,,)y’(x,,)-u’(x,,)y(x,A)]/k(x,A)=t(A)+ f(t,A)u(t,A) dt,

and

(24) [y(x,A)v’(x,A)-v(x,A)y’(x,A)]/k(x,A)=fl(A)- f(t,A)v(t,A) dt.

Hence, if either a(A)+bf(t,A)u(t,A)dt or fl(A)-bf(t,A)v(t,A)dt is nonzero on L,
then the zeros of y and v or y and u separate each other on L. Thus, for example, if
fl(A)+ 1 >exp jb M(t)dt on L, then the zeros of y and v will separate on L. (Here
M(x) is the Lebesgue integrable bound of the functions k, g, and f.) Now by applying
oscillation criteria to solutions of (H), we obtain oscillation of solutions of (NH) on L.
Since the oscillation of y(b, A) on L is equivalent to O(b, A) going from less than mr to
more than nr, for integers m and n, the hypotheses of Theorem 2 may be verified.
Conditions guaranteeing oscillation of solutions of (H) on L may be found in Ince [4,
pp. 231-237], Whyburn [10, p. 852], or Ettlinger [3, pp. 136, 137].
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DUAL ORTHOGONAL SERIES WITH OSCILLATORY MODIFIERS*

ROBERT P. FEINERMAN]" AND ROBERT B. KELMAN$

Abstract. Dual orthogonal series with oscillatory modifiers occur in problems of communication theory.
We consider such a problem in an abstract Hilbert space and prove theorems of existence and uniqueness for
dual series in which the ratios of the modifiers oscillate between finite, nonnegative limits. The analysis is
based upon properties of appropriately constructed linear functionals.

1. Introduction. The mixed boundary value problems of mathematical physics
have provided the main impetus for studying dual orthogonal series ([1], [2], [3]; cf. [4]
for an exposition not based on applications). In considering the enciphering of a
message we have been led to a dual orthogonal series problem somewhat different
from those studied earlier. (In what follows, we use the notation and definitions given
in [2, 2].) Namely, in dual orthogonal series associated with mixed boundary value
problems, one inevitably finds that the ratio of the modifiers, bn/an, tends to a
nonnegative limit, possibly infinite, as n tends to infinity, wherea,s in cryptological
problems bn/an may oscillate as n tends to infinity. It is series with this latter property
that are studied here.

As an idealized application consider a message f(t) of T seconds duration encoded
using a sequence {(kn (t)} which is orthonormal on 0 < < T (vid. [5, esp. Chap. 2] and !-6,
esp. Chap. 13] for general background). For simplicity let us assume the absence of
noise. The transmitted message encoded without disguise is Y/’,b,(t) where/’,
Sfcbn dt. To encipher the message we choose a sequence of nonzero constants {an } and
transmit Y/’,a,b, (t). A decoder can be constructed so that given {a,} the message is
resynthesized. Consider now a procedure for more effectively diguising the message.
Partition T into disjoint measurable subsets T1 and T2, and let {bn} be a second
sequence of constants. Let /’na,ch,(t) be transmitted for T1 and /’nb,4)n(t) be
transmitted for e T. Then the first theorem below states that a decoder which
deciphers the message is physically realizable provided that b,/a (n- 1, 2,...) is
bounded above zero and below infinity. In practice if a, and b, are positive, this is
always achieved, since only a finite number of the functions {4,(t)} are used in the
transmission of information. The second theorem weakens the restriction on the
modifiers by allowing a finite number of them to be zero, which, as explained in [2] and
10], may occur in applications. Although Theorem 2 is essentially a technical extension

of Theorem 1, its proof is more involved even assuming the results of Theorem 1 and
[7]. Roughly speaking, this corresponds to the extra effort required to show complete-
ness of Sturm-Liouville eigenfunctions in the presence of a zero eigenvalue [9, p. 246].

The theorems given here generalize and complement our earlier results [2], [7],
[10] illustrating how a suitable application can aid the development of a purely
mathematical theory.

2. Existence theorems. We denote by R a real, separable abstract Hilbert space
and by the real Hilbert space of square summable column vectors. Let {a, } and {b, }
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be sequences of nonnegative constants. The subspaces P and Q of R are orthogonal
complements. P and O denote respectively the projection operators from R onto P and
Q. Let 4’, be defined by , a,P4, +b,O, where {,} is a complete, orthonormal
sequence in R. Our goal is to prove certain existence and uniqueness theorems for the
solution , a real infinite vector not necessarily in g2, to the dual orthogonal series
equation

n=l

given {a, }, {b, }, and [ e R. We start with the following lemma.
LA 1. Let {e, } be a sequence o[ constants bounded below o and above zero.

Let , P, +e,O,. en the equation

(2)

has a. unique solution and 2.
Proof. Let T be a linear operator from R to R defined by T, ,. Note that

+(e.

Since {, } is a maximal orthonormal set, the domain of T is R. Obviously T is symmetric
so that by the Hellinger-Toeplitz theorem [8, p. 51] it is bounded. On the other hand
(using the notation/, (L ,)) we see that

n=l

where

e=l-sup{ll-e,]’n=l, 2,...}.

Since e is positive, 0 is a regular point for T. Thus T- exists as an everywhere
defined bounded operator on R [8, p. 95]. If we seek j such that

(3)
n=l

then j is the unique element of g2 given by j, (T-f, 4,). Nowj is a solution to (3) if
and only if it is a solution to (2) which completes the proof of the lemma.

From this result we can easily establish
THEOIEM 1. Let {a, } and {b, } be sequences o[positive constants such that the ratio

b,/a, (n 1, 2,...) is bounded above zero and below infinity. Then (1) has a unique
solution j and Y (jnan)2< 00. There[ore i[ {a," n 1, 2,...} is bounded above zero,

Proof. From the hypothesis we know that there are positive constants > and M
such that

< Ma---- < 2 ,
Define g, e, and so, by

g n an in,

n=1,2,-...

, =P6, + 06,.
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Then is a solution to eq. (1) if and only if is a solution to Y./’,so, g. Since {, } satisfies
the hypothesis of Lemma 1, the proof of Theorem 1 is complete.

Next we consider the case in which some of the modifiers are zero and start with a
lemma for which it is convenient to use the notion of a basis, viz., a sequence of elements
{0, } in R is a basis iff R can be represented in only one way as a seriesf Y0 where
{, } is a sequence of real numbers.

LEMA 2. Let {01, 02,’" "} be a basis and {ya, y2,"" ", yn} a finite sequence of
elements in R. Then the set of elements

A--{’)/1, "Y2 ", /K OK+l, OK+2,’" "}

is a basis if and only if it is complete.
Proof. Clearly, if A is a basis it is complete. Let us assume A is complete and show

that this implies A is a basis. Let L (i 1, 2,...) be a functional defined on R by
LiOj 6i (Kronecker delta). Note that if f ,0,, then f Y (L,f)O,.

Let us show that the elements {3’1, 3t2, ", "YK} are linearly independent. Assume
the contrary. Then there are constants d, (n 1, 2, ., K) not all zero and such that
Y: diyi 0. Consequently, YI dj(Liyi)= 0 (i 1, 2,. , K) so that the K x K matrix
D, where Dii Li’Yi, is singular. Consequently, there is a nonzero column vector
c=(cl, c2,...,cc) such that DTc=0 where Dr is the transpose of D. Also,
( ciLj)Oi 0 (i K + 1, K + 2,. .). Since f cjLi is a bounded linear functional the
Riesz representation theorem [8, p. 36] implies there is ,t’ R such that

c =(f, x)

for all feR. Consequently (X, Ti)=0 (/’=l,2,...,K) and (X, 0,)=0
(j K + 1, K + 2, .). Since A is complete, X 0. This contradicts c # 0. Thus the
elements {3’1, "Y2, ", q/k} are linearly independent.

For a given f R, define the constants {, } by
K

(4) E (LiT,)L, LL 1, 2,..., K,
n=l

K

(5) /’i Lif- Z (LiT,),, K + 1, K + 2, .
n=l

Now 1, 2,""", are uniquely determined by (4) because D is nonsingular. The
remaining coefficients :+a,/’+2, are then uniquely determined by (5). Next let us
show that

g

n=l n=K+l

Using (5) we see that

K K

(7) f= 2 ,0,+2 (Lf)Oj+ 2 ,
n=K+l =1 n=l =K+I

Remembering that ,, (Liy,)Oi and using (4), we get
K K K

n=l j=l n=l ]=K+I

This equation used with (7) establishes (6).
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It remains to show that , is unique. If it is not unique, then there is m such that

K

(81 2 + 2 o.
n=l n=K+l

This leads to
g

(9) Y (L,y,), Y (LiO,),, 1, 2,..., K.
n=l n=K+l

Clearly, the right hand side of (9) is zero. Since D is nonsingular, this implies, =0(n 1, 2,...,K). In view of this and the fact that {0a, 02,’" "} is a basis,
equation (8) implies m, 0 (n K + 1, K + 2, .), which completes the proof.

Assume the elements {,," n 1, 2,. "., K} are linearly independent and that
a, 0 (n 1, 2,..., K). Then the K x K Gramian determinant [(O4i, 4’j)l is nonzero
[8, p. 13]. If, further, b,/a, is positive for n K + 1, K + 2,. ., then {,," n 1, 2, .}
is complete by the main result in [7]. If, in addition, we assume b,/a, is bounded above
zero and below infinity for n=K+I,K+2,..., then Lemma 1 implies that
{0, 42,"’ ", 4/, t):+, :+2,"" "} is a basis. Therefore, Lemma 2 implies {t)," n
1, 2,...} is a basis. Thus (1) has a unique solution ’. Rewriting (1) as

K

n=K+l n=l

we see that Theorem 1 implies :+1 (nan)2< o0. Thus we have established
THEOREM 2. LetK be a positive integer, and suppose that a, 0 (n 1, 2, , K)

and the elements {0, 02,’", Oi} are linearly independent. If b,/a, (n K + 1, K +
2,...) is bounded above zero and below infinity, then (1) has a unique solution i and

<
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A TAUBERIAN REMAINDER THEOREM FOR THE HANKEL
TRANSFORM*

WOLFRAM LUTHER?

Abstract. Using a general Parseval relation and the Wiener-Ganelius method, we give sharp Tauberian
remainder results for the Hankel transform Fv(x) 4-xuJv(xu)f(u) du, u ->-1/2. The remainder of f(u)
covers the whole range between o(1) and O(u -1) which is a minorant for this transform. Applications to
Fourier series and probability theory are possible.

1. Introduction. As an application of a general Parseval relation, Ridenhour and
Soni [5] have recently obtained results of Tauberian character for the Hankel transform

F(x) Io k(xu)f(u) du, k(u) 4uJv(u)

under strong assumptions on f(u). They derived their results from a Tauberian theorem
of Karamata concerning the Laplace transform.

We will now give a more general Tauberian remainder theorem by generalizing a
method introduced by T. Ganelius [3] to oscillating (symmetric) Fourier kernels k(u)
with some additional restrictions as in [6]. For simplicity however, we treat only the
Hankel transform. Basic Tauberian theorems in [5] and [6] are therefore special cases
of the remainder theorem given in this paper.

We cannot obtain precise remainder estimates with the method of Ridenhour and
Soni, because the reciprocal Mellin transform (kM(0)-1 of the Laplace kernel increases
exponentially, whereas the one of the Hankel kernel is of polynomial growth, and it is
well known (see Lyttkens [4], Ganelius [2], Frennemo [1]) that the remainder of ]’(u)
depends on the growth of (kM(t))- in a neighborhood of the imaginary axis. Moreover,
for the Laplace transform there is a critical order of decrease of the remainder, but for
the Hankel transform and also for symmetric Fourier kernels the remainder of f(u) has
a minorant M(u) MlU-. The crucial step in the generalized method of Ganelius, an
inversion of integration [3, p. 19 in the middle], is equivalent to the Parseval relation.

2. Basic assumptions. We use the assumptions on f(u) from [5]:

a) f(u) v+/2, i.e. uV+l/2f(u) L(O, R) for each finite R > 0.

b) f(u) BVia, c) for some a > 0.

c) f(u)-O as u

If u l<-c u 0<u_-<a.

Part b) can be replaced by f(u) bounded in [a, oo), f(u) L[a, oo) and the assumption
that k (xu)f(u) du converges for x > 0.

3. Main results. Now let us turn to the general remainder theorem:
THEOREM. Assume that f(u satisfies the conditions (1). Furthermore,

F,(x) k,(xu)f(u) du 0 xL(1/x) exp
27r /

asx -0+,

* Received by the editors September 20, 1976.
? Lehrstuhl fiir Mathematik, Rheinisch-Westfilische Technische Hochschule Aachen, Aachen, West

Germany.
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-1 < y < , + 1/2, u _->-1/2, k(u) x/uJ(u), with L(x) slowly varying in the sense of
Karamata [5] and W(x) positive, increasing, subadditive, such that lim_,oo W(x)/x
2,rb.

Iff(u) satisfies the Tauberian condition

sup (vf(v uf(u )) O(u -’L (u)R (u ))
uo <--v (1+R (u ))

with

then

W((log u)/(2r)))R(u)=exp
b+y+2+e

]’or an e > O,

f(u) O(u-’-IL(u)R(u)) asu-->oo.

Remark 1. The "O"-result can be replaced by the corresponding "o"-result. To
derive the o(1)-Tauberian theorem of Ridenhour and Soni [5, Thm. 7], the assumption
d) is not necessary, since a modification of f(u) in [0, R does not change the main term.
(For the Tauberian condition cf. Remark 4.)

Remark 2. Applying the Banach space-method of Ganelius [3, p. 43, Example 3,
p. 45] to k(exp (-2,rx)), we can show that for b+y<u+l/2 the remainder term
cannot be substantially improved. A minorantfor R (u) is M(u)= MlU-, as is demon-
strated by the example f(u)=J(u)J(u/2)ul/Z-’(tx >= 1/2) with F(x)=0 for x < 1/2.

Proof. We generalize the method of Ganelius [3, pp. 18-20, pp. 34-40]. First we
transform the integral to convolution form.

k(x) := F (exp (-2,rx))

2" k (exp(-2-(x-y)))f(exp(2ry))exp(2ry)dy=Kx(x)

with (x)= exp (2rx)f(exp (2rx)) and K(x)= 2rk (exp (-2rrx)).

/(t) := exp (-2rixt)g.(x) dx 2i’-n,
r(1/4 +,/2 +it
F(3/4 + u/2-it/2)

for -1 <Im < v + 1/2.
g(t) := (/,(t))-1 is holomorphic in -3/2- u < Im < oo, and there holds g(t)

O((1 + Itl)Imt+/2). Furthermore,

I(t) I(-i-t)= l in-l<lmt<v+l/2.

We put [3, p. 19]

oF(t) := g(t) l(t--Y)2(Y) exp (-2ri/y) dy

with

E(y) exp (--try2), X(Y) (’rrY)-2(sin (’n’Y))2.
To obtain exp (2ritx)OF(t) dt we consider

OF(t) g(t--ia) /(t-- y)2(y) exp (--2rrirty) dy

I(-i(1-a)-t) I(t),
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with H(y)=E(y)x(y-rl) (eL(R)). For 0<a < 1 holds

/(-i(1 a)- t) exp(-2-ix(t+i(1-o)))K(-x)dx

--itu kv(u) du.

We have I U -a-it" k(u) du O(1 /lt[) for all A and
Now we can apply Theorem 39 of [7] (concerning the Fourier transform of a

convolution) to

Iv(-i(1-a)-t) and I2Ix(t)=exp (27rixt)I2I(t)=H(x + y)^.
With I (x) 2 7r exp (27r( ce )x)J (exp (2 7rx)) it follows that

K(-i(1-a)-t)Hx(t) dt- H(x-y)I(y) dy.

For a --> O, an application of Lebesgue’s convergence theorem yields

O(x) H(x y)Io(y) dy,

and after a change of variables we have

xQ(x) := Q((log x)/(27r)) x k(xu) log u) du.

g(t) is holomorphic in the half plane -u 3/2 < Im < oo. Hence

{oO(exp (-27ro21)) as x - co, c2 > 0,
Q(x)= (exp(-ZTr(u+3/Z-a3)lxl)) as x --oo, a3 > 0.

In a similar way we obtain Q xK H.
Finally we must legitimate the change of order of integration

QxOv(x)=Hxqb(x) for all x.

By the Parseval relation [5, Thm. 1]:

fo I0 /-/( - t)F(x)Q(x)dx= /(t) og dt

and also

F(yU)Ql(U) du --- log f(t/y)(1/y) dt.

Substituting exp (-2Try), y exp (-27rx), u --exp (2Try) we obtain

I_H(y)f(exp (27r(x-y))) exp (27r(x-y)) dy

4 x H(x) F,,(exp (-2r(x y)))O(y) dy 0 x O(x).

From the assumptions in the theorem we find

(exp (-2ryx)L(exp (2rx)) exp (-W(x))), x >-xo

597
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and

sup
xo/2<=x <=y <=x +c4exp (- W(x)/(b +3’+2+e))

((y)-(x)) O(exp (-27ryx)

L(exp(2zrx)) exp
b + 3’ + 2 + e

x0 suitably chosen. Now it is obvious that the relation [3, p. 20 (1)]

[(x)[-<4 sup ((x-y)E(y)-(x-v)E(v))+6[O(x)[
0=<v-y =<21-

still holds.
We estimate the first term on the right side by aid of the Tauberian condition

analogous to [1, pp. 85-87]; for the second term we proceed as in [3, pp. 34-40] in
connection with [6, Lemma 3]. This Lemma 3 characterizes the behavior of L(x).

Beginning with the second term, we split O(x) into

g/it, 1(1) { [//r, (1), XX0,
[//r,2(X) =(t, XXo,

0, x < xo, (x), x < Xo.

By transforming the line of integration, we obtain for x _-> Xo

dy

5’-b+’/+l+e exp (-2rryx)L(exp (2rx)) exp (-W(x))

we find

sup
O=<v-y--<2fl-1

and then

I(x)l =<c8 exp (-2ryx)L (exp (2rx))R (exp (2rx))

+(8/a) sup [(x -v)E’()7)[, y < 37 < v,
11<,/2

Iteration gives the theorem.
Remark 3. A special case is W(x)= 2zrbx. Then

F(x) O(x+L(1/x)), asx 0+,

2(C4)-1 exp (-- W(x)/(b + "}, + 2 + e)),

((x -y)-(x -v))E(y)<=c7 exp (-27ryx)L (exp (2zrx))R (exp (2zrx)),

Ivl<x/2, x >-Xo

x =>Xo.

and

[OxffAv2(x)[c6-2+1+e exp (-27raex), a2 large enough.

In term 1 we write

(x y)E(y)-(x v)E(v) ((x y)-(x v))E(y) +(x v)(E(y) -E(v)).

For Iv[ >-x/2 both terms on the right side are O (exp (-7rx2/8)). Let us now assume
Iv[ <x/2. exp (2zrh[v[-zrv 2) is bounded for all real h. Thus, by an interval-splitting
and choosing
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implies

R (u) u

In the case of more rapidly decreasing remainders with

W(x) c2 exp (27rbx)

we obtain

R(u) R1 (log u)l/bu -1.
The proof asks for modifying the considerations in [3, pp. 46-49]. For example put

f : " exp (27rx) (27rCgX)-1/t’ for 2zry ->-c10 + log sr in the estimate of O(y), c9, Clo
sufficiently large.

Remark 4. If we assume the modified Tauberian condition

sup (f(v)-f(u)) O(u-’/-1t(u)R
uo<-u <-v <---u (1+R (u))

it is more appropriate to use Ek (y) exp (-Try 2 + 27rky) instead orE(y) in the proof with
k=l.

The method works also for more general Fourier kernels under the assumptions
made in [6]. We need only that g(t) has a holomorphic continuation with the same
polynomial growth in a sufficiently large strip around the real axis.

In a turther note we will study these questions and some applications.
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ORTHOGONAL POLYNOMIALS THROUGH MOMENT GENERATING
FUNCTIONALS*

ALLAN M. KRALLJ"

Abstract. It is shown that if the linear functional w generates moments {i}io through the formula
ii=(w, xi), i=0, 1,..., then the Chebyshev polynomials {pi(x)}io are orthogonal in the sense that
(w, PmP,)= 0 when m # n. In particular the Cauchy representations of the functionals associated with the
Legendre, Jacobi and Bessel polynomials have this property when their action upon these polynomials is
defined by a contour integral of sufficiently large radius.

Introduction. Quite recently there has been a flurry of activity in exploring
orthogonality of polynomials in other than the classical sense. The author, with his
student R. D. Morton [3], examined carefully a weight functional defined in terms of
moments and derivatives of the Dirac delta function. Law and $1edd [5] used a
recurrence relation to evaluate orthogonality and norms in a way independent of a
weight function or measure. A1-Salam and Ismail [1] defined a discrete convolution
orthogonality; and Jayne [2] used a complex Cauchy representation to achieve
orthogonality, applying his results specifically to the Jacobi and Bessel polynomials.

The purpose of this note is to show that the classical Chebyshev polynomials p0 1,

where

pn=(1/An_l)
/./,n--1 /-2n-1

1 x"

/zo n
#0

are orthogonal with respect to any moment generating linear functional w defined on
polynomials, i.e. any linear functional w satisfying

<W, xi> [Uli, O, 1, .
Further, the norms squared of the Chebyshev polynomials are given by the usual
formulas. In some instances these are analytic continuations of classical results. In other
instances this kind of orthogonality is all that exists.

Orthogonality and norms.
THEOREM 1. If m # n, then (w, p,,pn)= O.
The proof is virtually classical. Let m < n, and let 0 <_-j -< m. Then

(W, Xipn) (1/An-l)
/-/,n- /-I,2n-1

<w,x;> <w,x+>

* Received by the editors October 12, 1976.
J" Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania, 16802.
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/Zo /Zn

/n-1 /2n-1

txi txn+i

Since 0 _-< j < n, two rows in the determinant above are identical and 0 is the result. That
p,, is orthogonal to p, now follows by linearity.

THEOREM 2.

(w,

Proof. Note that

(w, p2.,)= An/An_l, n 1, 2,....

(w, (w, x"p.>+o

because of orthogonality of p and powers of x of degree less than n. An observation of
the formula in the proof of Theorem 1 shows

(W, Xnpn)"- An/An-1.

Surprisingly the mere existence of w is sufficient to establish that a three term
recurrence relation holds.

THEOREM 3. If (W, X i) txi, 0, 1," ", then there exist constants B., C. such that

p.+a(x) (x + B.)p.(x)-

Again the proof is standard. Clearly

n--1

Pn+l (X + Bn)Pn + E oiPi.
i=o

If this is multiplied by p,., m < n 1, and w is applied, the result is a., w, p 2.,) 0. Since
(w, p2..)# 0, a., is. Setting a.-1 =-C. completes the formula.

By the same technique illustrated in [6] the constants B. and C. can be evaluated.
If

then

and

n-1x -_S,,x +"

Bn --Sn+l + Sn-2,

2 2Cn=(w, pn)/(w, pn-1)

AnAn_2/A2n_l"

The Cauchy representation. In terms of distribution theory, the Cauchy represen-
tation of a functional T is given by

1( 1)f’(z ) i T(x ),
x z

This formula implies in particular that for the Dirac delta function and its derivatives

g(z)= (1/(2wi))/(-z),

g(")(z) (1/(2wi))m !/(-z)"+1.
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Perhaps the most natural way to introduce the Cauchy representation in a way
depending upon moments is to begin with the formula

w(x)= Y’. (-1)"ix, 6(")(x)/n!,

discussed in [3], which in the classical cases is a restriction of the classical weight
function. Then, formally, the Cauchy representation is

v(z)= (1/(27ri)) Y. (-1)"ix, (")(z)/n!

(1/(2zri)) Y’. -ix,/z"+1.

The growth restriction originally imposed on the moments [3] was ]ix, < cM"n!
This enabled the (inverse) Fourier transform to converge. In the present case, however,
this is too lax, and, so, accordingly, in order to have convergence we now require that
IIx-[< cM". (z) then exists for [z > M.

DZVNTOY. Let (, b) be given by the formula

(w, )= -I (z)(z) dz,

where the path of integration is a simple closed contour encircling the origin in a
counterclockwise manner in the exterior of the circle [zl M.

THEOREM 4. (W, Z i) Ixi, i= 0, 1," . Thus the Chebyshev polynomials {pg} are
orthogonal with respect to v"

(,, p,,p.,)= -[ p,,(z)p,.(z)vb(z) dz 0

when n # m. Further

(w, p) IX0,

Examples. 1. The Legendre polynomials. The moments are Ix2n--1/(2n+l),
Ix2,+1=0, n =0,.... Thus if Izl> 1

(z)=-(1/(2zri)) Y’. (1/(2m + 1)z2"+1)
m=0

-(1/(27ri))In ((z + 1)/(z 1))1/2

serves as a weight function.
2. The Jacobi polynomials. The moments for {P’d’t(z)}=o are given by

Ix, Y (-1)i2i(v)j/(u +v)j
/’=0

E
n (_l),_i2i(u)i/(u

where a v- 1,/3 u- 1, and u, v and u + v are not negative integers (see [3]). Jayne
[2] has shown that the series for (z)converges for Iz]> 1 when u, v >0. By using the
regularization formula in [3], however, it can be shown that the series converges for
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Izl > 1 whenever u, v, u + v are not negative integers. In fact,

2(Z)__(1.+.Z)_12F1(lg,’I. 2 )._.(z_l)_12Fl( o,]
\u+v’ l+z u+v’ l-z

3. The Bessel polynomials. The moments for the Bessel polynomials are p,,,
(-2)"+1/(n + 1)!, n 0, 1,. . Thus

(z)= (-1/(2ri)) Y ((-2)"+1/(n + 1)!z "+1)

(- 1/(2ri))(e-z/z 1)

outside any (arbitrarily small) circle centered at the origin. Since the last term (- 1) may
be ignored, orthogonality of the Bessel polynomials in the Cauchy sense is fully
equivalent to the orthogonality introduced by H. L. Krall and O. Frink [4].

We remark that in the cases of the Laguerre and Hermite polynomials, the growth
constraints placed on t, are not valid. And so, while the Cauchy representations for e
on [0, oo) and e on (-oo, oo) exist when Re (z)# 0, the series representations are
merely formal expansions. Either the Cauchy representations or the series expansions
may be used to formally generate Cauchy orthogonality.
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DISTRIBUTIONAL WEIGHT FUNCTIONS FOR
ORTHOGONAL POLYNOMIALS*

ROBERT D. MORTONt AND ALLAN M. KRALL$

Abstract. Given any collection of real numbers {/zi}io, called moments, satisfying a Hamburger-like
condition A,, =det[tzi+j]i,=o0 and a growth condition ][<cM"n, where c, M are constant, n
0, 1,..., the Chebyshev polynomials Po 1

p,(x) [1/A,_]
n--1 n 2n--1

n 1, 2, , are shown to be orthogonal with respect to the linear functional

w(x)= Z (-)%,<")(x)/n.
n=0

The problem of the existence of extensions of w to a space of test functions which includes polynomials is
also discussed. It is shown that if F-w(t) has an analytic continuation which has a classical Fourier
transform, then that transform is the desired extension. If the continuation has an appropriate derivative
which has a classical Fourier transform, then there exists a canonical regularizarion of a regular distribution
which extends w.
As examples the Legendre, Jacobi, Laguerre, generalized Laguerre, Hermite and Bessel polynomials are

offered. The Fourier transform establishes the connection between the functionals w and the classical
weight functions when they exist. Further an extension of classical results is made in the cases of the
generalized Laguerre and Jacobi polynomials. In the case of the Bessel polynomials, however, the measure
of bounded variation, guaranteed by Boas’s theorem, can only be found (?) as a Fourier transform, and so
still remains an enigma.

I. DISTRIBUTIONAL WEIGHT FUNIONS

1. Introduction. Let 6(x) be a real analytic function whose Taylor’s series con-
verges to for all x. Further let w be a linear functional acting on such functions
which satisfies , (w, x") for all n 0, 1,. . Then

<w, > <w, Z 6("(O)x"/n > Z 6("(0)<w, x")/n .
n=0

Since (")(0) can be described by using the Dirac 6-function and its derivatives
through

6("(0) (- )"<(", 6>,

it seems reasonable to expect

(, 2 (-(( " (, x/n= (-%((x/n
n=0 0

so that in the sense of distributions

w(x) Z (-1)%. ("(x)/n ,
n=0

which is a formula which has practical value provided the moments {}o are known.
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DISTRIBUTIONAL WEIGHT FUNCTIONS 605

Since for orthogonal polynomial sets, the moments are either given or can be cal-
culated by techniques other than by using a weight function [4], the &expansion of w
gives a computational method for calculating a "weight function" with respect to
which these polynomials are indeed orthogonal.

When the moments {/xi}i=0 are those associated with the various classical
orthogonal polynomials, the Legendre polynomials, the Laguerre polynomials or
the Hermite polynomials, the "weight functions" w yield virtually the same results
concerning orthogonality and norms as the classical weight functions. Further, when
the moments {/i}=0 are those associated with the Jacobi polynomials, the general-
ized Laguerre polynomials or the Bessel polynomials, then w remains a suitable
(distributional) "weight function" more or less regardless of the values of var-
ious parameters involved, even when a classical looking weight function cannot be
found.

There are many additional questions concerning w which immediately present
themselves. How far can this kind of weight function be extended (to how large a
space of test functions)? When is w a continuous linear functional? What is the proper
setting so that polynomials (on which it is obviously defined) are part of the space
which is its domain? Then for various specific cases such as the Jacobi polynomials,
the generalized Laguerre polynomials and the Bessel polynomials, what does the
extension of w look like? How is it related to its classical counterpart when it
exists?

The purpose of this article is to address these questions.
We make the [undamental assumptions that the moments {/xi}0, are given,

that

and that [/x,[ _-< cM"n !, n O, 1,... for some arbitrary, but fixed, constants c and M.
Since it is crucial to what follows, we note that,
THEOREM 1 1 The collections {(-1)"6")(x)} =o and {x"/n.}=o form a

biorthogonal set. That is,

((-)" a(m(x), x"/n !> { O
We leave the proof to the reader.

2. The Spaces P and P’. The spaces D (infinitely differentiable functions with
compact support), S (infinitely differentiable functions of rapid decay), E (infinitely
differentiable functions with no growth restrictions) are well known, as are their dual
spaces D’ (no growth restrictions), S’ (slow growth), E’ (compact support) [2]. For our
purposes, however, none of these pairs quite suit, since our function space should
include polynomials, and, at the same time the dual space should include such
functionals as those generated by exponential functions, i.e., without compact sup-
port. Therefore we introduce a new space P, which includes polynomials, satisfying

The dual spaces then satisfy

DcScPcE.
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As we shall see, the connotation "slow growth" is appropriate for P, and "rapid
decay" is appropriate for P’ so that the analogies

D, E’: compact support,
D’, E: no restriction on growth,
P, S’: slow growth,
P’, S: rapid decay

are completed. Our immediate goal is to determine conditions under which the
functional w can be continuously extended to P.

DEFINITION 2.1. We denote by P the linear vector space of all complex valued
infinitely differentiable functions q(x), x E 1, satisfying for all a > 0 and q > 0,

lim e-lxl(q)(x) O.
Ixl-

We note that all polynomials with complex coefficients are in P.
DEFINITION 2.2. A sequence {Oj} in P is said to converge to zero in the sense of

P (0j 0) provided for each a > 0 and q > 0 the sequence )} converges to
P P

zero uniformly on, E 1. pi -P0 if and only if (pi- q0) 0.
By way of comparing convergence in the spaces D, S, P, E we offer the following

examples.
1. If

G,(x) / (l/n) exp [-(1 -x2)-1], -1 <x < 1,
0, otherwise,

D
then qn 0.

2. If qn(x)=(1/n)e -x, then pn- O, but {qn} does not converge in D.
3. If On(x)=(1/n)x, then q,--gP 0, but {qn} does not converge in D or S.
4. If qn(x)=(1/n)e x/n, then qn--5 0, but {0n} does not converge in D, S or P.
DEFINITION 2.3. We denote by P’ the space of continuous linear functionals on P.
We also use the word distribution to loosely describe an element in P’, just as is

done for elements in S’ or E’.

3. A topology for P. Given a countable system of (semi)norms,
II" 11=,""", II" 11/,""", defined on a linear space , a topology can be induced on to by
considering as open sets the collection

and their translates, where e > 0 and p is a nonnegative integer. These sets Up satisfy
the properties of an open neighborhood basis of zero (see [2, p. 38]), and so can be
made into a linear topological space by taking these sets and their translates as a basis
for the topology. is said to be a countably normed space.

DEFINITION 3.1. Let q P. Then the pth norm of is given by

sup {e-Ix I/(,, + ’)[ /,()(x)l}

for all a, q, integers, satisfying 0 -_< a --<_ p and 0 -< q --_< p, p 0, 1, .
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THEOREM 3.2. Let {i} be a sequence of elements in P. Then q0 if and only if
0 in the sense of the countably normed topology induced by the norms of Definition

3.1.

Proof. Assume 0j 0. Then, given Ups, we wish to show that there is a ]o such
that ] > ]o implies j e U,.

By assumption there exists a ]aq such that ] >],q implies

Let ]0 maxa,q<=p jaq. Then for ] >]0 we have

e -lxl/(a+ Jq)(x)l

for all a, q -< p. That is, I1 ,;11. < . Thus O e Up for ] > ]0. Thus 0 0 in the countably
normed topology.

Conversely assume ff 0 in the topology. Then we wish to show that for each
a >0 and for each q there is a ]0 such that ]>]o implies

Choose a (a + 1)-1 and p max {q, a}. By assumption there is a ]0 such that
] >]0 implies i Ups. Thus 114,xlb < . This implies in particular that

sup e-lXl/"/14,q(x) < e,

P
and 49 - 0.

We note that a continuous linear functional f on a countably normed space is
continuous if and only if (f, 0} - 0 whenever ff 0 in the sense of the topology.

4. e spacesZ and Z. One of the major problems confronting us is the finding
of a linear space upon which w is continuous. For example, if n (Laguerre
moments) and (x)=e which is certainly in P, then (em(o)=(-1)(2m)/m,
and

{w,O} (-l)m(2m)/m,
m=O

which diverges.
Further, the action of w on a test function $ intuitively implies

(W, ) Z n(n)(O)/n (W, Z (n)(O)Xn/n
=0 =0

suggesting that 0 should not only be infinitely ditterentiable, but analytic.
An obvious space to consider therefore is Z (see [3]), the space of Fourier

transforms of elements in D. Surprisingly this is also slightly too large. Accordingly we
turn our attention to a slightly smaller subspace ZM.

DEFINITION 4.1. For e >0, let ZM be the subspace of all 4 Z such that the
support of F-l(0) is contained in the interval [-(M+ e)-1, (M + e)-l]. (Equivalently
let ZM be the space of all elements 0 such that

Ix + iy]qlo(x + iy)l < Cq e alyl

where a _-<M + e (See [2, p. 971).)
LEMMA 4.2. If Itx,[<--__cM"" n!, n =0, 1,..., then ,--o II,lltP(")(O)l/n! exists for

all O Zv.
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Proof. Let 0 e ZM have inverse Fourier transform D. Then

(x) f_ e"(t) dr,

which implies

[I/J(n)(0)[
J--(M+e)-1

It[" 14,(/)[ dt <- (M + e)-"
(M+e)-I

(M+)-1
[(t)[ dt.

Thus

M ]-f(M+)M -t’- ’ J-(M-I-’)
-114,(t)[ dt <

THEOREM 4.3. If Itx, < cM" n !, n 0, 1, , then

w(x) Z
n=0

is a continuous linear functional on ZM, in the sense of Z.
Proof. According to Lemma 4.2 (w, ) is well defined for q ZM. Suppose that

Z D

i --> 0. Then Cj F-l tit] O. Hence

(w,
n=0

D
Since Cj --> 0, the integral approaches 0, and so does (w, 49). Thus w is continuous.

5. Moments of extensions. We are faced with the problem of extending w from
ZM to a larger space, such as P. For the moment, however, let us assume that a
continuous extension of w, we, to P is possible. Since xngZM for any n -----0, 1,’- ",

even though (w, x n) =/z is defined, it is not clear that (we, x--)=/xn. We show that this
is indeed true.

THEOREM 5.1. Let w have a continuous extension, we, acting on P. Then

(Wp, x tx,, n O, 1, .
Proof. (a) Let

-1 -1 1
<t<--,
m m

otherwise,

where A,,, is chosen so -/1"/,, 6,, (t) dt 1. These functions are infinitely ditterentiable.
Further for rn->M + e, the support of t%n is within the interval [-(M + e)-1, (M +
e)-l]. Finally it is evident that lim,,_o 6,(t)= 6(t).

In order to conform with Bremermann [2] we use this form of the Fourier transform.
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(b) Set
1/m

o.(x) F(6,)= [ e "x 6,,(t) dt.
J.

By construction ,,, (x) ZM when m M+ e.

Further, 1. To see this, let N be the maximum of x in an arbitrary compact
subset of E a. Then, since

1 cos tx 1- xZt2/2,

f
l/m cj/m[cos tx] (t) at - (x/2) a (t) at
-1/m 1/m

Further, since sin xt is odd,

N2 f 1/m N2

| 6,,, (t) dt 1 --.>=1
J-1/,, 2m

f [sin tx 6m (t) dt O.
,l--1/m

It follows, therefore, that
1/m

e 6, (t) dt

converges to 1 uniformly on the compact subset of El.
Similarly

l/m

O(mk)(x) f (it) k e itx 6,,,(t) dt
a-1/m

converges to 0 uniformly on the compact set for all k _-> 1. Since ,, e P, it follows th

O, 1.
(c) Since Wp is assumed to be continuous on P,

(we, 1)= lim (we, Ore) lim (W, Ore).
rnoo moO

Note that

[(--1)ktzk/k f
l/m

eu dtt(w, d/,,,)= Y’. !]\6{k)(x), 6re(t)
k =0 a-1/m

[/k ] (it) (t) dr.
k =0 -l/m

And observe that if mM+e

2 [/k ] (it) (t) dt
k=l

--= -/ = k[m

N c(M/m) (c/m)(M/[1-M/m]).
k=l
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Thus it follows that

lim (w, 0.,)=/xo.

(d) A multiplier for a space is an infinitely differentiable function f such that if
q , then fq , and if qj % O, then fqj O. It is clear that x" is a multiplier on P as
well as on Z and ZM.

In particular since ,,, 1, then x"p,. x". Hence

(we, xn) lim (We, X"p.) lim

Therefore

(w, x"O.)= Z [(--1)klzk/k !](6(k(x), X" &,,(t) e itx dx
k =0 -1/m

--k,-- k -n
n !txk/k!

-1/,
(it)k-" 6,(t) dt.

Now note that

tZk f
J. (it)k-"6,,(t)dt

k= +1 (k-n)! --1/m

Mkk
k =n+12 C (k n)!

(1/m

dn "xn+l"

(It is understood that m >M + e so M/m < 1.) In turn the nth derivative is equal to

[x/(1-x)][(n + 1)!

where P(y) is a polynomial in y of degree n with no constant term. The coefficients of
P depend only on n. Hence it follows that

Mkk! )k-nZ c (1/m
k=,+a (k-n)!

can be made arbitrarily small by choosing m sufficiently large. Therefore

lim (w,x"0,,) lim /z, f’/" 6,,(t)dt=
m moO ;-1/m

and (Wp, X

II. EXTENSIONS

6. The Fourier transform. It is our chief concern now to extend the functional w
to act upon as large a space as possible, with the specific aim of extending w to act on
P. Since our major tool in this extension process is the inverse Fourier transform, we
formally introduce it at this point. We shall need an additional space of test functions
in order to conveniently carry out our calculations.

DEFINITION 6.1. For e > O, let DMe be the subspace of all ch D such that the
support of ch is contained in the interval [- (M + e )-1, (M + e )-l].

We note that the image of DM under the Fourier transform is ZM. Likewise
F-I(ZM) DM l-2, p. 97], just as is the case with D and Z" F(D)= Z, F-a(Z)= D.
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Since for bD or DMe, feD’ or Dt the Fourier transform of f is defined
through

Ff F4) = 2rr f ck

if O(x) ei*’qb(t) dt Fqb, and Ff g, the inverse Fourier transform of g Z’ or Zt
will be given by

(F-lg, F-I)-- (g, ),

where q e Z or ZM, and

f__ __ixtl[ __lff1b(t)= e (x)dx=F

is in D or DMe.
It is apparent that F-1 is a bijective mapping of Z’ orZ onto D’ or Da under

which the usual formulas hold"
1. (F-lg)(n)= F-l((-ix)ng),
2. F-l(g(’)) (it)F-lg,

and in particular,
3. F-(a (")) (it)"/(2rr).

7. The extensions to Z and 8. We observe that the inverse Fourier transform of
w exists.

LEMMA 7.1.
1F-lw(t) Z tx,(-it)"/n !.

n=0

Since by assumption I/x,I <M"n !, F-w represents an analytic function for [t <
1/M. This is consistent with the requirement that F-lw be defined on DM, i.e., on
those distributions with support in the interval [-(M + e)-1, (M + e)-l].

Note further F-w is a regular functional, so that

F-lw, 6) f w(t)4)(t) dt.
d-

THEOREM 7.2. W has extensions wz which are distributions on Z.
Proof. Let g be any locally integrable extension of f(t)=F-lw(t), t

[- (M + e)-l, (M + e)]. Then (g, b exists for all 4 D since has compact support.
We then define Wz through the formula Wz Fg.

THEOREM 7.3. W has extensions Ws which are distributions on S.
Proof. Let g be any locally integrable extension of

f(t)=F-aw(t), t6[-(M+e)-1, (M +e)-l],

which grows no faster than a polynomial as Itl-. Then wz =Fg is a regular
distribution on S and clearly extends w.

8. The extensions to P and E. We are faced with an abundance of extensions
from ZM to Z and from ZM to S. The question remaining is which, if any, can be
further extended to P or to E? Certainly there is no reasonma priorimfor such an
extension to exist.
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We can gain some insight into what occurs if we first enlarge M to 2M and then
examine the procedure of extending w from ZZM to ZM. On ZZM W has an inverse
Fourier transform which is analytic when Itl < (2M)-1, while on ZM, W has an inverse
Fourier transform which is analytic when Ill <M-1. Clearly the latter is an analytic
continuation of the former. An application of the Fourier transform gives the desired
extension.

In order to use analytic continuation to extend w further, however, additional
assumptions will be required.

LEMMA 8.1. Let f(z) be analytic in the region Jim (z)[ < So with If(z)] =< ho(t),
If’(z)[ < hi(l) for all z + is with Isl <So. Further, assume that lim]tl- ho(t) O, and
that

_
hi(t)dt <. Then f(t) has a classical Fourier transform g(x). Further, there

exist constants G and r > 0 such that

Ig(x)l < Ge-rll/Ixl.
Proof. (a) Choose r, e from the open interval (0, So), and consider the contour C

shown in Fig. 1.

to-R

e C

to+R

C3 e

FIG.

Let x >0. Since f(z) e i’z is analytic in and on C, we apply Cauchy’s integral theorem,

f(z) e ixz dz , f(z) e ixz dz O.
k=l

On C1 the real part of z is fixed at to-R. Hence I(z)l<h(to-R) and

f(z) e ixz dzl <- If(z)l e ds

<-ho(to-R e ds ho(to-R)[(e -e-)/x].

As R -co, this approaches 0, since limR_,ooho(to-R)=O.
On C3 we also find

Iff(z) e ixz dz <-- If(z)[ e ds <-ho(to+R)[(e -e-rX)/x],

which approaches 0, since limR_,o ho(to + R) O.
Therefore as R -* oo, we find

f(t+ir)ei(t+ir)dt: f(t-ie)eiX(t-i)dt"
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(b) Let e 0, r > 0. Integrating by parts, we find

ixtf(t + ir) e ixt dt (1/ix)[f(t + ir) e ixt f’(t + ir) e dt].

Since If(t + ir)[ -< ho(t) and limltl_ ho(t) 0,

f_ f(t+ir)eiXtdtl=(1/Ixl)[f f’(t+ir) eiXtdt],
<--(1/IxlI [f’(t+ir)ldt

--< (1/I/I)f hi(t) dt.

It follows, therefore, that

f(t) e at <= Ge [x I.

(c) Let x < 0. By interchanging e and r and then setting e 0, r > 0, we show by a
similar argument that

(d) These estimates when combined show that f(t) has a classical Fourier trans-
form g(x) and that [g(x) < Ge-rlxl/{x{.

We can now consider the possibility of extending w to P.
THEOREM 8.2. Let f(z) be the analytic continuation of F-lw, where w

,=o (-1)lx,6(n)(x)/n! is a weight distribution on Zt. Assume that ]:or z s + it, f(z)
satisfies the following:

1. f(z) is analytic in the strip [Im (z)[ Is I< So for some So > O.
2. When ]s]<s0, If(z)l<-ho(t)and ]f’(z)l<=ha(t), where limltl_,ho(t)=O,- ha(t)dt <. Then the classical Fourier transform of f(t), we(x), is a continuous

linear functional on P and is an extension of w.

Proof. By Lemma 8.1 [(t) has a Fourier transform g(x)=_f(t)eiXtdt which
satisfies, for all x, Ig(x)[< Ge-rlxl/Ixl for some constants G and r >0. Since for q P

<G sup [e-(r/=)lxllO(x)l]I_ e
xe(-oo,oo)

-(r/2)lXl dx < 00,

it follows that (g, 4) not only exists but is a continuous linear functional. Thus
we(x) g(x) is the desired extension.

COROLLARY 8.3. Let the extension, we, of Theorem 8.2. have compact support.
Then we can be extended to a unique continuous linear functional, wE, on E.

Proof. Since we p’c D’, according to Bremermann [2, p. 27], we possesses a
unique extension in E’.
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III. REGULARIZATIONS

9. An example. We have just seen how w can be extended when the analytic
continuation, f, of F-lw has a classical Fourier transform. In what follows we shall
devote our attention to the problem of extending w when a classical Fourier transform
does not exist.

As an illustration of what can occur consider the case of the generalized Laguerre
fL-3/2polynomials In=0. In this case

w(x) ,=0E (-1)nr(_)n
and

1 F(n-1/2)(_it),"F-lw(t)
.=0 F(-1/2)n.

It is easy to see that the analytic continuation of F-lw is (1/(2r))(l+it) 1/2, which
does not have a classical Fourier transform.

It does, however, have a derivative, if(t)= [i/(4r)](1 + it) -1/2, which is classically
transformable"

Further, since

ix-/2 e-X
g(x)=F[f’(t)]= F(_21_) x >0,

0, x<_-0.

If ], F[4) ]) (-ixF[f], F[])

with the extension we equal to Fir], we see that Wp and g(x)/(ix) should represent the
same linear functional. But

1/2x e

Wp(X) g(x)/ix F(-1/2)
O,

x>O,

x=<0

does not generate a continuous linear functional even on Z due to the singularity at
x=0.

The difficulty exhibited above can be circumvented by a process known as
regularization (see [3, pp. 45-81]), and it is this procedure which (still) generates
continuous extensions of w to P or E.

A close examination of regularization follows. Let us say in closing this section
that the regularization of our example leads to the functional Wp generated by

(Wp, )= (I/F(--1/2)) f x-3/2(e-X(x)--(O)) dx,
3o

or we e-Xx-3/z/F(-1/2), where

(X3/2, O)= fO X--3/2([I(X)--II(O)) dx.

10. Regularizations. For the moment let us consider the regularization of h(x)
which has a singularity only at 0. We assume that h(x) is integrable over every
bounded region of E’ not containing 0 either in its interior or on its boundary. A
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regularization of h(x) is a continuous linear functional which coincides with h(x)
except at 0. That is, for every qt in the test space which vanishes in a neighborhood of
0, the functional has the same value as _-(x)d(x) dx.

We quote the following two theorems from [3, p. 11].
hTHEOREM 10.1 If there exists an m > 0 such that x (x is locally integrable, then

h (x) can be regularized.
THEOREM 10.2. Any two regularizations of h (x differ by a functional concentrated

at O.
If the regularization of h(x) also preserves the operations of addition, multipli-

cation by an appropriate function and differentiation, then the regularization is called
canonical. Following [3] we write h =CRh(x) to denote that h is the canonical
regularization of h (x).

Finally we shall restrict our attention to those functions which can be written as

h(x)-_,pi(x)qi(x)

x -where each pi is infinitely differentiable, and each q is one of the functions x/, and
x Then

CRh (x E pi (x)CRq (x ).

We remark that if h(x) has singularities of the kind mentioned above at more
than one point, say at XoXl’"x, and if y,.-., y are chosen so x0yl
x y x, Y0 -, Y/ , and

h(x ), yi-l x yi,
hi (x O, otherwise,

then h(x) can be decomposed into the sum hi(x), and each term can be handled
separately. This situation arises in a discussion of Jacobi polynomials, where sin-
gularities occur at +/-1. For our purposes here we shall restrict our attention to
singularities at 0 only.

11. Regularized extensions. We assume that f(z) is the analytic continuation of
F-w and that f(m)(z), Z=t+is, is analytic with
when Isl<so, where limltt_, h0(t) 0 andY h(t)dt.

THEOREM 11.1. Let g(x) denote the classical Fourier transform of fm)(t). Assume
that g(x)/(-ix) has a canonical regularization h(x). Then there exist constants Ck,

(kk=O,"" m-l, such that Wp(X)--h(x)+_Ck )(x) is a continuous linear
extension of w to P.

Proof. The constraints on f guarantee that

_
g(x)(x)dx is continuous on P.

This, in turn, insures that the canonical regularization of g(x)/(-ix) will be con-
tinuous and linear on P.

Now wp=Ff is an extension of w. We claim there exist constants ck, k
0,. ., m- 1, such that

m--1

6kWp(X) h (x) + Z Ck (X).
k=O

Since h is continuous and linear on P, so will we be. Thus we is an extension of w to P.
To see that in fact

m-1

Wp(X) Ff(x) h(x) + Z Ck 6(k(x),
k=O
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we proceed as follows.
(a) Let y(t)=F-lh(t). Then

2r(y(m), (t)) (Fy(m), F) ((-ix)mh, Fck).

Since (-ix) is infinitely differentiable,

(-ix)mh(x) (-ix)mCR[g(x)/(-ix)m]

CR[(-ix)mg(x)/(-ix) g(x).

Thus

2r(Ym), 4 {g, F 2r(fm), d 5.
That is, Y

m) f{m).
(b) Since every distribution in D’ has antiderivatives of mth order, we conclude

f(t) T(t) +1 (it)"k=O

Taking Fourier transforms, we find

Wp(X)= h(x)+ E Ck 8(k)(x).
k=0

COROLLARY 11.2. e coecients Ck, k O, 1," , m 1, are given by

(-)[c -(, x )].

Praaf. Since (, x) , k 0,. and ()(x), x) (-1)k B,

=(,x)=(,x)+ E c(6")(x),x)
k=0

=(h,x)+(-1)kc.
COROLLARY 11.3. Let the extensian af earem 11.1 have campact suppart.

en can be extended ta a unique cantinuau8 linear functianal, , an E.

IV. ORTHOGONAL POLYNOMIALS

12. General orlhoonal olynomials. Let us consider the polynomials p(x)

1
p.(x)

An-

defined by po 1,

n 1, 2,. ,where

/Xo /x

2n-1

1 x x

lff2n

n=0,1,...
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We assume that the distribution w has been extended to we, which is continuous on P.
THEOREM t2.1. The collection {p,(x)}=0 is mutually orthogonal with respect to

we. That is, if rn n, (we, p,,p,) O.
Proof. We note that if k < n, then

/Xo /

1 /x jtZ2 jtZn+l
O,

k k+l k+n

since the last row will be identical with one above. Thus, when m < n, if p,(x)=
kY.k=O CkX then

(Wp, PmPn)= Ck(Wp, xkp.)=.0.

THEOREM 12.2. (Wp, p2,,)= A,/A,_I O.
Proof. (Wp, pZ,)=(Wp, X"p,), which, by observation of the formula above, is

A./A.-1.
The precise connection between Wp and the classical weight functions follows.

13. The classical orthogonal polynomials.
A. The Legendre polynomials. The moments for the Legendre polynomials are

/-/,2. 2/(2n + 1),/x2,+1 0. Thus

and

2(2n)(X)
w ,0 (2n + 1)!’

This is a power series representation for

1 (it)2"

rr.=o(2n+l)!"

(e it
e -it) [sin t]

f(t)
(2rrit) (rrt)

This function has a classical Fourier transform

1,
w (x)

0, Ix[> a.

B. The Laguerre polynomials. The moments for the Laguerre polynomials are
/z. n !. Thus

w Z (-1)"
n=0

and

F-lw . (-it)"/(27r).
n=0
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This power series representation converges when It[ < 1 to (1/27r)(1 + it)-1. Thus the
analytic continuation of F-iw is

1(f(z)
27r

1 + iz

We see with So=1/2, ho(t) (1/(27r))(1/(4 + t2))-1/2, hi(t) (1/(2r))(1/(4 + t2))-1, that
limltl_ho(t)=O and that oo hi(t)dt <oo. Thus we=Ff extends w to P. Cauchy’s
residue then establishes that

e x>0,
Wp

O, X < O.

C. The I-lermite polynomials. The moments for the Hermite polynomials are

tx2, =’(2n)!/(4nn!), L62n+l 0. Thus

w=
n=o 4nn

and

F-lw=(2v)-i Z (-t2/4)".
n=O n!

This is the power series representation for

f(z) (2x)-1 --z2/4e

--t2/4With So 1, ho(t)=e -t2/4, hl(t)=[It[/2]e we satisfy the conditions to extend w,
and

we FZ(x e -x2, -oo<x <

14. Generalized Laguerre polynomials. H. L. Krall [4] has shown that the
differential equation

(/22X 2 + 121X + 120)Pn + (l lx + lO)Pn (111n + 122n (n 1))pn

has a polynomial solution p,(x) of degree n for each n 0, 1,..., if and only if the
moments {xi}=o satisfy An 0 and

lllt-6n +/10/-6n--1 +(n 1)[/22n +/21/,n-1 + 120t-6n--2] O,

n=1,2,-...
For the Laguerre equation

xL(,,)"-[x -a 1]L()’+nnL()=. 0
the recurrence relation above is/x, --[n + a]rt-1. Consequently,

THEOREM 14.1. Let Ixo 1. Then when a # 1, -2, ,
r(n + a + 1)
r(a + 1)

Note that these moments have been calculated by a technique not dependent on
the existence of a weight function. Further when a is a negative integer -no, all
moments x, 0 when n > no. In this case the formula for pn defines polynomials only
up to degree no. This degenerate case will not be considered.
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Note further that the moments are not all positive when a <-1. If j 1 < c <
-j, the first j moments alternate in sign. The remaining moments retain the same sign
as/-]--1.

Inserting the moments into the formula for w, we find
THEOREM 14.2. For the Laguerre polynomials {L(hln=O

(_1),
r(n +a + 1) 6(">(x)

and

F-lw(t) (1/(2rr))(1 + it)--1.
Whena> 1, F-1w can easily be inverted by tables [6]"
THEOREM 14.3. When a > 1,

Hence

we(x) F(c + 1)’
x _-> 0,

O, x<O.

n =0, 1, ,and

F(n + ce + 1) 1Io ,,+,
/’= F(ce+l) -F(ce-+-l) x e dx,

(we, L)()) 1 Io L()L(2)(x)x e-x dx,
r( + 1)

_(0 when m n,

!F(n+a+l)
whenm=n.

r(c + 1)

A suitable weight function can also be found when a <- 1 and a is not a negative
integer. Although F-lw cannot be directly inverted, a suitable derivative can be.

Let j 1 < a <-j, and replace (1 + it) by z. Then

F-lwp(z)= z--l/(27r).
When z =0, F-lwp =0. Likewise when 0=<m <],

(F-’wp)(m(z)=(-1)m(a + 1) (a +m)z--m-/(27r),
and (F-wp)(mlz=o= O. Finally,

(F-lwe) (-1)(c + 1)... (c +j)z--J-1/(27r)
is the first derivative to become infinite at z 0, and is also the first to have a classical
Fourier transform. Its transform is [6]

(_ 1)x +

w(x) F(c + 1)
x _->0,

0, x<0.

Hence

(-1) f x+ e-X(F-we)(J(t)
27rF(a + 1)

e -itx dx
(-1)i fo x’+

27rF(c + 1)
e dx.
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If integration in z is performed j times with limits from 0 to z, we find

F-1 (z)
2rrF(a + 1) k=0

Wp X e _, (--1)kxkzk/k dx

=2F(+l) x e e -=o (-1)x(l+it)/k dx.

If the last term is expanded in powers of -it, and the summation indices are reversed,
this becomes

1
x -. (-1)x

dx.F-we(t)=2F(a + 1)
e e (-1) (-it)

Since (-it)= (e-")( evaluated at x 0, this suggests that the regularization of w is

1 _xo (-1)x
e (x)- l(k (-1)(’)(0) dx.(w, )=

F(a + 1)
x

This agrees with [3]. An evaluation of (w, x) indeed verifies that

F(n +a +1)
(w,x")

F(a + )

n =0, 1,.... Thus
THEOREM 14.4. Let j 1 <a <-]. en the Laguerre polynomials {L)(x)}_o

are mutually orthogonal with respect to the linear functional Wn defined by

1 _xo (-1)x
e (x)- l!(k--i} (-1)0()(0) dx.(w, )=

r( + )
x

Direct computation of the norms (squared) of L(2 ), (w,t(n)2) is extremely
awkward. By using the recurrence relation [7], however, they quickly follow:

THEOREM 14.5. For all a -1,-2,. ,
(we, L) n !F(n + a + 1)

F(a + 1)

n=0, 1,....
Proof. We multiply the relation

,/- (c)l,()+(x a-2n-1)L)+n(n+a,n_l=O
by L()

+1 and apply Wp to see

(a)2\ (a)l(a)(we, L,+i/+(Wn, xL )=0+

If n is replaced by n + 1 in the recurrence relation, it becomes

,+2+(x-a-2n-3atn++(n + 1)(n +a + 1)L) 0.

If this is multiplied by L) and we is applied, then we have

(Wn, xL+L +(n + 1)(n +a + 1)(wn, L2)=O.
Thus

(a)2\(Wp, L2) n (n + a )(Wp, L,-I/.

The result follows by induction.
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The values n!F(n +a+ 1)/F(a + 1), of course, coincide with previous results
when a >- 1. When a <- 1, however, they are new. They oscillate in sign just as do
the moments

15. The Jacobi polynomials. The Jacobi polynomials can also be made ortho-
gonal in an extended sense, although a number of modifications in technique are
required.

First the formulas of H. L. Krall [4] exhibited at the beginning of 14 are as
follows. If the differential equation for the Jacobi polynomials2 {Pn}n=O is

(1 -x2)p’. +[(u -v)-(u + v)x]P’. + n(u + v + n 1)P. 0,

the moment recurrence relation is

[U +V + n- 1]/Xn--[U + ]/Xn-1--[/- 1]/x,-2 0.

This is easily solved only in such simple cases as u 0, v 0 or u =-v, which are
degenerate. Further, a direct computation of/xn through the formula

Xn(1--X)V-l(l +X)u-1 dx

is available only when u, v > 0. Consequently a direct qomputation of the moments
does not seem reasonable.

Instead we follow a procedure developed by R. D. Morton. In the relations of H.
L. Krall [4] replace x by y x- Xo. Then the differential equation is transformed into

[122y 2 + (2/22X0 + 121)Y + (122X02 + 121X0 + 120)]pn + [/llY + (/11Xo + llo)]Pn

n[(111-lzz)+lzzn]p,,
and the recurrence relation becomes

(nl22 + 111 122)/x, (Xo) + ([111 + (n 1)122Xo + n121 + 1o- I21)/x,-a (Xo)

+(/ 1)(/22Xg -k- 121X0 +/20)/x,,-2(Xo) 0,

where/x, (Xo) is the nth moment about xo.
If xo is chosen so that 122x + 121xo +/20 0, then the recurrence relation becomes

"two term", and is easily solved.
For the Jacobi polynomials the recurrence relation is simplified when -xg + 1 0,

or Xo + 1.
THEOREM 15.1. Let IXo 1. Then the Jacobi moments about 1,/x,(1), are

.()
(u+v),

n O, 1, where (a), a(a + l) (a + n -1).
Proof. The recurrence relation with Xo 1 is

/x, (1)(u +v + n- 1) +/x,_l(1)2(v + n- 1)= 0,

which is solvbd by induction.

Traditionally the Jacobi polynomials are indicated by {Pn’ }n=o. For notational purposes we set
1,/3 u and suppress c and/3.
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THEORFM 15.2. Let tXo 1. Then the Jacobi moments about -1,/xn (-1), are

(U + t)n’

n=0,1,....
As can be seen by inspection, there are three degenerate cases.
1. If v -N, then /XN+I(1) 0, and hence /x (1) 0 for all n > N. Only poly-

nomials up to degree N exist.
2. If u -N, then /XN+I(-- 1) 0, and hence ,, (- 1) 0 for all n > N. Only

polynomials up to degree N exist.
3. If u +v =-N, then either about 1 or -1 /xN+I is undefined, as are the Jacobi

polynomials.
W.e assume, therefore, that u, v, u + v are not 0 or negative integers.
THEOREM 15.3. Let txo 1. Then the Jacobi moments about O, txn (0), are

tx.(0)= J (-1)2(v)_ J
(-1) (u).

=0 (u + v) .=Z0 (u + v)

,(0) (w, x") (w, [(x 1)+

= j ;=o j
re(l).

Substitution yields the first expression. A similar expansion about -1 yields the
second.

Since /x0 1, tx(1)=(u-v)/(u +v) in both expressions above, the recurrence
relation verifies their equivalence for all n,

If we temporarily assume that u and v are complex with Re u > 0, Re v > 0, then
the function

WE(X)
0,

has as its inverse Fourier transform [6]

-l__<x<__l

]x] > 1,

itF-lwE(t)=e 1Fl(U, u +19,-2it)/(27r).

If this is expanded in a power series in (-it), then

w(t) =o (u + v)y - !2--’

Z I,(O)(-it)"/n!,

where the moment formula for tz, (0) using an expansion about -1 has been inserted.
A comparison shows this formula agrees with the distributional inverse Fourier
transform F-w.
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Likewise, since

1Fl(a, b, z)= eZIFa(b-a, b, -z),

b : 0,-1,. , (see Rainville [7, p. 125]),

F-lwe(t) e-itaFa(v, u + v, 2it)/(27r),

.o ] - -T- i; _! n !2rr’

1
Z ,(O)(-it)"/n,

where the moment formula for >, (0) using an expansion about 1 has been inserted. A
comparison again shows that F-1 w.we agrees with F-

Rather than retrace the tedious calculations through a number of steps to find the
various equivalent formulas when Re u < 0, Re v < 0 and u, v, u + v 0, -1, ,
instead we use the principle of analytic continuation in u and v to achieve the results.
We note that for Re u > 0 and Re v > 0, the following hold [7]:

Distributional formula.
F(u +v) ] )u_,0(we, O)=r(u)r(v)2u+_ (1-x)-(l+x (x) dx.

Inverse Fourier transform.

F-lwe(t) eitlFl(U, u -I V,-2it)/(27r) e-itFl(V, u + v, 2it)/(27r).

Orthogonality.

<we, P,Pm>= O, n m.

Norm squared.

<wF, P> F(u + v)F(u + n)F(v + n)
F(u)F(v)F(u +v + n 1)(u +v + 2n 1)n!’

THEOREM 15.4. Let -M + 1 > u > -M, -N + 1 > v > -N, M, N> O. Then the
following hold"

Distributional formula.

(w,4,}= r(u)r(v)2u+_l x (-x)-’ (l+x 6(x)

N-I[(I+x)U-1 )]q) }Z (x (-1)(1-x) ax
=o ] =

0 { )v_lo M-l[(l__x)V-lO(x)](k) }+ (+x)-’ (1-x (x)- E (l+x) dx
-1 =o k x=-

+ N-l[(l+x)U-IE (X)]0")
=0 j!

M-1 [(l--x)v-1
+ Y

q’(x)](
k=O k!

(-1);
x=l (V "+’j)

=_l/(U "]" k)].
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Inverse Fourier transform.

F-lwE(t) eitlFl(U, u + v,-2it)/(27r) e-itlFl(u, u + v, 2it)/(2rc).

Orthogonality.

(wE, P,,P,,,) O, n m.

Norm squared.

(wE, p2)=
F(u + v)F(u + n)F(v + n)

F(u)F(v)F(u +v + n 1)(u +v + 2n 1)n !"

Proof. It is clear that in each of these formulas the right sides are the analytic
continuations of the right sides when Re u > 0, Re v > 0. The distributional formulas

--ixt 2for the application of wE to 0, e /zvr, PnP, or Pn are the canonical regularizations
of the application of the analytic continuation of wE, and in fact (see [3, p. 66]) the
results are the analytic continuations of the integrals which result when Re u >0,
Re v > 0. As analytic continuations they must still agree.

16. The Bessel polynomials. Unfortunately the Bessel polynomials fail to yield
completely to the techniques of this paper. The moments for the Bessel polynomials
are/xn (-2)n+l/(n + 1)!. Thus

2n+1 (n)(x)
w(x) -.=oy n!(n + 1).

and

F-lw(t)= -1 2"+1(it)"
27r ,=0 n !(n + 1)!’

which is the power series representation for

-1 I((8it) 1/2)
f(t) 1/2

7r (S/t)

Since If(t)l-(a/,/-)exp [21tl/]/(sZltl)/4 for large Itl, an extension of w beyond S
still remains to be found.

Various tables (e.g. [8, #656.4]) show that F-w corresponds to (1/-n’)e -2/x.
Direct calculation using the Bessel polynomial differential equation,

2x y, +[2x + 2]y, n(n + 1)y,,

however, shows this is incorrect. The authors have devoted a great deal of time to
extending w but are still left with the formula

Wp =FfTr-1 I((8it)1/2)](Sit)l2

which has defied evaluation.
It is possible to give a direct proof of orthogonality of the Bessel polynomials

without resorting to the moment formula for pn. All that is required is the existence of
a weight function w or measure , which gives the moments through the formulas
/x, =(w,x), which certainly holds, or through /x, =x d,. Such a measure , of
bounded variation on [0, ) is guaranteed by Boas [1].
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The classical Bessel polynomials are given by the formula

yn(x) k=O’ (n k)k.
n O, 1,. .

Since the highest order coefficient is (2n)!/(2"n !), y, [(2n)!/(2"n !)]p,.
Let us define

A Z (-1)k (n+k)!
k=O (m + k + 1)!"

LEMMA 16.1 Let 0 < m < n. Then A O.
Proof. Consider

n+k

Then

k=0 (m +k + 1)!
m+k+l

X

and f("-m-1)(1)=A,.Since f(n-m-1)(1)--O when 0--<m <n, so is A.
THEOREM 16.2 The Bessel polynomials are mutually orthogonal with respect to w

or with respect to an appropriate measure u which generates the moments I,-
(-1)"+l/(n+1)!,n=0,1,....

Proof. If 0=m <n,

X
j+k(n +k)’(m +])’(w,

(w, yy,,) k=Oi=O/" (n-k)!k!(n-j)!j!2i+k

(n +k)!(m +j)!(-1)i+k+1
2
k=O i=oZ (n k)’k. --(.j);- -7t-1)’.

=2 ( (m+])’(-1)i+’].=o (m -y)!j!n a7 =o.

The norms (squared) can also be readily calculated. Define

B,= 2 o (n +k)!(n +])!(-1)+k+

k=Oi= (n-k)!k!(m-j)!j!(j+k + l)!"

LEMMA 16.3. If m =n >--1, then B,=(-1)"+2/(2n + 1).
Proof. Again consider

f(x)=xn(l_x).= (_l)k(n) n+k

k=O k
x

Let

F(y) f(x) dx (-1)k y.+k+ /(n + k + 1).

Then F(1) A,. But if integration by parts is performed n times,

F(1)=[(n!)2/(2n)!] (1-x dx =(n!)2/(2n + 1)!.
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Thus A, (n !)2/(2n + 1)! and

B, 2[(2n)!!(-1)n+l/(n !)2]Ann (--1)n+12/(2n + 1).

We have only to note that either (w, y,,2) or y2 dv equal B to conclude
THEOREM 16.4. The Bessel polynomials satisfy

or (-1)"2/(2n + 1).
2y. dv

This is in agreement with the calculation done by H. L. Krall and O. Frink [5]
using a different method.
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AN ADDITION THEOREM FOR HAHN POLYNOMIALS:
THE SPHERICAL FUNCTIONS*

CHARLES F. DUNKL?

Abstract. An addition formula for the Hahn polynomials Ok (X a,/3, N) is derived for the parameter
values /3 =-N-1, a S-l,-2,...,-N, N 1, 2, 3,-... The method is to realize Ok as a spherical
function for the values a =-N-1, -N-2,... and to use harmonic analysis on the finite homogeneous
space (St, Sa)\S,+t, where b N, a -a and S,, is the symmetric group on n objects (n 1, 2,. ).

Introduction. The Hahn polynomials form a three-parameter family of
orthogonal polynomials; for an integer N => 1, and real numbers a,/3 the correspond-
ing weight function is (a + 1)x(/3 + 1)N-x/(x!(N--x)!) at x =0, 1,’’’ ,N, of constant
sign and thus providing actual orthogonality, for the values a,/3 >- 1 or a,/3 <-N.
The polynomials are denoted by Ok (X a,/3, N), and Ok (x a,/3, N)

=3Fz(-k,k+a+fl+l,-x. 1) ,, (-k )i (k + a + [3 + l )i (-x )i
N, ce + 1 /=o (-N)i (a + 1)ii!

by definition, k 0, 1,..., N. The Pochhammer symbol (a)i is defined by (a)0 1,
(a)i =a(a +1)... (a+i-1), 1, 2,....

This paper contains the addition formula and its proof, for the parameter values
/3 -b 1, N b, b 1, 2, , a : -1, -2, , -b. For reasons of symmetry we use
the parameter a -a- 1. We define an auxiliary function Era, m 0, 1, 2," by

tm)Em(a,b,c,x) Zo (-1 (b-m+l).i(-x).i(a-m+l)m-i(x-C)m-.= j

The addition formula is"

Qk(v + w --x y -a 1, -b 1, b)= Y, C,,,,,k(a, b)

Ek-m_,,(a-2n, b-2m, b-m -n, v -n)

Ek-m-,,(a-2n, b-2m, b-m -n, w -n)

where

Em(w,b-w,v,x)E,,(w,a-w,v,y),

(-1)m+"(-k)m+,,(k-a-b- l)m+,,(b-2m + 1)(a 2n + 1)
c,,,,,k(a,b)=

n!m!(-a)k(-b)k(n-a)k-m(m--b)k-,,(b-m + 1)(a-- n + 1)"

a, b, k are integers with 0 _-< k _-< b -< a, the sum is taken over integers m, n with
O<=m+n<-k, O<=m<-b/2, O<-_n<=a/2, k-a<-m-n<=b-k, and v,w,x,y are
integers such that O<-w, v<-b, max (O, w +v-b) <-x <=min (w, v), max(0, w+v-
a)-< y _-< min (w, v). For nonintegral values of a see Corollary 5.3.

* Received by the editors August 3, 1976, and in revised form November 9, 1976.
? Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903. This work was

supported in part by the National Science Foundation under Grant MCS 76-07022.
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1. Outline and notation. The derivation of the addition formula depends on the
fact that the functions Ok (" -a- 1, -b- 1, b) (integers a, b with a => b => 1) are the
spherical functions for the homogeneous space X =(Sb X S,,)\Sa/, where Sn is the
symmetric group on n objects (n 1, 2,...). This space is realized as the space of
b-subsets of a fixed (a +b)-set. The addition formula for a spherical function is
essentially the Fourier series with respect to the stabilizer subgroup, S x Sa, of an
arbitrary right translate of the function. Our method depends on each term of the
Fourier series satisfying a difference equation and being invariant under a certain
subgroup. The subsequent part of this paper is divided as follows:

2. L(X) and its decomposition into G-modules: the Sa/-invariant subspaces Vk
of the functions on X, described by difference and formal differential operators; the
spherical functions.

3. The auxiliary functions Em relations to 3F2 series, Hahn polynomials, sym-
metries, orthogonality, difference relations.

4. Splitting Vk into H-modules: the further decomposition into subspaces
invariant under Sb x Sa, characterization of functions invariant under certain sub-
groups.

5. The addition theorem: application of harmonic analysis to put the addition
formula together out of the previously constructed ingredients.

1.1. Notation. For x, y real, we will use x/y, x/y for min (x, y), max (x, y)
respectively. For integers c, d with c =< d, [c, d] means the set {c, c + 1,- ., d}. For a
set r, I1 denotes the cardinality.

Fix integers a, b with l_-<b-<a. Let G Sa/b, the symmetric group acting on
[1, a + b (permutation written on right side of point). For r c [1, a + b l, let S(r) be
the subgroup of G which fixes each point in [1, a +b]\r (essentially S(r/) is the
permutation group of r/). Let H S([1, hi) S([b + 1, a + b]). For w 0, 1,. , b
define Kw as follows: K0 H and for 1 <- w <- b, Kw
S([1, w])S([w+l,b])S([b+l,a+b-w])S([a+b-w+l,a+b])cH.

We will be concerned with the homogeneous space H\G which will be realized as

{r/" rt [1, a + b], I l; b} and denoted by X; note txl- (a b
+ b). Let L(X) be the

space of complex functions on X furnished with the inner product (f,f2)
1/2(1/]X[) exfa(:)f2(s:) and norm Ilfll (f, fa) (f, f2 L(X)). The representation of

G by right translation on L(X) will be denoted by R, thus R(g)f()=f(g)(fL(X),
eX, gG). There is a G-invariant metric p on X, namely O(:, n)=b-[scCqn[. In
coding theory terminology, X is called a Johnson association scheme with the Lee
metric p. For more details and bibliography on this, as well as an association-scheme-
theoretic derivation of the role of Hahn polynomials, see Delsarte [2], [3].

It is sometimes convenient to use polynomial functions on X, thus we define
coordinate functions Xi, i= 1,..., a +b by Xi() 1 if e:, 0 if i: for cc[1, a +b];
thus X is embedded as a subset of Na/, and G is represented as a linear group on
Na/b, acting by permutation of coordinates. The base point in X, namely 1, b], will be
denoted o9; of course H is the stabilizer of o9.

2. L(X) and its decomposition into G-modules. For each r/c [1, a + b] let xn
denote I-Iinxi (1 for r/ empty). For O<=m<-_a+b let P, be the linear span of

{xn "It/I m }. Then dim P,, (a +b and P, is invariant under right translation by G,
m /

’+’ O/Oxi, a formal differential operatorbut is not in general irreducible. Let d Yi--1
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which commutes with R(g)(g G), and define V,, =P,, Iqker d, 0=<m =<b. It was
shown in [4, pp. 342-344] that d maps P,, onto P,,-1 for b _->m _-> 1, that Vm is
irreducible (under G) of dimension

(a +b)_( a +bl) (a +b)(a +b-2m + l)rn m- rn a + b-m + l

and realizes the representation [a+b-m, m] of G. Thus the Vm’S are pairwise
orthogonal and L(X)= Z=o(R) V,,.

We now find polynomials with specified invariance properties. In particular, fix
disjoint subsets r/1, rtza[1, a+b]. We look for elements of Vm which are
S(r/z)-invariant and involve only the variables Xg, r/1 t_J r/2. Indeed these are linear
combinations of o’g(r/1)o’,,-i(r/2) (0=<i =<m), where o-j(rt) is the elementary symmetric
function of degree in the variables xg, r/a 1, a + b ]. The requirement of being in
the kernel of d determines these polynomials uniquely (up to a multiplicative con-
stant), see [4, 2.12, p. 345]; the key fact is that d(r.(rt)= ([r/[-j + 1)O)_l(r/).

THEOREM 2.1. Let rl 1, T2 be disjoint subsets of 1, a + b and let p Vm (0 <-- m <-

b) be S(r/1) S(rlz)-invariant and involve only the variables xi, rll tA 72. Then

)rp=c , (l’02[-m + 1)i([nll-m + 1),.,,_i(-1
i=0

(some c L) if m <= InllAlnl, and p =-0 otherwise, although the formula holds for all m
(,(n)=-o if >lnl).

The theorem applied to ’1 [1, bit 7//2 [b + 1, a + b] gives the spherical func-
tions (see [4, p. 352]).

COROLLARY 2.2. The spherical function ]’or V,,, namely, the unique element ok,, of
Vm such that ok,, is H-invariant and has 4,,(w)= 1, is ck,,()=Qm(v(); -a-l,
-b-l, b) (X) where v()=b-[[,b]4[=p(,o,).

We will need a difference equation criterion for membership in V,,. Any operator
on L(X) which commutes with R(g)(g G) will have the V,,’s as eigenmanifolds, so
we set up a "locally-defined" example of such an operator. Indeed, define

Tf() Y. {f(()" ( X, Isr I l b 1} (f L(X), fj X),

(that is, sum the values over the adjacent points in X, p(:, sr) 1).
THEOREM 2.3. Let f L(X), 0 <= m <= b; then f V,, if and only if Tf

lab m (a + b + 1 m)]f.
Proof. Consider f L(X) as being a left H-invariant function on G (mapping

gf(oog), g G), and let k be a zonal (H-H invariant) function so that k(g)=
kl(V(wg)) (see Corollary 2.2). Then k,f is left H-invariant on G, thus
an element of L(X) (indeed every G-operator on L(X) is of the form fk *f).
Note that k f(g) (1/[G[) Zgl k(gg{1)f(oogl)= (1/[G[) Zgl kl(p(wg, oogl))f(wgl)
(1/]Xl)Xxk,(pqog,))f(). Now define k by kl(1)=lxl, kl(/)=O, j:l; then
k .f= Tf. On the other hand, write /=m=O f, the Fourier series of f, where

f 6 V,,; then k f Y.=o lmfm, where / (1/[G]) ,ga k (g)dp,,, (wg)=
(Ixl/Iol)l{g- g)= 1}10.,(1; -a- 1, -b- 1, b)=ab(1-m(a +b+ 1-m)/ab).
The eigenvalues determine m uniquely in the range 0_-< m -< b (=<(a + b + 1)/2), thus
the theorem is proved.

3. The auxiliary functions E,.. Let m, a, b, c, x be nonnegative integers and define

E(a, b, c, x) (-1) (b m + 1)(-x)(a rn + 1)._(x c)._,
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a polynomial of degree m in each of the variables a, b, c, x. Of course, E, can be
directly written as a 3F2, indeed

(3.1) E,,(a,b,c,x)=(-1)m(-a),,(x-c),,3F2(b-m+l’-x’-m" 1)-a,c-x-m+l

but we will use the E notation for three main reasons: 1) Em directly shows
polynomial dependence on variables without the problem of canceling out possible
zero factors in denominators, 2) certain symmetries are much more neatly expressible,
3) the parameters a, b, c specify appropriate constraints for the domain of the x
variable (and 4) protect the author and the reader from being case-wised to the point
of loathing).

We will exhibit the relation of E,, to the Hahn polynomials, leading to the
orthogonality relations, and also find some difference equations satisfied by the E,’s,
various symmetries and special values.

First, interchanging ] and m-] shows"

(3.2) Era(a, b, c, x) (- 1)"E,, (b, a, c, c -x).

Next we get a deeper identity:

For a,cO, 1,... ,m-l,

(3.3) E,,,(a, b,c,x)=(-1)’(-a)m(-C) 3F2(m-a-b- 1,-x,-m. 1)
-a, -c

This follows from (3.1) by using the following transformation of a terminating
3Fe, m=1,2,

(c b ),,,’ -m, d a, b3F2(-m’a’b" 1):(-( /3F2( "1)c,d b-c-m+l,d’

One way to prove this is to begin with a formula of Pfaff,

2F1( -m’bc ;x)=((c-b)m\ (-)- ,]2El (b_c_m+l,-m’b l-x)
(which comes from expanding (1-(i-x)) by the binomial theorem and using the
Chu-Vandermonde sum), multiply both sides by xa-l(1--X)d-a-1 and integrate over
0-<x-< 1. (The author thanks R. Askey for this suggestion.) The transformation can
also be found in Bailey’s book [1, p. 22], and was used by Gasper [6, 2.6] on Hahn
polynomials.

As a corollary of (3.3) we obtain:

(3.4) Em (a, b, c, x) E, (c, a + b -c, a, x) valid for all a, b, c, x.

Combining (3.2) and (3.4) several times we get

E(a,b,c,x)=(-1)E,(a+b-c,c,a,a-x) (by 3.2)

(3.5) =(-1)’Em(a,b,a+b-c,a-x) (by 3.4)

E,(b, a, a + b-c, x + b-c) (by 3.2).

To get orthogonality relations and nontrivial Hahn polynomials we now impose
the conditions

O<-c<-a+b, 2m<=a+b, (c-b)/O<-x<-a/c.
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The E,,’s are expressed as Hahn polynomials in four different ways depending on
a,b, c.

(i) c<-b,c<-a, Em(a,b,c,x)

=(-1)(-a)m(-C)mOm(X;-a-1,-b-l,c), (by 3.3)

(ii) a<-c<=b, Em(a,b,c,x)

=(--1)m(--a)m(--C)mOm(X; --C-- 1,-(a +b-c)- 1, a),

(3.6) (iii) b <-c <-a, Em(a, b, c,x)

=(-1)’n(-b)m(C-a-b),,Qm(x +b-c;-b-l,
-a- 1, a + b- c), (by 3.5 and (i))

(iv) a<-c,b<-c, E,,(a,b,c,x)

=(-1)(-b)m(C-a-b)mQ,n(X +b-c,-(a +b-c)
1, -c- 1, b).

By using the orthogonality relations of the Qm’s (see Karlin and McGregor [7] or
[4, 5]) we find

Em (a, b, c, x)E,, (a, b, c, x)
=OV(c-b) C X

(3.7)

6m"(a+b)(a+mb)-{c \ da+b-m+’ -2--m --(-1-1]
(-a)m(-b)m(-C)m(C-a-b),,, O<=m, n <=(a +b)/2.

If m>a/b/c/(a+b-c), then Em(a,b,c,x)=O for (integral) x in the domain
(c-b)V0<-x <-_a/c. There are four special values of Era, namely

(i) E(a, b, c, O)= (--1)m(--a)m(--)m (by 3.1),

(ii) Em (a, b, c, c)= (-b)m (--C)m (by 3.2 and (i)),
(3.8)

(iii) Era(a, b, c, a)=(c-a-b),,(-a)m (by 3.5),

(iv) Em(a,b,c,c-b)=(-1)m(c-a-b)m(-b)m (by 3.5),

(note that (iv) is the Saalschiitz formula for (3.3)). The Em’s satisfy certain difference
relations"

(3.9) (c-x)E,,(a,b,c-l,x)+xE,,(a,b,c-l,x-1)=(c-m)Em(a,b,c,x),

(3.10) (a -x)Em(a, b, c + 1, x + 1)+(b -c +x)E,,(a, b, c + 1, x)
=(a+b-c-m)Em(a,b,c,x).

It is easy to prove (3.9) by using (c-x)(-x)j(x-c + 1)m-j+X(--X + 1)i (X C -i
(C --m)(--x)j(x --c),,_i. Interpreted for Hahn polynomials by (3.6(i)), it is a special case
of a formula of Gasper [6, 2.3]. To get (3.10) transform Em(a,b,c+l,x) to
Em(b,a,a+b-c-l,x+b-c-1) by (3.5) and use (3.9). Now replace c by c+l in
(3.9), apply to both x and x + 1, and then substitute in the left hand side of (3.10) to
obtain

(c-x)(a-x)Em(a, b, c,x + 1) +x(x +b-c)Em(a, b, c,x- 1)
(3.11)

=[(c-x)(a-x)+x(x +b-c)
-m(a +b + 1-m)]Em(a, b, c,x).
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This identity was discovered by Karlin and McGregor [7, 1.3], in Hahn polynomial
terms.

The difference equation eigenvalue problem corresponding to (3.11) is

(3.12)
B(x)f(x + 1)+D(x)f(x- 1)-(B(x)+D(x))f(x)= .f(x),

B(x)=(c-x)(a-x), D(x)=x(x +b-c).

Notice the singular points are 0, c-b, c, a (compare with (3.8)). For a given value
f(xo), where xo=O/(c-b), the value of A and (3.12) determine the values of f(xo+
1),... ,f(a/c) (with x =x0, x0+ 1, ..., a/c- 1), and the equation for x =a/c is a
polynomial of degree (a/c)-Xo in ,, with zeros -m(a+b+l-m), m=
O, 1, a/b/c/(a +b -c). This is of course clear; the point is to emphasize that the
Em’S are the only solutions of (3.12).

4. Splitting Vk into H-modules. Recall from 2 that Vk realizes the irreducible
representation [a + b- k, k] of G. From the representation theory of the symmetric
group (see Robinson [9]) we find that the restriction of [a + b- k, k] (k <-(a + b)/2) to
H splits as follows:

(4.1)
[a +b-k, k]lH -Z@{[b-m, m](R)[a-n, n]" O<=m <-b/2,

O<=n <=a/2, m +n <=k, k-a <-m-n <=b-k}.

DEFINITION 4.1. For integers m, n, O<=m<=b/2, O<=n<=a/2, let Pro,, be the
orthogonal projection of Vk onto the subspace giving the representation [b-
m, m (R) [a n, n of H (if V does not contain [b m, m (R) [a n, n set P,, 0).
Each Pro,, commutes with R(h)(h e H).

We now find functions in Pro,, V, which are invariant under Kw, for some w e [0, b
(see 1.1). Note that the Kw-invariant functions are those which are constant on the
Kw-orbits in X. The Kw-orbit of (e X is determined by the four coordinates y(()
1(1, i6[1,4], where 1=[1, w], =[w+l,b], 3=[b+l,a+b-w], 4
[a + b w + 1, a + b] (one y is redundant since Yi b).

The space Pm,V is easy to describe when k m + n (and 0 m b/2, 0 n
a/2). We need merely form the spaces V, Vff in the variables x,...,x and
X+l,"’, X+b respectively, so V is the space of square-free (no x) polynomials in
x,..., x, homogeneous of degree m, satisfying= Op/Ox 0, and V is similarly
defined (in the variables x+,..., Xa+). The product mapping (p, q)pq extends to
a linear map of V@ Vff into V+,, indeed onto P,V+,. By the product rule for
differentiation the polynomial pq satisfies d(pq) 0 (p V, q V).

LEMMA 4.2. For 0 m b/2, 0 n a/2, P,Vm+n is the linear span of {pq" p
VL, q v;}

LZMMA 4.3. Let Omb/2, Ona/2, Owb, fPm,Vm+, and let f be
Kw-invariant’, then f is a scalar mulple of gg,,b where g(y, y2)
E(w, b w, yl + Y2, Yl) and g(Y3, Y4) n(W, a w, Y3 + Y4, Y4) (recall the y
coordinates, y(()= 1( i[, [1, 4]).

Proof. Applying Theorem 2.1 to S(I)XS(2) and S(3)S(4) shows that the
unique Kw-invariant elements of V, V are 0 (-1)g(ln2l-m +l)([Wl[-m +
1)m_ii(l)m_i(2 and =0 n + 1)([4[- n + l)-xx(4)-x(3) respec-

tively. Evaluating i(a)-i(2)and i(4),-i(3)at (yi)yields (])(m-iY2) and

()(-’Y3)that, is, (-1)m(-yl)i(-ya)_i/(i’(m. -i)’). and (-1)(-yn)(-y)_,/(,(n



AN ADDITION ,THEOREM FOR HAHN POLYNOMIALS 633

j)!) respectively, and so we get the functions Era, En as indicated (up to multiplicative
constants). The product of these two functions is Kw-invariant, and in P,,nV,,+, by
Lemma 4.2, and is the only such function (up to scalar multiplication).

Suppose that f is H-invariant on X; then for each sr6X the function
)(g,,g,)(h), (h H), is a trigonometric polynomial from [b-m, m](R)[a-n, n]f(h b

and is Kw-invariant. We know that P,,,,Vk contains a unique Kw-invariant element
(because it is isomorphic as an H-module to P,,,, V,, +,, ). If we can find f so that

b bfgmg,, Vk, then fgmg,, P,,,Vk and is the Kw-invariant element of this H-module.
Indeed we can do this by using Theorem 2.3, for which purpose we must express T in
the coordinates y. Let ci [il, i [1, 4].

LEMMA 4.4. Let f be a Kw-invariant function on X, given in terms of the yi

coordinates, then V() i4=1Yi(i--Yi)f(f)+Ziy yj(ci-Yi)f(" Yi + 1,’’’,
yi- 1," ") (implying the other coordinates are fixed, and not necessarily <j).

Proof. Fix (6 X. Adjacent points are to be counted according to the Yi coor-
dinates. For each i, interchanging a point in sr (y such) with a point in Ti\ (C Yi
such) produces a point in X adjacent to sr with the same yi coordinates. For each
ordered pair i, j, j, interchanging a point in " (yi such) with one in \" (ci- Yi
such), produces the coordinates yi + 1, yy- 1, other y’s the same. []

To get coordinates for Kw-orbits compatible with the description of H-orbits we
introduce the following: v- y3 +y4 (agrees with notation of Corollary 2.2), x y l,

y y4 (thus y2 b -v -x, y3 v -y). To describe T in terms of the v, x, y coordinates
we present a list of the thirteen possibilities in terms of (yi) and their corresponding
v, x, y values (for brevity only the changed y values will appear):

Case 1" same v, 1) same x, y, 2) ya + 1, y2- 1, x + 1, y, 3) ya- 1, y2 + 1, x 1, y, 4)
y3-1, y4+ 1, x, y+l, 5) y3+l, y4-1, x, y-l;

Case 2" v + 1, one of (a) Y l- l, X- 1, (b) Y2--1, X with one of (c) Y3 + 1, y, (d)
y4+l, y+l;

Case 3" v-1, one of (a) y+ 1, x + 1, (b) y2+ 1, x with one of (c) y-1, y, (d)
y4-1, y-1.

Recall Ci In/I, [1, 4], so Cl c4 w, c2 b w, c3 a w. In the expression
for bT(fgmg) from Lemma 4.4 some simplifications in the way of products are
possible, and the following is obtained:

bT(fg,gn)(x, y, v)=f(v)[pO(v)gm(X, b-v-x)g,(v y, y)

+plo(X, v)g,(v-y, y) +pol(y, v)g(x, b-v-x)]
-ef(v + 1)pzo(X, v)poz(y, v)+f(v 1)p30(x, v)po3(y,

where

po(v)=x(w-x)+(b-v-x)(x +v-w)+(v-y)(a-w-v+y)+y(w-y),

plo(x, v) (b -v -x)(w --X)Jm(W b w, b -v, x + 1)

+X(X -t-l) W)Em(W, b-w, b -v, x 1)

[(b -v -x)(w -x)+x(x + v w)- m(b + 1 m)]Em(W, b w, v, x)

(by 3.11),

Po(Y, v) (v y)(w y)E, (w, a w, v, + 1) + y(a w -v + y)E, (w, a w, v, y 1)

=[(v-y)(w-y)+y(a-w-v + y)-n(a + 1-n)]E,(w, a-w, v, y)

(by 3.11),
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bpzo(X, v)= xgbm(X 1, b -v-x) +(b-v --X)gm(X, b -v l-x)

xE.,(w, b w, b -v 1, x 1)+(b -v -x)Em(w, b w, b -v 1, x)

(b -v m)Em(w, b w, b -v, x) (by 3.9),

Poz(Y, v)=(a w-v + y)En(w, a-w, v + 1, y)+(w-y)En(w, a-w, v + 1, y + 1)

(a -v n)E,,(w, a w, v, y) (by 3.10),

and similarly

p3o(X, v) (v m)E.(w, b w, b -v, x) (by 3.10),

Po3(Y, v)= (v- n)En(w, a- w, v, y) (by 3.9).

T(fg.,g.)Thus we have separated the variables, and obtained the equation b

(Tlf) b(grog.), where

Tlf(v)=[v(a +b-2v)-m(b + 1-m)-n(a + 1-n)]f(v)

+(v n)(v m)f(v 1)+(v a + n)(v b + m)f(v + 1).

By Theorem 2.3, the eigenfunctions of T1 with eigenvalues lab-k(a + b + 1- k)],
fgmg,).k m + n, m + n + 1, yield the desired functions (as b

Set u v- n, and compare the expression for Tlf to the difference equation
eigenvalue problem (3.12). Observe that the solutions are of the form E(a’, b’, c’, u)
where b’-c’=n-m, and either a’=a-2n, c’=b-m-n, b’=b-2m or a’=
b m n, c ’= a 2n, b’= a m n (l 0, 1, 2, .). These two choices determine the
same function because of the symmetries of El (3.4), and indeed the substitution
u =v-m would do this also (by 3.5). We choose a’=a-2n, b’=b-2m, c’=
b-m-n because it reduces to the right Hahn polynomial (see Corollary 2.2 and
(3.6(i))) for m n 0. Set f(v) E(a 2n, b 2m, b m n, v n) and use (3.11) to
obtain Tlf [ab (l + m + n)(a + b + 1 m n)]f, thus bfg,.,g,, P,., Vm+n+l, by
Theorem 2.3.

For what values of are nonzero solutions possible? The discussion after (3.12)
shows that O<=l<=(a-2n)/(b-2m)/(b-m-n)/(a-m-n) for nontrivial solu-
tions. Setting k -m -n, we see these are the constraints specified by the represen-
tation theory (4.1), namely l=>0 is m+n_-<k, 1-a-2n is k-a_-<m-n, and l=<
b 2m is m n < b k (the constraints 2m < b, 2n < a were specified in gmgn). We
summarize these results:

THEOREM 4.5. For integers m, n, k, w such that 0 <- m <= b/2, 0 <- n <- a/2, k a <-
m n <= b k, m + n <-_ k <= b, 0 <- w <- b, the Kw-invariant functions in Pro. Vk are
spanned by dp.,.k (" w), where C.,.k (X, y, V W) Ek-.-. (a 2n, b 2m, b m n,
v-n)E.(w, b-w, b-v, x)E.(w, a-w, v, y), x(ff)--lffr El, wll, y()-
I" n [a +b-w + 1, a +b]l, v(c)= Ic n + 1, a +b][, ’x.

We will need the LZ-norm of b,..k (in L(X)). The number of points in X having

(Wx) ( b-w_ )(a-w)(w)and this is to be divided bygiven values of x,y,v is
b-v x v y y

b
to get the normalized measure at (x, y, v).

PROPOSITION 4.6. For integers m, n, k, w as in Theorem 4.5, II)mnk (" W)ll2 A/B,
where A =(-w),,(w-b),,(-w),(w-a),m!n!(k-m-n)!(-a)k(-b)k(a +b-m-n-
k)!(-1)’+"(n--a)k_,,(m--b)k_n(a +b-k-m-n + 1)(a- n + 1)(b- m + 1), and B
(a +b)!(a +b-2k + 1)(a-2n + 1)(b 2m + 1).
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Proof. This is a routine tedious calculation. Sum first over x and y using (3.7),

-,(a-n)A(b-m) ( b-2m )(a-2n)E,_m_,(a_2n, b-2m,obtaining the sum in v as v=mV, b-m-v \ v-n/

b-m- n, v- n)2 which is also done by (3.7). [-1

5. The addition theorem. We first give the abstract setting for the trick used to
get the addition theorem. Suppose temporarily that G is an arbitrary compact group,
with closed subgroup H, and further that T is a continuous unitary irreducible
representation of G on an N-dimensional vector space of functions on H\G, such that

TIH contains 1H exactly once. Let w {H} be the base point in the hornogeneous
space H\G.

Let A be the set of equivalence classes of unitary irreducible representations of H
appearing in TIH, with 0 A corresponding to ln. Thus we can write V YA V,
where the representation a of H is realized on the subspace V (possibly with
multiplicity > 1). Let P,, be the orthogonal projection onto V,,, thus P commutes with
T(h), (h H). Let b be the spherical function in V, that is b(o)= 1 and 4(sCh)
ck(,)(j H\G, h H), thus 4 spans V0. The addition formula for b is

b(g)= E (P(R(g)qb))() (,f H\G, g G),

(put oOglh, gl G, h H to see this is the usual addition formula for spherical
functions). Pick an orthonormal basis for V which is a union of bases for V, so that
the matrix representation for T[H diagonalizes, and in such a way that T11(h) 1,
Ti(h) Tl(h) 0, 2-<i =<N (h H). Then b(wg) Tl(g)(gG) and {Tu}/N_-I is an
orthogonal basis for V, since Tl.i(hg) ,i Ti(h) Tj(g) Tlj(g)(h H, g G), and thus
Tlj is a function on H\G.

Fix a e A, and let J be the set of indices of the basis elements in Vs. Any f V
can be expressed in the form 2jN=I c]TI], and then Po,f .ijCjTl.i. Now apply this to
R(g)b. Define f(gl, g2)= (P,(R(gl),b))(oog2)(gl, ge G); then:

(5.1) (i) f,(gl, g2)= .ieJ T](gl)Tli(g2) ]eJ Txj(g-()Zl.i(g2),

since R(gl)ck(wg2) Tla(gzgl) ZiI Tai(gz)T.l(gl), and T is unitary;

(5.1)

(ii) I If (gl, g2)l 2 dg2 ]eJ ITai(g;’)12/N

(iii) L (glh 1, h2g2) f (ga, g2)(h , h2 H),

(iv) fo, (gl, g2h) f, (hgl, g2)(h e H)

(Peter-Weyl theorem);

by(i);

since R(h) commutes with P

(note (iii) and (iv) show it suffices to consider values of gl, g2 from sets of represen-
tatives of H\G/H and H\G respectively).

(5.1) (v) fo,(ga, g2k)=f,(ga, g2) ifk(glHg-(1)fqH,

indeed let k gahg-(, k, h H; then f,(g, g2k)=f,(kg, g2)=f,(glh, g2)=f,(gl, g2).
Suppose that for each g G, there is a unique (up to scalar multiplication)

element in V which is invariant under glHg-(l["]I-I, that is, there is a function
F(gl, )( H\G) such that ---F(ga, ) is in V,, F(gl, k) F(gl, ) (k gaHg-( f3
H) and any other function having these properties is a multiple (independent of sc) of
F. This, together with (5.1(v)) shows there is a number depending on g, say Fa(gl),
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such that f,(gl, g2)=Fl(gl)F(gl, 6092). The following equation shows that F deter-
mines F:

\G

we apply (5.1(ii)) to F1F, obtainingTo prove this,
1)Fl (g )F(gl, oog IN, and solve for Fl(gl) (note that I\a f() d I f(o)g) dg for

any continuous function on H\G).
We return to the original groups G, H as in 1.1, to apply the above method to

find the addition formula. As representatives for H\G/H we will use the involutions
rw, w =0, 1,..-, b, where rw is the product of transpositions (1, a +b)(2, a +b-
1)...(w,a+b+l-w) for w>0, ro=l. The invariance group from (5.1(v)),
rHrw fflH is the group Kw (see 1.1). In Theorem 4.5 we determined the unique
Kw-invariant function in P,V, namely 4,(x, y, v; w) (for the usual values of
m,n,k).

The coordinates (x, y, v) for w- are x 0, y v w, so in the notation of (5.1)
F(Trw, WTrw)=Ek_.,_.(a-2n, b-2m, b-m-n, w-n)E.,(w, b-w, b-w, O)E.(w,
a-w, w, w)=(-1)"(-w).,(w-b).,(w-a)n(-w).Ek_.,_.(a-2n, b-2m, b-m-n,
w -n) (by (3.8)).

LEMMA 5.1. For integers m, n, k, w such that 0 <- m <-_ b/2, 0 <- n <= a/2, k a <=
m-n<=b-k, m+n<-k<-_b, O<_w<_b,

(P,.. R(r)bk)(r)
(-1)" (-k).,+,, (k-a-b- 1).,+. (b 2m + 1)(a 2n + 1)

n!m!(--a)k(--b)k(n-a)k-.,(m-b)k_,,(b-m + 1)(a n + 1)

E,_,,,_.(a-2n, b-2m, b-m-n, v-n)

Ek-.,-,,(a--2n, b-2m, b-m -n, w-n)

E.,(w, b w, b -v, x)E,,(w, a w, v, y),

where x l( 0 [ 1, w ][, y I" f-) [a + b + 1 w, a + b][, v Isr f-) [b + 1, a + b ]1, r e X.
Proof. This is proved by (5.2) and the L2-norm from Proposition 4.6. Recall that

the dimension of Vk is- +b)(a +b -2k +l]
k 7 -1-}" The cancellation of the factors like

(-w),., (w-b)., etc., is permissible since E.,E. is zero unless m <-w/(b-w), n <=
wA(a w). l-1

The addition formula for bk is bk(srTrw)= Y..,,. (P,,,,,R(Trw)Chk)((). The left hand
side is a Hahn polynomial evaluated at ]’Trw f3 [b + 1, a + b ][ [st 71 [b + 1, a + b]Trw
If)([b+l,a+b-w]U[1, w])l=v-y+x. To get a more symmetric expression,
replace x by w-x and use the identity E.,(w,b-w,b-v,w-x)=
(-1)’E,.(w, b-w, v, x) (3.5)). To obtain the addition theorem we sum the terms of
Lemma 5.1 over m, n.

THEOREM 5.2. For integers a, b, k such that 0 <-k <-b <= a,

(5.3)

Qk(V+W-x-y;-a-1,-b-l,b)= c,,,.k(a,b)

Ek-m-.(a--2n, b-2m, b-m -n, w-n)

Ek_.,_,,(a-2n, b-2m, b-m-n, v-n)

Era(w, b-w, v,x)E.(w, a-w, v, y),
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where

C,,,k(a,b)
(-1)m+"(-k)m+,(k -a-b- 1),,+,, (b-2m + 1)(a-2n + 1)
n!m!(--a)k(--b)k(n-a)k-,,(m--b)k-,(b-m + 1)(a n + 1)’

and the sum is taken over integers m, n with 0 <= m + n <- k, 0 <= m <- b/2, 0 <= n <-_ a/2,
k a =< m n =< b k, and v, w, x, y are integers such that v, w [0, b ], 0/(w + v
b)<-x<=v/w and O/(w+v-a)<=y<=v/w.

COROLLARY 5.3. Suppose b, k are integers, O<-k <=b and a is real, a 30,
1,.. 2b- 1; then the formula (5.3) holds, where the sum is taken over 0 <= m + n <-k,
0 <= rn <= b/2, n >- O, rn n <= b k and v, w, x, y are integers such that w, v [0, b],
O/(w +v -b) <=x <- w/v and O<= y <= w/v.

Proof. Applying the theorem to integer values of a _-> 2b, we obtain the constraints
as stated; note n <-k <=b <-a/2, rn-n >--k >=k-2b >-k-a, and w+v-a =<2b-a-<
0. The right side of (5.3) is a meromorphic function in a, with poles at most at
0,1,...,2b-1. [-1

By using the orthogonality relations of the E-functions we can obtain the product
formula for Ok, annihilating all but the m n 0 term in (5.3). Indeed let b, k be
integers with 0 -< k =< b; then

(5.4)

where

Qk (v; --a- 1, -b- 1, b)Qk (w; -a- 1, -b- 1, b)

K(x, y; v, w; a, b)Ok(V + W -x y -a -1, -b -1, b)
y

K(x, y; v, w; a, b) (-W)x(-W)(w b)-x(W a)o_v !v
x !(v -x)!y !(v y)!(-b)v(-a)o

x,y are integers with O/(w+v-b)<=x<=w/v, and O/(w+v-a)<=y<=w/v for
a b, b + 1, , 2b 1 but 0 =< y =< w/v for real a 0, 1, , 2b 1. Observe K -> 0
for a =b,. , 2b- 1 and real a >2b- 1.

For the product formula for Qk (" --a- 1, -b- 1, c) with a, b, c integers with
c <=a/b, see Dunkl [5] (and for a proof not using groups see Rahman [8]). If c b
these are spherical functions, but if b > c then they are intertwining functions, certain
functions on the double coset space (So Sa+b-c)\Sa+b/(Sb X Sa).

REFERENCES

[1] W. BAILEY, Generalized Hypergeometric Series, Cambridge University Press, New York, 1935.
[2] P. DELSARTE, An algebraic approach to the association schemes of coding theory, Philips Research

Reps. Suppl., 10, 1973.
[3],Hahn polynomials, discrete harmonics and t-designs, Rep. R295, MBLE, Brussels, April 1975.
[4] C. DUNKL, A Krawtchouk polynomial addition theorem and wreath products of symmetric groups,

Indiana Univ. Math. J., 25 (1976), pp. 335-358.
[5] Spherical functions on compact groups and applications to special functions, Symposia Mathema-

tica, Vol. 22, Rome, 1977.
[6] G. GASPER, Projection formulas ]:or orthogonal polynomials of a discrete variable, J. Math. Anal. Appl.,

45 (1974), pp. 176-198.
[7] S. KARLIN AND J. MCGREGOR, The Hahn polynomials, formulas, and an application, Scripta Math.,

26 (1961), pp. 33-46.
[8] M. RAHMAN, A positive kernel for Hahn--Eberlein polynomials, to appear.
[9] G. DE B. ROBINSON, Representation Theory of the Symmetric Group, University of Toronto Press,

Toronto, 1961.



SIAM J. MATH. ANAL.
Vol. 9, No. 4, August 1978

1978 Society for Industrial and Applied Mathematics
0036-141(;/78/0904-0007 $01.00/0

MINIMUM PRINCIPLES FOR ILL-POSED PROBLEMS*

JOEL N. FRANKLIN?

Abstract. Ill-posed problems Ax h are discussed in which A is Hermitian,and postive definite; a
bound IBxl <- is prescribed. A minimum principle is given for an approximate solution . Comparisons are
made with the least-squares solutions of K. Miller, A. Tikhonov, et al. Applications are made to decon-
volution, the backward heat equation, and the inversion of ill-conditioned matrices. If A and B are
positive-definite, commuting matrices, the approximation is shown to be about as accurate as the
least-squares solution and to be more quickly and accurately computable.

1. Introduction. This paper discusses ill-posed problems of the form

(1.1) Ax=h,

where A is a positive-definite Hermitian operator mapping a Hilbert space H into
itself. Although we assume (Ax, x) > 0 if x 0, we often assume also that IlAul[ may be
arbitrarily near zero on the unit sphere Ilull 1, Then A cannot have a bounded
inverse, and the problem (1.1) is ill-posed because the solution x, if it exists, is
unstable: arbitrarily small perturbations of the data, h, can produce arbitrarily large
perturbations of the solution, x. Typical of such problems is the Fredholm integral
equation of the first kind:

(1.2) J0 A(s,t)x(t)dt=h(s) (0<s < 1),

where A(s, t) is bounded, integrable, self-adjoint, and positive definite.
We shall also consider equations of the form (1.1) where A is an n n positive-

definite Hermitian matrix, and where the data h and the solution x lie in the
n-dimensional vector space. In practice, this problem is ill-posed if A has a large
condition number, which is defined as the ratio of largest to smallest eigenvalues. Here
a bounded inverse A-1 does exist in theory, but the solution x A-lh is numerically
unstable because the relative error

(1.3) IIxll IIhl[
Ilxll Ilhll

may become large. In fact, the maximum value of the relative error equals the
condition number.

Let x be the unknown solution, and let h be numerical or other approximate
data satisfying

(1.4) I[Ax-hll<=e,
where e is small but positive. Here we have replaced the equation Ax h by an
inequality, which is more realistic because it admits the possibility of a nonzero data
error. As originally shown by C. Pucci [16], such a problem can often be regularized
by additional information in the form of a prescribed bound

(1.5) IIBxlI_-<t.
Here the operator B and the finite bound/3 are known. This is new, given infor-
mation, which is independent of the original information (1.4).

*Received by the editors October 15, 1976, and in revised form July 28, 1977.
? Firestone Laboratory, California Institute of Technology, Pasadena, California 91125.
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Keith Miller [14] has considered the problem (1.4), (1.5), in which the linear
operators A and B are not required to be Hermitian, but are required to be bounded.
For such problems he has given several very useful numerical methods based on the
least-squares principle

(1.6) [lAx hll2 / A 2llBx 112 minimum.

If e and fl are known explicitly, the preferred choice of A is A e/ft. The minimal
solution is

(1.7) x (A*A + 2B*B)-IA*h,
which is the solution by Miller’s Method 1.

For the problem of inverting ill-conditioned matrices similar formulas, making
use of a prescribed bound, have been used since 1959 or earlier; see references [4]
through [8], [12], [13], [15], and the book by C. Lawson and R. Hanson [10, pp.
188-194].

For the ill-posed Fredholm equation (1.2) A. N. Tikhonov [17] developed a
least-squares method. Here the prescribed bound takes the form

nZ(x)-= I0 [xZ(t)+22(t)](1.8)

Or one may use any other Sobolev norm for D,(x). Tikhonov’s minimum principle for
an approximate solution is this:

(1.9) IIAx hi[2 + 2D.2(x) minimtm.

Error analysis in general and for certain applications has been given in [3].
Tikhonov’s minimum principle (1.9) can be put in Miller’s form (1.6) if B is

suitably defined, but now B is unbounded. For example, we may define B on the
domain of functions

(1.10) x(t)= Y an cosnrt (0<t<l),
n=0

where Y. n2aZn < ee. Then we define

(1.11) Bx(t)= Y (1+ n2zr2)l/2an cos nzrt.

This makes B positive definite and unbounded, with domain dense in the real Hilbert
space L2; and

(1.12) Io [x2(t)+ 2(t)] dt [IBxll2= ao2 +1 (1 + n2r2)a 2

Now the Tikhonov principle (1.9) takes Miller’s form (1.6), and Tikhonov’s minimal
solution is given by (1.7).

In the present paper, we will analyze a different minimum principle for the
ill-posed problem (1.4) with prescribed bound (1.5). Though A is bounded, we allow
B to be unbounded (as it must be to include Tikhonov’s regularizations); but we
require B-1 to be bounded. We define 2 to be the solution of this problem:

(1.13) (Ax, x)- 2Re (h, x) + (Bx, x) minimum,
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where h e/ft. The solution has the simple form

(1.14) 2=(A+AB)-h.
This principle is less enerally applicable than Miller’s, since it applies only to

ill-posed problems Ax h in which A is Hermitian and positive definite. But the
simple form of the solution 2 has advantages in numerical analysis, particularly in the
inversion of ill-conditioned matrices.

For matrices,, both principles are examples of least squares; see Lawson and
Hanson [10]. The principle (1.6)comes from the least-squares problem

(1.15)
B

x=

The principle (1.13)comes from the least-squares problem

(1.16)
R

x=

where L and R appear in the Cholesky factorizations L*L A, R*R B.

2. Error estimates. Let (x) be a seminorm on the Hilbert space H. If x is the
unknown solution of the inequalities

(2.1) IlAx h

and if x is an approximate solution, then (x- x) is a measure of the error. Miller [14]
defines these quantities"

(2.2) (e,B)=sup{(x)’ilnxll<-e,[lBxl[<=},

(2.3) Pll(e, )= sup {(x)" llaxllZ + h ZllBxl[Z <= ze2}
where h e//3. In his Lemma 3, he proves

(2.4)

(I have changed his notation by using/ instead of E.)
The quantity :t/ shows how much the information [[Bx[I-<_/ restricts (x) if you

know ]]Axll <- e. This is important because in an ill-posed problem Ax h, the norm

IlAull may tend to zero on the unit sphere, ]lull-1; therefore, [Ix[I--and perhaps
(x)--may be very large even if [IAx[I <- e.

Miller presents four numerical methods based on least squares. If both e and
are known explicitly (and are not just known to exist), the preferred method is Method
1; and this is the method we shall use for purposes of comparison. Miller’s minimum
principle and its solution, x 1, appear in our formulas (1.6), (1.7). In his Lemma 4, he
gives this error estimate:

(2.5) (x1- x) ,ff/[, (8,

Our purpose is to examine the minimum principle (1.13) and the solution, ,
given in (1.14). We assume that A is bounded, Hermitian, and positive definite. We are
concerned with ill-posed problems, in which A-1 is unbounded or very large in norm.
We assume B is Hermitian and positive definite, with a bounded inverse B -1", we assume
that the domain of B is dense in the Hilbert space, but we do not assume B is
bounded.
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If (x) is any seminorm, we define these quantities"

(2.6) A/’(e,/3)= sup {(x)’(ax, x)

(2.7) .Jl(8,/3)= sup {(x)’(Ax, x)+

where e > 0, fl > 0, and , e//3. These quantities are practically the same, namely,

(2.8) At(e,/) o4/1 (e,/) 2At(e,/3).

The reason for defining both of them is that sometimes one is easier to compute than
the other. The last three formulas are comparable to Miller’s formulas that we have
numbered (2.2), (2.3), and (2.4); we will obtain quantitative comparisons later. First
we will estimate the error (2- x).

THEOREM 1. Let A and B satisfy the preceding assumptions. Let x satisfy (2.1),
and let (A + aB)-lh. Then 2. uniquely solves the minimum problem (1.13), and

(2.9) (-x) -<_ A/’x (e, /3 ).

Proof. The operator (A + AB) has a bounded inverse because

(2.10) ((a +AB)x,x)>-A(BX, x)>-AllB-111-1[[xll2.
Then, since -= (A + AB)-I h,

(Ax, x)- 2Re (h, x)+ (Bx, x)

(2.11 ((A + AB)(x ), (x 2))- ((A + AB )2, . )

with equality if and only if x 2. This proves that 2 is the unique solution of the
minimum problem (1.13).

Let p x 2. Then

(Ao, o + a (Bo, o ((A + AB)(x 2), q )

((A + aB)x h, o).

Thus, for all x we have the identity

(2.12) (Aq, qg)+)t(Bq, q)=(Ax-h, q)+a(Bx, q).

Set x x. Then [lAx- hll =<e and a I[Bxll < e, and so

(2.13) (Aq, q)+ a (Bq, q)<- 2e[lq[[ (q x-.).
This gives the error estimate (2.9).

3. Comparisons. Now we will compare the minimum principles (1.6) and (1.13).
For all , _-> 0 the expression (1.6) is ->0 and therefore has the finite lower bound 0.

This is not always true of the expression (1.13). If 0, it becomes

(3.1) (Ax, x)-2Re(h,x).

If h lies outside the range of A, this expression may tend to -oo as x varies. But of
course this cannot happen if >0 in (1.13), since we have assumed I}B-11I < oo.

As an example of (3.1), let H be the Hilbert space of vectors x with real
components satisfying

Ilxll2
n=l
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Let (3.1)take the form

--1 2 --1(3.2)
n=l n=l

If we set xn 1 for n 1, , N and set xn 0 for n > N, the expression (3.2) equals

N

(3.3) n-1-cx3 as Nc.
n=l

Now let us compare the quantities J//l(e,/3) and /’l(e, fl), which are the upper
bounds for the errors (x 1- x).

THEOREM 2. Let Jill and be defined as in (2.3) and (2.7). Then for every
seminorm (x),

(3.4) ,////a(e, ),JI(E, ).

Moreover, the ratio .////1/..A may be arbitrarily near zero. But irA and B commute, and if
<x> =-Ilxll, then

(3.5)

In many ill-posed problems with prescribed bounds, A and B do commute. Then
this theorem shows that the errors in the two methods, Ilxl-x[[ and [[-x[[, have
practically the same upper bound.

Proof of the theorem. If

2IlAxl[2 + A 211Bxll2 < 2e

then

(3.6)

(Ax, x) + h (Bx, x) <= (llAx + A [IBx II)llx
4(llAx + A llBxJla)l/jlxJl

-<2llxl[.

That proves the inequality (3.4).
Next we will show that 1/ may go to zero. For an example, we will use the

real Euclidian vector space H with n dimensions. We define the diagonal matrix

(3.7) A B n 1/2 diag (1, 2-1/2 3-1/2 n -1/2)

We define the seminorm (x)= [IAxl[. Let h 1. Then our definitions become

(3.8) e///1(6, /)= sup {llAxll" 2l[Ax[I2 2e 2}

(3.9) ,Jl (E, ) sup {llAx 2(Ax, x) <- 2e Ilxl[}.

Then J//x e, but

(3.10) ’Jl-" e max
(Ax, x )
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Let xk n-1/2(k 1,..., n). Then as nc

IIll- 1,

(3.11) Ilax[I2 k -I’’lOg n,
k=l

(Ax, x)= n -1/2 Y’. k-1/2 2.
k=l

Therefore, for fixed e > O, ,,/V" -.9, O0 as n oo; and so ddx/l - O.
Now suppose (x)= [[xl]. Then

vt/1 sup {llxll" IIAxll= / A =llBxll= 2e :}

(3.12) sup {llxll ((A 2 + h 2BZ)x, x) 2e 2}

I(a + h Bb-lll1/.
Similarly, we find

A/’I sup {l[x[l" ((A + hB)x, x)<=
(3.13)

2e II(m
If A and B commute, then the bounded operators A and (AB)-1 have spectral

representations

| p, dE,,A
(3.14)

(AB)-I I 0"-1 dE,
where dE, is a common projection operator, and where

(3.15) 0_-<

(If A and B are matrices, then pv and 0-v are eigenvalues of A and AB belonging to a
common eigenvector.)

The operators (A + AB)-I and (A2 + A 2B2)-1 are bounded, since the constant A is
positive. They have these spectral representations:

-I ;
(3.16)

(A -FAB)-1 (pv+ov dEv,

(A2 + A 2B2)-1 I (p2 + o.2)-1 dE,.

Then

(3.17)
[I(A + AB)-III sup (p + 0-,)-1,
II(A 2 + A 2B2)-111 sup (p2 + 0-z)-1.

But for all positive O and 0-

(tO _[_ 0.)--1 (/9 2 q_ 0.2)--1/2
and so

(3.18) II(A + AB)-XI[ II(A 2 + A 2BZ)-llx/2.
Now (3.12) and (3.13) imply W’I -<_ x/ :t/. [3
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Note 1. Our proof of the inequality o/1 4 a////1 assumes that A and B commute.
If A and B do not commute, the inequality may be false. For example, let h 1 and
let

A=-2 5’ B=-2 1"

Then

( 6 -4) Aa+Ba= ( 34 -24)A+B=
-4 6 -24 34

The minimum eigenvalues of these two matrices are

Therefore,

hmin(A +B)= 2, hmin(A 2
-k- B2) 10.

II(A +B)-I[ 1/2>[I(A2+B2)-1111/2= 1/x/-.

Thus, for this example the inequality (3.18) is false, and ,A/" >4 ,////1.
Note 2. In Miller’s assumption IIBxll_-</, where he takes B to be bounded, we

make no loss of generality by assuming B B*, since we can always replace B by the
Hermitian operator B1 -(B’B)1/a and then assume IIBlxll_-

Note 3. If A has an inverse, the principle (1.13) can be put in the form (1.6). If we
define

A A1/2 A-I 1/2 1/2g h, hi =h BI=B
then the principle

(Ax, x)- 2Re (h, x)+ h (Bx, x)= minimum

takes the form

IIAx g[I + A [[BlX minimum.

But this form cannot be used if A lacks a bounded inverse, which is the case if the
original problem Ax h is ill-posed.

4. Deeonvolution. We will now apply our results to the real convolution equation

(4.1) a(z-y)u(y)dy=h(z) (-oo<z <).

(Here we have called the unknown u instead of x.) Let the function a(z) have the
Fourier transform

1 I_ eiZa(z)dz (-oo<ro<oo),(4.2) A(o)=

and let u and h have the Fourier transforms U and H. Then the convolution equation
(4.1) becomes

(4.3) a(w)U(w)=H(w).

As a rule, this equation is ill-posed. A data error 3H(o)) produces a solution error

(4.4) 8U(o)) A-(w) 6H(w).
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If the transform A(w)O as w- +oo, then a data error at high frequencies is greatly
magnified when it is multiplied by A-l(w).

We shall suppose A(to)> 0. This means that the original convolution operator in
(4.1) is positive definite, since

(4.5) u(z)a(z-y)u(y) dy dz oA()lU()l do).

Although A(w) > 0, we shall usually have A(to) 0 as o) 4-00.

We look for an unknown solution U0(w). We replace the equation (4.3) by an
inequality

(4.6) IIA (to)Uo(oo)- H(oo )[I <- e.

This permits a nonzero data error 8H(to) with L2 norm -<_e.
The problem is still ill-posed; to make sense of it we need some new given

information. We shall suppose this information takes the form of a prescribed bound

(4.7) lIB (eo )Uo(w )ll <-- ,
where B(to)> 0 and B(w) has a positive lower bound. In fact, we shall usually have
B(w) oo as o - +co. In any case, the inverse B- (to) is bounded.

The least-squares approach to the extended problem (4.6), (4.7) is to solve

(4.8) I[aU HII2 + h 211B UII2 minimum,

where h e/ft. The solution is

A(w)H(w)
(4.9) Ux(ro) A2(w)+ h 2B2(09 ).
This is the approach taken by Miller, although we have here allowed B to be
unbounded. The inverse transform

1 I _izu(4.10) UI(Z)--- e (w)dw
x/ZT"r

is an approximate solution of the original convolution equation (4.1).
A second approach to (4.6), (4.7) is to solve

(4.11) (AU, U)-2(U,H)+A(BU, U)= minimum,

where the inner product is defined by

(4.12) (F, G)= F(oo)G(oo)

(The expression (4.11) is real-valued, since we assume U(o) and H(o) are the
transforms of real-valued functions u(z) and h(z).) The solution of (4.11) is

(4.13) O(w)= H(w)
A(w)+AB(w)"

The inverse transform a (z) is a second approximate solution of (4.1).
A third approach is to use what Miller calls the method of partial eigenfunction

expansion. This is not a minimum principle, but it is useful for comparison; and it is
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often a good numerical method. Define the set

(4.14) fl= {w" A(o)) => hB(w)},
and let D,’ be its complement. Then define the cutoff solution

-l(w)H(w) on
(4.15) Uc(w)

0 on f’.

We now have three approximate solutions U(w), and we can compare their
errors I]U- U0[I, where Uo is the unknown true solution of (4.6), (4.7). In the present
application, the general formulas (3.12) and (3.13) imply

(4.16) Jl(6, /)=
inf [A2(o)+ h 2B2(o)]1/2’

(4.17)
2E

Azx (e,/3)
inf [A (w)+ AB (w)]’

and formulas (3.4) and (3.5) state

(4.18)

For the approximation Ul(w) Miller’s error bound is

(4.19)

For the approximation/)(w) our error bound is

(4.20)

For the cutoff approximation, Uc(w), Miller’s error bound is

(4.21) IIU- Uoll =< X/(E,)X/I(E ),

where

d//(e, fl)= sup {IIFI[’[IAFI] <- e, [IBFI[--< B}.

The last estimate appears in Miller’s Lemma 8 in [14]. He proves it by the theory
of spectral representation for commuting bounded operators. Since in our application
B is usually unbounded, we should give a separate proof. We will prove

(4.22) IIA(gc- go)ll-<_

(4.23) liB Uo)ll-<

These inequalities directly imply (4.21).
For us, the operators A and B are just ordinary positive functions, and the proofs

are easy. For any F(w), we have

Itfllz-- [ Ifl2 dw f Ifl2 dw + Ifl2 dw
3_

(4.24)
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With this notation, we find

IIA(U- Uo)ll=- [[A(Uc- Uo)II2,/ilA(U Uo)[l’
(4.25)

Since A < AB on D’, we find

(4.26) [[A Uol[n, <- X lIB U0l[a,-<- X/3 e.

Now (4.26)yields (4.22). Similarly,

lIB(u- Uo)ll2 -lIB (Uc- Uo)l[ g +
(4.27)

_-< a -2lla(U U0)llg + lib u0112 _-< z,
This proves (4.23), and now (4.21) follows.

All three approximations have the same form, namely,

(4.28) U(w)= (1 +[XB(oo)a-(,o)]")-a-(o)H(oo).
We get U1(w), J(oo), Uc(w) for p 2, 1,

Example. We will consider the backward heat equation with prescribed bound at
a previous time. Let the temperature (z, t) solve

(4.29) O_f_ 022 (--(30 < Z < OCt).
Ot Oz

If ->0 is fixed, and if q(z, ’) is given, we wish to compute the initial temperature
co(z, 0). This problem is ill-posed.

If we set h(z)= q(z, ’) and u(z)-q(z, 0), we can state this problem as a con-
volution equation (4.1) by defining the kernel

] 2/(4-r)

(4.30) a(z)=

Or we can use the equation (4.3) for the transforms:

(4.31) e-’U(w)=H(o).

More realistically, we look for a solution Uo(z) to an inequality"

(4.32) lie -’2 Uo(w)-H(w )]l <<- e.

In the extended problem we have additional information" at a previous time,
-r < O, we have

(4.33) IIq (z, -r)ll-<-/3.

In terms of Fourier transforms, this says

(4.34)

In this example,

(4.35) A(w)= e-’ B(O)= e’2

The three approximations are (with A e//3)
e--,,,:H(o

(4.36) U1(w) e_,,, + a e’,
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H(w)
(4.37) U(o)= -,,o2 2,

e +Ae

and

e
(4.38) Uc(w)=

0 if I,o1>

where the cutoff frequency We is the positive root of the equation

(4.39) e -’’ A e.
As we have seen, all the error estimates are about the same; they appear in

formulas (4.19), (4.20), (4.21). For definiteness, we will use the last. If IIAFIINe and
IIBFII , then

--22 2 2e IFI dw e

(4.40)
e dw < =A -2e 2.

d

But for all w

(4.41)

where We solves (4.39):

min (e-’, A e’’) =>e

(4.42) wc [(r + r)-1 In A-111/2.
Therefore, by the definition of M(e,/3),

(4.43) IIFII < e e t(e,/).

By (4.42), this says

(4.44) rid(e,/3)=

And now (4.21) gives the error estimate

(4.45) [IUc- U01l =<
This upper bound pertains to tile transforms, but it applies to u(z)-Uo(Z) since, by
Parseval’s theorem, Ilu-Uol] I]Uc-Uoll. From the logarithmic convexity of solutions
of the heat equation, an upper bound like (4.45) is the most we could expect from any
numerical method. See, for instance, [1].

For a numerical example, suppose

(4.46) r=l, ’=1, /3=1, e=10-4.
Then (4.45) says ]luc-uoll<= x/- 10-2. The approximate solution is easy to compute
numerically; it is the finite integral

(4.47) Uc(Z)=- e-iZ’e’ZH(w) d,
x/ATr

where Wc 2.146. Since H(w) is the transform of the real-valued function h(z), we
have H(-w)= H(w), and (4.47)becomes

/’" I02"146 o:Z(4.48) Uc(Z)= - e Re (e-iZ’H(w )) doo,

which can easily be integrated numerically.
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For deconvolution in general, the approximate solutions U a(Z) and (z) have
simple analytic forms, but the cutoff solution uc(z) usually has an advantage for
numerical analysis: it is an integral over a finite interval.

5. Ill-conditioned matrices. If A is positive definite but ill-conditioned, and if B
is positive definite, and if the unknown x satisfies

(5.1) I[Ax-hll<-_e, [[Bxl[ <_-/,

then the different minimum principles (1.6), (1.13) give the different approximate
solutions

(5.2) X (A + 2B2)-lah, , (A + AB)-lh,
where e//3. Error estimates appear in 2.

As e-->0, the approximation has two numerical advantages: 1) it can be
computed more quickly; 2) it can be computed more accurately, since the condition
numbers of A2 + 2B2 and A +hB must approach those of A2 and A as -> 0. Thus, if
y(A) is the condition number of A, as e --> 0

(5.3) y(A2 + A 2B2)-> y(A2) [y(A)]2 > y(A),

while

(5.4) y(A+hS)y(A).

Before the limit h 0, the condition numbers are hard to estimate unless A and B
commute. But if A and B commute, and if A and hB have the corresponding
eigenvalues pv and cry, then of course

2 2 )2 2 2po+o’o<-(p+cr _-< 2(Or + cry).

So the condition numbers of A +AB and AZ + A 2B2 satisfy

1 [y(a +AB)]2

-<= 2B)_-< 2.(5.5)
2 y(AZ+A
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COMPUTATIONALLY USEFUL BOUNDS FOR SINGULAR NONLINEAR
SECOND ORDER BOUNDARY VALUE PROBLEMS

LOUIS B. BUSHARD’

Abstract. Bounds are found for a solution y, to the ordinary differential equation (rkp(r, y)y’)’+
rt’q(r, y)= 0 (’= d/dr), with initial conditions y(0)= yo> 0, y’(0)= 0. The principal assumptions are that
k _-> 1, q(r, y(r)) is decreasing for O<=r<=a and q(a, y(a))=>0. Also, r-independent bounds on p and q are
assumed to exist. Lower bounds on y valid for 0-< _-< a are found, and, also, upper bounds valid on a
possibly smaller interval. They will be applied to Bessel’s equation to show how close they are. The bounds
will further be applied to boundary value problems arising in gas glow discharge theory and tubular
chemical reactor theory.

1. Introduction. A comparison theorem for singular nonlinear second order
ordinary differential equations will be established. It will be applied to a boundary
value problem arising in tubular chemical reactor theory considered by Parter and
others [12]. Namely,

(1) (xu ’)’ +x exp (- 1/[u [) 0 (’ d/dx),

(2) u ’(0) 0, u (1) "r,

where/3 _>- 0 and u is positive on (0, 1). The comparison theorem will show that if u is
a solution of (1) with u(0) u0 > 0, u’(0) 0, then the solution Ul(X, Uo, ) of

(3) u"+ (/3/2) exp (-1/lul) o,
(4) u (0) Uo, u’(0) 0,

satisfies U l(X, U0, 1)< U(X), as long as u(x)>--O. Further, it will be shown that (i)
u l(x, Uo,) is strictly monotone decreasing with respect to /, (ii) the equation
Ul(1, Uo,/3) -" 0 has a unique C solution,/3 .(Uo, -), " _-< uo < c, and (iii) if u is
a solution to the system (1)-(2), then either/ 0 or/3 > 0 and/3 >/3.(u(0), -). An
upper bound/3 =/3 *(Uo, ’) is also found but it is not defined for all Uo -> ’. A particular
value of the bounds/3, and/3* is that they significantly reduce the set of initial values
that one needs to consider in a numerical shooting method of solution to the system
(1)-(2). The reduction can be quite useful when it is not known how many, if any,
solutions exist to systems like (1)-(2).

An example from a gas glow discharge theory will also be treated. Further, the
theorem will be applied to the equation (xky’)’ + xky 0 for k 1, 2 and the results
will give a measure of how close the bounds are. As pointed out by Russell and
Shampine 13], differential equations of the type (x u’)’ + x f(u) 0, k 0, 1, 2, arise
quite naturally and frequently in physical situations.

Existence theorems for boundary value problems based on contraction mapping,
Brouwer or Schauder fixed point theorems as in [11] require estimates on solutions
with respect to initial values or estimates on solution paths in appropriate topological
spaces. Adequate bounds for this purpose for the gas glow discharge problem were
not found in the literature. The comparison theorem arose out of an attempt to
develop such bounds. The proof of the theorem relies heavily on the singularity in the
differential equation. Results of a similar nature for the nonsingular problem can be
found in [3] and [9]. Results for the nonsingular problem using Lyapunov methods

* Received by the editors April 2, 1976, and in revised form November 12, 1976.
? Mathematics Section, Babcock & Wilcox Research Center, Alliance, Ohio. Now at Cray Research,

Inc., Chippewa Falls, Wisconsin 54729.
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and Nagumo conditions can be found in [2], [7] and [8]. Many bounds are linear in
nature as in [1] and [4]. Finally, [1], [10], [11] and [14] contain extensive biblio-
graphies on two point boundary value problems as well as oscillation, comparison and
disconjugacy results.

2. The comparison theorem.
THEOREM. Let a > 0, p(r, y) C, q (r, y) CO where p > 0 and let k >- 1. Further,

let p/(y), p,(y)6 C a, q,(y)6 C where O<pt(y)<-_p(r,y)<-p,(y), q(r,y)<-q,(y) for
0 <- r <-_ a. If y (r) C2 satisfies
(5) (rkp(r, y(r))y’(r))’+ rkq(r, y(r)) 0 (’= d/dr)

for 0 <-- r <--_ a, with y(O) yo > O, y’(O) O, q(a, y(a)) >- 0 and q(r, y(r)) decreasing for
0 <-_ r <= a, then y’(r) <- 0 and

Pl (s ds
(6)

(r) (Ys p.(x)q.(x) dx)1/2 r

]’or 0 <--_ r <= a. Moreover, ifp (r, y) p (y if there is a ql (y Co such that qi (y <-- q (r, y
0 <= r <- a, if 1 <= k < 2, and if q(yo) (k/2)q. (yo) > O, then

(7)

for 0 <- r <-_ b, where

p s ds

(r) (2 ffo p(x)(ql(x)- O(x)) dx)1/2 r

p (x )qu (x dx /2

Q(y) k fO,(p(s ds/(ff p(x)qu(x) dx)l/2}
where y (b) Zo, 0 < b <-_ a, and z Zo is the largest zero smaller than yo of

rp(x)(q(x) dxQ(x))

Finally, (7) also holds for k >- 1 with Q(y) replaced by Q(y) (k/(k + 1))q(0, yo) while
(6) holds with q,(y) replaced by 2qu(y)/(k + 1).

The hypothesis that q(r, y(r)) is descreasing is not stringent. For example, if
q q(y) with q(0)= 0, yo> 0, q increasing with respect to y, then y’(r)_-< 0, as an
integration shows, and q (y (r)) is decreasing for 0 _-< r _-< ro where ro is the first zero of
y(r).

Q(yo) in the first instance of the theorem is taken to be

lim Q(y) (k/2)q,(yo).
yyo

Equality in (6) defines a lower bound y for the solution y of (5) on the interval
0 -< r =< a, and y satisfies the differential equation

(8a) (Pl(Y a)Y)’ + 1/2 P.(Y l)qu(Y l)/P,(y l) 0

with the initial values of y, i.e., yl(0) yo, y(0) 0. Equality in (7) defines an upper
bound y2 on 0 r b, which satisfies

(Sb) (p(y2)y)’ + qt(y2)- O(y2) 0,

with the initial values of y. Equality in the inequalities described at the end of the
theorem define lower and upper bounds, y3 and y4 respectively, which satisfy

(8c) (P(Ya)Y)’ + (1/(k + 1))qu (y3) 0
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and

(8d) (p(yn)y)’ + ql(y4) (k/(k + 1))q(0, yo) 0,

again, having the initial values of y. y3 and y4 are bounds on the intervals 0 <_-r <_-a
and 0_-<r_-<b where, in this instance, b is determined by the second choice of
O(y) (k/(k + 1))q(0, yo).

It is interesting to compare the values of y"(0), y/’(0), 1, 2, 3, 4. They are

1 q(0, yo) 1 p,(yo)q(yo)
y"(o)

k + 1 p(0, yo)’
y’(0) =- p,(yo)

y(0)
1 ( k ) 1 q.(yo)

p(yo) ql(yo)-q,(yo) y3(0)=
k+l p(yo)’

y(O)
P(Yo) q(Yo)---q(O, Yo)

In case p p p and q q qu, they become

1 q(yo) ()q(yo)y’(O)
2 P(Yo)’

y’(O) 1
p(yo)’

1 q(yo)
y"(O) y(O)= y(O)=

k + 1 p(yo)"

When k 1, all second derivatives agree at r 0. When k > 1, y;’(O) and y(O) agree
with y"(O) and so y and y4 are closer to y for small r than are y and y. In contrast
though, y is defined for a more general case of 5. When k 2, y is not defined.
When k 1, the upper bound of (8b) may be closer to y than the upper bound of (8d),
as an example will show; however, the integrals in O(y) may be difficult to evaluate
numerically or otherwise.

Proof. Integration of (5) gives

(9) -rp(r, y(r))y’(r) sq(s, y(s)) ds, 0 <-_ r <- a.

Because q(r, y(r)) is decreasing, for 0 <-r =< a, the inequality

(10)
k+l k+l

k + 1
q(r, y(r)) _-<-r’p(r, y(r))y’(r) =<k / 1

q(0, yo)

holds for 0 -_< r _<- a. In particular, y’(r) <- 0, 0 _-< r -< a. Inequality (10) is equivalent to

(11) q(r, y(r)) _--<-(k + 1)p(r, y(r))y’(r)/r <-_ q(O, yo)

for 0 -<_ r _-< a. Now -p(r, y(r))y’(r)/r is decreasing on 0 _-< r _-< a, for

-(p(r, y(r))y’(r)/r)’ (q(r, y(r)) + (k + 1)p(r, y(r))y’(r)/r)/r <-_ O.

Returning to (9), we have

-r p(r, y(r))y’(r) s-q(s,.y(s))p(s, y(s))
p(s, y(s))y’(s)

(-y’(s)) ds

p(r, y (r))y’(r)
pu(y(s))q,(y(s))(-y’(s)) ds,
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or

Finally,

(-p(r, y (r))y’(r))2 <= p, (x )q, (x dx.

fyYO )
1/2

-p(y (r))y’(r) <-- (. p, (x )q,, (x ds
\ (r)

from which (6) follows.
Next, (7) is established. The last inequality together with (6) and p p,, p give

-k
p(y(r))y’(r) <= k (I(O P(x)qu(x) dx)l/2

r fo) {p(s) ds/(Y p(x)q.(x) dx)1/2}

Thus

Q(y(r)).

(p(y(r))y’(r))’ + ql(y(r)) O(y (r))

(rkp(y(r))y’(r)/rk) + q(y(r)) O(y (r))

--q(r, y(r))- kp(y(r))y’(r)/r + qt(y(r))- O(y (r)) <- 0.

Multiplying this inequality by 2p(y(r))y’(r) gives

2p(y(r))y’(r)(p(y(r))y’(r))’ + 2p(y(r))(q(y(r)) O(y(r)))y’(r) >= O.

Now q(yo) O(yo) q(yo) (k/2)q,,(yo) > 0 and an integration gives (7).
Next (7) is established for the case O(y) (k/(k + 1))q(0, yo). From (11)

(p(y(r))y’(r))’ + q(y (r))- O(y(r))

-q(r, y(r)) + ql(y(r)) kp(y(r))y’(r)/r (k/(k + 1))q(0, yo) -< 0.

The result follows from this inequality. The last case of (6) follows from

(p(y(r))y’(r))’ + (1/(k + 1))qu(y(r))

-q(r, y(r))- kp(y(r))y’(r)/r + (1/(k + 1))qu(y(r))

>= -q(r, y(r)) + (k/(k + 1))q(r, y(r)) + (1/(k + 1))q (y(r))

=> (1/(k + 1))(q,(y(r))-q(r, y(r))) >= O.

3. Applications.
A. (ry’)’+ry =0, y(0)= 1, y’(0)=0. The solution is the Bessel function of

order zero, y(r)= Jo(r). This application of the theorem and the next will give a
measure of how close the bounds are. The bounds of (8a)-(8d) satisfy

y/’ + 1/2y, 0, i= 1,3,

y+y2
2cos-ly2

yf + Y4- 1/2 =0,

with yi(0) 1, y:(0) 0, 1, 2, 3, 4. Thus yi(r) cos (r/,,), 1, 3, and y4(r)
(1 +cos r)/2. y2 is computed numerically. The results are shown in Fig. 1.
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FIG. 1. ya (=Y3), Jo, Y2 and Y4 respectively ]’or application A (drawn to scale).

B. _(r2y’) + r2y 0, y(0) 1, y’(0) 0. The solution is y(r) (sin r)/r. ya
cos (r//2) as in application A. y2 is not defined, y3 and y4 satisfy

2
Y3 +1/2Y3 0, Y + Y4--g 0,

with y(0) 1, y/(0) 0, 3, 4. y3(r) cos (riffS) and ya(r) (2 + cos r)/3. For this
application y3 is better than ya. The first zero of y is a rr and

ya(rr) 606 < y3(rr) -.241 < y(rr) 0 < y4(rr) 1/2.
Also, the first zero of y3 is (V-/2)rr .866a.

C. A problem in tubular chemical reactor theory.

(12) (ry ’)’ +/3rf(y 0,

(3) y’(0) 0, y()=r.

In (12) and (13), f is positive for y positive and increasing,/3 -> 0, - => 0 and only
nonnegative solutions are of interest. The case f fo, fo(y) exp (-1/]y 1) was briefly
discussed in the Introduction. This boundary value problem was extensively analyzed
mathematically by Parter [12] and it has nonunique solutions. Parter reports numeri-
cal results obtained by others for f- fo that are well supported by his mathematical
analysis. Specifically, two monotone decreasing curves were computed, /3 =B(’),
/3 =/(), 0 =< " <= .24120. B(’) </(’) except for " .24120 where B(’) =/(’)
10.961. On these two curves two solutions were found, while between them three
solutions were found, while in the remaining portion of the first quadrant of the ’-/3
plane that was sampled only one solution was found. These results were found by
simply computing an approximation to y(1, yo,/3) where y(r, Yo,/3) is the unique
solution to (12) with y(0) Yo, y’(0) 0 when f fo.

Turning to the bounds in the theorem, we note that y and y4 satisfy

y’ + 1/2/3f(yl) O, yg +/3 (/(Y4) 1/2 f(Yo)) O,

with yi(0)= yo, y[(0)= 0, i= 1, 4. Y3--yl and Y2 will not be used. Yl and Y4 are
uniquely determined functions of r, yo and/3, and they are C in yo and/3 if f is C in
y. As long as y(r, yo,/3) => 0, the inequality yl(r, yo,/3) < y(r, Yo,/3) holds for r > 0.
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Also, the inequality y (r, yo,/3) < y4(r, Yo,/3) holds for r > 0 as long as y (r, yo,/3) _-> Zo
where Zo is defined in the theorem.

The solution of F(yo,/3, -) yi(l, Yo,/)-’r 0, 1, 4, and F(yo,/3, z)
y(1, yo,/3)-z 0 are needed for " > 0. In order to establish these solutions, the
special solutions yl(r, yo, 0) y(r, yo, 0) ya(r, Yo, 0) Yo are needed. As a con-
sequence, yl(1,’,O)--’r=y4(1, z,O)--’=y(1,’,O)--7"=O and Ylyo(1, yo, O)
Y4yo(1, yo, 0) Yyo(1, yo, 0) 1. Further, y 1/3(1, YO, 0) Y4/3(1, Y0, 0) y/3 (1, YO, 0)
-f(yo)/4 < 0 for yo > 0. Thus each equation has a solution. That is, there exist three
C functions,/3.,//3", of yo and z, defined for [yo- z[_sufticiently small such that
yl(1, yo,/3.(yo, z))-z=y4(1, yo, B*(yo, z))-z y(1, yo,/3(yo, -))- - 0, /3,(’, z)=
/3"(-, -) =/(z, z) 0, and /3,(z, -) =/3*(-, -) =/g(-, -) 4/f(yo). It will be shown
that /3, is defined for all yo>-Z and that /3 =/3,(yo, z) is the only solution of
yl(1, yo,/3)- " 0 for yo -> -. The same statements will be found to hold for/3* on a
possibly smaller yo set of the form --_< yo -< y(). Similar statements have not been
found for/3, and therein lies the principal value of the application of the theorem to
this example.

First, F(yo, 0, z) yo " shows that Fa(yo, 0, -) > 0 for Yo > . The quadrature
formula

ds

( ( of(t) dt)/2
r

shows that y and F1 are strictly decreasing in /3 for positive fl and nonnegative
solutions of (12) and that Fa < 0 for/3 sufficiently large. Thus, there is exactly one
/3 =/3.(yo, ’) > 0 such that Fa(yo,/3, z) 0. The formula

IOr 1 Iyy f(s) as dry,/3(r) y,(r) 2y(t),(,)
shows that Fo(yo,/3,(yo, z), z)< 0 and, thus,/3, is C a.

The same methods give the same results for y4, F and B* on yo y()
where y() is the smallest zero Zo > of, (f(s)-f(z)/2) ds.

Finally, if yo> and 0< B B,(Yo, ), then Fyo(Yo, B, )0 and, consequently,
y(1, Yo, B) - > 0. Hence, any solution of (12)-(13) with > 0 and B > 0 must satisfy
yo > and B > B,(Yo, ). If yo < y() also, .then B < B*(Yo, ).

B,, B and B* were computed for f fo, .05 and yo 3.15 and certain of
their values are given in Table 1. e value computed for y (.05) is .0545. e
qualitative nature of the computed functions B,, B and B* is depicted in Fig. 2 and the
computations suggest that B, and B have one local maximum and one local minimum
for yo > , much like a cubic polynomial. If, in fact, such behavior holds true to B, it
would provide a nice explanation of the results on the number of solutions stated by
Parter which were mentioned in the introduction. The values in Table 1 show that B,
not only agrees qualitatively with B but also quantitatively. For example, at Yo
.0539, corresponding to the local maximum of B, B/B, 1.15., and B* can be found explicitly and, e.g.,

(yo, ) > .(yo, ) (if(t) dt)1/2
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Y0

.O5

.0501

.051

.052

.053

.0533

.0539

.054

.055

.056

.15
1.05
1.15
1.25
1.35
1.45
2.25
3.15

/3,

0
1.88(105
1.40(106)
2.03(106
2.24(106
2.25(106
2.23(106
2.22(106
2.08(106
1.87 106
6.65(102

TABLE

0
1.88(105
1.45(106
2.18(106
2.50(106)
2.54(106)
2.570(106
2.569(106
2.55(106
2.35(106
2.04(103

/3*

0
1.89(105
1.51(106
2.41(106
3.03(106
3.74(106

13.19
13.14
13.18
13.3
13.5
15.6
18.8

16.5
16.1
15.9
15.845
15.847
17.4
20.3

Yo

FIG. 2. Qualitative behavior of,, and * o]’ application C (not drawn to scale).
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The implicit function theorem method was used above in lieu of the analytical
expressions because implicit function methods extend to the case where (12) has
nonlinear dependence on/3.

Finally, the bound of (8b) was not used here but it could give better results than
y4 and/3*.

D. A problem in gas glow discharge theory.

(14) (rT’)’ + ra(T)uT O, (rTu’)’ + r(b(T)- c(T)u)u O,

T’(O) O, T() a,
(15)

u’(0) 0, u(1)=0.

In (14), a, b, c C and they are positive for T > 0 and only solutions with T(r),
u(r) >0, 0-<r < 1, are of physical interest. Problem (14)-(15) arises in gas glow
discharge theory [5], [6]. The functions a, b and c have complicated expressions in T
and will not be givenmthey can be found in [5] or [6]. They also depend on a
parameter Eo, whose value is 400 in the present application. Several results from [6]
are needed. First, the initial value problem for (14) with T(0) To, T’(0) 0, u(0)
Uo, u’(0) 0, has unique solutions (T(r, To, u), u(r, To, Uo)). Secondly, u’(r), T’(r) < O,
0 < r =< 1, for a solution to (14)-(15). Further, if 1 =< To =< 2.23, then (a(T(r))T’(r))’ <=
0.

Finally, u(r, To, Uo) < M(T(r, To, Uo), To, Uo) for r > 0 where M(T, To, Uo) is
defined by

dM
T--= T=<s=TomaX ((b(s)-c(s)M(s))/a(s)), M(To) Uo.

160.0

80.0

0.0

1.0

\

U Q(1 + DT 1/3)"

U h (T)

U Uo# (T)

Eo 400

1.25

T

FIG. 3. Q, h and u of application D (drawn to scale).

1.50
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M is strictly monotone increasing in Uo. The theorem applies to the first equation in
(14) and it shows that the solution T1 Tl(r, To, Uo) of

T’ + 1/2a(Ta)TIM(Ta, To, Uo) 0

with TI(O) To, T(0) O, satisfies

Tl(r, To, Uo) < T(r, To, Uo)

for 0 < r =< 1. Now T1 is strictly monotone decreasing in Uo, as can be seen from the
quadrature formula for T1. Thus, given 1 =< To-<_ 2.23, the equation TI(1, To, Uo)-
1 0 has at most one solution Uo u’. Fix To, 1 -<_ To -<_ 2.23. If Ta(1, To, ao) 1 0
and T(1, To, Uo)- 1 0, then ao < Uo. The equation TI(1, To, Uo) 1 0 has been
solved numerically for Uo u(To), 1 <= To <= 1.48 and the results are given in Fig. 3.
Also shown in Fig. 3 are the functions u h(T)= b(T)/c(T) and u Q(T) where
u < O(T) is a physical bound given in [5]. In [6], it is shown that Uo < h(To) for a
solution to (14)-(15). Thus, a solution to (14)-(15) must have its initial values in the
region enclosed by the three curves of Fig. 3. The lower bound Uo u(To) agrees
quite closely with the lower bound found by other methods in [6]. The region of Fig. 3
was used in !-5] for a thorough numerical analysis of (14)-(15).
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OPERATIONAL CALCULUS FOR FUNCTIONS OF TWO VARIABLES*

HARRIS S. SHULTZt

Abstract. Let L be the space of locally integrable complex-valued functions of two variables defined on
the first quadrant. We can inject L into a commutative algebra of operators on a space of testing functions.
Since this injection maps convolution into multiplication it serves as a generalization (there are no growth
restrictions) of the two-dimensional Laplace transform. Some useful operational formulas are developed.

Introduction. In [1] the authors develop an operational calculus for functions of
two variables based on the two-dimensional Laplace transform. Many of the formulas
developed therein can be obtained without using the Laplace transform and its
accompanying growth restrictions. This is accomplished in [7]. In the present article we
do this using an algebra of "perfect" operators on a space O of testing functions (a
two-variable analogue of [3]). This algebra contains all the functions of two variables
which are locally integrable on the first quadrant as well as the operators of partial
differentiation.

1. The algebra of operators.
DEFINITION 1.01. We denote by L the set of locally integrable complex-valued

functions of two variables defined on the first quadrant {(x, y): x->0, y->0} and
extended to be zero elsewhere. For each f and g in L we define

f * g(x, y)= (x-u, y-v)g(u, v) dudv (x >=0, y >=0).

Remarks 1.02. We may infer from (I, 2; 20), (III, 2; 2) and (III, 2; 43) of [4] that
f g L for all " and g in L and that

(1.03) f g g f (all f, g e L)

and

(1.04) (]:,g),h=f,(g,h) (allf, g, h L).

DEFINITION 1.05. We define O to be the subset of L consisting of those functions
which are infinitely ditterentiable and which, along with all partial derivatives, vanish on
{(x, y): x 0 or y 0}.

Remark 1.06. It follows from [4, Thm. 5, p. 117] thatf q O for all f in L and all
qinO.

DEFINITION 1.07. A mapping A from O into O is called a perfect operator if
A(p q)=Ap q for all p and q in O.

Remarks 1.08. If 1 belongs to L we denote by {f} the mapping q --f q. Thus,

(1.09) {f}q =f q (all q O).

It follows from (1.04) that {f} is a perfect operator. We may use [5 Thm. XIV, p. 173]
and [4, Thm. 2, p. 74] to deduce that if f and g are elements of L then {f} {g} if and
only if f g almost everywhere. The partial differentiation operators are denoted by Dx,
Dy, D,x, Dxy, etc. Repeated application of [2, 250] shows that each of these is a perfect
operator.

Remarks 1.10. If A and B are perfect operators we denote by AB the composi-
tion of A with B; thus, ABq A (Bq) for any q in O. Clearly, if A and B are perfect

* Received by the editors May 13, 1976, and in revised form November 2, 1976.
? Department of Mathematics, California State University, Fullerton, California 92634.
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operators, then so is AB. By (1.04) and (1.09) we have

(1.11) {f g} {f} {g} (all f, g 6 L).

THEOREM 1.1,2. The equations (AB)C A (BC) andAB BA holdfor all perfect
operators A, B and C.

Proof. The first equation is obvious. As for the second, let q l, q2, q3,’" be a
"6-sequence" in Q. (cf. [6, 1.21 ]). If A and B are perfect operators then, for each q Q
and for all x, y >_-0, we may use (1.03) and Definition 1.07 to deduce that

ABq (x, y) lim (q,, ABq)(x, y)

lim AB (q, q)(x, y)

lim A (Bq, q)(x, y)

lim (Bq, Aq)(x, y)

lim (q, BAq)(x, y)

BAq (x, y).

Remark 1.13. Any linear combination of perfect operators is a perfect operator.
DEFINITION 1.14. If B and X are perfect operators such that BX--XB the

identity operator, then we write X B-. Further, we define

A
AB-1

B

for all perfect operators A.
DEFINITION 1.15. We denote by K the set of locally integrable complex-valued

functions of a single variable which vanish on (-oo, 0).
THEOREM 1.16. If g belongs to K and if we define

{g(x)}q(x, y)= g(x-u)q(u, y) du (x, y >-O)

and

{g(y)}q(x, y)= g(y -v)q(x, v) dv

]’or all q in O, then {g(x)} and {g(y)} are perfect operators.
Proof. Define f(x, y) g(x) for x, y _->0 and zero elsewhere. Then,

(x, y_>O)

{f}Dyq(x, y)= f(x -u, y -v)qy(u, v) dv du

g(x u)qy (u, v) dv du

g(x-u) q(u,v)dv du

g(x-u)q(u, y) du
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for all x, y-> 0 and all q Q; the last equality is from the fundamental theorem of
calculus. Thus, {g(x)} =Dr{f}; it follows from Remark 1.10 that {g(x)} is a perfect
operator. The proof for {g(y)} is similar.

2. Operational formulas.
THEORZM 2.01. Iff and fx belong to L then

(2.02) {fx } Dx{f}- {f(0, y)}.

Iff and fy belong to L then

(2.03) {f,}= Dy{f}-{f(x, 0)}.

Proof. For each q O we may integrate by parts to obtain

{f}q(x, y) f(u,v)q(x-u,y-v)dudv

f(O,v)q(x,y-v)dv+ f(u,v)qx(X-u,y-v)dudv

-{f(0, y)}q (x, y) + {f}Dxq (x, y)

[Dx{}-{/(0, (x,

for all x, y 0. This proves (2.02). We may derive (2.03) in a similar manner.
THEOREM 2.04. If g and g’ belong

(2.05) {g’(x)} Dx{g(x)}-g(O)
and

(2.06) {g’(y)} {g (y )} g (0).

Proof. For each q O we may integrate by parts to obtain

{g’(x)}q(x, y)= g’(x-u)q(u, y) du

=-g(O)q(x, y)+ g(x-u)q(u, y)du

=[{g(x)}D-g(O)]q(x, y)

for all x, y 0. This proves (2.05). We may derive (2.06) in a similar manner.
COROLLARY 2.07. I, B.andB belong m L then

(.Oat {B,}=D,D{?}-D,{(O, y)}-D{(x, 0)}+[(0, 0).

Pro@ We combine (2.02), (2.03) and (2.05) to obtain

{y}= Dy{f}-{B(x, 0)}

Dy[Dx{f}-{f(O, y)}]-[Dx{f(x, 0)}-f(0, 0)]

DyD{f}-Dy{f(O, y)}-Dx{f(x, 0)} +f(0, 0).

LEMMA 2.09. e perfect operaWr Dx +Dr is invertible its inverse is given by the
equation

(D +D,)-q(x, y)= q(x-t, y-t) dt (x, y 0)

or all q in O.
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Proo[. Define

Aq (x, y) q (x t, y t) dt

for each q 60. By [2,250] we have Aq O. Further,

o Io oA(p *q)(x, y) p(x-t-u, y-t-v)q(u,v)dudv dt

o o [o p(x-u-t,y-v-t) dt q(u,v)dudv

Ap q (x, y) (x, y >= O)

for all p and q in O. Therefore, A is a perfect operator. Now,

A (D +D, )q (x, y [q (x t, y t) + q, (x t, y t) dt

[q(x , y 1

=q(x, y) (x, y 0)

for all q in Q..Thus, A (D +Dy)-.
THEOREM 2.10. e equation

D +D, (x-t, y-t) dt

holds or all in L.
Pro@ For each q e O we have

o IoIo[o[(x-t, y-t) dt q(x, y)= [(x-u-t, y-v-t) dt q(u, v) dudv

Io [Io ;o f(x u, y v)q (u, v) du dv dt

DEFINITION 2.11. If g belongs to K we define {g (y -x)} to be the perfect operator
{F}, where

g(y-x) forx, y 0,
F(x, y)=

0 otherwise,

and we define {g(x-y)} to be the perfect operator {G}, where

g(x-y) forx, y_->O,
G(x, y)=

0 otherwise.
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(2.13)

and

(2.14)

Remark 2.12. It follows from (1.09) and Definition 2.11 that

{g(y-x)}q(x, y)= g(v-u)q(x-u, y-v) dudv

{g(x-y)}q(x, y) g(u-v)q(x-u, y-v)dudv

for all q in O and all g in K.
THEOREM 2.15. The equations

(2.16)

and

{g(x)}
Dx +Dy

{g(Y)}
Dx +Dy

(2.17)

hold for all g in K.

={g(x-y)}

={g(y-x}

(x, y _-> O)

(x, y _-> O)

Proof. Let q 60. From Lemma 2.09 and (2.14) we have

(Dx +D,)-{g(x)}q(x, y)= g(x -v -s)q(s, y -v) ds dv

g(u-v)q(x-u, y-v)dudv

={g(x-y)}q(x, y) (x, y >-_ 0).

This proves (2.16). We may derive (2.17) in a similar manner.
Example 2.18. Consider the partial differential equation

(2.19) h + hy =f.
We use (2.02) and (2.03) to obtain

Thus,

(D +Dy){h}-{h(O, y)}-{h (x, 0)} {f}.

{f} {h (0, y)} {h (x, 0)}
(h}=Dx +D+Dx +D---+Dx +D"

From Theorem 2.10, (2.16) and (2.17) it follows then that

{fo f(x -t, y -t)dt}+{h(O, y -x)}+{h(x -y,{h}= 0)}.

Combining this with Remark 1.08 and Definition 2.11 yields the solution

f(x-t,y-t)dt.+h(O,y-x) for 0<-x <y,
h(x, y)

f(x-t,y-t)dt+h(x-y,O) for 0__<y <x.
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THEOREM 2.20. If Jo is the Bessel function of first kind of order zero then

(2.21) {Jo(2c’,xy)} (DyDx +c)-1 (all c >0).

Proof. It can be verified directly that

02 CJ’o(2",cxy)
Jo(2",/cxy) cJ’d(2 cxy) +
Oy Ox 2 c,xy

But tJ’(t) + J’o(t) + tJo(t) 0. Therefore,

02

Oy Ox
Jo(2"cxy) -CJo(2Xcxy).

Combining this with (2.08) and the initial condition Jo(0)= 1, we obtain

-C{Jo(24cxy)} DrDx{Jo(2,/-cxy)}-Dy { l (y )}- Dx ( l (x )} + 1

where l(t)= 1 for all t->_0. Observing that Dy { l (y )} Dx { l (x )} 1 we conclude that
(DyDx + c ){Jo(2c,xy)} 1.

Example 2.22. Consider the hyperbolic partial differential equation

(2.23) hxy + ch f (c >0).
We may use (2.08) to obtain

Thus,

(DyDx +c){h}-Dr{h(O, y)}-Dx{h(x, 0)} + h(0, 0) {f}.

Dx {h (x, 0)} Dr {h (0, y)) h (0, 0)
{h}= {f} + +

DrDx + c DyDx + c DrD,, + c DrD,, + c"

But, by (1.11) and (2.21) we have

(2.24)
DyD,, + c {Io IoXf(x-u,y-V)Jo(2/cuv) du dr}

and, by the proof of Theorem 1.16, we have

(2.25)

D,{h(x, O)}

DrDx + c

Similarly,

(2.26) Dr{h(0, y)} {0 ior }DgyDx + c -y h (0, y V )Jo(2c’]xv) dv

And, finally,

(2.27) h(0, 0)
DyDx + c

{-h (0, 0)Jo(2"cxy)}.
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The solution h(x, y) to (2.23) is thus the sum of the four functions which define the
perfect operators in equations (2.24)-(2.27).

Remarks 2.28. This approach to an operational calculus is more general than that
found in [1] but less general than that found in [7]. The space of perfect operators is
isomorphic to the space of distributions on R 2 having support in the first quadrant (cf.
[6, 2.18]); accordingly, questions concerning convergence of operators can be handled
with little difficulty (see 2.16 and 2.19 in [6]).
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DUAL ORTHOGONAL SERIES WITH MODIFIER TENDING TO ZERO*

ROBERT P. FEINERMAN

Abstract. In this paper we consider the basis property for {Pq,, +c,,Qq,,} where {cn} is a positive
sequence converging to 0 and (as in [Feinerman and Kelman, this Journal, 1974]), {q,,} is a complete
orthonormal sequence in a Hilbert space H, and P and O are orthogonal projections on H. In [Feinerman and
Kelman] it was proven that if {cn} converges to a positive limit then {Pq, +CnOqn} is an 12 basis while in this
paper we prove that if c,, converges to 0 it is not an 12 basis. We also include an application of the result to a
problem in heat transfer.

Introduction. In some recent papers we have introduced an abstract approach to
dual orthogonal series. We defined a dual orthogonal series problem in an abstract
Hilbert space which was a generalization into which could be fit practically all the
previously individually studied cases of dual series. We have proven theorems about the
completeness and basis properties (see especially [2] and [3]). In this paper we continue
our study of the basis (or expansion) properties and apply the results to an example from
the theory of heat transfer.

Notation. Throughout this paper we will have:
1) H is a real separable Hilbert space.
2) P and Q are subspaces of H which are orthogonal complements.
3) P and O are the projection operators fromH onto P and Q respectively (so that

P + O is the identity operator).
4) {q,}_- is a complete orthonormal sequence in H.
5) For n 1, 2,...we consider anPq. +bnOqn where {an}nl and {bn}=l are

sequences of nonnegative real numbers, one of which (say {a.}) is a positive sequence.
Since a. is never zero, we will divide by an and let n be defined by
where c. b./a.. {q. } is called the kernel of the dual orthogonal series and {c. } is called
the modifier.

The dual orthogonal series problem (as defined in [3]) is: Given f6H, find

{k,}= 2 such that Y= k,On f (where convergence is in the norm of H). The main
result of [3] can be stated as:

THEORZM 1. If {Cn}=l is a positive sequence which converges to a positive limit,
then {On }-- is an 12 basis in H; i.e., for eachf Hthere is a unique sequence {kn }_- in 12
such that n= knqn f.

In this paper we concern ourselves with the case when {c.}= is a sequence which
converges to zero. We prove that in that case {.}. is not an 12 basis; i.e., it is not true
that for each f H there is a unique sequence {k.}. in 12 such that Y.= k.O. =f.
(Actually in our theorem when we prove that {n} is not an 12 basis if {cn} converges
to zero, we have one other minor hypothesis. However, that hypothesis is satisfied
by every dual orthogonal series problem we have encountered in the literature.)

Note. If, instead of {Pqn +cnOqn}, we were considering {anPon +bnOqn} [as
described in notation 5)], {kn}=l in 2 would obviously be replaced by {khan} in 12.

The type of boundary problem in which one has {c, } converging to zero is usually
one where the dual orthogonal series is associated with a mixed boundary value
problem in which one of the conditions is a Dirichlet condition and the other condition
is a Neumann condition. In the latter part of this paper we consider in detail a
well-known problem from heat transfer which exhibits this behavior.

* Received by the editors November 18, 1975, and in revised form January 4, 1977.
Department of Mathematics, Lehman College, City University of New York, Bronx, NewYork 10468.
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Before we can prove our main theorem, we will need a preliminary lemma.
LEMMA. If {C.}=1 is a bounded sequence and {g,,} an 12 basis, then the mapping

T: , a,cp,, --> Yf= aO, is an isomorphism from H to H.
Proof. For any h H, we have h , a,,. Then

IIll2= a P 2 a + 2 ac
n=l n=l

n=l

2 (where M sup ic, l)-<-IIh 2 +M2 Y a.
n=l

and thus T is bounded. On the other hand, since {q,,} is an 12 basis, T is obviously one to
one and onto. Hence T- exists and moreover (see [1])T- is bounded.

THEOFM 2. I[ dim OH dim Q is infinite and {c, } converges to O, then {O, } is not
an 12 basis.

Pro@ Set M, sup {lc[; > n}. en M, converges to zero. We set H,
sp {a, , ,} and let Ku be the direct sum of OHu and PH; i.e., Ku OHu @ PH.
Elements of Ku have the form

n=l n=l n=l n=N+l

Since

K= (OHN)- CI (PH)-
(OHN)+/- f"l (OH)

we need only choose N+ 1 linearly independent elements of OH to establish that KN is
not dense in H (and since we are given that dim OH is infinite, that obviously can be
done).

Assume {4’,}= were an 12 basis in H. Then, for k H,

k Y. a,,O.
n=l n=l

+We define the sequence of operators Su’H
and note that SNH C_ KI. Then

II(1-SN)kll2: , a,,O,,- Z a,,Po,,
n=N+l n=N+l

Z a,,c,,Oo,, <=
n=N+l n=N+l

e=MIT-lkl[
n=N+l n=l

<_MIT-II2IlkII2.
Thus If1 sll =< MIIT-111 which, for large enough N, is < 1. Thus, for large enough N, Su
would be invertible (and hence onto) which is impossible inasmuch as SuH C_ KI which
is never dense.
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Application. As an illustration of an application of Theorem 2, we use the
following well-known problem in heat transfer theory (and obtain a result which is part
of the folklore of the field).

We seek the steady temperature U(x, y) in a semi-infinite rectangular strip
R {(x, y) 0 =< x -< 7r, y => 0} with zero temperature on the side walls and mixed (Dirich-
let and Neumann) boundary conditions along the base. In addition, we assume U(x, y)
approaches zero as y approaches infinity.

The mixed boundary conditions along the base can be expressed as:

U (x, 0) fl (x) for 0 < x < c,

U(x, O) f2(x) for c < x < rr

where 0 < c < rr, fl (x) L[0, c and f2(x) L2[c, "n’].
By the standard method of separation of variables we get that U(x, y)=

n an e -nr sin (nx) where {an} is given by

., ann sin (nx) -fl(x) for 0 < x < c,
n=l

a, sin (nx) f2(x) for c < x <
n=l

In [4, p. 152] is established the existence of a unique solution {a,} to these dual series.
To fit this dual series into our abstract form, we let H L2[0, rr], P L2[0, c],

Q L 2[c, rr] and q, x/(2/rr) sin (nx.) If we then set kn nan, c,, 1/n and

g(x)
_/fa2 (x), 0<x<c,

f2(x), C < X <

our dual series problem becomes" given g H, find {k,}_- such that

E k,(Pq, +cnOqg,,)= g.
n=l

We note that {cn } converges to zero and OH Q has infinite dimension. Therefore,
by our theorem, {Pqg,, + c,Oqgn}= is not an e basis; i.e., for some gH (and therefore
for some fl and f2) the solution {k,} (to the abstract dual series problem) is not in 12.

The physical significance of the solution not being in 12 is the following. We
consider the heat flux across the line at height y h and see what happens as h
approaches 0. We measure the flux by considering the L 2[0, 7r] integral of Uy along
y h. We get"

I0 Ur (t, h)l2 dt a,n e -"h sin (nt) dt
=1

anrt e k e
n=l n=l

As h approaches 0 this approaches Y’.= k 2. Thus, the implication of Theorem 2 is that
solutions exist (withf, f2 in L 2) for which the heat flux across y h gets arbitrarily large
as h approaches 0.
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ISOPERIMETRIC INEQUALITIES IN A
CLASS OF NONLINEAR EIGENVALUE PROBLEMS*

P. S. CROOKE" AND R. P. SPERB

Abstract. In this work we prove an isoperimetric inequality for the eigenvalue A and other quantities in
the problem Au + Au2p+1 0 in D, u 0 on 0D where D is a plane, bounded domain.

Introduction. The main purpose of this paper is to develop some isoperimetric
and nonisoperimetric equalities connected with the nonlinear eigenvalue problem:
Au +,f(u)= 0 in D and u 0 on 0D where D is a bounded, two dimensional domain
with sufficiently smooth boundary 0D. Using the level lines of u, a fundamental
differential inequality is developed from which several of the classical isoperimetric
inequalities (e.g. Faber-Krahn inequality, St. Venant principle) can be derived, along
with some new results. Although the fundamental inequality is derived for general
f(u), the primary interest of the paper is for the special case" f(u)= U 2p+l,p
0,1,2,....

In the first section a survey of existence results for the general eigenvalue
problem is presented. It is shown in the special case of f(u)= u 2"+1 that a positive
eigenfunction, normalized so that its Dirichlet integral is one, exists. Also in the case
that D is a disk, we prove that a radial symmetric eigenfunction exists and compute its
first eigenvalues for p 0, 1, 2,. .. In the second section the fundamental inequality
is derived. In 3 the fundamental inequality is used to derive some isoperimetric
inequalities. In the fourth section, other inequalities are developed using different
techniques i.e., conformal mapping, a Rellich-type identity. The remarks in 5 finally
point out some directions in which the results can be extended.

1. Existence of a positive eigenfunction. Let D denote a bounded, two-dimen-
sional region with piecewise smooth boundary 0D. In this section we will be interested
in the existence of positive solutions for the boundary-value problem"

u +,f(u)= 0 in D,
(1.1)

u 0 on OD,

where f(u)>-O for u_->0 and is a positive real constant. Although our primary
interest is in the special case when f(u)= u 2"+1, p =0, 1, 2,..., many of the results
derived in the following sections will be applicable for the general problem and hence,
a summary of some of the important existence theorems for (1.1) seems to be
appropriate. We will start by reviewing some results for the general problem and
conclude with showing that the problem for f(u)= u 2p+1 has a positive eigenfunction
under the normalization

@(u)=-IolVul2 dx= l.

We will also demonstrate the existence of a positive, radial-symmetric eigenfunction
in the case when D is a disk. The boundary-value problem (1.1) arises in several
physical situations. The reader is referred to the work of Gel’fand [9].

* Received by the editors August 19, 1976, and in revised form December 10, 1976.
’Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37325.
Abteilung Pharmacologie, Biozentrum der Universitit Basel, Basel, Switzerland.
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In the existence theorems for solutions of (1.1), there are two important cases,
namely, f(0)> 0 and f(0)= 0. In the latter case we will also assume that f’(0)= 0. For
the case f(0)> 0 Keller and Cohen [14] have conducted an extensive study of exis-
tence results on a class of boundary value problems of which (1.1) is a special case.
They have shown that provided f(u) is continuous for u_>-0 and satisfies certain
monotonicity requirements, then there exists a real, positive number A* such that if
A > I*, then there does not exist a positive solution of (1.1). The spectrum of (1.1) is
the set of A + such that a positive solution of (1.1) exists. They showed that the
spectrum of (1.1) is either (0,
in the spectrum there is a minimal (smallest)positive solution, u(x; A), of (1.1). The
problem of computing A* for a given f(u) and region D is, in general, difficult. It
follows from the results of Keller and Cohen [14] and Laetsch [15] that for each A in
the spectrum

(1.2) A _-</xa u [u(x; A)]

where Xl{p(x)} is the smallest eigenvalue for the inhomogeneous, fixed membrane
problem"

Av +/xp (x)v 0 in D,
(1.3)

v 0 on OD,

and u(x; ,) is the minimal positive solution for I. Laetsch required that f be H61der
continuous on u_->0. Bandle [4] has given several results which characterize the
spectrum of (1.1) under the restrictions that f is H61der continuous, f’(u)>0 and
f"(u)>-_O for u >0. In particular, she showed that if there exists an arbitrary, non-
decreasing positive function fo(u) such that f (u) <- fo(u) and there exists a positive
number mo such that m/fo(m) takes its maximum at mo, then (1.1) will have a positive
solution for each A e R+ which satisfies the inequality

4rrmo(1.4) A afo(mo)’
where A denotes the area of D. In conjunction with this inequality and (1.2), she also
showed that

4rmo(1.5) A-f(rno---- < A

In the case that f(u) is an increasing function, Bandle and Hersch [5] have announced
the following results" For a domain of given area, A* is a minimum for the disk. Sperb
[27] has recently given a similar result which is optimal in a different sense.

Hudjaev [12] showed a necessary condition that (1.1) is solvable for any e [+ is
lim_.+ inf f(u)/u 0 and a sufficient condition is lim,+f(u)/u 0. A necessary
and sufficient condition that (1.1) is not solvable for every A > 0 is min>o f(u)/u > O.
He also showed that

Ao
(1.6)

min (/(u)/u)

where 0 is the smallest eigenvalue of the homogeneous, fixed membrane problem for
D.
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In contrast to the case f(0)> 0 where the spectrum of (1.1) might be a bounded
interval of R+, the spectrum of (1.1) with f(0)=0 is R+, provided f(u) is suitably
restricted. Levinson [16] has shown that if: (1) f(0)-- 0 and f(u)>0 for u >0; (2) f
satisfies a local Lipschitz condition on +’, (3) for K >-- 1, we have

where

f(u) log [f (u)1 -< KF(u),

F(u)= f(v)dv;

u>0,

(4) for some K1 e(0, 1/2), f(u) satisfies KiF(u)<-uf(u); then for at least one h >0, (1.1)
has a positive solution in C2(D)(-I C(D). Furthermore, if lim,_of(u)/u =0 and/or
limu_,+ f(u)/u =0, then the spectrum of (1.1) has an accumulation point at +; if
lim,_.,/F(u)/u2= +co, then the spectrum of (1.1) has an accumulation point at 0.
For f(u)= u, q > 1, the spectrum of (1.1) is simply N+. Pohozaev [23] strengthened
Levinson’s results and proved that if f is sufficiently smooth and satisfies the mild
growth condition

If(u)l<-_A +Blulbe cl"l’ u >0

where a < 2, A, B, b, c are arbitrary positive constants, and there exists a sufficiently
smooth function v such that

I, F(v ) dx 3" : O,

then there exists an eigenfunction b C2(D)("] C(D) of (1.1) such that

fo F(b) dx 3’.

To conclude our survey we mention that Amann [1] has given a set of five theorems
which contain the essence of many of the results summarized above for f(u)> 0, u -> 0.

We now turn our attention to the problem of showing that there exists a positive
eigenfunction b of (1.1) with f(u) u4, q > 1, such that @(b) 1. Joseph and
Lundgren [13] have proven the existence of radial-symmetric, positive solutions for
[(u)>0, u >-0, and f’(0)>0. For our case, the approach will be quite different.
Levinson proved that the spectrum of (1.1) in this case is N/. The proof of this is
elementary and will not be repeated here. Levinson also showed that m(,)--
(b(x; A))is C([0, +oo)), m(0)=0 and m is monotonically increasing on [0, +oo).
Let Ao (0, + oo) be fixed. We then know that there exists a positive eigenfunction bo.
Set m(Ao) mo. Let c be an arbitrary positive constant and define b Cbo. Then b
satisfies Ab +Ab 0 in D, and b 0 on OD, with A AoC 1-. Furthermore,

m(, )=- (b(x; , ))= c2@(bo(X; )to)) cZmo.
Hence, 4 (1/’,/mo)bo is a solution and @(b)= 1 and in view of the monotonicity of
m (,), , is unique.

To conclude this section we prove the existence of a radial-symmetric, positive
eigenfunction of (1.1) with f(u)= u z’+a, p 0, 1, ., and D a disk. We will need such
a result when we develop some of our inequalities in the next section. If D is a disk of
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radius R and u u (r), then (1.1) reduces to

ru" + u’ + Aru2p+1 0, r 6 (0, R),
(1.7)

u’(0) 0, u(R)= 0.

One can convert (1.7) into an initial-value problem (see e.g. [6], [7]) by introducing
new dependent and independent variables" z rx/ [u(0)]p and u(r)= u(0)y(z). Then
(1.7) becomes

(1.8)
zY"+ Y’+zY’ 0’

y(0)=a, y’(0)=0,

where we have set rn 2p+ 1. It can be shown (see Bellman [29]) that y(z) must
oscillate. We will show that there exists a solution of (1.8)on /. The idea of the
proof is to show first that a solution exists in a neighborhood of z 0 and then show
that this solution can be continued to +.

Formally, we expand y (z) in a power series

y(z)- E c,,z 2".
n=0

The coefficients are uniquely determined by the recurrence relation

(1 9) 4n c 1+
= cz _.

Here we are using the notation: [P(z)]l the coecient of z in P(z). The right side
of (1.9) is some polynomial, -P(c, c,. ., C-l). A straightforward calculation shows
that

(1.10) 14n2c.I P(Icl[,"" ", 1c-1[) 1 + ]crlz2
r=l 2n-2

For Y(z)olclz, a simple computation shows that Y"(z)<< Y(z) where the
symbol "<<" means that each coefficient in the power series for Y"(z) is not greater
than the corresponding coefficient in Y(z). We now consider the following auxiliary
initial-value problem"

w"= w’(z),
(1.11)

W(0)= 1, W’(0)=0.

Since this differential equation has no finite singularities, W(z) is given by the power
series expansion Y.,--o CnZ2n where Co 1 and (2n)(2n 1)C, P(Ca,. ", Cn-1) and
this expansion will converge on some interval 0_-< z < e. We now note that c, <-[c,I <--
IC,[ and hence, y(z)<< Y(z)<< W(z) which implies that the power series for y(z)
converges at least on 0 <_-z < e.

Having the local existence, we now show that y (z) can be extended i.e., we show
that y(z) and y’(z) stay bounded on 0_-<z < +oo. To do this we introduce new
variables"

:(z)- y(z), t(z)-zy’(z),

The proof of this result has been most generously suggested to us by Professor Richard Arenstorf of
Vanderbilt University. It is both elementary and elegant and is a model technique which can be used to
prove existence for many problems of the form zy"+ y’+ z/(y) 0 such that y(0)= 1, y’(0)= 0.
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and define a Hamiltonian H(, n; z)=- (z/(m + 1))m+l +(1/(2z))n z so that ’= oH/on
and rt’=-OH/O. For h(z)=H((z), rt(z); z), we have: (i) h(O)=O, (ii) hz)>O for
O<z <e; and (iii) dh/dz <=(1/z)h(z). If Zl is any point in (0, e), then (iii) implies that
h(z)<=h(z.)Z/Zx. Since h(O)=O, we have that h(zx)/zl 1/(m+1) as z-O and
hence,

z
(1.12) h(z)<= re+l"

Returning to the definition of h(z), we note that (1.12) is equivalent to

1
)],.+

1 1
n +l[Y(Z l+[y’(z)]2-< Vze(O,e).-m+l’

This establishes the extendibility of y (z).
In the following sections we will need expressions for the first eigenvalues for

(1.7). One can use the techniques of [7] to show that

[zr (’p + 1)lPzoZ"+Z[y’(Zo)]2
A=

R2

where z0 is the first positive zero of the solution of (1.8). To get an idea of the relative
magnitude of A for different values of p, (1.8) has been solved numerically to find Zo
and y’(z0). The following table summarizes these calculations.

TABLE

p RzA

p =0 5.787r
p= 1 147r
p 2 68r
p=3 2357r

2. A differential inequality associated with the solution ot (1.1). Let D be a
simply connected plane domain with a piecewise analytic boundary 0D. If f(u) is
analytic for u >-0, then the solution of (1.1) is also analytic in D. This follows from the
results of [6], [17]. Denote by D(t) the subdomain of D where u > whose boundary
is the level line F(t) (i.e. where u t). F(t) does not have to be a simple curve. We
mention in passing that if e.g. D is convex all level lines are simple closed curves, as
was shown in [26]. Denote by A(t) the area bounded by F(t) and by fi the total area of
D. Since u is analytic we have for almost all (0, Umax)

(2.1)
dA r ds

[’ (V: gradient).
dt (,) [Vu

We introduce now the function

It/max r as IjDf(U)dx(2.2) E(t)= f(v) dv IVul
By Green’s identity we have

(2.3)

(dx area element of D).

 Eq)- IVul ds,
(t)
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From (2.1), (2.2) and Schwarz’s inequality we get

(2.4) -A --- E(t)>_- d
(t)

and from the classical isoperimetric inequality

dA
(2.5) -A -- E(t)>=47rA(t).

Introducing the area A as our independent variable we find from (2.2) and (2.5) finally

du AE
>0, a.e. in (0, A).(2.6)

dA 47rA

Note that (2.6) can be written in terms of E(A) only. Since dE/dA f(u(A)), we have

(2.7a)
d2E Z df E >= 0 a.e. in (0, fi),
dA - 47rA du

dE
(2.7b) E(0) 0, (fi)= 0.

Note also that u (0)= Umax, U (A)= 0. In the cases f(u)= u and Af(u)--- 2 the inequality
(2.7) is linear, and in the latter, one has to replace AE by 2A. For f(u)= u (1.1) is the
eigenvalue problem of the vibrating membrane spanned over D. In this case u will be
taken as the first (positive) eigenfunction. For A[(u)= 2 (1..1) becomes the classical
torsion problem for an elastic beam of cross-section D.

We remark that it would be possible to consider functions other than E(t). In
particular, for the function

(2.8) H(t)=- dv IVul as,
(v)

with H(O)=o[Vu[2 dx=@(u) one finds for the Dirichlet integral @(u) employing
similar arguments as before

i0(2.9) (u)>-_ 47rA dA.

The equality sign holds here if D is a disk and u is a function of the radius only. A
number of interesting inequalities follow from (2.6). This is the subject of our next
section.

3. Isoperimetric inequalities following from (2.6). Using (2.6), we give a simple
proof of an extension of the well-known Faber-Krahn inequality (see e.g. [18]) to the
problem which is our primary interest in this paper, namely,

Au --/u2p+1 0 in D, p 0, 1, 2, 3, ",
(3.1)

u=O onOD, (u)=l.

As was shown in I there is exactly one value of A > 0 where a positive solution exists.
Furthermore, if D is a disk, u is radially symmetric.
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We multiply (2.6) by 4"rrA(du/dA), use the fact that du/dA <-0 a.e. and integrate
over A from 0 to A to obtain

(3.2) 4"rrA dA <- A u 2p+2 dA.

Because of the normalization of u and (2.9)we have

(3.3) h

Since the variational characterization of A is

(3.4) A min
((v))"+

v=0 D/)2p+2 dx’
OD

and it is easy to see that the last term on the right in (3.3) gives just the eigenvalue for
a disk of area A, we find the following isoperimetric inequality: For a given area A of
D and any p 0, 1, 2,... the disk yields the lowest eigenvalue h in the problem (3.1).

Remarks. (a) For p 0 this is the so-called Faber-Krahn inequality [18].
(b) In the above proof the essential part is that there is a radially symmetric

solution for the given "nonlinearity" f(u) and eigenvalue h for a disk. Clearly, the
same statement as above is true for any such f(u). Assuming the existence of a radial
symmetric solution, Bandle [3] has given a different result for which the above is a
special case.

(c) Our theorem is also closely related to a result of Bandle and Hersch [5] for
f(u) increasing and f(0)> 0. Their result is that the critical value h* (see 1) is a
minimum for a disk if the area A of D is given.

A possible application of our result is the following. From (3.4) it follows that for
any function v CI(D)L2p+2(D)which vanishes on OD, we have

(3.5) l.)
p+2 dx <! ((/)))p+l.

A

Since we can use any lower bound for h, we can write e.g. for p 1

(3.6) Io/)4 dx <__L ((/.)))2,

where Ao 14zrZ/fi) is the eigenvalue for a disk of area fi. Since the equality sign
holds in (3.6) when D is a disk, we have an optimal Sobolev-type inequality. Such
inequalities play an important role in uniqueness and stability criteria for the Navier-
Stokes equation.

Let us return now to the inequality (2.6) and more general functions f(u). A
multiplication by 4zrAf(u)and integration gives, with F(u)= f(t)dt,

(3.7) Io F(u) dx <-(Iof(u) dx) 2.
This inequality has been obtained in [22] in a slightly different manner. As remarked
in [22], a number of known isoperimetric inequalities are contained in (3.7) as special
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cases. For example, if Af(u) 2, then (3.7) becomes

S < S (u)= torsional rigidity of D,=27r’
which is the St. Venant inequality (see [15]), while for f(u)= u, (3.7) reads

(38) iD U
2 dx <

_
( iD )2udx

This converse "Schwarz inequality" for the first eigenfunction in the membrane
problem was proven by Payne and Rayner [19]. Actually, their proof was more
complicated. For the solution of (3.1) we can write (3.7) after a short calculation as

(3.9) (o Ou dS)
2 4

p+l

In the torsion problem (i.e. A/(u) 2) we can write (2.6) as

du 1
(3.10) +0, a.e. in (0, a).

Multiplying (3.10)by an arbitrary positive function g(u), and integrating gives

(3.11) G(u)N g(u)dx, where G(u)= g(v)dv.

For g(u) u this gives
(3.11) in the next section. Let us conclude this section by showing an example of a useful
nonisoperimetric inequality which also follows from (2.6). If we multiply (2.6) by
dE/dA (u (A)) and integrate again we first are led to

In the last term on the right we use Hardy’s inequality [8], which in this case gives

(3.13) da<4 da.

Thus, we finally have

(3.14) F(umax) {( Isf(u) dx) +4 IDf2(u) dx}.
A useful application of (3.14) is the following. For f(u)= u first eigenfunction

of the membrane problem, an important physical quantity is the so-called "average-
to-peak ratio" e defined as (see [21])

(3.15) e o u ax/(Umx).

From (3.14)and (3.8)we find then

(3.16) e
AA

1+

Upper bounds for e were given in [21], [24]. For a disk (3.16) gives e 0.32, while
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actually e "-0.43 in this case, whereas for a square (3.16) yields e >_-0.30 and
e 0.40.

4. Additional inequalities in problem (3.1). In this section we give other inequal-
ities for problem (3.1) which do not follow from (2.6). We first consider a simply
connected "starshaped" domain D, i.e.

(4.1) h(s)=-(x,n)>O,

for some choice of the origin in D, where x also denotes the radius ector of a point x
on 0D, and n is a unit outward normal vector to 0D at x. A simple application of Green’s
identity yields for any solution of (1.1) in N dimensions the identity

1
h(s) -n ds +(4.2)

o 2
(u)= ANIgF(u) dx.

This Rellich-type identity has been used by many authors. We define now

(4.3) B 0o h-l(s) ds.

It follows then from Schwarz’s inequality and (4.2) that for the solution of (3.1) we
have (for N-- 2)

(4.4) (o OU )2 2B

o -n ds -<p+l (equality holds for D a disk).

Remarks. (a) For p 0 (4.4) can be written as

(4.5) u dx <-_--- dx,

which is sharper than Schwarz’s inequality and is not hard to check.
(b) From (4.6) and (3.9) we get the well-known inequality B _-> 2r, with equality

for a circle.
Next we mention how conformal mapping can be used to get an isoperimetric

upper bound for A in (3.1). Let w(z)= z -a --Ek%2 Ck(Z--a)k be the analytic function
which maps the domain D in the z-plane onto the disk of radius R in the w-plane. Let
iT(r)= t(Iw[) be the solution of (3.1) for the disk. Define the "transplanted" function
v (z) by v (z) 7(w (z)). We then use v (z) as a trial function in the variational
characterization (3.4) of A. As was pointed out in [9] we have, if t t(r),

R

(4.6) ID/) 2p+2 dx>--2rrlo /2+2(r)dr.

Hence by the conformal invariance of the Dirichlet integral and (4.6) we have

< (D(v))t+l 1
(4.7) ho i9;/ -<

27rioR a2p+2(r)rar=hC.
Here Ao denotes the eigenvalue A of (3.1) for the given domain D and, cor-
respondingly, Ac for a disk. We can of course choose the point a e D such that the
radius R is maximal (=/) and (4.7) can be stated as: For given maximum conformal
radius 1 of D, the eigenvalue A in (3.1) is a maximum ]’or the circle. For p 0 this is a
well-known theorem of P61ya and Szeg6 [30].
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As an application of (3.11), let us finally mention another upper bound for A. We
take as a trial function v in (3.4) the torsion function t, i.e. the solution of (1.1) for
hf(u)-= 2. If we use then (3.11)with g(t)= 2"/2 we find

Sp+I 2p + 3
(4.8) < t2rfax+3 2zr

Various bounds for S and tmax can be found in [18]. For p 1 and D a disk of radius
R, (4.8)gives h < 20zr/R 2.. Concluding remarks. (a) We first mention that one can derive in the same way
an analogue to (2.6) in N-dimensions, where one has to use the corresponding
isoperimetric inequality between N-volume and surface area. However some of the
integrations get considerably more complicated, as shown in [19].

(b) In the "inhomogeneous" case

Au+hp(x)f(u)=O in DR2

(5.1)
u 0 on OD,

one could derive another analogue of (2.6) using the ideas of C. Bandle (see e.g. [2]) to
get then

du hE
(5"2) dm - (" km)m - O, for m (0, M),

where m-oopdx, M-pdx, D(t) as before and E(m)-o u(y)dy. Here, one
has to assume that A(log p) / 2kp - 0 in D and can then use an inequality of Alexandrov
instead of the classical isoperimetric inequality. For details we refer the reader again
to [2].

(c) There are possible extensions of the techniques used here to the case that we
have boundary conditions of the third kind for u in (1.1). These extensions as
indicated in [28] are not yet satisfactory.
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ON THE KAKEYA-ENESTRIM THEOREM AND GEGENBAUER
POLYNOMIAL SUMS*

STEPHAN RUSCHEWEYH"

Abstract. An extension of the classical Kakeya-Enestr6m theorem is given. As an application we show
that for A >= 1/2, -1 < x < and arbitrary nonincreasing sequences ak > O, k O, 1, , n, we have

c)(x)
ak z #0, [zl-1,

k=O

where Ckca) are the Gegenbauer or ultraspherical polynomials. This extends an old result due to G. Szeg6
and settles two recent conjectures of R. Askey and J. Bustoz. Other related results are obtained as well.

1. Introduction. Let ak , k 0, 1, , n, be such that

ao>=aa >= >=a, >0.

The Kakeya-Enestr6m theorem (see [4, p. 136]) states that the polynomial
ao + a lz +’" + a,z" has no zeros inside the unit disk A {zllz < 1}. In the present
paper we shall give a far-reaching extension of this classical result.

Let denote the class of functions f(z) analytic in A with f(0) 0, if(0) 1. f
is called starlike of order/3,/3 =< 1, if and only if

zf’(z)
>=fl, z e aRe f(z)

and 5t is the collection of these functions. Important members of ,1/2 are the
functions

ex(Z)=l_xz,
which represent the extreme points of the closed convex hull of oQ91/2

THEORZM 1. Let n 6N and f(z) zk=o bz b1/2. Then there exists a number
p p (n, f) >- 1 such that for every sequence a , k O, 1, , n, with

1 =ao>=al>= >=a, >-0,

we have

(1) P(z) a,b,z " O, Iz[ <p.
k=O

For f ex, Ix 1, we have p (n, f) > 1.
Remarks. 1) Note that the Kakeya-EnestrSm Theorem corresponds to the cases

f=ex, lxl 1.
2) It is obvious from Theorem 1 that if

ak-1
min fi > 1,

k 1,...,n ak

we actually have P(z)# 0 for [z[ <pfi.

* Received by the editors August 30, 1976, and in final revised form December 2, 1976.

" Department of Mathematics, University of Wfirzburg, 8700 Wfirzburg, West Germany.
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3) Under the assumptions of Theorem 1, one can prove the following stronger
result: There exists a number p’(n,f) >- 1 such that g(z)= P(() d( is univalent in
[z[ <p’. For f e,, Ix[= 1, we have p’(n, f) > 1.

Example. The choice

a a>O,

leads to the conclusion that the nth Cesaro mean of order a of a function f e o,c’1/2 is
nonvanishing for 0<[z[ < 1 +a/n.

We mention a few properties of 5el/2.
(i) If

Z Z bkZk ’1/2, Z E CkZk 1/2
k =0 k =0

then

Z Z bkCkZk ’-1/2,
k=0

(see [5, Thm. 3.1]).
(ii) If f(z)= z Yk=o bkz k is prestarlike of order fl _-< 1/2, i.e.

z Y’, bkZ 9,
k=0

then f,Ctl/2. In particular every function fe4 which maps A univalently onto a
convex domain is prestarlike of order zero and hence in 91/2 (see [7, Thm. 10], [6]).

(iii) If f(z)--Z’,k=obkZ k is prestarlike of order fl<-l-n/2, nN, then
Z k=0 bnkZk 1/2. This is an obvious consequence of the results in [6].

The functions

Ck(, kZ

2)A =Z )(X)Z -l _--< x _--< l, A ->0,
(1 2xz + z k =o

where C(*) are the Gegenbauer polynomials, are obviously in 01_,. Since

it follows from (ii) that the functions

(2) z k=OZ Ck(.)(1)
k

Z

are prestarlike of order 1-h and hence in ,_/91/2 for h 21/2.
This observation together with the property mentioned in (iii) gives the following

Corollary to Theorem 1.
COROLLARY. Let h >= m/2, m N. Let ak R, k O, 1,. , n, satisfy

1 ao>--al >-- >--a,, >--0.

Then for -1 < x < 1 we have

C(h)km(X) k(3) ak ----z o, Izl < a
=o C.,(1)
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Remarks. 4) The case A =1/2, ak 1 for k 0, 1,..., n is G. Szeg6’s well known
result [8]. The cases , _->1/2, m 1, and

ak
n -k n

have been conjectured by R. Askey [1] (a 0) and J. Bustoz [2] (a > 0) respectively.
5) It should be noted that (3) contains a positivity result: For A -> m/2, m N, we

have
,,-,(x)zlkm(X’--)>O,

k=O krnk
-l<x<l.

2. Proofs. Let t, /3 <_-1, denote the class of functions f(z) analytic in A with
f(0) 1 and Re f(z)_->/3, z A. We shall require the following results.

LEMMA 1. Letf(z) k=0 akzk 1/2. Then lag[ <= 1, k N. If equality takes place
for at least one ko then there exists Oo R such that for all m N, k O, 1, , ko- 1,

(4) ak +mko eimkak
LEMMA 2. For f o we have

(5) e-lzl
l+[zl’

LEMMA 3. f e,. is in ,1/2 if and only iffor every ZoeA

(6) hzo(Z) Zo f(z)-f(zo)
 (zo) z-z0

LEMMA 4. Let f(z) z ,k%o bkz k 91/2, f # e, for Ixl 1. Then limk--.oo bk 0.
Lemmata 1, 2 are well known. Lemma 3 is in [5, Thm. 1.5]. Lemma 4 follows

from the fact that 5el/2\{e, lx 1} is contained in the Hardy space W1 (see [3, Thm.
5]).

Proof of Theorem 1. Define

](Z bkZ k j O, 1
k=O

such that P(z) has a uniquely determined representation

(7)
P(z) airi(z), ai>--O, ct1-1.

=o =o

This shows that the polynomials under consideration form exactly the closed convex
hull of the set {i(z)l] O, 1,. ., n}. From (6) we obtain hzo(Z) i=o Ai(zo)z 1/2
with

A(zo) [(1 zor-(_Zo)
f(zo) /’ Y e.

Lemma 1 shows IAi(zo)l _-< 1 and hence

Re ZO’W]-I(ZO) > O, ] N, Zo A.
f(zo)
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This gives

(8)
Re zoP(zo) > O, Zo A,

f(zo)

and therefore P(z) # O, z A.
To complete the proof it remains to show P(z)# 0 on ]z 1 whenever f # ex,

Ix] 1. The existence of the number p(n, f)> 1 then follows from the fact that the
considered set of polynomials is closed.

Let P(’) 0 for a certain " 6 0A. There is no loss of generality if we assume " 1.
Since a/2 is a normal family we can choose a sequence Zk (0, 1), Zk - 1, such that

(i) f(zk) tends to a finite or infinite limit a, and
(ii) hzk(Z) is compact convergent to h(z) i/2.
We first exclude the case a 00. In fact, a oo would imply

which contradicts the inequality

ZkP(Zk)
lim 0,
k (1 zk)f(Zk)

ZkP(Zk)
(1 -z)[(z)

1

following from (8) and Lemma 2. Hence c # oo, and we obtain

h(z) _1 f(z) a

a z-1

By Lemma 1 we conclude

(9)

)1 + 1-’n’J-l(1) zj
j=l

Ajz 1/2.

1 rr_(1)

but on the other hand

aj-1 1
rrj 1 n+l

1=1 i=1

This shows that equality must occur in (9) for at least one index. Since

f(z) a Z (Aj-a-Aj)zj,
1=1

we deduce from (4) that the sequence

[A--&I, ,
is periodic, which, however, contradicts Lemma 4.

3. Finally we wish to point out an easy consequence of Lemma 3: For f(z)=
kZk=O bkZ e /2 we have,

bkZ k

k=n
bkz k

k=O
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This result, for

fo(Z) z k=O2 Ca)(1---z a -----1/2, -1 --<x _--< 1,

has previously been obtained by R. Askey [1] in the case z r (-1, 1). Since foe 1/2
Askey’s result now extends to z e A.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A CLASS OF
NONLINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACE*
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Abstract. A semi-linear ordinary differential equation in a Banach space is considered. The coefficient
operator A(t) has the domain D(A) which is independent of and not necessarily dense. It is shown that the

evolution operator U(t, s) corresponding to the unperturbed linear equation has an integrable singularity at

s and is strongly continuously differentiable in s on D(A). Such examples have been obtained by W. von
Wahl [13] and H. Kielh6fer [4], [5], and are also obtained in this paper. The nonlinear term satisfies either
a uniform or local Lipschitz’s condition with respect to the unknown solution. The principal tools are the
semigroup theory and integral inequalities. Several results on the asymptotic behavior of the solution of the
semi-linear equation are obtained. These results are applicable to the problem of the stability of semi-linear
parabolic initial boundary value problems within the framework of the Ca-theory.

1. Introduction. The purpose of this paper is to study the problems of existence,
uniqueness, and asymptotic behavior of solutions of the following semi-linear evolu-
tion equation in a Banach space E"

d
d- x(t) A(t)x(t) +f(t, x(t)),

x(0) =xo.

0<t < +c,

x(t) is said to be a solution of (1.1), if

x(. c([0, ); E) fq C((0, ); E)

and (1.1) is satisfied.
We assume that A(t), =>0, in (1.1) is a closed linear operator in E and that the

domain of A(t), which will be denoted by D(A), does not depend on and is not
necessarily dense in E. Throughout this paper, it is assumed that the resolvent
(A(t)-/xI)-1 exists and satisfies the estimate

M0(1.2) [](A (t)-/xI)-l]l
(1 + IIm/x l)t3,

for Re/x >=-h and t>=0, where 0</3 <l,h >0, and M0 are independent of t.
Furthermore it is assumed that the estimate

(1.3) ]l(A(t)-A(s))A-l(o)[l<--Ll(t-s), O<--s <--_t<-- T,

holds for each T > 0, where 0 < p =< 1, and L1 is independent of and s. (In 4, 5, and
6, we impose a stronger assumption on L1.)

W. von Wahl [13] and H. Kielh6fer [4], [5] studied the parabolic initial boundary
value problems, and obtained the similar estimate to (1.2). The estimate (1.2) is also
obtained for some type of parabolic systems (see 7).

For fixed q, 0 < q < 1, let Fq be the curve

* Received by the editors June 4, 1976, and in revised form December 31, 1976.
? Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
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It is easy to see that the resolvent of A(t) exists in a region situated to the right of the
curve Fq and satisfies the estimate (1.2) with M0(1 _q)-i instead of Mo [6].

From (1.2), for each => 0 the weakened Cauchy problem of the linear equation

d
(1.4) nd-TX(h)=A(t)x(h)’ h >0, x(0)=x0,

with a constant coefficient A(t) is well posed on the set D(A) [6], and the solution x(h)
of (1.4) is represented as eha(t)Xo for h >0, where e ha(t), h >0, is the semigroup of
bounded linear operators given by

(1.5) eha(t) 1 fF2 th

2ri
e (A(t)-/xI)- d, h > 0.

It follows from (1.5) that, for each >-_ O, e hA(t) is infinitely continuously differentiable
in norm in h > 0, and satisfies the estimates

(1.6)
IIn"(t) ehA(t)ll<--M,+ e -xh h -(,+)/t3,

n=0,1,--., h>0, t->0,

where Mn+l are independent of and h [6].
In the next section, the following unperturbed linear equation will be considered:

0
(1.7) x(t, s) A(t)x(t, s), > s, x(s, s) Xo.

Ot

S. G. Krein [6] and E. T. Poulsen [8] constructed the evolution operator U(t, s) of
(1.7) under stronger conditions than in this paper. We will construct U(t, s), following
H. Tanabe [10], [12] and it will be shown that U(t, s) is unique and has an integrable
singularity at s.

For the nonlinear term f(t, x), it is assumed that the following condition (i) or (ii)
is satisfied:

(i) f(t, x) is continuous on [0, co)x E, and the estimate

(1.8) Ill(t, x)-f(t, y)ll<Kllx -Yll
holds, where K is a constant independent of t, x, and y..

(ii) f(t, x) is continuous on [0, o)E. For each c >0, there exists a constant
k (c)> 0 such that the estimate

(1.9) Ill(t, x)-f(t, y)ll<=k(c)llx -yll

holds for t, x, and y satisfying >- 0, Ilxll <-- c, Ilyll -< c.
As quoted above, W. von Wahl [13] and H. Kielh6fer [4], [5] considered the local

solvability of the semi-linear evolution equation (1.1) corresponding to the parabolic
initial boundary value problem within the framework of the Lp- and C-theory under
the similar conditions to (1.2) and weaker conditions for f(t,x). In applications,
especially when treating the problems of the stability of nonlinear partial differential
equations, it is important to consider them within the framework of the C-theory as
well as the LP-theory. Because the convergence in Lp does not guarantee the almost
everywhere convergence. Our main purpose is to obtain an estimate for the asymp-
totic behavior of the solution of (1.1) and its derivative under (1.2), (1.3), and either
(1.8) or (1.9). Some examples will be worked out.
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2. Construction of evolution operator. In this section, we construct the evolution
operator U(t, s) of (1.7). From (1.3), it follows that the bounded operator A(O)A-I(t)
is continuous in norm for t=>0. From (1.2) and (1.3), Ak(O) e hAt) (k=0,1) is
continuous in norm for t_->0 and h >0 [6]. Therefore it follows that the bounded
operator

R l(t, s)= (A(t)-A(s)) e

is continuous in norm for > s and the estimate

(2.1) []Rl(t, s)]l<-Cl(t-s)
holds for each T > 0, where c > 0 is some constant dependi,ng on T.

Let us define U(t, s) as follows [10], [12]:

(2.2) U(t, s) e (t-s)A(s) 2t.. e (t-’)A(r)R (7", s) dr,

where R (t, s) is the solution of the integral equation

(2.3) R (t, s) R,(t, s) + R a(t, -)R (r, s) dr.

If/3 > 2/3 and p > 2(1//3-1), then (2.3) can be solved uniquely by the successive
approximations:

(t, s) y .(t, s),
n=l

Rn(t’s)= Is Ra(t, 7-)Rn-l(7-, s) dT,

It follows from (2.1) that R(t,s) is continuous in norm for t>s>=O and that the
estimate

(2.4) I[R(t,s)ll<=c2(t-s)p+l-2/t, O<=s<t<=T,

holds for each T>0. In the following of this section we show that U(t, s) defined in
(2.2) is the evolution operator of (1.7) by posing some additional assumption on p and
/3. Throughout this paper, it is assumed that the following condition is satisfied"

(2.5) ,]-/3 </3 < 1, - -/3 < p _--< 1.

Remark. The condition (2.5) is weakened in Example 7 of 7.
We start with the following lemma"
LEMMA 2.1. For any y, 0< 3’ </3p + 2(/3- 1), there exist c3 >0 and c4 >0 such that

the estimates

(2.6)

(2.7)

t, s)-R (, s )l <-- c3 ’) " s)p+l-2/-V/3,
II(R (t, s)-R (’, s))A-1(S)11 =< c4(t -"r)"v (7" s) 1-1//3

hold for O<=s <’<t<- T.
Proof. The proof of (2.6) is the same as [10], [12]. The proof of (2.7) can be

carried out in the same way as that of (2.6) with some modifications. Hence we
omit it.
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LEMMA 2.2. Let us define the bounded operator

(2.8) S(t,s)=A(t)e(t-’)A(-A(s)e (t-s)A(’ t>s >0

Then, S(t, s) is continuous in norm for > s >-_ 0 and the estimate

(2.9)

holds[or O <-- s < <-- T.
Proof. The proof can be carried out in the same way as [10], [12]. Hence we

omit it.
Let any 6 > 0 and any e, 0 < e < 6/2, be given. Consider the function

(2.10) We(t,s)=Is e(t-z)A(’)R(’r,s)d’r.

Obviously We(t, s) converges to

(t-z)A(r)Re (r,s) dr

uniformly in Is + 6, T]. We (t, s) is continuously differentiable in e Is + 6, T] and
the following equation holds:

0 eA (_t-eo- W (t, s) e

t-e

(2.11) + A(t)e(’-’A({R(r,s)-R(t,s)}dr

+{e(t-s)a(-eeA(}R(t, s).

Let e ,1,0. Then, it follows from (2.4) and (2.9) that the second term of (2.11)
converges to

uniformly in [s + 6, T]. From (2.5), we can choose ,/in Lemma 2.1 such that the
relation

(2.12) 2(-1)<3’ <flp+2(fl-l)

holds. Thus the third term of (2.11) converges to

’A(t) e (r, s)-R (t, s)} dr(t-r)a(t){R

uniformly in [s + 6, T] as e ,1, 0. As for the first and the fourth terms of (2.11), we
note that the following inequality holds"

IleeA(t-eR (t- e, S)- e eA(t)R (t, S

<= lie ea(t-e){R (t e, s) R (t,
1--1//3+<=C6e

+ ---i ee{(A(t-e)-txI)-l-(A(t)-txI)-1} d [[R(t, s)ll
q

0+2--2//3C6eI--1/fl+T-I-C7,F, s+6 <--t<=T.
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Therefore we find that

(t-’)AO’)ee 0", s) d"

is continuously differentiable in norm for (> s) and so is U(t, s). Thus we obtain the
following equation:

0 (t-s)A(s) fs S(t, r)R 0", s) dr- U(t, s)= A(s) e

(2.13) + A(t) e(t-’)A(t){R(r,s)-R(t,s)}dr

+ e (’-)A(tR (t, s).

Next we show that the range of U(t, s) is contained in D(A). U(t,s) can be
expressed as follows"

U(t,s)=e(t-’A()+ e(t-’)A(’){R(r,s)-R(t,s)} dr

(2.14) + {e(t-’A(’--e(t-’)A(t)}R(t,s) dr

+{e (’-)A(A-I(t)-A-I(t)}R (t, s).

It follows from (2.12) that IIa(t)e"-’)a’){R (, s)-R (t, s)}ll is integrable on the interval
(s, t). We note that the relation

IIA (t){e (,--z)A(’)__ e Ct-)A’)}I[- e (t)(A(t)-.I)-’(A()-A(t))(A()-.I)- d,
q

C8(t--T)+2-3/

holds. Consequently it follows that U(t, s)E D(A) and that the equation

A(t)U(t,s)=A(t)e(t-)A(s)+ A(t) e(t-’)A(’){R(r,s)-R(t,s)}dr

+ A(t){e(-’)A(’)--e(-’)A(O}R(t, S) dr(2.15)

+{e(’-)A(t)--I}R(t, s)

holds. It follows from (2.13) and (2.15) that

0
--U(t,s)-A(t)U(t,s)
Ot

=R(t,s)-Rl(t,s)- fs Ra(t, r)RO’,s)d’=O.

Noting the estimate IIR(t,s)a-l(O)ll<--c9(t-s)+1-1/ and the fact that eha(t)a-(O)
converges to A-l(0) in norm as h ,l, 0 uniformly in [6], we find that

U(t,s)A-(O)-A-I(O) as t-s ,0 in norm.
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Thus we have arrived at the following assertion:
THEOREM 2.3. Suppose that (1.2), (1.3), and (2.5) are satisfied. Then we have

0
(2.16) (i) U(t, s) A(t)U(t, s), > s.

Ot

(ii) U(t, s)A-l(o) converges to A-I(O) in norm as t-s , O.

(iii) For each T > O, there exist constants c9 > 0 and clo > 0 such that the
estimates

(2.17) IlA(t)U(t, s)[l<=c9(t-s) 1-2/t3,
(2.18) [[A(t)U(t, s)A-l(s)ll<-clo(t-s)-1/

hold for 0 <= s < <- T.
Proof. The estimates (2.17) and (2.18) follow from (1.6), (2.4), (2.6), (2.7), and

(2.15). Q.E.D.
Let us consider the following nonhomogeneous equation:

d
(2.19) d--x(t)=A(t)x(t)+f(t), t>s.

For the existence of the solution of (2.19), we have the following lemma:
LEMMA 2.4. Suppose thatf(t) is Hb’lder continuous with exponent 0 > 2(1//3 1) in

(2.19). Then the function

x(t) | U(t, ’)f(’) d"
Js

gives a solution of (2.19) with x (s) O.
Proof. Let

W(t, z) e (t-r)A(r)R (0", 7") &r,

and let 6 > 0 and 0 < e < 6/2 be given. Obviously the function

otO fst-(2.20) _-- W(t, z)f(z) dz W(t, )/() d- + W(t, e)f(t e)
ot

converges to

w(t, a,

uniformly in [s + 6, T] as e , 0. In the same way as (2.11), we find that the function

(2.22)

e (t-’r)A(’)f(T) dT
8t

t-e

=ea(’-)f(t--e) S(t, 7")f(’) d’r

t-e

+ A(t) e (t-z)A(t)oc(T)--f(t)} dr

+ {e (t--s)A(,)__ e eA(t)If(t)
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converges to

(t-’r)A(t){f(’r)-f(t)} dr + e (t-s)A(t)f(t)(2.23) S(t, ’)f(’) dr + A(t) e

uniformly in e [s + 6, T] as e , 0. It follows from (2.20) and (2.22) that

A(t)J U(t, r)f(r) dr

t--e t--e

(2.24) j. S(t, r)f(r) dr + J A(t) e(t-z)A(t)(T)--f([)} dT

0
+ {e (t--s)A(t)__ e eA(t)}f(t) W W(t, r)f(r) dr.

8t

Therefore it follows from (2.20) to (2.24) that

A(t) U(t, r)(r) dr+e(A-(t)(t)

converges to

ff s(t, )f() d+ fs A(t) e(t-z)A(t)(T)-f(t)} dr

(2.25) + e (-s((t) + W(t, )() dr

U(t, )(r)

Since A(t) is closed, it follows that the equation

holds for >s. Therefore x(t) satisfies (2.19) and x(s)= 0. Q.E.D.
By using Lemma 2.4, we obtain the following assertion:
ToaM 2.5. I (t) is HMder continuous with exponent 0>2(1/-1), the

solution o (2.19) with x(s)= xo is unique.
Pro@ Let x(t) be a solution of (2.19) with x(s)= x0. In the way similar to [6],

define z (r) as

z(r)=U(r,s+e)x(s+e)+ U(r,)()d-x(), >s+e,

z(s+e)=O.

Since x(s + e)eD(A), z() is continuous for rs + e. From Theorem 2.3 and Lemma
2.4 it follows that

d

(.7 a(tz (rl +[( a(t]-(r(z(,
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where t>s +e and ’>s +e. It is easy to see that IlA()z(r)ll is integrable on
(s + e, T), where T > s + e is arbitrary. Therefore from (2.27) we obtain the integral
equation

(2.28) z (t) | e (t-)A")[A (or) A(t)]z (tr) dtr, > s + e.
d,

It follows from (1.3), (1.6), and (2.28) that the inequality

)p+lIln(t)z(t)ll<-_ Cll(t--o" -2/lln(r)z(r)ll&r

holds for > s + e. The above inequality implies that

A(t)z(t)=O, t>s+e.

Therefore we obtain

U(t,s+e)x(s+e)+ I U(t,o’)f(cr)do’=x(t),

Let e ,[, 0. Then we obtain

(2.29) U(t, s)x(s) + Is U(t, cr)f(r) &r x(t),

t>s+e.

t>s.

This completes the proof. Q.E.D.
Remark. Let f(t) O. Then this theorem implies the relation

(2.30) U(t, ’)U(, s) U(t, s), O<-s < " <t < +oo.

If A(t), >=0, is strongly continuously ditterentiable on D(A), (1.3) is satisfied
with p 1. Then we have the following assertion which is stronger than Theorem 2.5
and has not been obtained in [5], [13]:

TI-IEORFM 2.6. Suppose that A(t), >= O, is strongly continuously differentiable on
D(A) and that the assumptions of Theorem 2.3 are satisfied. Then U(t, s)A-l(O) is
strongly continuously differentiable in s (< t) and the equation

0___ U(t, s)A-(O)= U(t, s)A(s)A-a(O)(2.31)
Os

holds for s < t.
For the proof of the above theorem, we define fractional powers of the operator

A(t) as follows [1]:

e--iTrT iO(2.32) A-V(t) F(3") S- esA(t) ds, t >=0,

where 3’ > 1//3- 1. If 3" is an integer, it is easy to see that A-V(t) defined in (2.32)
coincides with A-v (t) in the usual sense. It can be proved by the standard method that
the inverse A(t) of A-V(t) exists for 3" > 1//3 1 [1], [6]. The range of A-(t) will be
denoted by D(A(t)). The following relations (i) to (iv) are proved by a well-known
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method:
(i) If a, 3" > 1//3- 1, then

A (t)A-3" (t)

(ii) If a, 3", a -3’ > 1//3 1, then

A3"(t)A-(t)

A-" (t)A 3" (t)

(iii) If a, 3", 3’-a > 1//3 1, then

A3"(t)A-(t) A3"-(t)

A-(t)A 3" (t) A 3"-(t)

(iv) If a, 3" > 1//3-1, then

on D(A3"(t)).

on D(A- (t)),

on D(A3"(t)).

A(t)A3"(t) A3"(t)A(t) A+3"(t) on D(A+3"(t)).
Let F, {-/xt; > 0}, where Re < 0. We note the equations

e-Zz3"-i dz if Im =<0,F(T),

e-Zz 3"-1 dz e i23"F(3"), if Imtx >0,

where 3" >0 and z 3"-1 is considered as single-valued in the plane with a cut along the
positive real semiaxis, i.e., z3"-l=r3"-le i3"-1) for z=re i, 0<0<27r.-- Let F_=

{/z E l-’q Im =< 0} and let F+ { E 1-’q; Im/x > 0} respectively. Then we obtain the
following equations [5]"

27ri
/x-3" (A (t) -/.L])-1

q

2ri
/x

1 Ir -3"(2.33)
2ri x

1 Iv -Zz 3"-

F(3")
e dz (A (t) IXI)-

e--27r3"i IF1-’(3")
e-Zz3"-ldz(A(t)-txI)-1 dlx

2r/--F--() e’Ss3"-l ds (A(t)-tzI)-1 dl

e -iTrT IF I? 3"-

27riF(3")
e’Ss ds (A(t)-I) dl

e--i’nT f??--Ti S
3"-1 e sA(‘) ds,

where T > 1/fl 1 and
(2.33), we obtain

-3, r-3" e for /z re i, 0<0-- <2r. In the same way as

(2.34) A-3" (t) e rA(t)

27ri
/x

q

-3" e(A(t)-txI)-1 dtx, -r>0.
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We note that eA(t)x G D(An(t)), n 0, 1, -.., for each x e E. It follows easily from
(2.34) that

(2.35) AV(t) eAO 2ril Iv Ix
r e(A(t)_ixi)-I dix,

q

where y > 1//3-1, and ->0. It is clear that AV(t)e ’A(t) is a bounded operator and
continuous in norm for >= 0 and - > 0. It follows from (2.35) that the estimate

(2.36) IIAv (t) e A)11----< C (y) e-" 1-(r+l)//3

holds for y > 1//3 1, " > 0, and >= 0. Thus we have arrived at the following lemma"
LEMMA 2.7. Ar (t)e A(t) is continuous in norm for >= 0 and " > O. If 2 1 > y >

1//3 1, Ar(t)eA(t)[I is integrable for - on (0, ).
LEMMA 2.8. If 3/> 2--2/3, then A-r(t) is strongly continuously differentiable in

t>_O.

Proof. We use the representation (2.33) of A-r(t). From the relation y > 2-2/3,
the function

O lxll -(A(t) IxI)-lA’(t)(A(t) IXI)-lxll- IX-r(A (t) IXI)- II- IX

is integrable on Fq. This completes the proof.
LEMMA 2.9. If 3’ > 2- 2fl, then A-r (t) e

Proof. Consider the equation

A-r (t) e (t-s)A(s)_A-V (s)

Q.E.D.
(t--s)a(s) converges to A-r(s) in norm as

1 fr -r(e"(t-s) 1)(A(s)-IXI)-ldix
27ri tx

q

+(A-V(t)_A-r(s)) e -s)As).

It is clear that the first term converges to 0 as , s. From (1.6) and Lemma 2.8 it
follows that the second term also converges to 0 as , s. Q.E.D.

Now let us prove Theorem 2.6, using the above lemmas.
Proo] o] Theorem 2.6. Following [10], [12], let us define O(t, s) as

(t--s)A(s)

1 f 0

27ri Jr e (A(s)- IxI)-
q Os

Ql(t, s) is strongly continuous for > s and the estimate

IIo (t, s)ll -< c s

holds for 0-<s <t =< T. Let O(t, s) be the strongly continuous operator which satisfies
the integral equation

O(t, s) O(t, s) + Q(t, o’)O(o’, s) def.

Define the strongly continuous operator V(t, s) as follows:

V(t, s) e (t-s)A(s) + ] Q(t, ’) e (r-s)A(s) dr.
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It is easy to see that V(t, s) is strongly continuously differentiable in s on D(A) and
satisfies the equation

(2.37) 0___ V(t, s)A-l(O)x + V(t, s)A(s)A-(O)x 0
Os

for t>s and for each x 6E. It follows from (2.16) and (2.37) that the function
V(t,r)U(r,s)x is independent of r,s <r <t, for each x E. Since V(t, r)A-a(r) con-
verges to A-(t) in norm and A(r)U(r, s) converges to A(t)U(t, s) in norm respec-
tively as r t, it follows that

V(t, r)U(r, s)x - A-l(t)A(t)U(t, s)x U(t, s)x as r t.

Choose y > 0 satisfying 2- 2/3 < y < 2/3 1, and consider the equation

A-(r)U(r, s) A-V(r) e (r-s)A(s) + A-(r) e (r-r)A(r)R (’i’, S) dr.

Since A-(r) e (r---)A(-) is uniformly bounded for r > -, the second term converges to 0
in norm as r ,i, s. Therefore it follows from Lemma 2.9 that A-V(r)U(r, s) converges to
A-(s) in norm as r ,1, s. Consider the equation

V(t, r)U(r, s)x P(t, r)A-V(r)U(r, s)x, s<r<t,

where P(t, r), > r, is the strongly continuous operator given by

(2.38) P(t,r)=A(r)eCt-r)ACr)+ O(t,’)A(r)e-r)Acr)d".

Here we used the fact that e hA(r) and AV(r) commute on D(Ar(r)).
Let r , s. Then V(t, r)U(r, s)x converges to

P(t, s)A-(s)x V(t, s)x.

Therefore it follows that V(t, s)= U(t, s) for > s, and this shows that the equation
(2.31) holds. Q.E.D.

3. Existence and uniqueness of solutions of (1.1). In this section we consider the
problem of the existence and the uniqueness of the solution of (1.1) under the
condition (1.8) for f(t, x). Throughout this section, it is assumed that the conditions
(1.2), (1.3), and (2.5) are satisfied. Let us consider the following integral equation
corresponding to (1.1):

(3.1) x(t)-- g(t, O)xo + g(t, ’)f(’, x(’)) dr.

Equation (3.1) can be uniquely solved by the successive approximations:

(3.2)
xo(t)-- U(t, O)xo,

x,+ (t)= g(t, 0)+ g(t, r)f(., x,(r)) d’, n=0,1,...,

(3.3) x(t) lim x.(t).
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If xoeD(A), the solution x(t) of (3.1) is in C([0, oo);E). Otherwise x(t) is in
C((0, ); E) and satisfies the following estimate in the neighborhood of 0:

In addition to (1.8), suppose that f(t, x) satisfies the estimate

(3.4) I[f(t,x)--f(7-,X)II<--CR,T(t--7-), O<--7-<--t<--T, IlxllR

for each T > 0 and R > 0, where 0 > 2(1//3-1). Then, we obtain the following basic
assertion:

TIFOaF.M 3.1. Suppose that f(t, x) satisfies (1.8) and (3.4). Then the solution x(t)
of (3.1) with x(O)=xoeD(A) satisfies (1.1). The solution of (1.1) which is H61der
continuous with exponent v > 2(1//3 1) is unique.

Proof. The uniqueness follows from Theorem 2.5. Let x(t) be the solution of (3.1)
with x (0) x0 D(A) and let 0 < 7- < <_- T. Consider the equation

(3.5)
x(t)- x(r) U(t, O)xo- U(r, 0)x0] + U(t, cr)f(r, x(r)) dcr

+ [U(t, or)- U(’, r)l/(cr, x(cr))

It follows from (2.18) that the estimate

(3.6) [[U(t, O)xo-U(7-, O)xoJlNcl4(t-7-)2-1//3

holds for 0 < 7- < -< T. It is easy to see that the estimate

(3.7) U(t, r)f(r, x(r)) do" <=c5(t-r)

holds for 0 < 7- < t -< T. It follows from (2.17) that the estimate

<- IIA(zU(z, llz <-c(-/-(-)-4/-

holds for 0 _-< cr < r < _--< T. Therefore the above inequality implies that the estimate

(3.8) [[I/[U(t, o-)-U(r, o-)] f(o-, x (o-))dcr[[
C 17(t 7") 2(1//3-1)7-5-4//3

holds for 0 < r < _-< T. It follows from (3.6) to (3.8) that

IIx (t) x ()11 = c 18(t 7-) 2( O<:7-<:t<_T.
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Therefore the above estimate implies that the function g(t)=f(t,x(t)) is H61der
continuous with exponent 2(1//3-1). Again we estimate the third term of (3.5).
Consider the inequality

do-

--< IIg(o)ll do C9(Z O.)1-2//3 dz

(3.9)
j.

dz c9llg(r)ll(z--r)a-2/ &r

N )1-2/19c9 dz IIg(z)ll-Ilg(c)lll(z- dr

For any e > 0 there exists c > 0 such that the estimate

(3.10) the first term of (3.9) Nc(t-r)-
holds for 0 < r < r. It is easy to see that the estimate

(3.11) the second term of (3.9)Nca9(t-r)-/

holds for 0< r <t N T. Choose e >0 sufficiently small. Then it follows from (3.6),
(3.7), (3.10), and (3.11) that the estimate

(3. a 2) IIx (t) x ()11 c2o(t

holds for 0 N r N N T. Therefore it follows that f(t, x(t)) is H61der continuous with
exponent u min (0, 3 2/) > 2(1/ 1). The assertion of this theorem follows from
Lemma 2.4. Q.E.D.

Remark. It is easy to see that the estimate (3.12) holds for the solution x(t) of
(3.1) with x(O)eD(A) and 0>0 instead of 0 >2(1/-1) in (3.4).

Now let us assume that A(t), 0, is strongly continuously differentiable on
D(A). Then it follows from Theorem 2.6 that the solution of (1.1) is unique. Suppose
that f(t, x) satisfies the following additional conditions"

0
(3.13) (i) f(,x)=ft(t,x) is continuous for (t, x)e [0, )xE.

(3.14) (ii) For each 0, f(t, x) is Fr6chet differentiable in x [12], i.e.,

f(t,x +z)=f(t,x)+(Df(t,x)+Df(t,x)).z + o(lzl; x)

holds when Ilzll- 0, where Dr(t, x) (resp. Dr(t, x))is a linear (resp. antilinear) bounded
operator in E.

(3.15) (iii) Df(t,x) and Df(t,x) are strongly continuous for (t,x)e[0, oo)E.

(3.16) (iv)For t,x, satisfying O<--t<=c, Ilxll-<c, Ilf,(t,/)ll, I[Of(t,x)llc,), and
IIz3f(t, x)l[,,)are uniformly bounded.

The following assertion will be used in 6"
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THEOREM 3.2. Suppose that A(t), t => 0, is strongly continuously differentiable on
D(A), and that f(t, x) satisfies (3.13) to (3.16). Then for each Xo D(A) there exists the
unique solution x (t) of (1.1) with x (0) Xo and the equation

d
d-- x(t)

(3.17) V(t, O)[A(O)xo+](O, xo)]+ V(t, r) -A’(r)A-l(r)(r,x(r))

+(,x(+(,x(-x(+O(,x(-x(
holds or >0, where V(t, s) A(t)U(t, s)A-(s).

Pro@ It follows from (2.18), (2.25), (3.13), (3.16), and Theorem 3.1 that dx(t)/dt
satisfies the estimate

x(t =<c2ta-/, 0<t<T.

Therefore we find that the function

d d d
f(t, x (t)) f,(t, x (t)) + of(t, x (t)) x (t) + Dr(t, x (t)) x (t)

is continuous and integrable on (0, T). This shows that the equation (3.17)
holds. Q.E.D.

Remark. The above theorem can be also proved by a method similar to [9], [12],
without using Theorem 3.1.

Remarks on 2 and 3. Theorems 2.3 and 2.5 are extensions of the results of H.
Tanabe [ 10] to the weakened Cauchy problem, which are obtained by formally letting

1. In the uniformly well-posed Cauchy problem, similar results to Theorem 3.1
were obtained by several authors, for example, by T. Kato [3] and A. Pazy [7].

4. Asymptotic behavior I. In this section we consider the asymptotic behavior of
the solution of (3.1) under the condition (1.8) for f(t, x). In addition to (1.2) and (2.5),
we assume that the following conditions are satisfied"

II(a(t)-a(r))a-(O)lJL(s)(t-r), s t < +,
(4.1)

lim La(s) 0, LI(0) =L,,

(4.2) sup IIA(t)A-(r)II L2 < +o.
0--<-r,t

Remark. The condition (4.1)does not guarantee the convergence of A(t)A-I(O)as
cx3.

The following lemma is easily proved"
LEMMA 4.1. Suppose that f(t) is a real valued continuous function of > 0 and is

bounded on (0, 1]. If supt>of(t) +, then we can choose a sequence {tn}n_-,, such
that

f(t)<=f(t,,)=n,

0<t_--<t,, l<tm<t,,+l<"’<t,<’’’, limt,=+c,
where m > sup0<t-<_I f(t). -
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Proof. Let us define Sn ={t >0;f(t)>=n}. By the assumptions, the sets S, are
closed and nonvoid. Further let t, inf t, where the infimum is taken over S,,. Then, it
is easy to see that {t,}=m is the sequence stated in this lemma. Q.E.D.

Let us prove the following theorem which is important in applications"
THEOREM 4.2. Suppose that the conditions (1.2), (2.5), (4.1), and (4.2) are

satisfied"
(i) For each , 0 , there exists Mo 0 such that the estimate

(4.3) lU(t,s)llNMoe-(t-s)(t-s)-/, 0Ns <t< +,

holds.
(ii) For each e > 0 and w <, there exists s (e, w) > 0 such that the estimate

(4.4) e(’-)llU(t, )ll d NM(1 w)-(2-/)F(2 1/) + e,

s(e, w) Ns < <+

holds.
Proof. (i) It follows from (2.3) that

IIR(t, s)IINLI(s)L2M2(t-s)+’-2/ e -(,-)

+ gl(s)g2M2(t-r)+1-/ e-X(t-’)lle(r, s)ll dr.

Choose y satisfying 0 < y < A. Then we have from the above inequality
T

(4.5) N(A -)-IF(1-a)LI(s)L2M2
T

"is
T

Y(’-s)[]R (, s)] d, , Ll($)L2m2(t e-(-)(t-) dt

for T > s, where a 2/B -p- 1. Choose s(% 6) so that

(A-T)-IF(1-a)LI(S)LzM2<6<I, s>--s(y, 6).

Then it follows from (4.5) that the estimate

(4.6) e (-)lle (, s)ll d <(1 -)-1

holds for s(% 6)<-s <t < +. Therefore from (4.6) we obtain

e v(-s)(t- s)l]R (t, s)[]
L(s)(1-6)-1

(4.7)
+ g(s)(t-r)-e -(x-)(t-’)"

s(% 6)<--s <t < +oo,

where L(s) LI(S)L2M2. Let f(t, s) e (t-)(t- s)llR (t, s)ll. Then, f(t, s) is continuous
for > s and SUps<t<=s+l f(t, s) < +oo for each s. Therefore it follows from Lemma 4.1
and (4.7) that for each s >=s(% 6), f(t, s) is bounded for on the interval (s, oo).
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Therefore (4.7) implies

sup f(t, s) <=L(s)(1-6)-, s(% 6) < s.

Since the right-hand side of the above inequality is bounded for s >=s(y, 6), it follows
that the estimate

(4.8) ]lR(t, s)l]<-c22(t-s)+a-2/%

holds for s(T, a)<s <t< +oo, where C22 (1 6)-2 SUps(v.a)_<_sL(s). The above in-
equality and (2.2) imply that

(4.9) IlU(t, S)lIC23(t--S) 1-1/t3 e -O(‘-s), s(v, a)<=s <t <

Let So=S(T, 6) and take s, and s, satisfying So<S, <sl. We estimate Ilg(t,s)ll for
-> S and 0_-< s _--<so. We note the inequality

(4.10) IIU(T,O’)II’C24(T--O’) l-lIft O<O’<T<S1

It follows from (4.9) and (4.10) that

(4.11)

IlU(t, s)llllU(t, s,)ll IIV(s,, s)ll
< C23C24 e-O(t-s,(t_s,)1-1/t3(s,_s)1--1//3

<_c23c24 eOS, ( S1--So ) 1/t3-1

(s-s,)(s,-so) e -(t-s)(t --S) 1-1//3

0S <-So, S1 =<t.

Therefore (4.9) to (4.11) implies (4.3).
(ii) Set

g(t, s) fs e’t--llR (t, ’)11 dr, t>s.

g(t, s) is continuous for > s and tends to 0 as t ,l, s. In the same way as (4.5), we obtain

(4.12)
g(t, s) _<-- L(s)(A to)’--r(1 -a)

+ fs L(s) e-(-’)(t-’)(t--o-)-’g(o-, S) do’.

Choose So so large that L(s)(A -w)-lF(1--a) < 1 for s -->So. Then in the same way as
in (i), (4.12) implies the estimate

L(s)(A o-’F(1 a)
(4.13) g(t, s) <-

)-F ), So <=S <__t < +oo.
1 -L(s)(A -oo (1 -a
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Consider the inequality

(4.14) + d7 e(’-)le(t-A(] eO(-’)lR(, 7)ll d

(a )-(:-/r(2- /)

+ M1 e-a-)(t-)(t-)-l/g(, s) dm

Expression (4.4) immediately follows from (4.13) and (4.14). Q.E.D.
The following theorem is also important in applications and will be used in 6"
THEOREM 4.3. Suppose that the conditions (1.2), (2.5), (4.1), and (4.2) are

satisfied.
(i) For each (9, 0 < 0 < A, there exists 1o > 0 such that the estimate

(4.15) IIV(t,s)ll<-lf4oe-(t-s(t-s) a-1/t3, 0_<s<t<

holds.
(ii) For each o) < A, there exists s (oo) > 0 such that the estimates

(4.16)
< MIL2(s)(A w)-(2-1/t)F(2 1//3)

s(to)<=s <t < +c,
1 -LI(s)LzMz(A -w)-(+z-2/t)F(p + 2- 2[fl)’

T

Is eO’(t-sllV(t, s)ll dt
(4.17)

M1L2(s)(A w)-(z-1/tr(2 1//3)<-- s(w)<s<T<
1-LI(s)LzM2(A -to)-(o+2-2/t)F(p + 2- 2//3)’

hold, where V(t, s) is defined in Theorem 3.2, and L2(S) is given by

(4.18) L2(s) sup

Proof. (i) It is easy to see that V(t, s) satisfies the integral equation [6], [1]

V(t, s) a(t) e (t-s)a(t)A-l(s)
(4.a9)

+ f A(t) et-a([a(-)-A(t)]a-a(-)V(-,s) d’.

Hence it follows from (4.19) that

(4.20)
v(t, s)ll <--_ML2(s) e-X(’->(t s)

+ g(s) e-"(-’(t--)+a-2/llg(r s)ll d.
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In the same way as (4.6), for each 6, 0<6 < 1, there exists s(O, 6)>0 such that

(4.21) e’-s)llV(r,s)lldr<=(1-8)-ML2(s)(A-O)-2-/)F(2-1/),

s(O, 6)<=s <-t < +c.

Thus, from (4.20) we obtain the inequality

et-)(t-s)-P+l-/t3)llV(t s)l

-(p- 1//),)
--/

<M1L2(s)
(A -0)e

(4.22) +L(s)(1-6)-’MaL2(s)(A 0)-(2-1/t)F(2 1//3)

+ f L(s) e-(X-)(t-)(t-r)p+’-2/t e-(r-s)-+l-/llV(r, s)ll dr,

s(O, 6)<--_s < < +c.

Let h(t, s)= et-s)(t-s)-P+l-Z/)llV(t, s)[I. Then h(t, s) is continuous for >s and
tends to 0 as ,I, s. Therefore, in the same way as Theorem 4.2, the estimate (4.22)
implies

{ (--(p--1/))
-(-/)

sup L2(S)sup h(t,s)<(1-6)-lM1
(h O)e s(0.)_-<ss(O,6)<s<t

+(1-)-l(h 1//3). sup L(s)L2(s)[.
s(O,)<=s

Therefore the above inequality implies that the estimate

(4.23) IIV(t, s)ll<=Ce5 e-t-s)(t-s)l-1/
holds for s(O, 6)<-s and s+ l=<t, where ce5 (1-6)-1M1{.}.

We consider the inequality

(t s)--/llv(t, s)ll

<=MiLe(s) e-X(t-s) + g(s) e-X(t-’(t-)-l/t3l[V(’, s)l[ dr

(4.24) + fs L(s) e-h(t-)(t--7")o+I-2/C(T--S)-(1-1/)I[V(T, S)I dr

M1L2(s) +L(s){B (p + 1- 1//3, 2- 1/fl + (p + 2- 2/fl -}

sup (z-s)-(a-1/t)[lw(z, s)l[,

s<t<s+l,

where the supremum in z is taken over the interval (s, s + 1). Therefore, from (4.24)
there exists So > 0 such that

(4.25)
IlV(t, S)I[<=C26(t--s) 1-/t

--O(t--s 1--1//3-<-c26e e (t-s) So<=S<t<=s+l< +c.
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Inequalities (4.23) and (4.25) imply that

IIV(t, s)ll--< max {c25, c26 e } e-t-s)(t-s) 1-1//3,
max {s (0, 6), So} _-< s < < +

We note the equation

V(t, r) V(r, s) V(t, s), s < r < t.

Then, the rest of the proof can be carried out in the same way as Theorem 4.2, (i).
(ii) The proofs of (4.16) and (4.17) are the same as (4.13) and (4.6) respectively.

Hence we omit them. O.E.D.
Now let us consider the asymptotic behavior of the solution of (3.1).
THEOREM 4.4. Suppose that

(4.26) KMIA -2-1//3)F(2 1//3) < 1.

Let x(t) be the solution of (3.1). Then we have

( M1/ -(2-1//3)r(2 1/) ’(4.27) t-,oolim ][x (t)[]----<
\ 1-KMIA-{e-1//3)F(2 1//3)]

1 Ill(t,

Proof. If lirn,_,ol[f(t, 0)ll- +, then (4.27) is clear. Therefore we assume hence-
forth that lim,_,oo Ill(t, 0)11 < / oo. We note the equation

x(t)=U(t,s)x(s)+Js U(t,r)f(r,x(r))dr, 0_<s<t< +oo.

Take any e > 0 satisfying

K(MIA-<2-1//3)F(2 1//3) +e) < 1.

By (4.4) we can choose s(e)> 0 so that the inequality

(4.28) f, KI[U(t, r)ll dr <--K(MlA-(2-1//3)F(2 1//3)+e) < 1

holds for s (e) _<- s _-< < + oo. Consider the inequality
t"

(4.29)
+| KilN(t,

Since the first and the second terms of (4.29) are bounded for t(> s), it follows from
(4.28) and Lemma 4.1 that Ilx(/)ll is bounded for t(>-s). If necessary, choose s(e) so
large that the inequalities

sup IIx ()11 l IIx (t)ll + , sup Ilf(, 0)11 l Ill(t, 0)ll +
r>=s(e t--,oo r>=s(e t-+oo

hold. Then we obtain

(4.30)

]lx(t)ll<-llu(t, s)x(s)ll+ (1 Ill(t, 0)l]+ e)(M,a -(2-’//3)r(2 1//3)+ e)

+ (1 IIx (t)]l + e)K(MiX -(2-/’r(2 1/3) + e),
t---

s(e)<--s <t < +oo.
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Therefore (4.30) and (4.3) imply (4.27). Q.E.D.
If f(t, 0) tends to 0 when --> oo, the following theorem holds:
THEOREM 4.5. Suppose that (4.26) is satisfied, and let x(t) be the solution of (3.1).

(i) If there exist c > 0 and 6 > 0 such that the estimate

(4.31) I(t, 0111N c e -, >= 0,
holds, then x(t) satisfies the estimate

(4.32) Ilx (t)11Ne e-a’ 1-a/, >0,

where > 0 and g > 0 are some constants.
(ii) If there exist c > O, an integer n O, and , 0 < 1, such that the estimate

(4.33) I(t, 0)llNc -("+)

hoMs when , then x(t) satisfies the estimate

(4.34)

when , where 8 > 0 is some constant.
(iii) g there exists c > 0 such that the es6maw

(4.35) IV(t, 0)l Nc{ln t}-1

hoMs when , Nen x(t) satisfies the esgmaw

(4.36) Ilx (t)]l e{ln t}-
when , where > 0 is some constant.

Proof. (i) Choose w > 0 such that

w <rain (6, I), KMa(I-w)-(z-a/F(2-1/)<I.
Consider the inequality

(4.37)

+

(4.3) and (4.31) imply that the first and the second terms of (4.37) are bounded for
t(> s) and tend to 0 exponentially as for each s > 0. Take s()> 0 so that the
estimate

holds for s()Ns < < +. Then, in the same way as in Theorem 4.4 we find that
etllx(t)ll is bounded for N 1, and this implies (4.32).

(ii) Let n 1. We consider the inequality

tiN(t,  )ll IN(,, o)11

[ IlS(t, r)ll .G( --T)n-]+"T][(T, O)ll dT
]=0

+ Ils(t,
j=0
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It follows from (4.3) and (4.33) that the right-hand side of the above inequality is
bounded for > s -> 0. Next consider the inequality

tJlx(t)ll<=tJ[g(t, s)x(s)Jl/t [Ig(t, )Jl If(, o)ll d

Is’(4.38) + K(t-r)llU(t, )ll II/(’)ll d

+ J gllu(t, )11" llx()ll d, 0<s <t < +.

The first, the second, and the third terms of (4.38) are bounded for t(> s). In the same
way as Theorem 4.4, (4.38) implies that tllx (t)ll is bounded for > 0. Therefore we find
inductively that tllx(t)[I is bounded for >0. Next consider the inequality

t"+llx(t)llt"+llg(t,s)x(s)ll+t"+ Ils(t,)lll(,0)lld

(4.39)
j=o

j=0

In the same way as Theorem 4.4, (4.39) implies that the estimate (4.34) holds when. In the case where n 0, we also obtain the same conclusion.
(iii) Consider the inequality

Is[lnt[ Ilu(t, )111(,, 0)11 d
(4.40)

J {ln(t-)[ +ln l+n 2}llU(t, )111(, 0)11 d.

Here we have used the inequality

Iln Cx +r)l In xl+ I" l+n 2, x > 0, r > 0.

It follows from (4.3) and (4.35) that the right-hand side of (4.40) is bounded for > s.
Therefore, in the same way as Theorem 4.4, the estimate (4.36) follows from the
inequality

Iln tl.llx(t)ll[ln tl IIg(t, s)x(s)ll+lln t[ IIg(t, )111(’, 0)1 d

+J {lln (t-)l+lln +ln 21gllg(t,,)llllx()lld. .g.D.. Asymptotic behavior II. In this section we assume that the conditions (1.2),
(2.5), (4.1), (4.2), and (1.9) for [(t, x) are satisfied. Furthermore, for the simplicity we
assume that k (c) satisfies

(5.1) k(c)NKca, c >0,

where K > 0 and a > 0 are some constants.
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Consider (4.14) with w 0 and s 0. If LIL2M2A-IF(1-c) < 1, then it follows
from (4.13) that

MA -(2-mF(2 1//3)Ilg(t, ’)ll d" <- > O.
1 -LIL2M2A-aF(1

If L1L2M2A-IF(1-a)>-I, choose to>0 such that LI(to)L2M2A-IF(1-a)<I. In
the same way as (4.12) we obtain

g(t, O)<--LaL2M2A=-F(I-,)/ lie l(t,

+ Jto lie l(t, o’)llg(o’, 0) do’, to.

From the above inequality we easily obtain

LIL2M2A-IF(1 -a)[1 + supo__<t_<_to g(t, 0)]
sup g(t, O) <

o<t<+m 1 -LI(to)LzM2A-IF(1 -t)
supo__<t=<to g(t, 0) is easily estimated. Therefore we can estimate

(5.2) sup | IlU(t, )11 d-P
0<t<+oo J0

in a concrete form. Next we estimate IIu(t, 0)A-(0)II for 0<t < +oo. We note the
inequalities

IIU(t, O)A-(O)II<-IletA(A-(O)II/ Io lie (t-’)a(’)ll IIR (, dr,

IIR(t, o)m-(O)ll<-IIR(t, 0)A-I(0)II/ Io liRa(t, )1111R(, 0)A-(0)II dr,

lie tao)A-1(0)11 __< IIA-’ (0)l[ + Io lie rA (0)l[ dT.

Similarly we can also estimate

(5.3) sup IlU(t, 0)A-l(0)[l=q
O<t<+oo

in a concrete form by using the above inequalities.
If If(t, 0)11 is small, we obtain the following lemma:
LFMMA 5.1. Suppose that f(t, x) satisfies (1.9) and (5.1) and that the inequality

a ]--l/a(5.4) r [(a + 1)Kp
a + 1

-p sup Ill(t, 0)[[>0

holds. Then the global solution x(t) of (3.1) uniquely exists for Xo6 D(A) satisfying

(5.5) IlA(O)xoll--< rq-,
and satisfies the estimate

IIx(t)ll<-[(a + 1)Kp]-’/, O<-t < +oo.
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Proof. In the successive approximations (3.2), let

e, sup I]x,

Since x,, (t) satisfy the inequalities

I]x,+,(t)ll<-l[u(t, 0)/0l[+ Ilu(t, r)li’{k(e,)llx,()ll+l(r, 0)ll] dz,

it follows from (5.4) and (5.5) that the estimates

a
[(a + 1)Kp]-1/a +Kpe+1,en+l<= n =0, 1,’"

a+l
(5.6)

eo <[(a + 1)Kp]-1/a

hold. From (5.6) we obtain

e, <[(a+l)Kp]-/ n =0, 1

Therefore x,(t) converge to x(t) uniformly on any finite closed interval in [0, oo).
Clearly x(t) defined in (3.3) is the unique solution of (3.1). Q.E.D.

Remark. If f(t, x) satisfies (3.4) in addition to the assumptions of Lemma 5.1, x(t)
satisfies (1.1). If f(t, x) satisfies (3.13) to (3.16), the equation (3.17) holds.

THEOREM 5.2. Suppose that the assumptions ofLemma 5.1 are satisfied. Then we
obtain

(5.7) lim IIx(t)ll_-< (a + 1)PLY" Ill(t, 0)11,
t->oo a t-,oo

where x(t) is the solution of (3.1) with xoD(A) satisfying (5.5).
Proof. For any e > 0, choose s > 0 so that the estimates

[Ix(t)[[ =<1 [[x(t)[[+ e, If(t, 0)[1_--<1 [bf(t,

hold for _-> s. Then, for > s we have

fs { [[/(’r)[[ +l(’r, 0)[[} drI[x(t)ll<-IIu(t, s)x(s)[[+ [Iu(t, "r)[[
(a + 1)-

<-Ilg(t,s)ll Ilx(s)ll/-q- l]lx(t)ll/ /p lllf(t,o)ll/
t--> t-->oO

The above inequality and (4.3) imply that the estimate (5.7) holds. Q.E.D.
Remark. Under the assumptions of Theorem 5.2, we can derive the similar results

to Theorem 4.5.

6. Asymptotic behavior III. In this section it is assumed that (1.2), (2.5), and
(4.2) are satisfied and that f(t,x) satisfies (3.13) to (3.16) and either (1.8) or (1.9).
Furthermore it is assumed that the following conditions are satisfied:

(6.1) (i) A(t), >-_0, is strongly continuously differentiable on D(A).

(6.2) (ii) I IIA’(t)A-I(o)[I dt < +oo, lim [IA’(t)A-(O)II- O.
J0 t-->

(6.3) (iii) sup Ill(t, O)l[ < -4-
o<=t



710 TAKAO NAMBU

From (6.2) we find that there exists a bounded linear operator B such that
A(t)A-I(o) converges to B in norm as oo. Since the equation

B A(t)A-I(O)[1-A(O)A-I(t)(A(t)A-a(O)-B)]
holds for -> 0, it follows that the bounded operator B-1 exists. Let A(oo) BA(0) and
let D(A(oo))= D(A) respectively. Then, A(oo) is a closed operator. Noting the in-
equality

[IA(t)a-(r)-II[<=ll(a(t)-a(r))a-’(O)][ Ila(0)A-(r)][, t, -_->0,

we find that L2(s) converges to 1 as s ->

We start with the following lemma:
LEMMA 6.1. Suppose that there exists the unique solution x (t) of (1.1) with x (0)

Xo and that x(t) is bounded on [0, ). If x(t) satisfies the estimate

(6.4) m =MIA-(2-/tF(2-1/) limllDf(t,x(t))+f(t,x(t))ll(,z)<l,

then we obtain

(6.5> lim I[tt x(t) <-(1-m)-lMh-(2-a/t)F(2 1//3) lim [t(t,x(t))[[.

Remark 1. Let A (resp. B) be a linear (resp. antilinear) bounded operator. Then
[]A + BI[(,)is understood to be

sup IlAx +Bxll.

Remark 2. Suppose that the estimates

[IDf(t, x)-Df(t, y)l[(z,z)_-< kl(c)[lx yl[,

ll/:3f(t, x)-1Of(t, y)ll(,)-<-/2(c)llx

hold for t, x, and y satisfying ->_0, Ilxll =<c, Ilyll-<_c, where k(c) and k2(c) are monotone
nondecreasing functions of c > 0 which are right continuous. Then the condition (6.4)
can be written in the more concrete form by combining the above estimates with
(4.27) or (5.7).

Proof. (6.5) is clear in the case where limt_oo Itf,(t,x(t))ll- /o. Take sufficiently
small e >0. Then, from (3.17), (4.16), (6.2), and (6.3), there exists s(e)>0 such that
the inequalities

-di x(t) <- v(t, s) Ts x(s) + IIv(t, ,)ll IIA’(,)A-I(,)/(,, x(,))ll d,

i

g(t,s)x(s) + + MIA-(2-a/)F(2-1/)liml,(t,x(t))}l+e

+ IlV(t, ) 1/(, x())+Of(, x())ll(, x() a,
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(6.7)
s(e)<=s <t < +c

hold. Therefore, in the same way as in Theorem 4.4, (6.7) implies (6.5). Q.E.D.
Next suppose that f(t, x) satisfies the following additional condition:
For each c >0, there exists a bounded measurable function k(t, c) of which is

integrable on (0, c) and k(t, c) satisfies

I,t, x)ll<-t, c, Ilxll<-c, t>o,
(6.8)

lim k (t, c)= 0.
t---

From (6.8) we find that there exists a continuous function f(x) such that f(t, x)
converges to f(x) as uniformly on each bounded set in E. Then we obtain the
following assertion:

THZOZM 6.2. Suppose that the unique solution x(t) of (1.1) with x(O)= Xo exists
and that f(t, x) satisfies (6.8). If x(t) is bounded on [0, ) and satisfies (6.4), then there
exists x() D(A) which satisfies the equation

(6.9) A()x() +f(x()) O,

and x (t) converges to x () as .
Proof. Let I]x (t)ll c, 0. Then, it follows from (6.4) and (6.8) that

(6.10) tlimll/(t) =0.

By integrating the both sides of (6.6) with respect to from s to T, we obtain the
inequality

j ]v(t, s)ll dt + ]]a’()A-()f(, x())[] d ]IV(t, )[ dt

T T

+ x() d

sup IIv(,,)ll tit,)sup IIaf(, x ()) af(, x ())11,)
)

where T>s is arbitrary. Therefore the above inequality, (4.17), (6.2) to (6.4), and
(6.8) imply that

(6.11) dt<+, s>0.
J

Consequently it follows that there exists x()E such that

(6.12) x(t)x(), f(t,x(t))f(x()) ast.
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Noting the inequality

[[a(oo)a-l(t)-I[l<--[[(a(oo)-a(t))a-l(O)[[ [[a(o)a-(t)[[,
we obtain that A(oo)A-a(t) converges to I in norm as t-oo [11], [12]. Therefore it
follows from (6.12) that

A(oo)x(t) A(oo)A-(t)A(t)x(t)- -foo(x(oo)), t-oo.

Since A(oo) is closed, the above relation implies x(oo)e D(A) and (6.9). Q.E.D.
Corresponding to the degree of decreasing of k(t,c) and [Ia’(t)A-(O)[{, the

following assertion holds:
THEOREM 6.3. Suppose that the assumptions of Theorem 6.2 are satisfied.
(i) If there exist dl=dl(c)>O, tl=t(c)>0, d2>0, and t2>0 such that the

estimates

(6.13)
k(t, c)<=dl e -’’, >0,

IIA’(t)A -1(0)[1 =< d2 e --62t, > O,

hold, then the solution x(t) of (1.1) satisfies the estimate

(6.14) [Ix(t)-x()ll<-d e -st, t >0,

where d > 0 and 6 > 0 are some constants.
(ii) If there exist dl=dl(c)>O, d2>O, integers nl=nl(c)>l, n2>-l, 0</31

1(c) <= 1, and 0 <2 <= 1 such that the estimates

(6.15) k(t, c)<-_dlt -("’+tl), [IA’(t)A-l(o)ll<-d2t -(nz+taz)

hold when c, then x(t) satisfies the estimate

(6.16) IIx(t)-x()ll<-d -(n+t3-1)

when t-az, where n + fl =min (rtl -+-1, n2+f12), and d is some constant.

Proof. (i) In the same way as Theorem 4.5 (i), we find that e[[(d/dt)x(t)[[ is
bounded when t-, where t,>0 is some constant depending on 61, 82, and h.
Therefore (6.14) immediately follows from the equation

x (oo) x (t) x (z) dr, > 0.

The proof of (ii) is similar to the above arguments. Hence we omit it. Q.E.D.
If A(t) A, >=0, we assume the condition 1/2 </3 < 1 weaker than (2.5) so that

the semigroup e ta is integrable on (0, oo). Then we have the following corollary:
COROLLARY 6.4. Suppose that A (t) and f(t, x) are independent of t. If the solution

x(t) of (1.1) satisfies the estimate

(6.17) MIA-(2-1/t)F(2 1//3) lim IlDf(x(t))+Of(x(t))ll(, < 1,
t---

then there exists x (oo) D(A which san’sties the equation

(6.18) Ax (oo) +f(x (oo)) O,

and x(t) converges to x(oo) exponentially.
Proof. The proof is the same as that of Lemma 6.1 and Theorem 6.2.
Remark. In Corollary 6.4, it has not been assumed that I]x(t)l] is bounded on

[o, oo).
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7. Examples. In this section we give some examples of linear partial differential
equations whose coefficients A(t) satisfy the estimate (1.2). It seems more important
to give examples of (1.7) whose evolution operators have the integrable singularities
rather than to give examples of (1.1), because there exist a great many kinds of
nonlinear terms f(t, x) satisfying (1.8) or (1.9).

In Example 1 through 6 we treat the case where A(t) is independent of _>-0.

Example 1. Consider the initial boundary value problem of the heat equation

0 02
u(t, x) u(t, x) t>0, 0<x<l(7.1)

Ot OX 2

(7.2) u (0, x) Uo(X), 0 <= x <= 1,

(7.3)
0

u(t, 0) u(t, 1)=0.ox

Let E C ([0, 1]), where 0 < a < 1. The norm in E is given by

lu(x)-u(y)l(7.4) Ilull, sup lu(x)[+ sup
0--<xl 0x,y_<l Ix y 1,,

The operator A and the domain D(A) are given by

(7.5) Au =-x 2 u, D(A) u C2+"
d d

,Uxx u(O)=x u()=o.

The resolvent R(lz)=(A-t.I)-1 exists in the complex plane except for the non-
positive real semiaxis and is represented as follows:

(7.6)

Let any 6 > 0 and any e, 0 < e < zr/2, be given. In the following, we shall estimate
(/x)ll, on the sector 51;

Z= Ix =’+6; ---e_<-argsr-<+e

Let/x r e i, -7r/2 e < 0 < zr/2 + e, and/3 cos (0/2). It is easy to see that the estimate

1
(7.7) u IIo =<- Ibfllo

holds, where II’ll0 denotes the supremum norm of C([O, 13).
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(7.8)

where

Let 0 =< y < x <= 1. Then from (7.6) we have

lu(x)-u(y)
<

1

sinh
g(sC; x, y){f()-f(y)} d

g(; x, y) cosh (x 1). cosh -cosh y- cosh (- 1).

It is easy to see that the estimate

2
(7.9) the first term of (7.8)_-<- {lfl[- I[fll0}

holds. Since the equation

g(:; x, y) d: {(e’/;(x-)-e ))(e
y

holds, we obtain the estimate
"/;-(-Y))(e- -)}(e 4-A-(1-x) e -e

the second term of (7.8)
(7.10)

<_ r,/2_12{23/2-lsin (0/2)16 + (cos (0/2))}e

For the third term of (7.8), we obtain

(7.11) the third term of (7.8)-<{23/2-lsin (0/2)16 +(cos (O/2))’}B-ar/2-ailf[[o.
Similarly we obtain

(7.12) the fourth term of (7.8)-<_{23/2-’lsin (0/2)16 +(cos (O/2))’}-lr’/2-allf[[o.
Therefore (7.7) and (7.9) to (7.12) imply that the estimate

< M(7.13) IIR ()11 i ii-/e, t e E

holds, where Ms> 0 is some constant. It is easy to see that (7.13) implies (1.2).
Remark. In this example we can shift the path of the integration in (1.5) from Fq

to 0Z. Therefore the semigroup eta, t>0, of (7.1), (7.2), and (7.3) satisfies the
estimates

(7.14) Ila" e tall <-- M,+I e ’t -"-/2, > O, n O, 1,...,

where M,+a >0 and /are some constants.
In the following Examples 2, 3, and 4, E is considered to be C ([0, 1]) and A is

considered to be d2/dx2, respectively.
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Example 2. Consider (7.1) and (7.2) under the boundary condition

(7.15)
0

u(t, O)=x U(t, 1)=O.

The domain D(A) of A is given by

(716) D(A) {U E C2+C __:_ ()
d

;u_O)=axU_l_=O
The resolvent R(IX)= (A-IXI)-1 exists in the same region as in Example 1 and is
represented as

io_cosh (x 1)
sinh :. f() du (x) R (ix)f

(7.17)
sinh x/ x fxcosh

cosh

In a way similar to Example 1, R(IX) satisfies the estimate (7.13) on
Example 3. Consider (7.1) and (7.2) under the boundary condition

(7.18) u(t, O) u(t, 1) 0.
Ox

The domain D(A) of A is given by

(7.19) D(A)= {u E C2+’ d
;dxU(O) u(1)=0

Then the resolvent R (Ix)= (A- IxI)-1 exists in the same region as in Example 1 and is
represented as

sinh (x 1)
cosh :. f(:) d:u (x) R (Ix)f

cosh
(7.20)

cosh x/- x fix- cosh
sinh (- 1). f() d:.

In a way similar to Example 1, R (/x) satisfies the estimate (7.13) on E.
Example 4. Consider (7.1) and (7.2) under the boundary condition

(7.21) u(t,O)=u(t, 1)=O.

The domain D(A) of A is given by

(7.22) D(A)={u C2+; U(0) U(I) 0}.

Then the resolvent R (Ix) exists in the same region as in Example 1 and is represented
as

sinh (x 1)
sinh sc. f(:) dscu (x) R (Ix)f

sinh
(7.23)

sinh 4 x f+_-_._-_-_ J
sinh (-1)-f()d.

In a way similar to Example 1, R() satisfies the estimate (7.13) on Z.
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Remark. For Example 4, more general results have been obtained. Consider the
parabolic equation

0 0
--u= at(t,x) u, t>0, xell,
Ot It3l__<2m 0131Xl OCnXn
u (0, x) uo(x), x e a,

=0,b/0131X OflnXn
where D is a domain in R with a sufficiently smooth boundary and the coefficients
ate(t, x) are smooth in and x. Let E C(1)). W. von Wahl [13] obtained the estimate
(7.13) in the case where f is bounded. In the case where 1) is unbounded, H.
Kielh6fer [4], [5] obtained (7.13).

Example 5 ([6, p. 161]). Consider the following initial value problem of a system
which is parabolic in the sense of ;ilov"

0 02
Ol

Vl
OX 2

0 03 02
(7.24) --v2=ivl+V2, t>0 xeR1

Ot OX 3 OX 2

Vl(0, x) thl(X), v2(0, x) th2(x), x R 1.
Let E L2(R 1). Then the semigroup etA, > 0, of (7.24) satisfies

(7.25) IletAll <=Mt-1/2, > O.

Example 6. Consider the following initial value problem of a system which is
parabolic in the sense of gilov"

0
---/)1 Atl,
Ot

0 (0302)___2(7.26) OtO2 )I"["AD2, t>0, x (xI, xz)GR 2

OX OX 2

Vl(0, x) thl(X), v2(0, x) th2(x), x e R 2,
where A denotes the Laplacian in R 2. Let E L2(R2). By the Plancherel theorem,
(7.26) is equivalent to the following system of ordinary differential equations in
L2(R2)

d
+pz)Va,

d 2(7.27) -2=(p+p)l-(p+p2)v2, t>0, p=(pl, p2)6R 2,

1(0, p) tl(p), t2(0, p) 42(p), p 6 R 2,
where 4(P) denotes the Fourier transform of ck(x)L2(R2). The semigroup etA, >0,
of (7.27) is the bounded operator of multiplication by the matrix U(t; p)

[e -(p+p)t 0
(7.28) U(t; p)= t(p +p) e -(p+p)t e -(p+pz)t



NONLINEAR DIFFERENTIAL EQUATIONS 717

[letAII is calculated according to the formula [6]

(7.29) IletA[] sup, IlU(t; p)l12, t>0,
pR

where IIu(t; p)ll2 is the norm of the matrix U(t; p) as an operator in R 2. As is easily
seen, the formula (7.29) implies that etA, > 0, satisfies the estimate (7.25).

Example 7. Consider the following initial boundary value problem of the heat
equation:

0 02
--u(t,x)=a(t)u(t,x)-b(t)u(t,x), t>0, 0<x<l(7.30)
Ot Ox 2

(7.31) u(0, x) Uo(X), O<-x <= 1,

0 0
u(t, O) u(t, 1) 0,(7.32)

Ox -x
where the coefficients a(t) and b(t) are H61der continuous with exponent p and satisfy
the inequalities

(7.33) 0<al <=a(t) <=a2, 0<bl <=b(t) <b2, >=0.

Let E= C([0, 1]). The operator A(t), >=0, and the domain D(A(t)) are given
by

(7.34) A(t)=a(t)a-b(t)l, D(A(t))=D(A), t>=O,

where A and D(A) have been defined in (7.5). Choose 6, 0<6 <bl/a2, in Example 1.
Then, the resolvent (A(t)-tI)-1 exists on the sector

E1 /x =(+6a2-bl;---e <argsr<+e
(A(t)-tzl)-1 satisfies the estimate

[[(a (t) I)-11[ =< M0 1

al min (1, a/2-) "(1 +Jim
Since a(t) and b(t) are H61der continuous, the condition (1.3) is satisfied. It follows
from (7.33) that the condition (4.2) is also satisfied. If a(t) and b(t) ate continuously
differentiable, then A(t), t>=O, is strongly continuously differentiable on D(A).
Furthermore, if a’(t) and b’(t) are integrable on [0, ) and tend to 0 as , then the
condition (6.2) is satisfied. Consider the conditions corresponding to (4.1) and (4.2). If
we assume that the conditions

[a (t) a () <- Nl(S )(t -)p,

Ib (t) b (’)l -< Nz(s)(t -)P,

lim Ni(s)= O, 1, 2,

are satisfied in addition to (7.33), then (4.1) and (4.2) are satisfied. But these condi-
tions do not guarantee the convergence of A(t)A-I(o) as . As such an example,
we can consider a(t) and b(t) given by

a(t)=b(t)=sin/-+l+2, t>=O.
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Remark. In this example, we note that the estimates similar to (7.14) hold for
each A(t). Therefore, for the existence and the uniqueness of the evolution operator
U(t, s), it is sufficient to assume the condition

0<a<l, /3=1-a/2, 2(1-/3)<0-<1,

which is weaker than (2.5). he proof can be carried out in the same way as in 2.

Acknowledgment. The author wishes to thank Professor Y. Sakawa for his
encouragement and discussions, and Professor H. Tanabe for his many helpful
suggestions.
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NONLINEAR BOUNDARY VALUE PROBLEMS FOR ORDINARY
DIFFERENTIAL EQUATIONS WITH A SMALL PARAMETER*

R. KENT NAGLEt

Abstract. The author is concerned with the solution of nonlinear boundary value problems. In
particular, he deals with the problem of resonance for a nonselfadjoint system of real ordinary differential
equations with homogeneous linear boundary conditions. An alternative method similar to the one used by
J. K. Hale when studying periodic solutions is used to reduce the problem to solving a system of q equations
in p unknowns where p is the number of independent solutions to the associated linear boundary value
problem and q is the number of independent solutions to the associated adjoint linear boundary value
problem. Conditions are given for solving the system of q equations in p unknowns by the implicit function
theorem. Several examples are included to illustrate the method.

1. Introduction. We are concerned in this paper with the solution of nonlinear
boundary value problems for a system of n ordinary differential equations with
homogeneous linear boundary conditions of the form

(1.1) x’=A(t)x+ef(t,x,x’,e), t[a,b],

(1.2) BlX(a)+B2x(b)=O,

where x col (Xl,""", Xn), E is a small real parameter, f= col (fl,’’’, f), A(t) is an
n x n matrix, and B1, B2 are constant m x n matrices. Mainly we are concerned with
nonselfadjoint problems, in the sense that the underlying linear problem is nonselfad-
joint. We shall be particularly interested in the difficult problems "at resonance," in
the sense that the underlying linear homogeneous problem has nontrivial solutions.

In 2 we discuss the assumptions made on the column vector f(t, x, x’, e) and the
matrices A(t), B1, and B2. Also included in this section is the necessary background
material concerning linear boundary value problems.

In 3 and 4 we describe the method of the Cesari-Hale alternative type (Cesari
[1], Hale [5], [6]) which we shall use throughout this paper. Namely we extend to
homogeneous boundary conditions the alternative scheme considered by Hale [6, p.
262] for handling periodic solutions of nonselfadjoint problems. We have also allowed
the nonlinear term to include the derivative x’. In 3 we give the definitions of the
projection operators P and Q and the definition of the partial inverse operator K. We
show that these operators have the same properties as Hale’s operators by the same
name. In 4 we use these operators to decompose (1.1) into the equivalent system of
two equations

x Px + eK(I-Q)f(t, x, x’, e)

(.4) Q[(t, x, x’, e )= o,
the auxiliary and bifurcation equations respectively.

In 5 we show that the auxiliary equation (1.3) is solvable for e small by an
application of Banach’s fixed point theorem for contraction maps. Thus system (1.3)-
(1.4) is reduced to the bifurcation equation (1.4), which takes the form of a system of q
equations in p unknowns (the alternative problem). Here p is the number of in-
dependent solutions to the associated linear boundary value problem, and q is the

* Received by the editors November 26 1975, and in final revised form July 13, 1977.
? Department of mathematics, University of South Florida, Tampa, Florida 33620. This work was done

while the author was at the University of Michigan-Dearborn, Dearborn, Michigan.
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number of independent solutions to the associated adjoint linear boundary value
problem. For q_-<p and f smooth, it is enough to verify that the relevant q x p
Jacobian matrix for e =0 has maximum rank q so that, by the implicit function
theorem, system (1.1)-(1.2) has at least one solution for each small e. The results of
5 when used in finding period solutions to a system of real ordinary differential

equations yields the same bifurcation equations (see equation (5.1)) as obtained by
Gambill and Hale [4] and Hale [5] which had been obtained by a similar version of the
alternative method for selfadjoint problems. Mawhin [7], using alternative methods
and degree theory, considered similar systems of real ordinary differential equations
with periodic boundary conditions.

Finally, in 6, we illustrate the method developed in this paper by considering
several examples.

2. Preliminaries and basic assumptions. We are interested in the nonlinear
boundary value problem

(2.1) x’= A(t)x + ef(t, x, x’, e), [a, b]

where x’= dx/dt, x col (Xx, , xn) is the unknown vector function of t, e is a small
real parameter, A(t) is a given n n matrix whose enteries are bounded measurable
functions, and f=col (fx,""", f,,)is an n 1 vector function defined on [a, b]R2n+x

whose entries are measurable in for every (x, x’, e) and continuous in (x, x’, e) for
every t. Moreover, we assume that for each pair of constants R and R2, there exist
constants M and L such that whenever Ix], ]y]-<_R1, Ix’I, ]y’] <=R2, then we have for all
t[a,b],

(2.2) [f(t,x,x’,e)l<-M,
If(t, x,x’, )-f(t, M, y’, )lL{Ix-yl+lx’-y’l}.

Here I. denotes the Euclidean norm in R n.
On system (2.1)we impose the boundary conditions

(2.3) 91x(a)+B2x(b)=O,

where B1 and 92 are constant m x n matrices such that W=(BxB2) is an m x2n
matrix of rank rn.

Many of the results in 4 and 5 are valid under weaker assumptions on f. For
example if we replace equation (2.1) by the more general equation

x’ A(t)x + g(t, x, x’, e ),

then Theorem 4.1 is true for any g which satisfies the conditions (2.2), and the
continuity assumptions made on f. Except for Theorem 5.3, which involves the vector
H(a, e) (see (5.1)), the results of 5 are true for g(t, x,x’, e), which satisfies our
continuity assumptions and the following assumptions: For each pair of constants R1
and R2, there exist M(e) and L(e), nonnegative continuous functions of e, such that
M(O)=L(O)=O, and whenever Ixl, lyl<-R1, Ix’l, ly’l<-_R2, then we have for all t
[a,b],

[f(t, x, x’, e)l -< M(e),

If(t, x,x’, e)-f(t, y, y’, )lL(){lx-yl+lx’-y’l},

Condition (2.2) is just the special case in which g el, M(e)= eM, and L(e)= eL.
In the present paper we shall use the following notation. Let (AC [a, b])" denote

the set of n vector functions y whose components are absolutely continuous functions
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on [a,b] and such that Bly(a)+Bay(b)=O. For y in (AC[a,b]) define Ilylla by
[lyl[a sup=,=o ]y(t)[+(b-a)- ab [y’(s)] ds. This defines a norm on (AC [a, b]), and
(AC(a,b]) is a Banach space with this norm. Let (Ll[a,b]) denote the set of
equivalence classes of n vector functions y whose components are Lebesgue in-
tegrable over [a, b]. For y in (Ll[a, b]) define [lyll0 by Ilyllo (b a)-1 a ly(s)l ds. This
defines a norm on (Ll[a, b]) which makes (Ll[a, b]) a Banach space.

If T is a linear operator between two Banach spaces (Ba, II" lid) and (Bb, II" [Ib), the
operator norm of T is given by Ilrll where Ilrll sup {11 Trill: f Ilflla 1}.

The linear part of system (2.1), (2.3) is

(2.4) x’= A(t)x, [a, b],

where x satisfies the boundary conditions

(2.5) BlX(a)+B2x(b)=O.

The adjoint boundary problem for (2.4)-(2.5) is

(2.6) 37’= -)TA(t) or y’= -(t)y,

with adjoint boundary conditions

37(a) B1(2.7)
17(b) -B2

or
Y(a) BI.Y
y(b)= -B2v

where y is an arbitrary vector in R" and denotes the transpose.
Associated with the boundary value problem (2.4)-(2.5) is the nonhomogeneous

boundary problem

(2.8) x A(t)x +f(t), [a, b]

with boundary conditions

(2.9) BlX(a)+B2x(b)=O,

where f col (fl," ", fn) is assumed to be integrable in each component over [a, b].
The following theorem, which is essentially known and referred to as the "Fred-

holm alternative," illustrates the connection between the nonhomogeneous boundary
value problem and the adjoint boundary value problem. For a discussion of the
properties of boundary value problems for differential equations, see Coddington and
Levinson [2], and for differential systems, see Cole [3]. For a discussion of differential
systems and a proof of the Fredholm alternative in this context, see Nagle [8].

THEOREM 2.1. The nonhomogeneous boundary problem (2.8)-(2.9) has a solution

if and only if
bI z(s)(s) cls o

[or every solution z(t) to the ad]oint boundary problem (2.6)-(2.7).

3. Definitions of the operators U, V, P, Q, and K. Let U be an n x p matrix
whose p columns form a basis for the solutions to the boundary value problem
(2.4)-(2.5), and let V be a q x n matrix whose q rows form a basis for the solutions to
the adjoint boundary value problem (2.6)-(2.7). Let c = (s)U(s)ds and d

b V(s)(s) ds. The p x p matrix c and the q x q matrix d are nonsingular.
For y in (AC [a, b])" we define the projection P: (AC [a, b])" - (AC [a, b]) by

Py(t) U(t)c-1 b (](s)y(s) ds. It follows from the definition of U that the range of P
is all of the subspace spanned by the solutions to (2.4)-(2.5).



722 l. KENT NAGLE

In a similar fashion we define the projection Q: (Ll[a,b])n-->(Ll[a,b]) by
Qg(t)= Q(t)d-1 a V(s)g(s)ds. Similarly the range of Q is the subspace spanned by
the solutions to the adjoint boundary problem (2.6)-(2.7). Straightforward cal-
culations show that P and Q are bounded linear projections in their respective spaces.

In the next theorem the map K is defined from the kernel of Q into (AC [a, b])n.
The map K(I-Q) is shown to be a continuous linear transformation of (Ll[a, b])
into (AC [a, b])".

THEOREM 3.1. If h is in (Ll[a, b])n, then a necessary and sufficient condition that
the boundary value problem

(3.1) x’=A(t)x+h(t),

(3.2) BlX(a)+ B2x(b): 0

have a solution is that Oh O. If Oh 0, then there exists a unique solution Kh of
(3.1)-(3.2) such that PKh O. Furthermore, K(I-Q) is a continuous linear mapping of
(ta[a, b]) into (AC [a, b])".

Proof. The first part of the theorem follows immediately from the definition of O
and the Fredholm alternative. For h in the range of Q, define Kh 0. For h in the null
space of O we define Kh as follows.

Let X(t) be a fundamental matrix for the homogeneous equation (2.4). If X(a)xo
is the initial value for a solution y(t) to (3.1)-(3.2), then by the variation of parameters
formula we have y(t)= X(t) t X-(s)h(s) ds +X(t)Xo. Since y(t) must satisfy (3.2), it
follows that BiX(a)xo+B2X(b)xo= -B2X(b) b x-l(s)h(s) ds or Dxo where
D BIX(a)+BzX(b) and/3 =-BzX(b) b X-l(s)h(s) ds.

Let D* be a partial right inverse for D; i.e. D* maps the range of D into R" in
such a way that DD*=I on the range of D. To construct D* let {Vl,’", v,} be a
basis for R". Since the set {Dvl," , Dv,} spans the range of D, it may be reduced to
a basis {Dvl, , Dr,,} with possibly a relabeling of the subscripts. Define D*(Dvi)=
vi for 1,..., m. Now extend D* linearly to the entire range of D. Let D* be zero
off the range of D.

Since Oh 0,/3 must be in the range of D, hence D*/3 corresponds to the initial
value of a solution y*(h) of (3.1)-(3.2). We define K on the null space of O by
Kh =(I-P)Ko(h)=(I-P)y*(h). It follows that K is a linear mapping of (La[a, b])"
into (AC [a, b])". Moreover, it follows immediately from our definition of K that if
Oh 0, then Kh is a solution to (3.1)-(3.2) and PKh O.

Let Oh 0. To show Kh is the unique solution to (3.1)-(3.2) such that PKh O,
assume r is also a solution to (3.1)-(3.2) such that Pr=O. Let r*=r-Kh, then
(r*)’ r’-(Kh)’= A(t)(r-Kh)= A(t)r*. Hence, r* is a solution to the homogeneous
boundary problem (2.4)-(2.5). Since r* is in the range of the projection P, then
Pr* r*. So PKh P(r + r*)= r*. Since PKh 0, then we must have r* 0, and hence
r Kh. This proves the uniqueness.

It remains to prove that K(I-O) is bounded. Let Koh x*(h) for h in the null
space of O. Since Kh (I-P)Ko(h) for h in the null space of O and since I-P is
bounded, it suffices to show that K0 is a bounded mapping from the null space of O
into (AC [a, b])". Let h be in the null space of O. From the definition of K0 it follows
that

(3.3) I(g0h)(a)[ liD*l[ lIB21111X(b

C llh
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where Ca is a constant defined by (3.3), IID*II=Y,IdI, IlB211=2,lbl, IlX(b)ll
Y, IX(b)l, and IIx-ll[ is a bound for the sum of the absolute values of the entries of
X-1 in the closed interval [a, b].

Since Koh is a solution to (3.1), integrating we have, for t[a,b], I(Koh)(t)[ <-

I(Koh )(a )] + I’ Ih (s )l ds +’ IA (s )(Koh )(s )l ds. Hence, by the generalized Gronwall i
equality (see Hale [6, p. 36]) it follows that

I(goh)(t)ll(goh)(a)l+ h(s) ds

(3.4) +f [A(s)ll l(Koh)(a)l+ ftlh(u)l du} exp f’lA(r)l dr} ds

[C + (b a)+MA(b a){C + (b a)} exp {(b a)MA}]lh]o.
Hence

(3.5) sup=,z I(K0h)(t)[ N C2[[hl[o,
where C2 is the constant defined by equation (3.4).

Since Koh satisfies equation (3.1), we have for [a, b],

[(goh )’(t)l [A(t)(Koh )(t)+ h(t)l

MaC2Ithl[o + ]h (t)[.
Hence,

(3.6)
b

(b-a)-1 f, I(g0h)’(t)l dt<=(MAC2+ 1)llhll0.

It now follows from equations (3.5) and (3.6) that

II(g0h)lll (C2 +MAC2+ 1)llh II0.
Hence, K0 is a bounded map from the kernel of O into (AC [a, b])n.

This completes the proof of Theorem 3.1.
COROLLARY 3.1. If g is in (L[a, b]) and a is a given p vector, then the unique

solution of the boundary value problem

x’ A(t)x + (I- Q)g(t), Bx(a)+Bzx(b)=O

with Px U( )a, is given by x Ua +K(I-O)g and x (AC [a, b])".
Proof. Just differentiate Ua +K(I O)g.

4. The alternative scheme. In this section we split the boundary value problem
(2.1), (2.3) into an equivalent system of two equations.

THEOREM 4.1. For each fixed e, the boundary value problem (2.1), (2.3) has a
solution x(t) if and only if x(t) satisfies the boundary condition (2.3) and the system

(4.1) x Px + eK(I O)f(t, x, x’, e ),

(4.2) Of(t, x, x’, e) 0.

Proof. Let x satisfy the boundary condition (2.3).
Let w x -Px. Since P is idempotent, Pw 0. It follows from the definition of P

that Px is a solution to y’= A(t)y and satisfies the boundary condition (2.3). If x is a
solution to (2.1), then x is a solution to the nonhomogeneous equation y’=
A(t)y + ef(t, x, x’, e) and Theorem 3.1 implies that Of(t, x, x’, e)=0. Now since x
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satisfies the above nonhomogeneous equation and Px the homogeneous equation it
follows that w x- Px satisfies the boundary value problem

(4.3) y’=A(t)y+ef(t,x,x’,e), Bly(a)+Bzy(b)=O.

By Corollary 3.1 we have eK(I-O)]’(t, x, x’, e) is the unique solution to (4.3) with
Py =0. But w also satisfies (4.3) with Pw =0, hence w eK(I-O)l(t, x, x’, e).

Let x be a solution of the system (4.1), (4.2). Since O/(t, x, x’, e)= 0, it follows
from Corollary 3.1 that x is a solution to (2.1), (2.3). This completes the proof of
Theorem 4.1.

Equation (4.1) is referred to as the auxiliary equation and equation (4.2) as the
bifurcation equation.

5. Solving the auxiliary and bifurcation equations. The following theorem shows
that the auxiliary equation always has a solution if e is small.

THEOREM 5.1. There exists p 0 and eo > 0 such that, for any constant p vector a,
and such that ]e[_-< eo, then there exists a unique n vector x*, x*= x*(a, e) such

that

x*= Ua + eK(I-O)f( x*, x*’, e),

and x* satisfies the boundary conditions (2.3). Furthermore, if there is an a s(e with
I (e)[ <-_ p for le <- Co, such that

o((), )=- Of(., x*( (), ), x*’( (), ))= 0,

then x*(a(e), e) is a solution of the boundary value problem (2.1), (2.3).
Proof. The columns of U are continuous over [a, b], hence bounded. Choose

p >0 so that [a[<=p, a a p vector, implies IlUal]l=6 and 6 <min (R1, Rz/B)where B
is a bound for the sum of the absolute values of the entries of A.

Fix p > 0. Let s be a p vector with [s <- p. Define the subset S of (AC [a, b])" by
taking S={y in (AC [a, b])": y satisfies (2.3), Py= Us, [y(t)[_-<R1 for t[a,b], and
]y’(t)[ <_- R2 for almost all [a, b]}. Let S be the union of the S for [s] _-< p, where s is
a p vector. The set S is closed in (AC [a, b])" as is S for each s. On S we define a
family of maps F(s, e) as follows. For y 6S, F(a, e)y Ua +eK(I-Q)f(., y, y’, e).
The maps F(s, e) map S into (AC[a, b])". It follows from the definitions of U and
K(I-Q) in 3 that F(s, e)y satisfies (2.3). For each [a, b]

](F(s, e )y )(t)l--< 8 + eM[IK(I- O)[[,
and for almost all 6 [a, b]

(F(a, e)y)’(t)] _-< B6 + eM{[IK (I o)11 / 1 /MM(b a)},

where M, is a bound for the sum of entries of V(t) and Md is the sum of the absolute
values of the entries of d-1. Since 6 <R and B6 <R2, we can choose eo so that
F(s, e) maps S into S for le[--< eo. In fact since P(F(s, e)y)= Us, F(s, e) maps S into
s.

For y, z S we have

[IF(, e)y-e(s, e)z[{1 <-eLIIK(I-O)[[
so if we choose e0 such that eoL[[K(I-O)[[< 1, then the family {F(s, e): [s[_<-p, [e[_-<
e0} is a uniform family of contractions from S into S. Hence by the contraction
mapping principle each F(s, e) has a fixed point in S. In fact the fixed point lies in S.
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We have shown that there exist p > 0 and e0 > 0 such that for [a[ -< p, [el -<- eo, then
there is an x* in S, such that x*= Ua+eK(I-O)f(. ,x*,x*’, e).

If there is an a=a(e)with [a(e)[<-p for [e]-<e0, and G(a(e),e)=O, then
x*(a (e), e) satisfies both the auxiliary and the bifurcation equations. Hence, it follows
from Theorem 4.1 that x* is a solution to (2.1), (2.3). This completes the proof of
Theorem 5.1.

The solution to the auxiliary equation has several important properties which are
a consequence of the Uniform Contraction Principle. We state the following theorem
without proof (see Hale [6, p.7]).

THEOREM 5.2. (Uniform Contraction Principle). If F is a closed subset of a
Banach space X, G a subset of a Banach space Y, Ty" F F, y in G, is a uniform
contraction on F (i.e. the Ty’s are all contractions on F with the same constant) and Tyx
is continuous in y for each fixed x in F, then the unique fixed point g(y) of Ty, y in G, is
continuous in y. Furthermore, if F, G are the closures of open sets F, G, and Tyx has
continuous first derivatives in y when x is fixed and in x when y is fixed, then g(y) has a
continuous first derivative with respect to y in G.

Our first result involves the uniqueness of the solution to the auxiliary equation.
COROLLARY 5.1. Let S and F(a, e) be as defined in the proof of Theorem 5.1. If

for lel<_-e0, 2(e)S (hence P= Ua(e) with [a(e)[<=p) and 2(e) is a solution to (2.1),
(2.3) then 2(e)= x*(a(e), e) and G(a(e), e)=0.

Proof. The corollary follows from the uniqueness of the fixed point of the
mapping F(a (e ), e ).

COROLLARY 5.2. As defined in Theorem 5.1 let x* x*(a, e) be the solution to the
auxiliary equation (4.1)for all [a[ <=p and [e[ _-< e0. Then x* depends continuously on a
and e. Furthermore, iff(., x, y, e) has continuous partial derivatives with respect to x, y,
and e, then x* is continuously differentiable with respect to a and e.

Proof. F(a, e), as defined in the proof of Theorem 5.1, depends continuously on a

and e since f is a continuous function of e. Hence by the Uniform Contraction
Principle, the fixed point x* depends continuously on a and e. If f(., x, y, e) has a
continuous derivative with respect to y when a and e are fixed, and has a continuous
derivative with respect to e (or a) whenever y and a (or e) are fixed, then x* is
continuously differentiable with respect to a and e.

Corollary 5.2 says that x*(a, e) is Fr6chet differentiable with respect to a when
f(.,x,y,e) is differentiable with respect to x, y, and e. Since x*(a,e) is in
(AC [a, b])", x*(a, e) differentiable with respect to a implies x*(a, e) is differentiable
with respect a as a vector function in (Ll[a, b])", and x*’(a, e) is differentiable with
respect to a as a vector function in (Ll(a, b])".

As a consequence of the continuity of x*(a, e) with respect to e, it follows that
x*(a, 0)= Ua.

Theorem 5.1 assures us that for small e the auxiliary equation always has a
solution. Thus the boundary value problem (2.1), (2.3) is reduced to solving
Of(t, x*, x*’, e)=0 where x*(a, e) is the solution to the auxiliary equation (4.1) for a
particular a and e. From the definition of (2 it follows that Qf(t, x*, x*’, e)= 0 if and
only if b V(s)f(s, x*(s), x*’(s), e) ds 0. Let

b

V(s)fls, x*(s), x*’(s), ds.(5.1)

The boundary value problem (2.1), (2.3) has a solution if and only if H(a, e)=0
has a solution for Isl<=so and ]al_-<p. The equation H(a, s)=0 is also referred to as
the bifurcation equation as is equation (4.2).
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From the definition of V it follows that H(a, e) is a system of q equations where q
is the number of linearly independent solutions to the adjoint boundary value problem
(2.6)-(2.7). As defined in Theorem 5.1, a is a constant p vector where p is the number
of linearly independent solutions to the boundary value problem (2.4)-(2.5). For each
small e, to solve the bifurcation equation (5.1) we must solve a system of q equations
in p unknowns. This can often be done using the implicit function theorem.

TI-IEOREM 5.3. Suppose p, e0, and x*(a, e) are defined as in Theorem 5.1 and
H(a, e), a system of q equations in p + 1 unknowns, is defined as in equation (5.1).
Assume p >-q and H(a, e) is continuously differentiable with respect to both a and e for
all [a[p and [ee0. If there is a p vector 6 such that 6[<p, H(6,0)=O, and
H(ff, O)/Oa has rank q, then there is an e >0 and a solution x*(a(e), e), [e] e, of the
boundary value problem (2.1), (2.3).

Proof. The hypotheses on H(a, e) and the implicit function theorem imply there
is an ex, 0 61 60, such that equation (5.1) has solution a(e), [a(e)[ p, for all e,
[e[ ex. But this implies x*(a(e), e) is a solution to the boundary value problem (2.1),
(2.3). This completes the proof of the theorem.

If f(t, x, y, e) is continuously differentiable with respect to x, y, and e and there
exists continuous functions W(t) and Z(t) so that for [x[RI, [y[R2, el<e0,

[f,(t, x, y, e)l W(t),
and

I (t, x, y, ) Z (t),

for all [a, b], then H(a, e) is continuously differentiable with respect to a and e.
Once one knows that the boundary value problem (2.1), (2.3) has a solution for

fixed a and e, ]a[ p and [el e0, then the solution to (2.1), (2.3) may be found by the
method of successive approximation. One may begin the approximation with an
element y0 Ua x*(a, 0); then the sequence {y,} defined by Yn+X =F(a, e)y,, n
0,1,2,... converges in (AC[a,b])" to x*(a,e), the solution to (2.1), (2.3).
Moreover, y, will contain only terms up to order n in e.

6. Applications and examples. In this section we consider specific problems
which can be solved using the methods and results of the previous sections. Our
emphasis is on the resonance cases which are harder to handle.

Example 1.

(6.1) x"= e{-e"+x:sin t}.

We are interested in 2w-periodic solutions. Here, p 1 and q 1. Equation (6.1) may
be written as the system

Y’= 0 0
y +eg(t’y’

(; _1 0y(0)+( 0 -1) Y(2)=0’

where y col (YI, Y2), YI X, and y2 x’ and g(t, y, y’)= col (0,-e"+ x 2 sin2 t). For
this system U(t) col (1, 0) and V(t) (0, 1). The auxiliary equation has a solution of
the form y (t)= Ua + eK(I- Off(t, y, y’, e) where a is a constant.

Since U =col (1, 0) and y x, the solution to the auxiliary equation may be
written in the form yx(t)=x(t)=a+.O(e)where a is a constant. To find an a and e
such that the conditions of Theorem 5.3 are satisfied we calculate H(a, e) from
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equation (5.1). Hence
27r

H(a, e)= fo V(t)g(t, y(t), y’(t)) dt

2-,r

fo e()+ (a2 + O(8)) sin2 dt.

So H(a, 0)= rrce 2- 2rr and OH(a, 0)/0a 2rra. It now follows from Theorem 5.3 that
for a +/-/ and e small we have a 2rr-periodic solution to equation (6.1) of the form
x(t) +x/+ O(e ).

Example 2.

(6.2) x" +o.2x e{(1 x2)x’ + ao.-x"+ bo.(cos (o.t + a))}.

We are interested in 2rr/o.-periodic solutions. Here, p 2 and q 2. Equation (6.2)
can be written as the system

Y’= -o-2 0
y +eg(t’y’y’)’

0 1
y(0)+

0 -1
y(2r/o.)=0,

where y and g are defined as usual. For this system

U(t)= (sin o.t cos o.t

\o. cos o.t -o. sin o.t/

and we may take

V(t)[o. sin (o.t + 0o) cos (o.t + 0o)]
cos (o.t + 0o) -sin (o.t + 0o)]

where 0o will be defined later. The solution to the auxiliary equation has the form
x(t)= Clo.-l sin (o.t)+Czo.-l cos (o.t) or x(t)= A(e)o.-l sin (o.t + O(e))+ O(e) where
A (e) Ao + O(e) and 0(e)= 0o + O(e). In this problem we have

2r/o"

HI(A, 0, e)= f {(1-A2o.-2 sin2 (o.t+O))A cos(o.t+O)+bo, cos (o.t +a)
a0

aA sin (o.t + 0)} cos (o.t + 0o) dt,

w77-
HI(AO, 0o, 0) 3{Ao3-4Aoo’2- 4bo.3 cos (a 0o)},

2r/cr

H2(A, 0, e)= f {...} sin (o.t + 0o) dt,
a0

Hz(Ao, 0o, 0)=
-rr

{aAo + bo. sin (a 0o)},

OH(Ao, 0o, 0)=
(3A2 + 4.2)

0(a, 0) -rr
(a)

--rr
(_4bo.2 sin (a 0o))

4o-3- (-b cos
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Now H(ho, 0o, 0)= 0 has a solution when a << b and b << 1 of the form 1o2 4o.2 and
Oo’=-a. For these values of h0 and 00 the Jacobian determinant becomes a nonzero
term times

3Ao2 + 4o.2- 4ao. tan (a -0o) 16o"2.

Hence for o. different from zero, a << b and b << 1, then it follows from Theorem 5.3
that equation (6.2) has a 27r/o.-periodic solution of the form x(t)=
A (e)o.-1 sin (o.t + 0(e))+ O(e) where h (e)- 2o. + O(e) and 0(e)= a + O(e).

(6.3)

Example 3.

0 1 0 /f(t,y,y,),y’= 0 0 y+e{f(t,y,y,)0 0 \f3(t, y, y

o o y(0)+ o
1 0 0 0

y(1)= 0.

Here, p= 1 and q 1. For this system we have U(t)=col (e’, e t, e t) and v(t)=
(-1, t, 1- t). The bifurcation equation has the form

H(ce, e)= ]o {-fl(t, x*, x*’)+ tf2(t, x*, x *r)

+ (1 t)f3(t, x*, x*’)} dt.

If it happens that fx =f2 =f3, then we have H(a, e)--0, and in this situation, for each e
small, we have a one parameter family of the form x(t)= col (ce t, ce t, cet)+ O(e)where
[c O and this family is a solution to equation (6.3).

Example 4.

x" + x el(t, x, x’, x"),
(6.4)

x’(0) x’(2).

This boundary value problem can be written as the system

Y’= -1 0
y +eg(t’y’y’)’

(0, 1)y(0)+ (0,-1)y(2)= 0

where y and g are defined as usual. For this system

U(t)= (sin cos t
xcost -sint]

and V(t)= (sin t, cos t). This example is nonselfadjoint and in fact p and q are not
equal, i.e. p 2 and q 1. The solution to the auxiliary equation is of the form.
x(t)= sin t+ cos t+O(e). Here

H(a, e )= cos f(t, x, x’, dt.

If f g cos with g(t, x, x’, x") 0 and not identically zero, then H(a, e) 0 and there
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would be no solutions to the boundary value problem (6.4). However, if ’(t, x, x’, x")=
3x + sin t, then

H(a, 0)= (37r/4)(a 2a2 + a),
OH(a, 0)/0c ((37r/2)c1a2 (37r/4)(c + 3ce22)).

If c 7(: 0 and O2 0, then H(a, 0) 0 and OH(c, O)/Oa has maximal rank 1. Hence, by
Theorem 5.3 the boundary value problem (6.4) has a solution of the form x(t)=
a sin + O(e) where a 0.
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many useful suggestions made by the referees.
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EXISTENCE AND APPROXIMATION OF
WEAK SOLUTIONS OF NONLINEAR DIRICHLET

PROBLEMS WITH DISCONTINUOUS COEFFICIENTS*

JOSEPH W. JEROMEt

Abstract. The Dirichlet problems discussed in this paper arise when implicit time approximation
methods are employed in perturbed two-phase Stefan problems. The discontinuity in the enthalpy h across
the free boundary interface of the two phases appears in the Dirichlet problems as a term h (U), where h is
discontinuous at 0. Two major results are presented, viz., an existence theorem, making use of pseu-
domonotone operators, and an approximation theorem, utilizing solutions U of appropriately smoothed
Dirichlet problems corresponding to smoothings h of h. In the special case of homogeneous boundary
conditions, an alternative approach, making use of results of Brezis-Strauss together with "a priori"
estimates and Leray-Schauder degree theory, gives existence of solutions.

1. Introduction. In this paper we demonstrate the existence and approximation
of weak solutions U of nonlinear Dirichlet problems, on bounded domains l) c Ru, of
the form

(i)
(1.1)

(ii)

LU+h(U)+g(U)3f,

U W EH([), W EH1(),
where L is a (formally) self-adjoint elliptic operator of second order determining a
strongly coercive quadratic form on H(f), h is a monotone increasing function,
discontinuous at 0, g is a certain Lipschitz function, not assumed convex or monotone,
and f /-/-1(1). The precise hypotheses are presented in 2. We note here that g is
assumed to admit the decomposition g =g+g2, where g(h)h =>0 and [[g2llLip is
strictly less than the smallest eigenvalue of L.

Our interest in such problems arose directly from attempts at constructing weak
solutions of free boundary diffusion equations which possess discontinuous diffusion
coefficients. Specifically, if we consider the two-phase Stefan problem,

(1.2)
Ot
---V. (k(u)Vu)+a(u)=L

on a space-time domain f (0, To) with prescribed initial and time invariant boundary
conditions, and prescribed enthalpy discontinuity across the free boundary, where the
diffusion coefficient k is a positive function with compact range closure in (0, oe) which
is discontinuous at 0 and a is a certain body heating Lipschitz function, then the
Kirchhoff transformation,

U=K(u) k(A) dA,

transforms (1.2) into the form,

(1.3) Oh(U----)-AU +g(U)=,
Ot
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Illinois 60201. This research was supported at Oxford University by a grant from the British Science

Research Council and by National Science Foundation under Grant MPS74-02292 A01.
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where h’(A)= 1/(k(K-I(A))), A 0, and h has a prescribed (enthalpy) discontinuity at
0; g satisfies

g(A)=a(K-I(A)).

If an implicit time discretization is employed in (1.3), one obtains the (finite) sequence,

(1.4) [h(U.+I)-h(U.)]/At-AU.+ +g(U.+)=f,

of nonlinear elliptic boundary value problems where U0 K(u0) is specified. Equation
(1.4) is of course a special case of (1.1) where L =-A. It will be shown in the paper,
[9], and has already been announced in the survey paper [7], how a weak solution of
(1.3), in the sense of Oleinik [12], can be approximated by Hl(f)-valued piecewise
linear or step functions constructed from the solutions of (1.4).

Our major results are Theorem 2.2 which states that solutions of (1.1) exist and
Theorem 2.4 which states that such solutions can be approximated by solutions of
certain smoothed problems. In the applications to nonlinear equations of evolution,
we see that (1.4) has a unique solution for an arbitrary Lipschitz continuous function
g, provided At <_-[]]g][LipSUp k]- Theorem 2.4 is essential to the derivation of stability
relations satisfied by the solutions of (1.4) (cf. [9, Thm. 3.1]).

Our methods of proof make use of the theory of pseudomonotone operators, as
developed by Brezis [4], for the proof of Theorem 2.2 and "a priori" estimates,
derived by application of the Brouwer fixed point theorem to eigenspaces of L, for the
proof of Theorem 2.4. Such estimates permit, via Galerkin approximation of the
smoothed solution, the determination of a fixed sphere in H0(l), which contains a
solution of the smoothed problem for each value of the smoothing parameter. Any
weak limit point V of this family satisfies the property that U V + W is a solution of
(1.1); the chief technical difficulty here is the definition of h(U) on subsets of f on
which U vanishes.

If g is a convex, monotone increasing function then, at least in the .case of the
smoothed problem it is known that the growth restriction, that g be Lipschitz on R,
can be relaxed. The methods here make essential use of the maximum principle. See,
e.g., Parter [13], Keller [10] and Schryer [16]. These approaches would not appear to
be successful, however, in the general unsmoothed case.

Another standard approach to nonlinear elliptic boundary value problems is the
method of linearization, or effective linearization, combined with duality. An example
of this approach is furnished by Rosenzweig [14] who considers the Sobolev Banach
spaces, thereby handling polynomial growth for g. This requires, however, coefficient
regularity not satisfied in the present problem. It is possible, though, that this ap-
proach, when combined with smoothing, could prove successful in certain cases.

We note that the results derived in this paper are valid for an arbitrary bounded
open set in RN; this general approach has been motivated by the book of Lions [11]
(cf. also Dubinski [5]).

2. The major results. Let be a bounded region in RN, N => 1. The Sobolev
Hilbert spaces HI() and Hd(fl) will have their usual meaning as the completion of
C() and C(), respectively, in the norm determined by the inner product

All functions are real-valued and H-a() is the (topological) dual of H().
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We shall consider symmetric linear elliptic operators L of second order of the
form,

(2.2) L (-1)l’lD’(ao,tDt),
o=<1,,1=<1
0--<1/31----1

where at L(lq), 0_-< Ice I, ]/31-<-1, L is understood in the sense of distributions and
where it is assumed that the bilinear form B(., .) on Hi(O),

(2.3) B(u, v)= f , ao,tD’uDt3v,
0_-<1,,1_<-1
0=<lt31=<l

is a symmetric bilinear form which determines a norm on H(O) equivalent to that of
the Sobolev norm:

(2.4) C(u,u),l<=B(u,u), forallu6Hd(f), forsomeC>0.

From (2.4) and the fact that B(.,.) is a continuous bilinear form on H0(f) we
conclude, by a standard application of the Lax-Milgram lemma [2, p. 30], that L is a
continuous bijection of Hd() onto its dual H-I() given by, for each fixed v

(2.5) (Lv, u) B(u, v), for all u

Denote by/ the restriction of L to D L-l(L2(12)). Then, for all v D,

(2.6) (v, U)L B (u, v), for all u H(D,).

Equation (2.6) follows by another application of the Lax-Milgram theorem to the
continuous linear functional (f, )L on Hd(12), where f L2(O). The identity,

B(-if,/-if) (f, --lf)L,
together with (2.4) and the Schwarz inequality, show that/_-.- is a continuous mapping
of L2(-) into Hd(O). Since the injection Hd(2)-.L2(f) is compact [1, p. 99], it
follows that -1 is compact when viewed as an operator from L2([) into itself. We
summarize this as

LEMMA 2.1. The restriction ofL-1 to L2(O) is a compact linear operator on L2().
It follows from (2.4), Lemma 2.1 and the spectral theory for symmetric compact

operators that -1, and hence /, has a complete orthonormal sequence of eigen-
functions in L2() which are orthogonal and complete in H(12). This standard fact is
documented, for example, in [8, Thm. 3.2].

Now let h be a strictly monotone function, discontinuous at 0, defined by,

(i) h’(A) 0(A), A 0,

(2.7) (ii) h (0+) h (0-) b > 0,

(iii) h(0-) 0,

where 0 is a positive function with compact range closure in (0, oo) which is continuous
on R -{0} with positive right and left hand limits at 0. h defines a bounded operator H
from L2(f) into L2([) by

Hf(x) h(f(x)), x Ft.

Here it is understood, and this is important for the sequel, that h (f(x)) is any value in

1L is defined precisely by (2.5)
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[0, b] such that h f is measurable if f(x) 0. With this convention, Hf is measurable
and, in particular, square integrable if f is. Also, H is a strictly monotone operator on
L2(fl)

(2.8) (H(f)-H(g), f- g)z?- >= O,(f g, f- g)z.2,

where 0 < 01 inf {0(A)’A R {0}}. Finally, H defines a mapping from Hl(f) into its
dual upon identifying L2(f) with its dual. In this case,

(2.9) Hi(a) c L2(O) c (Hi(a))’,

where the injections are dense and continuous, and

(H(u),v)=(H(u),v)L.
Now let g be a Lipschitz function on R of the form,

g gl + g2,

where g satisfies the condition,

(2.10) gl(a)A =>0, h 6R,

and where g2 satisfies a Lipschitz condition,

(2.11) [g2(x) g2(Y )[ -< C2[x y [,

(2.12) 0 <= C2 < C + 01

where C is the constant of (2.4). The hypothesis (2.12) can be replaced by the stronger
hypothesis,

(2.13) 0 C2 < o) -I- 01

where w is the smallest eigenvalue of since o =< C. The mapping G given by

Gf(x) g(f(x)), x

defines a continuous mapping on L2(f).
DEFINITION 2.1. By a weak solution of the nonlinear Dirichlet problem for the

operator L +H+G for prescribed WeHI(f) and F H-I(f) is meant a function
U V + W, V Hd(12), such that,

(2.14) B(V, v)+(H(U), v)L+(G(U), v)L2=F(v)-B(W, v)

for all v 6 H01 (f). In particular, TV F B(W,.) Fo, where Tv Lv + H(v + W)
+ G(v + W) maps H0 (f) into 2H-’(n).

THEOREM 2.2. Under the stated hypotheses on , L, h, g and W, there is a solution
U of (2.14). U is unique if g =- O.

Our next result deals with the approximation of U by solutions of smoothed
problems. It is necessary in the derivation of stability inequalities (cf. [9, Thm. 3.1]) in

the analysis of nonlinear equations of evolution. We shall smooth the enthalpy
function h in a precise way to obtain a net fl of continuously differentiable Lipschitz
functions satisfying fl(O) O, j’ --> O1 and fl - h on R -{0}. Specifically, let

(2.15) 6, 10(0+)- 0(0-)1, 0o 0(0-)

and define 1 + 6, 6 > 0. Select 0 < eo =< 1 such that

10(e)- 0(0+)l <- 6/2 if 0 < e < eo.
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If

(2.16) el= min
60 36’

set e, min (e0, e 1). Henceforth, we restrict the smoothing parameter e to the inter-
val 0<e _-<e,.

Now let o) be defined by, for fixed e,

(i) o(A)=0(A), A<0, A >_-,
(2.17)

(ii) o)(A)=q(A), 0_<--A <=e.

Here q is the uniouely determined quadratic polynomial on [0, e ] defined by

(2.18) q(0) 0o, q(e)=O(e), q(A)dA=b.

A routine calculation shows that q is given explicitly by,

q(A)=qo+q +q;A ,(2.19)

where

(2.20)
qo 0o, ql 213b -2eOo-eO(e)]/e 2,

q2 {(0(e)- 0o)e 213b 2e0o- e0(e)]}/e 3.

We now define ] =/’ by,
A

(2.21) j(A)= Io o)(t) dt.

LEMMA 2.3. W is a continuous, positive Lipschitz function and j is a continuously
differentiable Lipschitz function on R satisfying

(2.22) j(A)A => O, A R.

Moreover, the nets {w oa} and {j =/’} converge uniformly on compact subsets of
R-{0} to 0 and h, respectively. Finally, q satisfies the inequality

(2.23) q(A) =>inf (0o, 0(e)), 0<A --<e.

In particular, j’(A) ->_ 01, / E R.
Proof. w is clearly a continuous Lipschitz function; the positivity of o2 will follow

from the inequality (2.23). We shall show that q is concave on [0, e ], i.e., q2 ---< 0. Using
the inequalities,

2b

=60o+36’ 0(e) =< 0o+36/2,

which, together with the inequality,

8b

we conclude that eq >= 4b/e. Thus,
2

e qz=[O(e)-Oo]-eql
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yields q2 0. Thus, q is concave and its minimum is achieved at one of the endpoints
of [0, e ], proving (2.23). The statements concerning ], including (2.22), are now clear
as is the uniform convergence of toe to 0 on compact subsets of R-{0}. To prove the
uniform convergence of {] j }, let A c R -{0}, A compact. Since j agrees with h on
(-oo, 0), we may assume A c R +. Choose e so that (0, e)A Q. Then, for 6 A, we
have

h(t)-](t) [b+ fo 0(A)dA]-[I0 q(A)dA+ I 0(A)dA

o(x)dz

which can be made arbitrarily small if e is sufficiently small. This completes the proof
of the lemma.

Note that a mapping J J, continuous on L2() and HI(fD, is determined in the
usual way by j. Consider the mapping T" H(Y)--> H-I(fD given by,

(2.24) Tv Lv +J (v + W) + G(v + W), Ju j (u ).

THEOREM 2.4. Given F0H-I(), there is a sphere H(), with radius
independent of 0 < e <-e., such that contains at least one solution V of the equation
TV Fo. For any sequence e-0, there is a subsequence ej such that Vvj- V in
L2(fD and Jv(V + W)

3. Existence anti a priori estimates. We begin this section by furnishing a proof
for Theorem 2.2.

Proof of Theorem 2.2. The mapping V-AV H(V+ W) is a (multi-valued)
maximal monotone operator from H(fD into 2L2(a (and thus into 2u-l(a)). Indeed, A
is the subdifferential A 0q of the finite-valued continuous, convex tunctional,

(V)= Ia l(V(x)+ W(x)) dx;

here is the (convex) primitive of h satisfying l(0)= 0. But the subdifferential of any
lower semicontinuous proper convex functional is maximal monotone, so that A is
maximal monotone.

We claim that the operator

VBV=LV+G(V+ W)

is pseudomonotone from H01(fD into H-I(YD, i.e., B satisfies,

(3.1i) B is bounded;

(3.1ii)

V/-- V in Ho1() and lim sup (B V/, V/- V) -< 0

:ff liminf (BV, V Z) >- (BV, V-Z) VZ

Indeed, L is a continuous linear mapping of Hd(f) into H-(f) and G is a bounded
mapping of H() into L2() and hence into H-(I)) so that (3.1i) holds. Because of
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the compact injection of H0(f) into L(), we have even the stronger implication,

(3. liii)

V/- V in H() and lim sup (B V/, V/- V) =< 0

V V in Ho(a),

which clearly implies (3.1ii). To verify (3.1iii), note that

lim sup (BV, V V) _-< 0= lim sup (LV, V V) -< 0

since G(V + W)-, G(V + W) in L2(f); moreover, it follows from (2.4) and (2.5) that

lim inf (LV LV, V V) >= O,

and hence that

lim inf (LV, V V) => 0.

Altogether, then, limi_o (LV, V- V)= 0, so that limi_oo (LV-LV, V- V)= 0, i.e.,
V-+ V in H(O). Thus, B is pseudomonotone. Now A +B is coercive by (2.10)-
(2.12):

(aV +BV, V) c[]Vllff--/l(l’) [ + b (meas ’)l/2][[V[[L2(I),
where c and C are given by (3.2) and (3.10) below. We omit the details because of the
similarity to Proposition 3.1. The surjectivity of A+B now follows from [4,
Thtorbme 1], where it is proved that the coertive sum of a maximal monotone and
pseudomonotone operator is surjective.

If gl =0 and U and U2 are solutions of (2.14) then, with U1- U2 U t Ho(),
O=(H(Ua)-H(U2), U)m+B(U, U)+(G(U)-G(U2), U)m)
> (c ca / 01)}luII 2

In particular, U 0 and uniqueness holds. This completes the proof of Theorem 2.1.
We begin the analysis of "a priori" estimates with a uniform coerciveness esti-

mate.
PROPOSITION 3.1. Let T be defined by (2.24). Then there exists a constant C,

independent of e, such that

(3.2)
(T(v),v)

[[)[[H1 C[[)[[H1-- fO all v e H(12),

where c is given explicitly by

c =rain (C, C + 01- Ce).

LEMMA 3.2. There exists a positive constant Co such that

(3.3) O<q(t)<-_Co/e, forO<-t<=e,

and, for v H(), we have

(3.4) [(j(v -1- W)-j(/.)),/))L2[ CI([[W[[L + [meas -]l/2)[[D[[L2
where

(3.5) C1 max (Co, sup (O(t)’t R -{0})); here j =j.
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Proof of Lemma 3.2. Condition (3.3) follows immediately from (2.20). The
verification of (3.4) involves the estimation of Ij(v(x)+ W(x))-j(v(x))[ for x fixed in
12. A careful distinction of cases with respect to the location of v(x)+ W(x) and v(x),
relative to the interval [0, e ], yields the estimate

(3.6) I(v(x) + W(x))-y(v(x))l <- c,( +lW(x)l).

Here we have used the fact that, for any 0--< t2 < tl --< e, the estimate

[j(tl)_j(te)]=
j(tl)-j(t)

(tl-te)
tl-te

<-_(Co/e)e =Co
holds. Condition (3.4) follows immediately from (3.6).

Proof of Proposition 3.1. To verify (3.2), note that

(T(v), v)=[B(v, v)+(](v), v)L2+(gz(v), v)L2]+(gx(v), v)
(3.7)

+(j(v + w)-j(v), v)+ (g(v + w)-g(v), v),.

Now the last term is estimated similarly to (3.4)"

(3.8) I(g(v + w)-g(), v)=l =llwll-Ilvll=,

if C2 is a Lipschitz constant for g. Noting the obvious consequence,

(3.9) (gl(v),v)c2>-O,

of (2.10) we have, altogether, from (2.12), (3.4), (3.8) and (3.9), the inequality (3.2)
where C is given by

(c + c,)llwll + [meas ’-]1/2(C1 --This concludes the proof of Proposition 3.1.
Let S be any finite dimensional subspace of Hd(12) and let P be the projection

onto S which maps an element v in/-/d(fD onto the unique element Pv u in S, which
is closest to v in the norm [B (-, )]1/2:

(3.11) [B(v -Pv, v -Pv)]l/2=inf [B(v-s, v-s)]1/2.

Pv is uniquely determined since the norm [B(., .)]1/2 is strictly convex; in fact, with
the inner product B(.,.) the set /-/d(O) is a Hilbert space which uniquely defines
projections onto closed subspaces. Now we define the continuous mapping
pt. H-I(I)) H-I(fD by

(3.12) (PtF, v>= (F, Pv>, v H(O).

If {S,} is the seque,nce of finite dimensional subspaces of H() spanned by the first n
eigenfunctions of L, we denote the corresponding induced projections by {P,,}.

The coerciveness inequality of Proposition 3.1 plays a fundamental role in the
following. S’ denotes the dual of S in the sequel.

PROPOSITION 3.3. Let S be a finite dimensional subspace of Hd(I)) and let P be
defined by (3.11) and pt by (3.12). Then the mapping ptTp has the property that, for a
fixed Fo6H-I(fD, there is a ball of radius r=r(T, W, Fo) in Hd(12) containing a
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solution s of the equation

(3.13) ptTPs P’Fo
with the property that r does not depend upon e nor upon S.2

We shall have need of the following lemma [11, p. 53, Lemma 4.3].
LEMMA 3.4. Let F be a continuous mapping of real Euclidean space R into itself

such that, for some p > O, one has

(3.14) (Fsc, )R" ----> 0, for all such that I[ P,

where, for (SOl, ., sc,), r/= (’Ol, ", "Ore),

(3.15) Z
i=1

There then exists R ", I1 <= P, such that F O.
Proof ofProposition 3.3. Let Foe H-I(O) be fixed and define the mapping A: S

S’ by

(3 16) Av P’ Tv -PFo, vS.

The assertion of Proposition 3.3 requires that there exist v S for which Av 0. Now
if the dimension of S is m, then A induces a mapping F of R" into R" as follows. Let
s 1, , s,, denote an orthonormal basis for S and let : R". Then s im__ :iS e S if
(As)(&) rt, i= 1,""", m, define F .

Now,

(3.17) (r:, )R" (A(s), s) (T(s), s)-(Fo, s),

and by the orthonormality of the basis, we have

Ilsll, ,, s
i=1

Thus, we obtain from (3.17), (3.18) and (3.2),

which is clearly nonnegative if

(3.19)

Now the continuity of T implies that of A, which in turn implies the continuity of F. It
follows from Lemma 3.4 that there exists R", I 1-<0, such that F 0. Here p is
given by (3.19). By construction, As 0 where s is given by (3.18). s is a solution of
(3.13) and IlSllg ----<0- If we set r(T, W, F0) O, Proposition 3.3 follows.

PROPOSITION 3.5. Given Foe H-l(f), there is a solution V of the equation

(3.20) TV =F0,

satisfying IIgllg <--0. Here O is defined by (3.19).
Proof. Let be the closed ball of radius p in Hd(f) centered at 0 and let S, be

the sequence of eigenspaces of L. Now denote by O 6 S the solution in , guaranteed
by Proposition 3.3, satisfying

(3.21) P,Fo.

2It follows from Proposition 3.1 that every solution s lies in the ball of radius r.
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Since is weakly compact and since the injection H(f)L2(-) is compact, there is
a subsequence qnk satisfying, for some V

(i) 4--V (inH(12)),
(3.22)

(ii) q,-- V (in L2(I))).
Now L is a continuous linear mapping of Hd(f) onto H-(f) and hence weakly
continuous [6, p. 422]. Thus Lh,---’LV. J and G are continuous mappings on L2();
thus,

(J +G)(d/,,,,)--.(J +G)(V) (inL2(l)))

and also in H-I(f), under the usual definition,

((J + G)(u), v)= ((J + G)(u), v)L2.

In particular, T,,,, TV in H-I(f). It remains to show that Tnk-Fo--’0. Now
(Tq,,,,, Fo, P,,,,v) 0 for all v H0 (f). Thus,

(3.23)
<Tq,.-Fo, v)=B(6., v-P.v)+(J(4,. + W), v-P.v),

+(G(4,. + W), v-P.v),-<Fo, v-P.v>.
Now the term B(qn, v-Pnv) is zero by the projection theorem; also

(3.24) [Iv P,v[IH’ 0

by the completeness of the eigenfunctions. It follows from the identification of Hd(f)
with its second dual and from (3.23), (3.24) and the boundedness of the mappings J
and G that T0k---F0. Equation (3.20) follows and the proposition is established.

Remark. We note that Proposition 3.5 establishes the first part of Theorem 2.4.
The remainder is established in the following section.

4. Convergence o[ the smoothing approximations. It is the main purpose of this
section to prove the convergence properties described in Theorem 2.4.

Proof of Theorem 2.4. Since the solutions V, 0 < e _-< e. of (3.20) form a bounded
set in H(O), there is a sequence V, satisfying

(i) VV (in H()),
(4.1)

(ii) V.. V (inL2()).
We may assume without loss of generality, that V. converges pointwise a.e. to V by
taking a subsequence if necessary. Now for each e,

(4.2) J.(V. + W) Fo-LV-G(V. + W)

and the right hand side of (4.2) is weakly convergent in H-(O) by the weak continuity
of L and G. The sequence defined by the left hand side of (4.2) is bounded in L2();
indeed by (3.6) we have

Thus, there is a subsequence weakly convergent in L2(O) (and hence in H-(O)) to an

L2(O) function not depending upon the particular subsequence chosen since the entire
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sequence J.(Vv + W) is weakly convergent in H-’(12) as remarked above. In parti-
cular, by choosing subsequences if necessary, we may assume (4.1) together with

(4.4) J(U.)--" Y (in L2(12));
here we have written U V. + W.

Now let 1)0 {x e f" U(x) 0}, U V + W. We shall show that

(4.5) Y(f0) c [0, b ],

up to sets of measure zero. Indeed, if (4.5) fails to hold, there is a set f, c0 of
positive measure satisfying

(4.6i) Y(x) >- b + 3‘, x 1),

for some y > 0, or

(4.6ii) Y(x) <=-3’, x ,.
uniformly

We may assume, using Egoroff’s theorem if necessary [15, p. 72], that U 0
on ,. Suppose that (4.6i) holds and let be the characteristic function of 12,. Then
J(U.) is weakly convergent in L2(’) to YI and, by the lower semicontinuity of
the norm with respect to weak convergence [6, p. 68] we have

+ 3"]2[meas 12,] <= f y,]2 <= lim inf f [J.(U.),]2,[b

and, by an analogue of the Fatou lemma [6, p. 172], we have

lim Ia [J"(U)]2=limsupla [J(U")]2

<= l lim sup [J. (U..)]2

_-< b 2[meas

since lim sup_oo [J.(U.)]2 -<_b 2 on 12,; this holds since U. is convergent to 0 on 12,.
This contradiction establishes (4.5) in the case of (4.6i). If (4.6ii) holds then

-3"[meas ,]_-> Ia Y*= -olim Ia [J(U)] >-- 0

since lim inf_.oo J.(U.)>-0 in 12,. This contradiction completely establishes (4.5).
Recall that, on the set 120, we may define H(U)(x) to be any value in [0, b]. We

formally set

Y(x), x a0,
(4.7) H(U)(x)=

h(U(x)), x

Now, by (4.2) and (4.4), we conclude that

(4.8) Y Fo LV G(U).

Thus, to establish the equation,

(4.9) TV LV +H(U) + G(U) Fo
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it is necessary and sufficient to show that

(4.10) Y(x) h(U(x)), x f-12o.

We shall verify (4.10) by proving that Jv(Uv) is weakly convergent in L2(--o)
to H(U) which, by (4.4), must coincide with Y on f-0. Thus, defining

A,, {x f ao" U.. (x 0},

we have, for fixed p L2([ -o),

(4.11)

where

[H(U)]q [H U) H U.)]q

0
%(x)=

h(U(x))-j.(U.(x))
if U.(x) O,
if Uv(x) O.

Now meas (A)- 0 as v - oo since U converges in L2() to U. In particular, the first
term on the right side of (4.11) tends to zero. To see that {-} is weakly convergent to
zero in L2(’-o), note first that - converges pointwise to 0. If x e f-o is a point
such that U,(x) is convergent to U(x), then U,.(x) 0 for all sufficiently large v; say,
U,(x) lies in an open interval r containing U(x) and bounded away from 0 for v _-> u0.
By Lemma 2.3, ] converges uniformly on the compact set 8 to h; in particular, ’(x)
converges to zero. Thus, we may conclude from the Lebesgue dominated convergence
theorem [6, p. 151] and the monotonicity of h and/’v, that the adjusted functions o’,

[G(x)-g(x)l<=,
r(x)

0 otherwise,

are convergent to 0 in L2(-f0). In particular, we obtain from this and from the
inequality,

where

the required limit,

[h (Uv) -L.(U.)]q

B.={x za-ao’lG.(x)-U(x)l> },

(4.12) lim | -q 0,

since measure (By) - 0 and since the sequence h (U.) -].(U.) is bounded in L2(). If
we define {n} =L( o) by

x.(x)
0 if G.(x)=0,
h(U(x))-h(G(x)) ir G.(x) # 0,

then the second term on the right side of (4.11) assumes the form a-ao x. An
argument virtually indentical to that for {} shows that {x} is weakly convergent to
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zero in L2(--o), i.e.,

(4.13) lim f xvq =0.

Conditions (4.11), (4.12) and (4.13) now give the required weak convergence of
J,(Uv) to H(U) in L2(11-120). In particular, Y =H(U) and it follows that U is a
solution of (2.14). The theorem follows from (4.1) and (4.4).

Remark. The referee has observed that a solution to the problem with W 0 and
fEL2() can be obtained as follows. For fixed v EL2(’).) define u T(v)H(I)) as
the solution to Lu + h(u) f-g(v) (cf. Brezis-Strauss, J. Math. Soc. Japan, 25 (1973),
pp. 565-590). A priori estimates of the form,

together with the compactness and continuity of T permit application of the Leray-
Schauder degree theory and thus a fixed point for T.

Acknowledgment. The author expresses his gratitude to Haim Brezis, who
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this existence result from the approximation resu.t of Theorem 2.4; and to the referee,
whose careful reading of the manuscript and subsequent recommendations effected
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A STIELTJES INTEGRAL FORMULA FOR DANIELL FUNCTIONALS*

JAMES D. BAKER? AND JAMES A. DYERS

Abstract. For the quasi-continuous function on a closed interval, the Daniell functionals are the
left-Cauchy integrals which have nonincreasing, nonnegative, and left-continuous integrator functions.
Relative to the dual space, the subspace generated by the Daniell functionals is shown to be a projection
band and its orthogonal complement can be written as an interior integral with saltus integrator functions.

1. Introduction. A real valued function on [a, b] is quasi-continuous if it is the
uniform limit of a sequence of step-functions on [a, b]. This class of functions is a
Banach space with the supremum norm and will be denoted by QC[a, b].

A Daniell functional is defined to be a positive linear functional I on a vector
lattice of functions with the property

(D) lim I(fn) 0, where fl =>f2 => and lim fn 0 pointwise.

Since Stieltjes integrals are popular as representations for the bounded linear
functionals on QC[a, b], a similarity between these integrals and Daniell functionals is
suggested. A relationship exists between Daniell functionals and measure integrals via
Stone’s theorem, and while Stieltjes integrals are not, in general, measure integrals, it
is shown that the Daniell functionals can be characterized in terms of a special class of
Stieltjes integrals. This analysis also provides a foundation for studying the relative
structure of the subspace generated by the Daniell functionals with respect to the dual
space of bounded linear functionals on QC[a, b].

We conclude the introduction with an example of a non-Daniell functional. Let
[a, b] be a closed interval, g(t)= 0 if a-<t <b, and g(b)= 1. For f QC[a, b], the
functional U defined by U(f)=(L)fdg is positive and linear. The sequence of
functions f,=Xb-a/n,b) is nonincreasing with limnf,=0 pointwise; however
lim, U(f,) 1. Thus property (D) fails to hold.

2. Danieil functional representation. Our approach is to first show that QC[a, b]
is a Banach lattice ([6, pp. 224-236] and [7] can be used for background); to conclude
from this that the linear functional defining the Daniell functional is a bounded linear
functional on QC[a, b]; and to use a representation theorem for bounded linear
functionals on QC[a, b] to obtain the desired Stieltjes integral.

THEOREM 2.1. The space QC[a, b is a Banach lattice.
Proof. Most of the proof is straightforward, and we show only that the join

defined by f v g(x) max {f(x), g(x)} is quasi-continuous. Suppose e >0 and (a, b].
If f(t--)= g(t-), there is a 6 >0 such that if sr (t-6, t), then ]g()-f(t-)] <e and
If(’) -f(t-)l e. Either max {f(r), g(r)} f(r) or max {f(r)} g(’), and in either case,
If v g(r)-f(t-)[ < e. f f(t-) g(t-), let k min {e, If(t-)- g(t-)]}. There is a 6’> 0
such that if sr (t- 6’, t), then If(sr)-f(t-)l < k/3 and Ig(r)-g(t-) < k/3. Thus
max {f(sr), g(’)} =f(’)if f(t-)>g(t-) and max {f(sr), g(sr)} g(sr) if f(t-)< g(t-). In
either case ]fv g()-f v g(t-)l<e. Since a similar argument holds for f v g(t+) for

[a, b), we conclude that f v g QC[a, b ].
It is known that a positive linear functional on a Banach lattice is a bounded

linear functional [6, p. 239]; thus if I is a Daniell functional on QC[a, b l, then I is a
bounded linear functional on QC[a, b].

* Received by the editors December 11, 1975, and in revised form November 17, 1976.
? Honeywell Corporate Research Center, Bloomington, Minnesota 55420.
.?. Department of Mathematics, Iowa State University, Ames, Iowa 50010.
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We use the representation theorem for bounded linear functionals on QC[a, b]
given in [1]. It states that if T is such a functional, then there are unique functions c
and /3 of bounded variation on [a, b] with c-/3 vanishing except at a countable
number of points such that (see equation (1.1) of [1])

b

(A) T(f) f(a)fl (a) + Ja (a, ) dL

The b (a,/3) df is the refinement limit of the approximating sums

X {ce(ti-1)[f(,)--f(ti-,)]+(t,)[f(t,)--f(,)]}
i--1

where P {to < tl < < tn) iS partition of [a, b] and ’ e (t-l, t) for 1, 2, , n.
THEOREM 2.2. If I is a Daniell functional on QC[a, b], then there is a unique

nonincreasing, left-continuous function on [a, b with (b >= 0 such that
b

(2.1) I(f) f(b)(b)-(L) Ja
Proof. Using property (D) and proceeding as in [2] with the basis functions given

in [1], we have that c(t) =/3(t+) for t[a,b) and that/3(t) fl(t-) for t(a,b]. Thus,

(2.2) I(f)=f(a)(a)+lim {fl(ff--)[f(ffi)-f(ti-)]+fl(ti)[f(ti)-f(i)]}.
P i=1

Since /3 is left continuous, the limit term in (2.2) is (R)bfl df when /3 is a step
function. This is also true when/3 is a saltus function since f is bounded and/3 is the
limit in variation of a sequence of left-continuous step-functions. Then equation (2.1)
follows from the integration-by-parts theorem. When/3 is a continuous function of
bounded variation, we have from Theorem 2.2 of [1] that

b b

and for these conditions, the interior and left-Cauchy integrals are equivalent. Thus
(2.1) holds when/3 is of bounded variation. The requirement that be nonincreasing
with (b) nonnegative is necessary to insure that I be positive.

To show that the representation in (2.1) characterizes a Daniell functional, we
have the following result.

THEOREM 2.3. Suppose / is a nonincreasing, left-continuous function on [a, b]
with y(b) --> 0. Then

b

U(f)=f(b)y(b)-(L) I fdv

defines a Daniell functional on QC[a, b ].
Proof. The observation that U is positive and linear follows directly from prop-

erties of the integral. Suppose f1->-2->-"" and limnfn = 0 pointwise. For the case
where /3 is a step-function, let {a to<tl""tn b} be a partition of [a, b] which
contains the points of discontinuity of/3. If e > 0, choose N such that if n => N, then
]f,(ti)--f(ti)[<e/vb() for i=0, 1,-.-, n--1. Then

b b

(L) Ia fnd]--(L) Ia f
i=1

[fn(’i--1)--f(’i--1)][(ti)--(’i--1)] <E.
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For the case where/3 is a saltus function, let {/3,.} denote a sequence of left-continuous
step functions which converge in variation to/3. For each integer m, we have that
limn (L)baf,,d,.=(L)afd,. by the preceding argument. Since If,,l<--M for each
integer n, it follows that

b b

and we have that lim,, (L) iba f,dm =(L)[b f,d uniformly in n.
lim, (L) Iab f d/3" (L) ab f d/3. Thus, by the iterated limits theorem,

Similarly,

b b

For the case where/3 is a continuous function of bounded variation, the function f and
each function fn are measurable with respect to the measure /x(/3) defined on a

or-algebra of subsets of In, b] containing open intervals and singleton points with the
measure of an open interval defined to be the/g-length. Then

b

b

and the theorem follows from the dominated convergence theorem for Lebesgue-
Stieltjes integrals.

Theorems 2.2 and 2.3 along with Stone’s theorem identify a class of Stieltjes
integrals which have the properties of measure integrals. Also, analogous represen-
tations for the Daniell functional can be obtained in terms of right-Cauchy, interior,
and Young integrals by employing the integration-by-parts formulas in [8].

3. The dual space. In this section we consider the relative subspace of QC*[a, b]
generated by the Daniell functionals. First we show that this subspace is a lattice ideal,
then that it is a projection band, and finally, that its orthogonal complement can be
expressed as a Stieltjes interior integral. For background on these topics the reader is
referred to [7].

In studying the dual space, it is desirable to have an expression for the norm of
the functionals. It is not clear that the representation in equation (A) can be used for
this since

te[a,b)

and since there are functions a and/3 such that strict inequality holds. However, a
functional representation introduced in [2], [3] is sufficient. We begin by reviewing
some of these concepts and the reader is referred to [2] for details.

If X is a nonvoid set, a family, , of subsets of X is said to be a pre-algebra if the
null set belongs to , if is closed under intersection, and if differences of elements of

can be written as finite disjoint unions of sets in . A -volume is a finitely additive
set function on . Q(X, ) denotes the uniform closure of the scalar linear combina-
tion of characteristic functions of sets in . It is shown in [2] that if X is [a, b and is
the collection of open subintervals of [a, b ], singleton subsets of [a, b ], and 4 then real
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Q(X, ) is QC[a, b]. A -subdivision of X is a disjoint cover of X by nonvoid
elements of . The -subdivisions of X form a directed set when ordered by
refinement. It is shown in [2] that if b is a continuous linear functional on a Q(X, )
space then there exists a unique -volume,/x, of bounded variation such that

and

oh(f) q, fxf dl,,, Vf Q(X, )

t(E)=,/,(X), VE e’.

Here q denotes an arbitrary choice function of the nonvoid elements of , and the
p-integral, Ixfd is defined as the limit under refinement of the approximating
sums

q

E f((E,))tt(E),
i=1

where {Ei}7=1 denotes an arbitrary -subdivision of X. Thus the adjoint of any
Q(X, ) may be identified with the family of -volumes of bounded variation normed
with the variation norm. It is clear from the definition of the 0-integral that if a real
Q(X, .) space is ordered in the same way that QC[a, b] is ordered in this paper then a

bounded linear functional is positive if and only if the associated -volume is positive.
Throughout the remainder of this paper we will assume that X and are such that
Q(X, ) is QC[a, b] and we will identify QC*[a, b] with the space of -volumes of
bounded variation. The Daniell functionals can be characterized in this representation
in a fairly straightforward way.

THEOREM 3.1. A -volume Iz generates a Daniell functional on QC[a, b] if and
only if

a) /x is positive,
b) limt-,c- ((t, c))= 0, a <c _-<b,
c) limt-,c+/x((c, t))--0, a _--<c <b.
Proof. Let 4 denote the functional generated by/x. Then it follows that

lim/x((t, c)) lim (O((t,c)), a <c <-b,
tc tc-

and

lim X(,,c)(X) O, a < c <-- b, a <-X <- b.
t-

Hence if b is a Daniell functional it is easily seen that property b) holds. A similar
argument shows that property c) holds and property a) follows from the previous
discussion.

Conversely, suppose/x has properties a), b), and c). Define a real function g on

[a, b] by

/ /z ({t}) + /x ((t, b))+/z({b}), a_-<t<b,
(3.1) g(t)

({b}), t=b.

Then g is nonnegative and if a-<-s<t<-b it follows that g(s)-g(t) is equal to

/x({s}) +/x ((s, t)), since/x is finitely additive. Thus g is nonincreasing and since for any
-volume of bounded variation it must hold that

lira/x ({s}) 0, a < _--< b,
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it follows from property b) that g is left continuous. Thus by Theorem 2.3 the
functional defined by

b

c(f)=f(b)g(b)-(L) f,, f dg, f OC[a, b]

is a Daniell functional. Let t2 be the associated -volume. Then it follows that
b

/2((c, d)) -(L) I X(c,d)dg g(c+)-g(d), a <=c <d <=b.

Now it follows from property c), the properties of -volumes, and (3.1) that g(c+) is
Ix(c, b)+ Ix{b} and so we see that Ix((c, d)) is/2(c, d). A similar argument shows that
/2 ({t}) is Ix ({t}), a -< =< b and so Ix generates a Daniell functional. This completes the
proof.

Note that this theorem also relates the q-integral for a -volume satisfying the
conditions of the theorem to an ordinary left-Cauchy integral.

The characterization of Daniell functionals given in Theorem 3.1 makes the
characterization of their structure as a subset of QC*[a, b] a straightforward job. We
assume from now on that QC*[a, b] has been ordered with the canonical order
induced by the given ordering on QC[a, b]. We shall also identify Q*[a, b] with its
-volume representation whenever this is convenient.

Let D denote the linear subspace generated by the Daniell functionals. It is clear
that D is simply the set of differences of such functionals. Thus D consists of those
continuous linear functionals whose associated -volumes satisfy conditions b) and c)
of Theorem 3.1. It is possible to show by a straightforward argument that if Ix is a
-volume of bounded variation then relative to the canonical order on QC*[a, b]
is the indefinite variation of Ix. That is, IIxl is defined by

q

i=1

where the sup is taken over all -subdivision {Ei}7= of E. By an argument almost the
same as that used by Hildebrandt to prove Theorem 11.4.7 in [4] one can show that

and

lim [lIx(t, c)l-ltI(t, c)] O, a <c

lim [lIx(c, t)l-Il(t, c)] 0, a =<c <b.
t--c +

It then follows that if Ix is in D so is [Ix I- Also in view of the form of conditions b) and c)
of Theorem 3.1 it is easy to see that if v is a -volume of bounded variation and for
some Ix in D, Iv[ =< I 1; then v is in D. Consequently D is a lattice ideal.

Now suppose {Ixn}=l is a norm-convergent sequence in D converging to a
-volume of bounded variation, Ix. Let {bn}=l and b be the associated linear
functionals. Then if e > 0, and a < c =< b, there exists an n such that if < c

[Ix ((t, c))-Ix.((t, c)) [(X(t,c))--n(X(t,c))[

since IIx.,c)ll: 1. Consequently it follows that

lim Ix(t, c) 0, a<c<=b.
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A similar argument gives the same result for right hand limits in [a, b). Thus/x is
in D and D is closed. Since QC[a, b] is order complete we have shown the following
theorem.

THEOREM 3.2. Let D denote the set of all -volurnes of bounded variation such
that

a) limt-c- /x ((t, c)) 0, a <c =<b,
b) limt-c+/x((t, c))= 0, a =<c <b.

Then D is a band in QC*[a, b ].
This result together with Theorem 2.3 gives an alternative form for the theorem.
THEOREM 3.2’. Let D denote the set of all linear functionals qb on QC[a, b] such

that there exists a left continuous function g of bounded variation on [a, b such that
b

(f) =f(b)g(b)-(L) Ja ]:dg, X/ OC[a, b].

Then D is a band in QC*[a, b ].
It is also possible to characterize the orthogonal complement of D in terms of the

-volume representation for QC*[a, b]. Following Schaefer’s notation [7] we will
denote this complement by D+/-. A preliminary definition is useful for this charac-
terization.

DEVlNITION3 1 Ifa <t<bthen /XBR will denote the -volume defined by

/x BR({S }) 0, a =< s =< b,

1 [c, d),
a<=c<d<_b./XBR((C, d))=

0 otherwise

Similarly if a < < b then /.LBL will denote the -volume defined by

BL ({S}) O, a =< s --< b,

1, t(c,d],
a<c<d<=b./XBL ((C, d))--

0 otherwise

These -volumes will be referred to as -volumes of type B.
It is easy to show that if f is in QC [a, b] then

I/t f /BL f a < <= b,
a,b]

and

| fdlxR=f(t+), a <--t <b.
a,b]

Now if /z is any Daniell -volume and is in (a,b], then / ^L ({S}) is zero,
a--< =<b, and/x ^ BL((C, d)) is zero if is not in (c, d]. Let (c, d) be a subinterval of
(a, b) such that is in (c, d]. Then since/x ^/XL is finitely additive then

J/’/" ^/BL((C, d)), t d,
/z ^/ZBL((a, b))=

/d, ^ itLBL((C, t)), d,

but since /x ABL((,d)) is zero we have that in any case /x ^/XaL((a,b)) equals
/ A/BL((C, d)). Thus it follows that/x ^/BL a/ZBL for some a =>0. But/ ^/.LlL is in
D since D is an ideal and so it follows that a is zero Thus D-./-*BL is in A similar
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argument shows that /-/,BR is in D a --< < b. In view of this result and in view of the
functionals generated by -volumes of type B it is interesting to note that the
-volume Ixt associated with evaluation at t is in D. The -volume Ixt is given by

Ixt({s})=ts, a<-t<=b, a<=s<=b,

Ixt((c, d))= {1, (c, d),
0 otherwise.

Suppose that Ix is a nonnegative -volume. Throughout the remainder of this
discussion if a < <_- b we will denote lims_,t_ IX ((s, t)) by IX ((t-, t)) and if a <_- < b we
will denote lims_t/ Ix((t, s)) by Ix((t, t+)). These limits necessarily exist since the nets
involved are decreasing and bounded below by zero. Let S {ti}’=l be an arbitrary
point subdivision of [a, b ]. We will denote the family of all point subdivisions of [a, b
by and assume that the family is ordered by refinement. Define Ixs by the relation

p--1

b b t-
Ixs IX((a, a+))IXaR + IX((b--, ))IXaL+ Y’, [ix((t--, t))ixL+ ix((ti, t+))ixfiR].

i=2

The net {ixs}s is an increasing net and since for any Ixs, II  ll- s((a, b)) it follows
that if S’ refines S, [lixs’-Ixsl[ IIxs’(a, b)-Ixs(a, b)[. Also for any S it is easily seen that

p--1

Ixs((a, b))= Ix((a, a +)) + ix ((b -, b))+ Y’, [ix((ti--, ti))d-ix((ti, ti-I-))J=ix((a, b)).
i=2

Thus the net {/xs((a, b))}s is an increasing net of real numbers bounded above and
hence converges. Therefore {txs}s is a norm Cauchy net converging to a -volume

/Xl in D. Now suppose a < c -< b and S be a point subdivision to which c belongs. If is
between c and the predecessor of c in S then Ixs((t, c)) is equal to/x ((c -, c)), and thus

lim Ixs((t, c)) tx ((c-, c)).
t->

Therefore, since {ixs}s converges to Ix in norm it follows that

lim Ixl((t, c))= Ix((c-, c)),
t--

and consequently that

lim (ix Ix a)((t, c)) 0,
t--

A similar argument shows that

a<c<=b.

lim (IX --ixl)((t, C)) O, a --<c <b,
t->c+

and therefore we see that Ix-ix is in D. This implies the following result.
THEOREM 3.3. The orthogonal complement of D is the closed linear subspace

generated by the -volumes of type B.
The final theorem provides a representation for the functionals in D.
TIEOREM 3.4. If tr D +/-, then there exists a saltus function s on [a, b such that

b

r(t)=f(b)s(b)-(I) f fds,

for f OC[a, b ].
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Proof. Let err and rL denote the elements in QC*[a, b which correspond to/BR,
and /BL respectively. For 6[a, b], let /t //[a,t] and Pt X[a,t). Using equation (A)
with o==pt along with Theorem 2.2 in [1.], we have. that cr&(f)=
f(b)p(b)- (I) b f dot for f QC[a, b ]. Similarly, r[ (f) f(b)At(b)- (I) b fl d,t. Since
the elements in D +/- are limits in variation of a sequence made from linear combina-
tions of the functional O’R and O’L, the theorem follows by letting s be the function
corresponding to

Acknowledgment. We are pleased to acknowledge suggestions of the referee
which have led to many of the results presented in 3.
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THE LAURENT EXPANSION OF A GENERALIZED RESOLVENT
WITH SOME APPLICATIONS*

NICHOLAS J. ROSEt

Abstract. Let A, B be n n complex matrices and assume (A + AB)-1 exists for some complex number
A" then (A + AB)-1 has a Laurent expansion of the form Yk=-v OkA k with Q_v 0 valid in some deleted
neighborhood of h --0. Explicit formulas for the Ok are given. Expansions of powers of (A + AB)-IA are
also given. The expansions are used to obtain various characterizations of the Drazin inverse and other
inverses as limits. Finally the expansions, together with Laplace transforms, are used to solve the differential
equations A. + Bx 0 and A.f + Bx 0, where A may be singular, in the case when unique solutions exist
for appropriate initial conditions.

1. Introduction. Let C be the set of complex numbers and Cmn the set of rn n
matrices with elements in C. If A, B Cnn and A + AB is invertible for some it C,
then the elements of (A + itB)-1 are rational functions of it. Thus, for some r > 0 and
0 < [A < r, we have the Laurent expansion

(1) (A + itB)-I Z Okit k, O- : 0,

where the coefficient matrices Ok C"" are independent of it and are uniquely
determined by A and B. The nonnegative integer u is also independent of it and
uniquely determined by A and B. If u >0 then (A +itB)-1 has a pole of order u at
it =0. When B =/, the identity matrix, (A + M)-1, which always exists in a deleted
neighborhood of it--0, is often called the resolvent of A; thus (A+itB)-1 can be
considered a generalized resolvent.

In [5] Langenhop has characterized the Ok and u; however, explicit represen-
tations were not given. In 2 we present explicit expressions for the Ok and u as
functions of A and B. In addition explicit expansions for powers of (A + itB)-aA are
given.

Various limits involving the resolvent (A + M)-1 have been used by Ben-Israel
[1], Meyer [7], Langenhop [5], to characterize the index of A and various pseudo-
inverses of A. In 3 we obtain new limit theorems which generalize these results.

In 4 we consider the system of differential equations A +Bx 0 where A may
be a singular matrix. Using Laplace transforms and the Laurent expansion of the
generalized resolvent we shall derive the solution in the case when unique solutions
exist for appropriate initial conditions. This will reproduce some of the results in [3].
Finally in 5, we solve the second order system AY + Bx 0 where A may be singular,
in the case where unique solutions exist for appropriate initial conditions.

Our main tool will be the Drazin inverse of a square matrix. We briefly review
some relevant definitions and facts. Further information may be found in [2, pp.
169-180], [3].

If A C"" then the index of A, denoted by ind A, is the least nonnegative
integer u such that rank A=rank A+I (we assume A= I for all A). The Drazin
inverse of A C"", denoted by Ac’, is the unique matrix X satisfying (i) XA AX,
(ii) XAX-- X, (iii) Ak+x Ak for k ind A. In case ind A =< 1, A is called the
group inverse of A and denoted by A#. If ind A u then there is a nonsingular matrix

Received by the editors July 8, 1976, and in final revised form October 14, 1977.
t Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.
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T C"’ such that

where C is a nonsingular matrix and N is the nilpotent of index v. (If , 0, the N
block is missing and if A is nilpotent the C block is missing.) If A is represented as in
(2) then

(3) AD= T-l[ C-10 0]0 T.

The following facts about Drazin inverses will be needed:
1) AD is a polynomial in A.
2) AAD and I-AAD are idempotent.
3) If ind A ,>0, then (I-AAD)Ak =0 for kv but (I-AAD)A- #0.
4) If A,BC, AB=BA and (A+AB)- exists for some AC then

(I-AA)BB I-
The last result is in Lemma 1 of [3].

2. e expansion theorems. It is convenient to begin with the case when A and B
commute.

TzoazM 2.1. Assume A, B C, AB BA and (A + AB)- exists for some
h C; then there exists an r > 0 such that the following hold for 0 < Ih[ < r:

(4) (A+aB)-=A(I+aAB)-+a-IBO(-AA)(+X-AB)-,
-1

(A+Xm- =a 2 2
k=0 k =0

where ind A. (If O, the second term on the right of (5) is taken to be 0.)
Pro@ Since AB BA, the matrices A, A, B, B all commute. To prove (4) we

start with the identity

(6 (A +- (A+a,-laa
A direct calculation shows that the terms on the right of (6) are equal, respectively, to
the terms on the right of (4).

Since (I +hAB)-1 can be expanded in a geometric series (Neumann series) in
some neighborhood of A 0 we have

A(t-hAm- =AO 2
k=0

which is the first term on the right of (5). The second term of (4) involves
(I +A-AB)- which exists in a deleted neighborhood of h 0, but which cannot be
expanded in an infinite series in powers of A-AB. However, we can use a finite
geometric series plus a remainder

(7) (+h-IAB)-I= 2 (-)(AB)h-+(-1)a-(AB)(+x-ABo)-1

k=0

where we take ind A (we assume 0, otherwise A is nonsingular and the second
term in (5) is zero). Multiplying by A-B(I-AA) we find

2
k=0
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since (I- AAD)A 0. This is the second term of (5). If u > 0, the coefficient of A is
(-1)’-I(I-AAD)A’-I(BD). It follows from the proof of Lemma 1 in [3] that this
matrix is not 0 and thus (A + AB)-1 has a pole of order u at A -0.

We now consider the case when A and B do not necessarily commute. Let A0 C
be such that (A + AoB)-1 exists and let

(8) , (A + AoB)-IA, / (A + AoB)-IB.
The matrices and/ depend on ho and since fi + ho/ =/, and/ commute

THEOREM 2.2. Assume A, B Cnn and (A + hoB)-1 exists for Ao 6 C; then
(A + AB)- exists in a deleted neighborhood of h O, and in this deleted neighborhood
the following hold"

(9) (A + AB)- {AD(I + AAD/)-1 + h-’Ju(I AA’)(I + A-1A/D)-}
(A + AoB)-1,

(lO) (A+AB)-’= A (--1)k(U)kAk+U(I--fi,U) ., (--1)k(A/D)kA--k--
k =0 k =0

(A + AoB)-
where u ind and , are defined in (8). (If v O, the second term on the right of
(10) is taken to be zero.)

Proof. We rewrite (A + AB)- as follows:

(A + AB)-’ (A + AB)-’(A + AoB)(A +
{(A + AoB)-A + A(A + AoB)-IB}-(A + AoB)-(A + A)-’(A + AoB)-’.

Since fi and/ commute, Theorem 2.1 may be applied to (fi + A/)- to yield (9) and
(0).

The coefficients of the various powers of A in (10) appear to depend on Ao.
However, since the coefficient matrices are uniquely determined, different choices of
admissible values of A0 must yield the same coefficient matrices. A direct proof of the
fact that flD/, /D, D(A+AoB)-, D(A q_ AoB)-I and ind fi are independent of
A0 is given in [3].

For use in solving differential equations by Laplace transforms we need an
expansion which holds for large values of the parameter. Letting A z- in Theorem
2.2, we can easily prove:

COROLLARY 2.2. Assume A, B C and (zoA + B)- exists for Zo C; then
(zA + B)- exists for Izl > R for some R > 0 and the following hold for Izl > R:

(11)

(12)

(zA + B)-’ (AD(zI + ,D)-, +D(I AAo)(I + zAD)-I}(ZoA + B)-I,

(za+l-= (_(z--+(_Az (zo+-
where (zoA + B)-IA,/ (zoA + B)-B and u ind . (The second term of (12) is
zero if u 0.)

Returning to the case when A and B commute, we see that (A + AB)- exists then
(A + AB)-l exists for positive integral 1. A Laurent expansion is provided in the
following theorem.
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THEOREM 2.3. ff A, B C"n, AB BA and (A + AB)-1 exists for some A C,
then in some deleted neighborhood of h 0 the following hold:

(13) (A + AB)-1= (AD)I(I + AADB)-1 +(BD)I(I-AAD)(AI +ABD)-1,

(_kl) 1 (__kl) A(14) (AWAB)-I=(AD) E (ADB)kAkw(BO)I(I_AAD) (ABD) -k-

k =0 k =0

in A, i a ositi e l)whete p are the binomial coecients. (ff 0

the second term in (14) is taken to be zero.)
Proof. The proof follows the same lines as Theorem 2.1 except that the binomial

theorem is used in place of the geometric series.
If A and B do not commute, we note that the expansion of (A + AB)- in (10)

contains the term (A + AoB)- on the right so that all the coecients do not commute.
However, (A + AB)-A (+A)- and all the terms commute. We therefore can
write a formula for ((A + AB)-A) where is a positive integer.

THEOREM 2.4. ff A, B C"" and (A + AoB)- exists for A0 C, then, for posi6ve
integers l, (A + AB)-l exists in a deleted neighborhood of A =0 and the following
expansion holds:

k =0 k =0

where p ind and i 0 or , the second term on the right o (15) is zero.
Proof. ((A + IB)-A)= (( +I)-)/=(+I)-. We now apply Theorem

2.3 to obtain (15).

3. Linfit theorems. If A Cn" and is a positive integer, (A + AI)-l always exists
in a deleted neighborhood of A 0 and we may set B I in (14) to obtain

(16) (A+AI)-I--(AD) (__kl)(AD)kAk+(I+AAD) 1 (__kl)AkA_k_l
k =0 k =0

where u ind A. It is easy to see that (A + AI)-l is analytic at A 0 if and only if u 0
(A-1 exists). If u- 0, we may make (A + A1)-l analytic by multiplying by A or by
multiplying by A or by multiplying by A’Ap where m +p _-> u. Since A"AP(A + AI)-l

is analytic at A 0 if m +p _-> u, the limit of this expression will exist as A-0. The
following theorem is an easy consequence of these remarks and generalizes some of
the limit theorems in [1], [6], [7].

THEOREM 3.1. IfA E C and h C then:
1. ind A <-_ 1 (A# exists) if and only if (A + AI)-aA is analytic at h 0 and in this

case

lim (A + AI)-2A A#"

2. ind A is the least nonnegative integer ufor which (A + AI)-IA or A (A + AI)-l is
analytic at A 0 1, 2, ") in which case

lim (A + AI)-IA (AD)lA,
/

J "(A + AI)-/= { }(I- AAI)A ’’-+-"
A->0 \ /.,,’ 1 /
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3. if >= ind A then (A + AI)-l-1At is analytic at h 0 and

lim (A + AI)-I-1Al= A.
A0

THEOREM 3.2. IrA, B Cnn and (A + hoB)-1 exists for Ao C then (A + AB)-IA
is analytic at A 0 if and only if ind _-< 1 ( (A + AoB)-IA), and in this case

(17) lim (A + AB)-IA /D.
h-0

Proof. From equation (15) with 1 we see that (,A + AB)-IA is analytic at h 0
if and only if (I_O)/D 0. Using the fact that B (I-)h (we may assume
)to # 0) and the r.epresentation for given in (2), we find that (I-O)/D 0 if
and only if ind A -<_ 1. The limit in (17) follows easily from (15).

As a corollary of the above, we may present a limit suggested in Chipman [4] and
discussed in Ward [9].

COROLLARY 3.2. Let E Cp", F Cqn and assume that U (E*E + AoF*F)-1

exists for some )to>0; then (E*E+ AF*F)-IE*E and (E*E + )tF*F)-IE* are analytic
at )t 0 and

(18) lim (E*E + )tF*F)-1E*E UE*E)D UE*E)
AO

and

(19) lira (E*E+)tF*F)-IE*=(UE*E)DUE*.
A0

Proof. Let A E*E and B F*F in (17); then UE*E. Equation (18) follows
from (17) if we prove ind -_< 1. It is clear that U is Hermitian and positive definite.
Assume is singular and let x Cnl, x # 0, satisfy 2x (UE*E)Zx 0. Then

letting (x, y) denote the complex inner product for x, y Cnl we have with U1/2 the
positive definite square root of U"

0 U-ix, (UE*E)Zx) ( u1/ZE*Ex, u1/ZE*Ex);

thus U1/2E*Ex 0, xUE*Ex -0 and ind 1. To prove (19) we have, letting E
denote the Moore-Penrose inverse of E,

lira (E*E + )tF*F)-E* lira (E*E + AF*F)-aE*EE
h0 h-0

(UE*E) UE*E)E*
UE*E)o(UE*).

If we let F I in (19) we get the well-known result 1]

lim (E*E+ )tI)-E* (E*E)DE* E*.
A0

As is pointed out in Ward [9], the right-hand side of (19) can be considered a

"weighted" generalized inverse of E.
THEOREM 3.3. Let A, B and (A + )toB)- exists for A0 C and let J

(A+)t0B)-A. If is a positive integer and >-_ ind then

(20) lim ((A + AB-)A)
A0

Proof. This follows directly from Theorem 2.4. [-]

We remark that equation (20) shows that fi,D is independent of h0.
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4. Applications to differential equations. Consider the initial value problem

(21) A(t)+Bx(t)=f(t), 0--< t<oo; x(0) Xo,

where A, B C"n and x(t), f(t) Cnl for all t. We allow A to be singular and assume

f is sufficiently smooth. If a solution exists for a particular Xo, x0 is said to be a
consistent initial condition. In [3] it is shown that unique solutions exist for consistent
initial conditions if and only if (zoA + B)-1 exists for some Zo e C. Characterizations of
consistent initial conditions and an explicit formula for the solution are also given in
[3]. In this section we indicate how the solution may be obtained by a Laplace
transform method and the use of the Laurent expansion for the generalized resolvent.
For brevity, we consider only the homogeneous differential equation

(22) A +Bx 0, x(0) Xo.

Assuming solutions exist and possess Laplace transforms, we take the Laplace trans-
form of the differential equation to obtain

(zA +B)x Axo
where x is the Laplace transform of x.

The assumption that (zA +B)-1 exists for some z C ensures that (zA +B)-exists for Izl sufficiently large. Thus

(23) x (zA + B)-lAxo.
Using the expansion (12) we find

(24) x= AA"(zl+A")-I +A"(1-AA’) Z (-1)(A/")z Xo.
k=0

The Laplace transform x must approach zero as Re (z)-> oo [8, p. 340]. This is
the case if and only if

(25) fi I fifi xo O

If Xo satisfies (25) we are left with

(26) x AA(z+A)-’Xo
but, it is well-known that if A C"", (exp At) (zI-A)-; therefore

(27) x(t) AD e-atXo
However, since x(t) must be continuous we must have x(t)-+ Xo as t-+0; letting t->0 in
(27) we find

(28) x0 AAxo or (I-AA)xo o.
Note that (28) implies (25) so that consistent initial conditions are characterized by
(28) and if Xo satisfies (28), the unique solution is given by (27). I-]

If x0 does not satisfy (28) then (27) still provides a solution of the differential
equation but x(t) will not approach x0 as t->0.

5. Solution of A+Bx =0. We now consider the homogeneous second order
equation

(29) A+/-’(t) + Bx(t) O, 0 <= <,
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together with the initial conditions

(30) x(0) Xo, 2(o) Vo,

where A, B e C"", A may be singular and x(t) e C". Assuming a solution exists and
possesses a Laplace transform we find

(31) (z2A +B)x A(zxo + Vo).

We assume that (zgA + B)-1 exists for z0e C; this ensures that (z2A + B)-1 exists for
sufficiently large. Thus

.oX (z2A + B)-ln(zxo + Vo).

Letting =(zgA +B)-aA,/ =(zgA +B)-IB, we find using (12) that

(32) 5x (z2I +A)-1(ZXo+ Vo)

providing Xo satisfies

(33) (I-/)/DXo 0 and (I-D)lvo O.

From (32) we obtain

(34) 1 (22 (AD/)(AD)2
4 "[ 6 -Jr-" (ZX0 -1-

Z Z

We may take inverse transforms of (34) term by term. It is convenient to define the
functions S(t), C(t) by the everywhere convergent series:

(35) S(t) (tI Xt3 ()3t5 )-/
5!3

(36) C(t) (I -(Dj)t2 (Dj)2t4 )__+ +
2! 4!

then we find

(37) x(t) fi,C(t)Xo + AAS(t)Vo.
Letting t- 0 in (37) and the derivative of (37) we find

(38 Xo A’Xo, v0 A%0.
If Xo, v0 satisfy (38) then (33) is satisfied; thus equations (38) characterize consistent
initial conditions and the solution is then given by (37).

Acknowledgments. The author would like to thank C. D. Meyer, Jr. and S. L.
Campbell for many helpful discussions in the preparation of this paper. Professor
Campbell suggested the proof of the first part of Corollary 3.2.
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MONOTONICITY OF THE ZEROS OF A CROSS-PRODUCT OF BESSEL
FUNCTIONS*

MOURAD E. H. ISMAIL? AND MARTIN E. MULDOON$

Abstract. Our principal result is that for fixed/3 (0 </3 -< 1), and fixed c > 0, the positive zeros of the
cross-product

J+t (x)Kv(cx) caJv(x)K+t (ax)
increase with v, -/3/2 _-< v < oo. In particular this implies that the eigenvalues of the boundary value problem

Vnp +A 2g(x)p O,

p radial, p’(0)= 0, p(oo)< oo, increase with the dimension n where V is the n-dimensional Laplacian, x is
the distance from the origin and g(x)= 1, 0=<x _-< 1, g(x)=-a2, x > 1.

1. Introduction. T. Nagylaki considered the boundary value problem given by
the equation

(1.1) vZ,,p+AZg(x)p=O,
where p is radial, p’(0)=0, p(oo)<oo, V2,, is the n-dimensional Laplacian, x the
distance from the origin and

(1 2) g(x) { 1, 0_<x_<l,
2

-c x>l.

(In case n -> 2, the condition p’(O)= 0 may be replaced by p(0)< oo He conjectured
that for each fixed a(>0) the smallest positive eigenvalue An(c) increases with the
dimension n, i.e., that

(1..3) A,(c)<A,+l(C), n=1,2,..., c>0,

and showed [9, pp. 613-614] that Al(C)<A2(a) for small a, for large a, and for
a 1/2, 1, 2 and mentioned the desirability of proving this for all positive a. Nagylaki
was led to (1.3) in a study of the one- and two-dimensional cases in a study of
migration and selection [9].

If the method of separation of variables is applied to (1.1) we are led, for the
radial part, to the boundary value problem

(1.4) (-xy’)’+(vZ/x)y=AZxg(x)y, p’(0)=0, p(oo)<oo, y(x)=xp(x),

where v (n- 2)/2. As we shall see in 4, the positive eigenvalues are the positive
zeros of fixed rank of the cross-product

(1.5) Jv+ (X)K(ax aK+ (x)Y(x

with the usual notation [13] for Bessel functions and modified Bessel functions. It is
natural, then, to generalize Nagylaki’s conjecture to the assertion that for each fixed
a > 0, the smallest positive zero of the cross-product (1.5) increases with v, v _->- 1/2. In

* Received by the editors May 14, 1976, and in revised form September 15, 1976.
? Department of Applied Mathematics, McMaster University, Hamilton, Ontario, Canada L8S 4L8.
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a private communication with us, R. Askey has in fact conjectured that for each c > 0
and each fixed/3 > 0 the smallest positive zero of

(1.6) J+t (x)K (cx) ctJ (x)K+t (ax)

increases with v (u _-> 0).
Our principal result (Theorem 3.2) is a generalization of Askey’s conjecture in

several ways in the case 0 </3 _<- 1; it refers to a slightly more general cross-product, it is
valid for v _>--/3/2 and it asserts that a positive zero of fixed rank (first, second, etc.)
increases with v. In particular it implies Nagylaki’s conjecture (1.3).

The proof of Theorem 3.2 depends on several preliminary results concerning the
monotonicity of ratios of Bessel functions. These are given in 2.

There is another approach to the problem of the monotonicity of eigenvalues of
(1.4) based on a fairly standard argument of Sturmian type. This s outlined in 4. This
method is confined to the zeros of (1.5) rather than (1.6) and it gives results only for
v =>0 so that in particular it gives (1.3) only for n 2, 3,.--. However it can be
extended to boundary value problems with choices of g(x) different from the one
given by (1.2). The method also gives results on the monotonicity of A (u)/v where
A (v) is an eigenvalue of (1.4). The precise result is given in Theorem 4.1.

One of our preliminary results on modified Bessel functions (Lemma 2.2) implies
in particular that for all real u

(1.7) K_l(X)K+l(X) 2-K(x)>0, x>0.

This is an inequality of Turfin type; see Szeg6 [11] where the Turfin inequality

[P.(x)]2-P._l(x)P.+l(x)>=O, n >- 1, O<=x <- 1,

for Legendre polynomials is discussed in detail.
Lemma 2.2 implies also that f(v, x) is a decreasing function of v, where

f(ll, X)-- Kv(x)/Ku+I(X ).

Wze believe, but are unable to prove, that f(v, x) is a completely monotonic function of
v In [6], Ismail and Kelker conjectured that x-1/ZK(x/x)/K,+I (x/x) is a completely
monotonic function of x for v _-> 0. Grosswald [4] proved this conjecture. Thus, if our
present conjecture is correct, then the function x-1/2K(x/x)/K+l(X/x) will not only be
completely monotonic in x for each fixed z, _-> 0 but also completely monotonic in v2

for each fixed positive x.

2. Monotonicity properties of ratios of Bessei functions. Most of the results in
this section are based on Nicholson’s formula [3, p. 54, (39)]

(2.1) K,(z)K(z)=2 | K,+(2z cosht) cosh[(lx-v)t]dt, Rez>0,
3o

and Neumann’s formula [3, p. 47, (11)]

(2.2) J,(z)J(z)=(2/r) J,+(2z cosO)cos[(lx-v)O]dO, Re(/x +v) >-1.

We use j to denote the kth positive zero of J(x); we put fl0 0.
We also need to use the fact, proved by R. G. Cooke [ 1], [2], and in a simpler way

by J. Steinig [10], that

dt >0, x >0, v>-l.
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A simple application of the second mean value theorem then gives the following
result.

LEMMA 2.1 Let oh(t) be positive nonincreasing and continuous ]’or 0 < < x. Then,
for u >-1 and x > 0

dt >O.

We now give a sequence of four lemmas on monotonicity of ratios of Bessel
functions.

LEMMA 2.2. For each fixed x >0 and each fixed > O, the function K+t(x)/K(x)
increases with u, -oo < u < oo.

Proof. Since K(x) is positive for positive x it suffices to show that, for
each e > 0,

(2.3) K(x)K+t+(x)-K+t3(x)K+(x) > O.

Using (2.1), we find that the left hand side of (2.3) is equal to

2 Io K2++t(2x cosh t){cosh [(/3 +e)t]-cosh [(/3 -e)t]} dt

and this is positive since cosh x is an even function which is increasing for x > 0 and
[/3-e[ </3 +e for e >0 and/3 >0.

LEMMA 2.3. For each fixed/3(0</3 <_- 1) and each x >0 (x Cjk, k 1, 2,- -) the
function J+t(x)/J(x) decreases as u increases, -( + 1)/2 -< , < oo, , > -1.

Proof. Using (2.2), we find for 2, + e +/3 > 1,

J.(x)J.++(x)-J.+(x)J.+,(x)

(2.4)

where

4 f r/2j2+e+t3(2x COS 0) sin (/30) sin (e0) dO
"/7" a0

xx J.++(u)4,(u) ,u,

u 2x cos 0 and 4(u) sin (/30) sin (e0)/sin 0.

As u increases from 0 to 2x, 0 decreases from 7r/2 to 0. For 0 </3 _--< 1 and 0 < e < 1,
both sin (/30) and sin (e0)/sin 0 are increasing functions of 0 on the interval (0, 7r/2).
Hence b (u) decreases on 0 < u < 2x and by Lemma 2.1 the right hand side and hence
the left hand side of (2.4) are negative. Now, if x is not a zero of J (x) we can choose e

so small that J (x) and J/ (x) have the same sign. Thus we get

++(x)/+(x) <+(x)/J(x)
and the lemma is proved.

LEMMA 2.4. For each fixed > 0 and each fixed u satisfying > -/2 the function
K+(x)/K(x)

decreases to 1 as x increases from 0 to c.
Proof. Here we use the recurrence relations [13, p. 79]

(2.5) Kv-1(x) +Kv+ (X) -2K’(x)
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and

(2.6) [K-l(X) K+(x)] -2,K,, (x)/x.

From (2.1) and (2.5) we get

Kf(x)[K+a (x)/K (x)]’

2 J0 [K2+t-l(2X cosh t)-K2+t+l(2X cosh t)] sinh (fit) sinh dt

-2(2v +/3)x -1 J0 K2+t(2x cosh t) sinh (fit) tanh dt

on using (2.6). The result follows easily by use of the positivity of K for positive
argument and the asymptotic formula for K(x) [13, p. 202].

Using Sturm comparison techniques, L. Lorch [8] obtained this result as a special
case of results on Whittaker functions but stated it only for the case v >= 0. However, as
he has pointed out to us, his proof actually covers the full range of t, considered here.
In the case , -> 0, this result was also given by P. Hartman and G. S. Watson as part of
I-5, Proposition 7.1].

LEMMA 2.5. For each fixed fl (0 < fl <-_ 1) and each fixed satisfying , >--/2, the
function

+(x)/(x)
increases with x in each interval j,k < X <j,k /1, k O, 1,’’ ".

Proof. The proof follows the same lines as that of Lemma 2.4. In case , >-/3/2,
the recurrence relation

(2.7) 2J’(x) Jv-l(X)--J,+l(X)

and (2.2) give

2rJ(x)[J/(x)/J(x)]’= [J./_(2x cos O)

and this gives

2rJ. (x )[J.+ (x /.(x ]’

+J2,,+t+l(2x cos 0)]2 sin (/30) sin 0 dO

2(2u +/3) f r"/2j2,,+13(2X COS O) sin (,80) tan 0 dO
X a0

by use of the recurrence relation

2uJ(x) x[J,,-l(x) +J+l(X)].

Now if we put u 2x cos 0 we find that

(2.8)
2x

rrx J,, (x){J,,+t(x)/J,,(x)}’ (2v + fl) Jz,,+t(u)(u) du,

where (u) sin (/30)/cos 0. But q(u) is a decreasing function of u. Hence, by Lemma
2.1, the right hand side of (2.8) is positive and the result follows.

In case u =-/3/2 we use
2[J_(x)/J(x)]’=-2 sin (ur)/[TrxJ (x)]
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where we have used a formula 13, p. 43] for the Wronskian of Jv and J_v. But this last
expression is positive since -1/2-< u < 0.

We conclude this section with a variant of Lemma 2.4 which arises when we
consider a ratio of modified Bessel functions multiplied by a suitable power of x.

LEMMA 2.6. For each real u and for each > 0 the function
xK,/(x)/K,(x)

increases with x, 0 < x <
Proof. We have

d/dx [xtK+t (x /g(x

(2.9) (d/dx)[x+ (x)/{x"K,(x)}]axv+/3

xt3[K,(x)]-2[K,+t3(x)K,_I(X)-K,+t_I(X)K,(x)]
on using [13, p. 79]

(d/dx )[xKv (x -x g,-1(x ).

Now using (2.1) we find that the right hand side of (2.9) is positive. Hence the result
follows.

Remark. The results pertaining to K (Lemmas 2.2, 2.4 and 2.6) hold for/3 > 0.
Those for J (Lemmas 2.3 and 2.5) have been proved only in the case 0 </3 _-< 1 though
it seems likely that they are valid for a somewhat larger range of values of/3.

3. Zeros of a cross-product of Bessel functions. Here we describe the location of
the positive zeros of (1.6) in the case 0 </3 1 and their variation with , and a.

THEOREM 3.1. For fixed fl (0</3 _-<1) fixed , (_->-/3/2) and fixed a (>0), the
equation

(3.1) Jv+t(x)/J(x) atK+t(ax)/K(ax)
has infinitely many positive roots which we denote in increasing order by h (k, v, a, ),
k 1, 2,.... We have

(3.2) j,,+t,k-l<A(k,’,a,)<j,,,k, k=l, 2,’’’.

Moreover, for fixed ,, fl and k, h (k, , a, fl) increases from j,+t3,k-1 to j,,k as a increases

from 0 to oo.
Proof. The zeros of J (x) and J/t (x) interlace according to the pattern

This follows from the fact that jk increases with u (v >-1) [13, p. 508] and

jv+C,k <=j+l,k <jv,k+l

[13, p. 479]. By Lemma 2.5 the left hand side of (3.1) increases between 0 and/vl and
between the positive zeros of J(x) where it becomes infinite. In fact in each interval
(]k,/’+t,k), k 1, 2,’’ ", the left hand side of (3.1) increases from -oo to 0 while in
each interval (fv/o,k, f,k/l ), k 0, 1, ., it increases from 0 to o. By Lemma 2.4, the
right hand side of (3.1) decreases as x increases on (0, oe) in case , >-/3/2 and it is
constant in case =-/3/2. This proves the first assertion of the theorem and the
inequalities (3.2).

To see that the zeros of (3.1) increase with a, we simply observe that for each
fixed x the right hand side of (3.1) increases with c (Lemma 2.6) while the left hand
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side does not change. When a-0+ the zeros reduce to those of J+(x) while as
a o they approach the zeros of J(x).

Our principal result is a generalization of the Askey conjecture in the case
0</3-<1.

THEOREM 3.2. With the notation of Theorem 3.1, for fixed/3 (0 </3 _-< 1) fixed k
(= 1, 2, .) and fixed a (>0) the root h (k, v, a, ) increases with v, -/2
v>-l.

Proof. Let e be a small positive number and write A for A (k, v, a,/3). If we write

f(, x) K.+(x)_J.+(x__A)
K.(ax) J.(x)

FIG.

we have, from Lemmas 2.2 and 2.3, that f(v, x) increases with v for fixed x. Hence

f(v+e,A,,)>f(v,A,,)=O.

But from Lemmas 2.4 and 2.5, f(v+e, x) is a decreasing function of x. Hence
h+ >h and the theorem is proved.

The idea of the proof can be seen from the diagram (Fig. 1). The solid curves A
and B represent, respectively, a part of the graph of the right hand side of (3.1) and a

part of one branch of the graph of its left hand side. The broken curves represent parts
of the same graphs for slightly larger values of v. Lemmas 2.2 to 2.5 give the relative
positions of these curves. Equation (3.1) holds and the cross-product (1.6) is zero for
the value of x where the solid curves intersect. Clearly this value increases as v

increases.
We observe that the above argument can be used to prove the following more

general result.
THEOREM 3.3. Let oh(x) be a strictly increasing differentiable function on (0, o)

and C a positive constant. Then for fixed fl, 0 < fl -< 1, the positive zeros offixed rank of

J+o (x)/Y (x)- CK+o[(x)]/K[c (x )]

increase with v, -/2 <- v < oo, v >-1.

4. The eigenvalue problem. Subject to the stated boundary conditions, the
differential equation in (1.4) has solution

AJ(hx), O <-- x <- 1,
y(x)-

BK(aAx), x > l.
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If y(x) and y’(x) are to be continuous at x 1 we must have

(4.1) AJ,,(A BK(oA

and

(4.2) AAJ’,(A BoAK ’(oA ).

In view of the recurrence relations [13, pp. 18 and 79] and (4.1), (4.2) can be written

(4.3) AJ,,+I(A BoK,,+l(OZA ).

There will be a nontrivial solution of (4.1), (4.3) for A and/3 if and only if

cJ(A)K+l(CZA Jv+ (/)K. (cA)

and in this case we may take

Thus the boundary-value problem (1.4) has for its eigenvalues the zeros of the
cross-product (1.5) and corresponding eigenfunctions

0<x--<l,
(4.4) O(x)

J(A)K(cAx), x_--> 1.

Thus it is clear that Nagylaki’s conjecture (1.3) follows from the case/3 1 of
Theorem 3.2.

The principal result of this section depends on a formula, (4.7) here, for the
derivative of an eigenvalue with respect to a parameter. This formula is obtained by
Sturmian-type arguments; it can be regarded as special case of the Hellmann-Feyn-
man theorem of quantum chemistry; see [7] for further references and other ap-
plications of this idea to problems connected with zeros of Bessel functions.

The first part of the following theorem is a special case of Theorem 3.2 but is
proved again since the approach in this section is quite different from that in 3. The
second part of the Theorem does not appear to be derivable by the methods used in
3.

THEOREM 4.1. With the notation of Theorem 3.1, for fixed a (>0) and fixed k
(= 1, 2,- .), A (k, v, a, 1) increases with v (0 <= v < oo) and A (k, u, a, 1)/u decreases to 1
as v increases from 0 to

Proof. If q(x) is given by (4.4), we have
2 2-(xq,.) o + (u/x)q,. , gx6..

Integrating from 0 to oo we get, for v > 0,

Io(4.5) , 2 g(x)xOZ,(x) dx v x 6(x) dx + x[vt(x)]2 dx,

where integration by parts has been used in the last integral. This shows that the
integral on the left hand side of (4.5) is positive. Thus we may normalize by choosing
4(x) cO(,) and

(4.6) J0 g(x)xck 2(x) dx 1

We write for , (k, v, c, 1); we multiply the equations
2-(x4,.’) + (/x)4 Xgx4

-(x6) +(/x)4 gx4,
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by k,, b respectively, subtract and integrate between 0 and eo to get

+( ) Io 1- -4).(x)4).(x) dx
o x

( ) Io g(x)x6(x)6 (x) dx.

The integrated terms vanish at 0 and eo if tt > 0, v > 0. Dividing by v-it and letting
/x + v we get

(4.7) dA 2 1. 1 2

du
2

x
qb(x) dx >0.

This shows that
(u 0) since the terms in the cross-product (1.5) depend continuously on v for fixed x
and a. Hence A (k, , a, 1) increases with u for 0.

We also have, for > 0,

/U2)= 1 d 2

dv v

-2v x[;(x)]2 dx < 0

from (4.7), (4.5) and (4.6). Hence A/u decreases with u for u >0. The fact that
A/u 1 as u follows from Theorem 3.1 and the known asymptotic formula for j,k
[12, p.

It is clear that the methods of this section may be applied to boundary-value
problems of the type (1.4) in which g(x) need not have the special form given by (1.2).

Acknowledgment, The authors are grateful to Professor Lee Lorch for his inter-
est in this work and for several helpful comments.

Note added in pro@ A proof of the conjecture mentioned in the last paragraph of
the Introduction is included in a paper by the first author, Integral representations and
complete monotonicity of various quotients of Bessel functions, which is to appear in
Canad. J. Math., December 1977.
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BOUNDING EIGENVALUES OF ELLIPTIC OPERATORS

J. R. KUTTLERI" AND V. G. SIGILLITO’

Abstract. We present a method which bounds the error between an estimate for a point in the
spectrum and an eigenvalue of self-adjoint elliptic operators. The method makes use of trial functions which
need not satisfy the boundary conditions of the problem. By using rough preliminary estimates for the
eigenvalues this method gives both upper and lower bounds.

1. Bounds for eigenvalues. In this paper we present a method which can be used
to give upper and lower bounds for eigenvalues of self-adjoint elliptic operators
including those of classical membrane and plate problems as well as Stekl0ff problems.

Our approach generalizes the inequalities of Fox, Henrici and Moler [3], Moler
and Payne [9], and Nickel [10]. We prove a posteriori inequalities in a general Hilbert
space setting which allows them to be combined with specific known a priori in-
equalities. The combined a posteriori-a priori inequality permits the estimation of
eigenvalues in terms of quadratic forms of test functions. The test functions can be
completely arbitrary except for smoothness conditions. In particular, no boundary
conditions need be satisfied.

The a posteriori inequalities are given in the following theorem.
THEOREM. Suppose A is an operator with domain D(A) which is dense in the

separable Hilbert space H. Let A be symmetric, so that

(u, Av) (Au, v) u, v D(A),

and let A have pure point spectrum {/i} with corresponding orthonormal eigenvectors
{ui} which are complete in H. Let A, be an extension ofA, so D(A)c D(A,)c H with
A,u Au for u D(A).

For any number A,, and any u, D(A,), suppose there exist w and h satisfying

(1) A,w A,u,-A,u,, w u, D(A),

(2) A,h O, h u, D(A).

(3)

(4) min ]/i --/- *
Ai

< I]A ,h +A,u, A,u,II

Proof. Since the eigenfunctions {ui} form a complete orthonormal set in H, by the
Parseval identity

* Received by the editors June 30, 1975, and in final revised form January 17, 1977.
? Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20810. This work was

supported by the Department of the Navy, Naval Sea Systems Command under Contract N00017-72-C-
4401.
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and so,

min IA*-Ail2i Ai

(A,(u,- w), ui)-(u,, Aui)

(u, w, Aui (u,, Aui

--l(w, ui)12--Ilwll2.

This proves (3). similarly,

IlA,u,II2 E ICA,u,, Ui )12,

and so,

min IA*-Ai]z/i Iln*u*l[z-<-i (A,-Ai)(A,u,, ui)

E I(,h +A,u,-A,u,, u,)l2

IIA,h +A,u, A,u,II2,

which proves (4).
It is not desirable to have to actually obtain the functions w and h which appear

in the theorem and it is at this point that we introduce appropriate a priori inequalities
which estimate w and h in terms of u,,

2. An example. Let R be a bounded region of Euclidean n-space with boundary
OR. Let the Hilbert space H be E2(R), the space of functions which are square
integrable on R. Let A be the negative Laplacian --A with domain D(A) the twice
differentiable functions vanishing on OR. Then A, will be -A with domain D(A,)
functions which are just twice differentiable on R.

We have the classical fixed membrane problem

(5) -Au=Au onR, u=0 on0R,

whose eigenvalues and eigenvectors satisfy the hypotheses of the theorem. The
appropriate a priori inequality to use is

(6) (fR W2 dx) l/2<Cl (IR (AW)2 dx) l/2+C2(oR W2 ds) 1/2

for w D(A,). See, e.g., [6, p. 153].
Put (6) into (3) and use (1) to obtain

min
Ai

< Cl(IR (An, -Jr"/,U,)2 dx)1/2 + C2(Io u ds)1/2
(IN U dx)1/



770 J. R. KUTTLER AND V. G. SIGILLITO

which yields
2

(7) min A*-Ai2 2CR(AU*+A*u*)Zdx +2C2RU*ds
2

Ai u, ds

Now the right side of (7) is a ratio of quadratic forms in the arbitrary twice-
ditterentiable function u,. Thus we can let u, be a linear combination of test
functions, say

(8) U, akqk,
k=l

and minimize the right side of (7) with respect to the coefficients ak as in the
Rayleigh-Ritz method. This leads to the relative matrix eigenvalue problem

(9) Ma eZNa O,

where

M [2C IR(Aqi +A*i)(Aqi +A*qi) dx +2C (}OR qiq ds],

a=(al, ,a,)r.
Now let e be the smallest eigenvalue of (9); then

min IA*-Ail __<e

or, if e < 1,

a,/(1 +e)_--<ai =<a,/(1-e),

which gives upper and lower bounds for the eigenvalue ai which is closest to
Similarly, by using the triangle inequality on (4), employing (6), and then using

the arithmetic-geometric mean inequality, we obtain
2 2

(10) min IA* -Ail
2

--< 2*R(AU*+A*u*)2dx+2CA*RU*ds
/i Ig (AU*)2 dx

which may be used as an alternate to (7) with the above technique.

3. Applicalion. To use the method of the previous section requires several
things. First, explicit values for the constants C1, C2 in (6) are needed. The optimum
values for these constants are [6]

-1/2C1 =A- C2=ql

Here ql is the lowest eigenvalue of the Dirichlet eigenvalue problem [12]

A2v =0 inR,
(11)

Ov
v=Av-q=0 on OR,

On

where O/On is the normal derivative. Exact values of A 1, ql are not needed, only lower
bounds. In this connection see [4], [5], [6], [11], [12].
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Next, a method of guessing A, is required. The inequality (10) says only that some
eigenvalue Ai is in the interval (A,/(1 +e), A,(1-e)). If, say, A1 is the desired eigen-
value, then a crude lower bound on A2 is required to start the procedure. Improved
guesses for A, are generated as follows. Let u, be given by (8) where the ai satisfy (9).
Holding u, fixed, minimize (7) with respect to ,. This results in

(12) A:---
aiaj IR (i(j dx

If the value in (12) is less than the lower bound on 2, it can be taken as the new guess
for A,, and the procedure can then be repeated.

4. Numerical results. The method was numerically tested on rhombical
membranes. These were chosen because excellent tables of upper and lower bounds
for selected eigenvalues have been computed by Stadter [15]. The Weinstein-
Aronszajn method of intermediate problems with the special choice of Bazley and Fox
was used with carefully constructed trial functions.

Fox, Henrici and Moler, using Bessel functions in the method described in [3],
also treated rhombical membranes, but were "unable to obtain bounds significantly
tighter than those obtained in [15]."

We have obtained bounds comparable to Stadter’s using only polynomials or
elementary trigonometric functions.

Consider the rhombus with unit side and least interior angle 0 as shown in Fig. 1.
The test functions used were x2iy 2j, i, j 0, 1, 2,..., 8, for 0 75 and 0 45, and
cos (m.n’x) cos (n-try), m, n 0, 1, 2, , 6 for 0 15. Notice that the trial functions

y

FIG. 1.

do not have to satisfy the boundary conditions. The results for the first three eigen-
values in the even-even symmetry class are given in Table 1. For comparison,
Stadter’s results are given in Table 2. (Note: our angle 0 is the complement of

2Stadter’s and his eigenvalues in [15] are divided by r .) The inequality (10) was used
with angles 75 and 45, but inquality (7) gave better results with 15.
(13)

5. Other examples.
I. The free membrane eigenvalue problem is

Au+/xu=0 inR,

OU
0 on OR,

On
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TABLE
Bounds for eigenvalues of unit side rhombical membrane in even-even symmetry class.

lower

20.8660
79.0234
108.8175

75 45 15

upper lower

20.8782 34.7017
79.0711 100.1116
108.9697 183.3045

upper lower

34.8569 196.8111
100.4642 340.7600
187.6383 436.9660

upper

206.7539
386.9026
652.2823

TABLE 2
Stadter’s bounds for eigenvalues of unit side rhombical membrane in even-even symmetry class.

lower

20.8613
78.9173
108.7433

75

upper

20.8871
79.2392
109.2763

lower

34.7113
100.1073
184.1569

45

upper

35.0283
101.2326
189.7827

lower

199.0205
357.7928
371.5017

15

upper

207.6664
390.1554
708.1836

with eigenvalues 0--/A1</.2/./3"" ". Combining inequality (3)with the appro-
priate a priori inequality yields

(14) min /x,-/xi <Ca(R(AU,+,u,)Zdx)a/Z+Cz(on(Ou,/on)Zds) 1/2

2 1/2
il Ji (I U dx)

for any number/z, and any function u, satisfying

nu,
dx =O.

In connection with the values of C1 and C2 see particularly [1] and also [6], [7],
[8], Ill].

II. The clamped plate eigenvalue problem is

A2U ---u 0 in R,
(15)

Ou
u==0 on0R,

On

with eigenvalues 0< -1 -2"" ". Combining (3)with the a priori inequality of [13]
yields

min f* i
u dx

i
(16)

4 ds,
kOt]

for any number , and any function u,. Here O/Ot is the tangential derivative on OR.
For values of the constants see also [14].
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III. The Stekloft eigenvalue problem is

Au =0 inR,
(17)

Ou
pu on OR,

On

with eigenvalues 0=pl <P2 <--P3 <-’’" Combining (3) with the appropriate a priori
inequality yields

[p,-pi <CI@R (Ou,/On --p,u,)2 ds)l/Z +Cz(IR (Au,) dx)/2
(18) min

1 Pi OR U ds

or any number p, and any unction u, satisfying

o u, ds=O.

In connection with the values of C and C2 see particularly [1] and also [6], [7],
[8], [12].

Other examples can be given, but the above should indicate the variety of
problems which can be treated by the method. Further numerical results will be
reported in forthcoming papers.

Acknowledgment. We would like to thank a referee for suggesting inequality
(10).
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A LOWER BOUND FOR THE EIGENVALUES OF THE
ELLIPTIC DIRICHLET PROBLEM FOR A GENERAL

DOMAIN IN TERMS OF ITS CHARACTERISTIC DIMENSION*

SHLOMO BREUER" AND JOSEPH J. ROSEMANf

Abstract. We consider the Dirichlet eigenvalue problem on a general bounded domain 9 c R n, with a
sufficiently regular boundary, for the equation Lv-Arv 0, where L is a linear, uniformly elliptic, self-
adjoint differential operator of order 2s, and is a positive piecewise continuous function on 9. Quantities

h, p, and 6 are defined, where h is the supremum of the radii of all spheres contained in 9, p is an integer
which characterizes its geometry, and 6 pl/(2Sh; is called the characteristic dimension of 9 and is, in
general, independent of the overall size of 9. It can then be shown that h >=M(K/K)-zs, where h is the
smallest eigenvalue, K is a parameter depending upon L, K is an upper bound for and M depends only
upon s and n. A detailed proof is given for L =-V and in two dimensions and the extension to the
general case is straightforward.

1. Introduction. For a domain 9 c R with a sufficiently regular boundary, 09,
we consider the following elliptic eigenvalue problem:

(1. la) Lv hr(x)v O, x 9,

(1.1b) v satisfies homogeneous Dirichlet data on

where x (x 1, X2," ", Xn), and
(i) L is a linear, uniformly strongly elliptic, self-adjoint operator of order 2s such

that if T is the subset of ces(R) which contains all nontrivial functions which are of
compact support in , there exists a r > 0 for which the following is valid for all e T:

(1.2) OL dx Z ila_
i1+i2+ +in=s OX1 02 "OX

(ii) r is piecewise continuous and positive in and there exists K > 0 such that

(1.3) O<r(x)<K, x.
In general and K may depend upon the domain . However, there is a wide

class of situations for which r and K are independent of in parcular, this is ue if r
and the coecients ofL are constants.

Much attention has been directed to the question of obtaining a positive lower
bound for the first (lowest) eigenvalue, A 1, and to the dependence of A on the domain

(cf. [ 1]-[ 11]). From dimensional considerations, we see that a lower bound estimate
is expected to be of the form

r M1(1.4) A1 =K h2s’

where h would have the dimension of length and would depend upon the size of
while M would be dimensionless and would depend upon the geometry of and
possibly upon L, but not upon the size of .

For example, for n 2, if is a rectangle with sides d and D, with d D, and
L -2, it is well known that

(1.5) A 2(d-2 +0-2) >

* Received by the editors August 3, 1976 and in revised form January 26, 1977.

" Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
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Since h depends upon the size of , the question arises as to how to find the
smallest possible value of h for which (1.4) holds, and to describe, as explicitly as
possible, the dependence of M1 on the geometry of .

Let us now consider a bounded domain @ such that the infimum of the radii of all
discs which contain @ is H and such that the supremum of the radii of all discs which
are contained in is h, with h << H. It is clear that one can expect the estimate

M2(1.6) A ->
K H2s

to hold with M2 independent of the size of 9. In fact, it is well known that for convex
domains one can obtain a much stronger estimate of the form

(1.7) AI_->;
Now it is the purpose of this paper to characterize a very wide class of domains,
including nonconvex and multiply connected domains, for which an estimate of the
form

K M(1 8) A1 K ph 2s

is valid, where p is an integer which characterizes the geometry of (as explained
below), but is independent of its size, and M3 depends only upon s and n.

Defining

(1.9) 6 =pl/(2Sh,
we may consider 6 to be the "characteristic dimension" of the domain with respect to
the operator L for the problem (1.1) in that it takes into account both the "thickness"
and the complexity of the geometry of 9.

Working independently, W. K. Hayman [4] recently obtained results similar to
ours, which are to appear elsewhere. A comparison of our results and techniques with
Hayman’s appears below in 4.

2. Preliminaries. We consider a domain R, with boundary 050 and closure. We suppose that is a disjoint union of a finite number of closed, piecewise
smooth hypersurfaces, and denote by h the supremum of the radii of all discs which
are contained in @. Next we shall proceed to define the "covering number" of 9.

Through every point A in @, draw a line segment ,a with endpoints P1 and P2
such that P1 lies on 0@, P2 is in @, the length of AP1 is less than 2h, and the length,
/31>0, of AP2 is less than h. Consider a local Cartesian coordinate system, :=
(q, 2, ", ,) centered at A, with a lying along the q-axis. Construct a domain
of the form

(2.1)

a-[(l, 2, ", n)l lil<ma (i 2, 3, ", n); --[31<1< g(2, 3, ", ,)+[32],

where the hypersurface 1=g(2,3, ",n) is part of the boundary 0, 0<
g(2, 3,’" ", ,,)< 5h/2 for I1 <ma, and/32 is a positive number less than 1/2h.

We see that c U aeJa. Therefore, by the Heine-Borel theorem, we may
select a finite set of points A1, A2, A3," ", Arq such that

N

(2.2) C [,-J at"
k=l
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Consequently, there exists an integer p -<N such that every point in belongs to no
more than p of the domains Ak.

The value of the covering number of is defined to be the smallest possible
integer p that can be obtained for any construction of the above type.

We finally define the characteristic dimension 6"
1/(2s)h(2.3) 6 =p

3. Statement and proo[ of the main theorem. For simplicity, the theorem and
proof that are given below are stated for n 2, L -Vz, and r(x) 1. The generaliza-
tion to the problem (1.1)-(1.3) which leads to the result (1.8) is straightforward.

MAIN THEOREM. Suppose is a bounded domain in R whose bounda, 0, is a
disjoint union of a finite number of closed, piecewise smooth curves. Let have the
covering number p and characteris6c dimension 6. en if A is the first eigenvalue for
the Laplacian operator with homogeneous Dirichlet bounda data, we have

2

(3.1) A 662"
Proof. The eigenvalue A can be characterized by means of the Rayleigh quotient

as

(-v%, ) (v, v)(3.2) A= inf inf
(, ) (, )

where (Wl, W2)=WI(X1, X2)W2(X1, x2) dx1 dx2, and T is that subset of C2(R 2)
consisting of all nontrivial functions which have compact support in .

We shall now proceed to obtain a lower bound for the quotient (Vff, Vff)/(ff, if)
which is valid for all ff T.
e definition of the covering number implies that there exist a finite number of

domains, A1, A2," ", AN, such that

N

(3.3) (i) C A,
k=l

(ii) every point in belongs to at most p of these domains, and
(iii) in eacha it is possible to construct a local Cartesian coordinate system,-, centered at A, such that Ak is a domain of the form

(3.4) ak [(,) ]ff] < mak fl < < gk() +tiff],

with the boundary curve gk (g) belonging to 0, 0 < gk() < 5h/2 when [[ <
mak, fl and fig being positive numbers such that fl < h and fig <h.

Since 0 when gk (g), and since Igk +fl + fl 1 < 4h, it follows that

(3.5) f [12d,fd,g<64h 002 64h2 f 2 k
2 dd 2 IV d d2.

Ak Ak 01 Ak

(The standard inequality

4r12 Io"F)(r) dr <--w F’2(7") dr,

valid for any function F which is piecewise differentiable on [0, 7"1] and such that
F(7") 0 for at least one point on [0, "rl], was used above.)
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A transformation from the local sc-sc system back to the global X1-X2 system
yields

(3.6) I [gt]2 dxl dx2 <64h2 f2 IVO[2 dxl dx2.
Ak "ff Ak

From (3.3), we have that for any square integrable function W(Xl, Xa),

(3.7) wa(x, xa) dx dxa <- w(x, x) dx dx;.

Suppose now that w 0 in the exterior of . Then, since every point of belongs to
at most p sets of he family {N}, we also have

(3.8) k W2(X1, X2) dXl dx2p w2(x1, x2) dXl dx2.
Ak

From (3.6), (3.7), and (3.8) it follows that

64h:p; 2(3.9) Il2 dXl dx2 Ivl dXl dxz.

Thus,

(VI/t, VI) > 7/.2
(3.10)

(,, q,) --6462,

for all 4’ T. Therefore,
2

(3.11) ,1-- inf
(Vg,, VO)

_> 2.’
4,v (gt, O) 646

and the proof is complete.

4. Additional remarks. As mentioned earlier, Hayman [4] has recently obtained
results similar to ours, also by means of a covering procedure. His technique is to
cover the domain in question with circles whose centers lie on the boundary, in
contrast to our method of covering with rectangle-like domains constructed about
interior points.

Hayman showed that for two-dimensional simply connected domains, the first
eigenvalue for the Laplacian operator satisfies

1
(4.1) A > 900h-----5.
Comparing (4.1) and (3.1), we see that in the context of two-dimensional simply
connected domains, our results yield a larger bound when p _-< 138, while Hayman’s
uniform bound is larger for p > 138.

I-layman also obtains a bound for the first eigenvalue of the Laplacian operator in
n dimensions. However, here his bound is nonuniform in that the constant depends
upon the geometry of the domains, as does our p.

Hayman’s methods, as given in [4], do not apply to all multiply connected
domains, even in two dimensions. A simple example is the annulus

c [(X, y)la2<x2Wy2<R2],
with aiR sufficiently small.
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Our methods, on the other hand, do apply to q3 and in fact to all multiply
connected domains, whose boundary is sufficiently regular.

The work in this paper, as well as in [4], has been for the Dirichlet problem. M.
Bareket has privately communicated to us that with the aid of our covering tech-
niques, she has obtained lower estimates for the mixed boundary value problem for
the Laplacian operator in two dimensions. Those results will appear elsewhere.

Acknowledgment. We express our thanks to the referees and editors for having
brought W. K. Hayman’s work to our attention, and for their constructive criticism.
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SOLUTION OF CERTAIN RECURRENCES. II*

L. CARLITZ?

Abstract. The function {n;r, t}, where r=(rt,’’’, rk), t=(tl,’’’, tk), 6=(61,’’’, k), is defined by
means of (n;r,t}=0 if rx+" ’’+rk>n or any rj<0; (0;0;t}= 1; (n+l;r;t}=(n;r-8;t}, where
0, 1,. , tj. The function {n; r; t} is evaluated in the present paper. The special case tl tk had been
considered earlier.

A combinatorial application of {n; r, t} to the enumeration of rectangular matrices satisfying certain
restrictions is given at the end of the paper.

1. Let n, k, t, rl,’", rk be integers, n >=0, k-> 1, t-> 1. Define the function
{n; rt," ’, rk}t by means of

(1.1) {n;rl,’’’,rk}t=0 ifrl+...+rk>n

or, if any rj < 0,

(1.2) {0; 0,..., 0},= 1,

and

(1.3) {n +1; rl,’’’, rk}t =2 {n; rl--61,’’’, rk--$k},

where each 6j =0, 1,..., t; thus the right hand side of (1.3) contains (t + 1)k sum-
mands. Generalizing some results of Narayana and Rohatgi [4], the writer [1] proved
the following.

Put

(1.4) (1 + x +’’’ + x’)" E c,(n, k)x k

k=0

and

(1.5)

where

(1.6)

Then, for k 1,

(1.7)

so that

Ot(x)(l+x+’"+xtY’= E ft(n,k)x k,
k=0

4,,(x)= 1-x (l+x+...+x

{n;r}t=ft(n,r) for O<_-r<_-n,

(1.8) &t(x)(1 + x +’’" + xt) {n r}t x" + O(x"+),
r=O

where O(x "+a) denotes a polynomial divisible by x+.
For k >_- 1 put

k

(1.9) I1 (l+xi+" "+xff 2 c(n; rl,..., r)xt... x,
r,...,r: =0

* Received by the editors September 9, 1976, and in revised form December 31, 1976.

" Department of Mathematics, Duke University, Durham, North Carolina 27706.
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SO that, by (1.4),

(1.10)

Also define

k

ct(n; rl, rk)= ct(n, ri).
i=1

(1.11)

and put

(1.12)

Then

(1.13)

so that

(1.14)

where

(/)t(Xl,’’" ,Xk)=(1--Xl xk (l +xi+" "+xi)
0X1 i=1

k

tt(X1,""" ,Xk) H (1 +xi+’" "+x3"=
i=1 rl," ",rk0

ft(n rl,""", rk )X1 X’k’.

{n; rl,’’’ rk}, ft(n rl, rk ) (ri 0, rl-b... +rk-<n + 1),

k

t(Xl,""" Xk) 1-’I (l+xi+"
i=1

{n; rx,’’’ ,rk}tX1’’" X’klC-[-On+2(Xl, ,Xn),
rl+...+rkn

r+...+rk >=n+2
a(n; rl,""", rk)X[1" X:k.

Moreover
k k k

(1.15) {n; rx,’’’, rk}, E {n, ri}t I-I c,(n + 1, ri)-(k- 1) 1-I ct(n + 1, r,).
i=1 ]=1 i=1

2. In the present paper we consider the following extension of {n; rx,’’ ", rk}.
For brevity put

(2.1) r= (rl,"

where the tj > 0. Define the function {n;r; t} by means of

(2.2) {n; r; t} 0 if rl +" + rk > n

or if any rj < 0,

(2.3) {0; O; t}- 1,

and

(2.4) {n + 1; r; t} Y {n; r-g; t},

where ,5 (61,- , 6k) and 8 O, 1,. , ti; thus the right hand side of (2.4) contains
(tl + 1)’’" (tk + 1) terms.

Put

(2.5) 1-I (1 + Xi "1-’’" "[" X c(n" r" t)x.. ’k"Xk
i=1 rl,’",rk=O
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so that

(2.6)
k

c(n; r; t)= l] c,,(n, ri).
i=1

Also define

(2.7) x (l+x+... + x")(x,t)= 1-Xox i=1

and put

(2.8)
k

b(x; t) 1-I (1 + xi +"" + x[’)"
r,...,rk =0

We show first that

[(n; r; t)x ’’" X cto

(2.9) f(n r; t) 0 when rl +" + rk n + 1.

To prove this result we observe that, by (2.7) and (2.8),

(2.10)
1-

1 O
+.. + Xk (1 -" X "t "-"X’)n+l

n --1 x10Xl i=1

E f(n;r; t)xl1... x

By (2.5), the left member of (2.10) is equal to

" 2t" Xk E
n + 1 Xl

OXl rl,...,rk =0
c(n + 1; r; t)x11" Xc’.

Put

rl,-..,rk =0
c(n+l; r;t)x... x/?= Y’, Hr(xl,’", xk),

where Hr is homogeneous of degree r in x1,’", xk. Thus, by Euler’s theorem on
homogeneous functions,

XIoxI"t"" "nt-Xk H,,+I=(n+I)H,+

and (2.9) follows at once.
Next, by (2.8),

E f(n +l;r; t)Xl1...
rl,...,rk =O

k
’kI-I (l+xi+...+x/’). E f(n;r;l)xl1...x,

i=1 rl,’",rk=O

which gives

(2.11) f(n + 1; r; t)= f(n; r-8; t)
aj=0



784 L. CARLITZ

for all nonnegative rl," , rk. It is understood that

(2.12) /(n; r; t)= 0

if any ri < 0.
Comparing (2.9), (2.11) and (2.12) with (2.2), (2.3) and (2.4) we infer that

(2.13) {n; r; t}= f(n; r; t) (rl +-" + rk =< n + 1).

We may therefore state the following theorem.
THEOREM 1. The function {n;r; t} defined by (2.2), (2.3) and (2.4) satisfies

k

(x; t) 1-I ( +x +... + x,)"
i=1(2.14)

{n; r; t}x[1’’’ xf,+O,+z(xl, ,xk),
rx +...+rk <_n

where b(x; t) is defined by (2.7) and

o.+(x, x)= 2 a(n" r)x( r"Xk,
r+...+rkn+2

where the coefficients a(n r) are independent of x1,. , Xk.

3. It follows from (2.7) and (1.6) that

(3.1)
k k k

b(x;t)= ] (ti(xi) H (l+xi+’’ "+x?)-(k-1) 1-I (l/xi/’" "+x[’).
i=1 ]=1 i=1

Thus

k

4(x; t) 1-I (1 + x, +... + x[’)"
i=1

(3.2)
k k

E bt,(xi)(1 + xi +"" + x[’)" I-I (1 + xj +’" + x?)n+l
i=1 /=1

k

-(k-i) 1-I (I+xi+"" "’-’X)n+l.
i=1

Hence the left hand side of (3.2) is equal to

{n, r},,x’ + O(x2+ (n + 1Ctj
i=1 ri=O

(3.3)
k

-(k+l) I-I Y. ct,(n+l, ri)x(’.
i=1 ri=O

Making use of (2.14), (3.2) and (3.3) we can express {n; r; t} in terms of {n; r}t and
ct(n + 1, r).

THFOM 2. The function {n; r; t} is expressed in terms of {n; r}, and c,(n + 1, r} by
means of

k k k

(3.4) {n; r; t}= E {n, ri}t, II ctj(n + 1, ri)-(k- 1) 1-I c,,(n + 1, ri).
i=1 /=1 i=1

]#i
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4. As an application of the function {n; r, t} we consider k n arrays of non-
negative integers

(4.1)

such that

(4.2)

and

(4.3)

A (a/) (l_<-/_-_k; l<-j<-n)

0 <- aid+ aid <= ti (l_<-i_<-k; 1-<j<n)

k

Y a, <-_j (l_-<j_-< n).
i=1

For example, for k 1, we have sequences (a i, a2,"’, an)of nonnegative
integers such that

(4.4) O<-aj+l-aj<-_t, aj<-_ (l_<-f_--- n).

As noted in [1], for t o, the number of sequences satisfying (4.4) is a ballot number
[2, III, Ch. 51.

Now let N(n; r, t) denote the number of arrays (4.1) that satisfy (4.2) and (4.3)
and in addition

(4.5) a,n ri (1 -<i -< k).

It follows from the definition that N(n; r, t) satisfies the following relations:

k

(4.6) N(n;r,t)=0 if E ri>n
i=1

or if any r < 0,

(4.7) N(n + 1; r, t) Y, N(n; r-8; t),

where 8=(81,. , 8k) and the summation is over 8 =0, 1,. , t (1-<_i---k). In
addition we define

(4.8) N(O; O; t)= 1

so that (4.7) holds for all n >--0.
Comparing (4.6), (4.7) and (4.8) with (2.2), (2.3), (2.4), we conclude that

(4.9) N(n; r, t)= {n;r, t}.

Thus {n;r, t} furnishes a generalization of ballot numbers in several directions.
A generalization of N(n; r, t) can be obtained by replacing (4.3) by

k

(4.10) , aii<=j+r (l _--< j _--< n),
i=1

where r is some fixed nonnegative integers. A generalization of a different kind
suggested by [2] is the following. Let (N; r, t, q) denote the sum

k

(4.11) q Ial, IAI Y E aq,
i=1 j=l

where the first summation is over all arrays (4.1) that satisfy (4.2), (4.3) and (4.5), and
q is independent of n.

We shall not investigate these generalizations in the present paper.
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ON A CLASS OF NONLINEAR INTEGRAL EQUATIONS
ARISING IN TRANSPORT THEORY*

G. A. HIVELY-

Abstract. For a class of kernels k(x, t), conditions are given for the existence and uniqueness of a
solution in the unit ball of L1 (ix) for the nonlinear integral equation

u(x)= 4,(x)+ u(x) I k(x, t)u(t) dtz(t).

Equations of this type arise in the theories of radiative transfer, neutron transport and in the kinetic theory
of gases.

1. Introduction. In the theories of radiative transfer (cf. [2], [4]) and neutron
transport (cf. [3], [7]) an important role is played by nonlinear integral equations of
the form

(1.1) H(x)= 1 +xH(x) Io b(t)H(t)x + dt,

where 4, is a given function on [0, 1]. Multiplying this equation by g, one obtains the
equation

X
u(t) dt,(1.2) u(x)= 4’(x) + u(x)

x +
for the function u(x)= (x)H(x). Equations similar to (1.1) and (1.2) for functions on
the half-line [0, ) arise in the kinetic theory of gases (cf. [6]).

In [1], Bittoni, Casadei and Lorenzutta have studied.equation (1.2)in the Banach
space L(0, 1) from the point of view of contraction mappings. Their main result is
that if [Itt[[X < 1/2 and g, -> 0 then (1.2) admits a unique solution u in a certain sphere of
LI(0, 1). In attempting to extend and improve this result we have found (a) that when
I1 111< 1/2 the assumption 4, _>-0 is superfluous, (b) that when 4, =>0 the assumption
I1 111 -< 1/2 is sufficient (so that the important conservative case is included) and (c) that
the arguments which establish these results are valid for a more general class of
equations.

Let (X,/x) be a o--finite positive measure space with /z # 0 and let k(x, t) be a
measurable function on the product measure space (X x X,/z x/z) satisfying

(i) O<k(x,t)<l,x,tX,
(ii) k(x, t)+ k(t, x) 1, x, e X.

Let Z1-- LI(X,/z), L= L(X, tz) and let K be the integral operator on L’ with
kernel k(x, t),

Ku(x)= _I k(x, t)u(t) dtz(t), u L1"
< 1 In this paperClearly K is a bounded linear operator from L into L with I[KIl,o

we shall consider the problem of solving the nonlinear equation

(1.3) u ff + uKu, u L1,

* Received by the editors August 3, 1976.

" Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506. This
research was carried out during the author’s participation in the Summer Graduate Research Program in
the Applied Mathematics Division of Argonne National Laboratory and was supported by U.S. ERDA.
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where L is given. We note that equation (1.2) is of this form, where the kernel
k(x, t) is x(x + t)-1 and satisfies conditions. (i).and (ii) on any subinterval X of (0,
Our principal results are that equation (1.3) has a unique solution in the closed unit
ball of L1 for each 0 L1 satisfying either of the conditions (a) 114,11 < 1/2 or (b) _-> 0
and I1111--< 1/2, and that under either condition the solution depends continuously
upon 4’ and may be obtained by an iterative procedure.

We remark that it is not until 4 that we require the full strength of assumption
(i). For the results of 2 and 3, it is enough that 0-< k(x, t) <- 1.

2. The ease 1111<1/2. The starting point for the analysis of [1] is the observation
that equation (1.3) has the form

(2.1) u=g/+A(u,u), uL1,

where A is the bilinear mapping on L defined by A (u, v)= uKv for u, v L and that
the solutions of (2.1) are precisely the fixed points for the mapping T, on L1 defined
by T,u +A(u, u) for u L1.

In general, recall that a bilinear mapping B on a Banach space Y is said to be
bounded if its norm, IIn[I--sup{llB(x,y)ll:llxl[,llYll<-_l}, is finite. If B is a bilinear
mapping on Y, let B* be the bilinear mapping defined by B*(x; y)= B(y, x). If B is
bounded then so are B* and B + B*. The significance of B +B* lies in the fact that if
B is bounded then the bounded linear mapping (B + B*)(x, is the Fr6chet deriva-
tive at x Y of the mapping y B(y, y). Although the mean value theorem does not
hold in general for vector valued functions, it turns out that in the present context it
does hold. Indeed, for u, v Y one has

B(u, u -B(v, )2
,u-v

Using this simple formula we are able to obtain the following result without an implicit
use of the Hahn-Banach theorem (see the reference to [4] in [1]).

THEOREM 1. Let Y be a Banach space and let B be a bounded bilinear mapping on
Y such that lib + B*II > O. Let

$1 {u Y: Ilull-<-lib /

S {y Y" Ilyll < 21-lIB +
and [or each y Y let the mapping Ty on Y be defined by

Tyu =.y + B(u, u), u Y.

Then for each y S the mapping Ty maps $1 into itself, has a unique fixed point uy SI
and ]:or each u e $1 the sequence Tu} converges to by. Moreover, the mapping y-- uy
of S2 into S1 is continuous.

Proof. Let y S and let

Sy {u e Y" lib yll -< 1/2liB /

Then Sy _AS1, where h--1/2+[lYl[ IIB-t-B*II< 1. If u Sl then we have
liB(u, u)[l-1/2l[(B +B*)(u, N)II=<1/21[B /B*ll-l, so that Ty(S1)c_ Sy. Thus we have both
Ty(S)_ $1 and Ty(Sy)c_ Sy. Using (2.2) we find that if u, v Sy

_
AS1 then [ITyu

Tvll-<-llu- vii, Thus Ty maps Sy into itself and is a strict Lipschitz contraction on
and so the existence and uniqueness of a fixed point uy Sy follows. But Ty(S)c_ Sy
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S1 and so uy exists and is unique in Sl. Also, if u S1, then Tyu Sy and so the
sequence {Tu} will converge to uy.

In order to prove the last assertion it suffices to show that the mapping y- uy is
continuous on each eS for 0 < e < 1. So let 0 < e < 1 be given. From the preceding
argument we see that if y eS then u Sy

_
hS1, where h 1/2 + 1/2e < 1. If x, y eS

then from (2.2) and the convexity of AS1 we have

so that

Thus the mapping y uy is even Lipschitz continuous on eS. Q.E.D.
In order to apply Theorem 1 to equation (2.1) we must determine [[A + A*[I. From

the hypotheses (i) and (ii) on k(x, t) we have that for u, v L.

showing that IIA +A*II 1. Taking u, v_->0 we find that IIA +A*II 1. This fact
together with Theorem 1 yields

THEOREM 2. Let S={uLl"l]Ulll<l/2}. Then for each g/S2 (1.3)admits a
unique solution uo in the closed unit ball $1 of L1, T6 maps $1 into itself and for each
u $1 the sequence {Tu} converges to uo in L 1. Moreover, the mapping g, u6 is
continuous on S2.

3. The ease >-0. We now turn to the problem of solving equation (1.3) in the
case where 0--> 0 a.e. and 110111 <--1/2. We require two preliminary results, the first of
which is quite standard (cf. [2, Thm. 12.1]).

LEMMA 1. Let u, O L and let u satisfy equation (1.3). Then U2 2U +2 O,
where U and are the integrals of u and respectively.

Proof. Integrating the equation u , + uKu and using the identity

we have

k(x, t)= 1/2{1 + k(x, t)- k(t, x)}

I
and the last integral is clearly zero. Q.E.D.

LEMMA 2. If b, L with 0 <-_ b <- and if u, v L with 0 <- u <- v then

0<= T,u <-_ Tv, n =0, 1,....

Proof. It suffices to show that 0 _-< Tu <- T,v. For this, note that if U l, U2 " 0 then
uaKu2 >-_ O. Thus

Tu 4) + uKu >-oh >=0
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and

T,v Teu (0 ) + vKv uKu

(0- d)+ (v u)Kv + uK(v u)

_->0. Q.E.D.

THEOREM 3. Let Sf {u LI" Ilulll --< 1/2, u _-> 0}. Then ]’or each 0 S equation
(1.3) admits a unique solution uo in the closed unit ball S1 ofL 1, u6 >=0, T6 maps S1 into

itself and ]’or any u $1 with u >- 0 the sequence {T2u} converges to uo in L1. Moreover,
the mapping -+ u is uniformly continuous on Sf

Proof. Let e S-. Since I111 --< x/2 it follows, as in the proof of Theorem 1, that
T0 maps $1 into itself. Setting u, T20 we have 0 _-< Uo -< u and so, by Lemma 2, it
follows that {u,} is an increasing sequence in L 1. Since this sequence is contained in $1
it follows by the monotone convergence theorem that it converges in Z to some
U, G Sl with u, >_-0. Since u,+l + u,Ku,, and u, - u, in L it follows that Ku,, - Kuoin L and u, 0 + u,Ku. This proves the existence of a solution u, of (1.3) with
u, e $1 and u, _-> 0.

If [[0[[1 < 1/2 then the uniqueness of u, in $1 follows from Theorem 2. So suppose
that I10111 1/2 and that u is a solution of (1.3) with u e S1. We shall show that u u,
where u, is the particular solution obtained in the preceding paragraph. Since u and
u, are solutions of (1.3), Lemma 1 implies that u(x)d/z(x)=j uo(x)&z(x)= 1, so
that, since [lull1-< 1, we must have u _-> 0. From Lemma 2 we have that u, T0_-<
T,u u for each n -> 0. Since u, - u, in L1 it follows that u+ -<_ u. But then I[u u+ll
Iu(x) d(x)- u,(x) d/z(x) 0 so that u u,. This shows the uniqueness of u0 in $1.

Now let vS1 with v_>-0. We must show that the sequence {v,,}={T,v} con-
verges to u in L1. If [[0[[a < 1/2 then this follows from Theorem 2 and so we may assume
that 110111 In this case we have, as above, that u,, TO <- T2v v,, u,, u, in L
and I uo(x)dtz(x)= 1. Since v, $1 it follows that (v,-u,,)-O in L and therefore
V,=(Vn--Un)+U,--U inL 1.

If 4, S- with b _<- then from the result just established we have Tb u in
L and T- u0 in L and, from Lemma 2, 0-< T& _-<T so that we must have
0 -_< u -< u. Let (b, , U and U, denote the integrals of b, 0, u and u, respectively.
Then using Lemma 1 we have

[]U Ud][I U Ud (1 2)’/2- (1 2xI’)1/2

--<  llO  lll/2.
Now let 01, 0.e S- and define d 01 ^ 02 so that d e S-, 0_<- d --< 01, 0 and

1]01-4,]11+]102-41]1-1101-0111. If Ul, u2 and u are the solutions of (1.3)in $1 for
01, 02 and b respectively, then using the inequality established in the previous
paragraph we have

--<dl14,1-lll/+ll-lll/

which shows that the mapping g,- u, is uniformly continuous on S-. Q.E.D.

4. Continuous kernels. In this final section we consider equation (1.3) in the
presence of a topology on X (cf. [1, Theorem 2]). For the sake of simplicity we shall
assume that X is equipped with a metric topology and that/ is a Borel measure on X
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with supp(tz)= X (i.e., each nonempty open set has positive measure). In addition to
the previous assumptions (i) and (ii), we assume that the kernel satisfies

(iii) k (x, t) is continuous on X X.
In the next result we use, for the first time, the full strength of assumption (i).

LEMMA 3. For each u L 1, Ku is continuous on Xand, if u O, then IKu(x)l < Ilul]l
for each x X.

Proof. If x e X and {x,} is a sequence in X converging to x, then

Ku(x,)-Ku(x)= j {k(x,, t)- k(x, t)}u(t) dlx(t),

and the integral converges to zero by (i), (iii) and the dominated convergence theorem.
Thus Ku is continuous on X. If u 0 and x 6 X, then

IKu(x)l<= j- k(x, t)lu(t)[&z(t)<llullx,
where the last inequality follows from assumption (i). O.E.D.

THEOREM 4. If U S1 and u is a solution of equation (1.3), then u is continuous.
wherever is continuous. If b is continuous, d/ >-0 and II ltl --< 1/2, then the unique solution

u6 in S1 of (1.3) is continuous and if u is continuous, with 0 <- u <-_ d/, then the sequence
{T$u} consists of continuous functions converging monotonically and almost uniformly
to uo.

Proof. Let u e $1 be a solution of equation (1.3). Then O= u(1-Ku) and, by
Lemma 3, 1-Ku is continuous and nonvanishing on X. Thus u must be continuous
wherever 4’ is continuous.

Now let 4 be continuous, 4 -> 0 and II,llx --< 1/2. By Theorem 3, equation (1.3) has a
unique solution u, e $1, which, since O is continuous, must also be continuous. If u is
continuous and 0-< u <-4’, then each T,u is clearly continuous and, by Theorem 3,
T,u u, in L1. Since T,u + uKu >- >= u, it follows from Lemma 2 that {Tv u} is
an increasing sequence. Since supp (/x) X, we must have T,u <= u6 for each n ->_ 0. In
order to show that the sequence {T,u} converges almost uniformly to u,, it suffices, by
Dini’s theorem, to show that the sequence converges pointwise to u, on X. But
letting u, T,u we have

(1 -Kuu,)(u,- u,+l) Un+lKUq +(1-Kuo)u,- Un+l

Un+lKU, +- Un+I

Un+1Kuo unKun
(Un+l- u,)Ku, + u,,K(uo- u,).

For each x eX we have 1-Ku,(x)O by Lemma 2, K(ue,-u,)+O uniformly since
u, +u0 in L 1, {u,(x)} is bounded and u,,+l(X)-U,,(x)-+O since {u,(x)} is monotone
increasing and bounded above by uu.(x). Thus the sequence {u,}= {T,?,u} converges
pointwise, and hence almost uniformly, to u0. Q.E.D.

Acknowledgment. The author wishes to thank Dr. Hans G. Kaper for his
generous help and encouragement.
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AN EXISTENCE RESULT FOR A NONLINEAR VOLTERRA
INTEGRAL EQUATION IN A HILBERT SPACE*

GUSTAF GRIPENBERGt

Abstract. We study equations of the form

U(t)+Io a(t-s)gu(s)dsf(t), t>-O

on a real Hilbert space H. The unknown function is u and a, g, f are given. It is assumed that the kernel a
is operator-valued (real-valued as a special case) and g is an arbitrary maximal monotone operator in H.
The method can also be applied to time-varying nonlinearity. We prove an existence and uniqueness
result that extends earlier results by Londen and Barbu. Finally an application is given.

1. Introduction. We consider existence and uniqueness of solutions of the
nonlinear Volterra equation

(1.1) u(t)+ a(t-s)gu(s)dsf(t), t>-_O,

where a, g and f are given and u is the unknown taking values in a real Hilbert space H.
The kernel a is a real-valued function and the nonhomogeneous term f takes [0, ) into
H. The mapping g is a nonlinear monotone (in general multi-valued)operator, having
its domain Dg and range Rg in H. The integral in (1.1) is to be considered as a
Bochner integral.

We say that a function u: [0, T]H is a solution of (1.1) on [0, T] if the following
conditions hold:

u L2(O, T; H),

u(t)Dg a.e. on[0, T],

:::lw L2(0, T; H),

(1.2)

(a.3)

(1.4)

such that

and

w(t)gu(t) a.e. on [0, T],

(1.6) u(t)+ Io a(t-s)w(s) ds =/(t) a.e. on [0, T].

A function u: [0,)H is said to be a solution on [0, c) if it is a solution on [0, T] for
any T > 0. We will also consider the more general equation

(1.7) u(t)+ Io A(t-s)g(s)u(s) ds 9 f(t), >-0,

with operator-valued kernel and time-varying nonlinearity. Thus we assume that the
kernel A takes [0, c) into L(H) (the Banach space of bounded linear operators on H)
and that g(s) is a nonlinear (multi-valued) mapping with domain Dg(s) and range Rg(s)
in H for a.e. s => 0.

* Received by the editors October 14, 1976, and in revised form January 20, 1977.
t Institute of Mathematics, Helsinki University of Technology, Otaniemi, Finland.

793



794 GUSTAF GRIPENBERG

We say that a function u: [0, T] H is a solution of (1.7) on [0, T] if in addition to
(1.2) and (1.4) the following conditions hold:

(1.8) u(t)eDg(t) a.e. on [0, T],

(1.9) w(t)6g(t)u(t) a.e. on [0, T],
and

(1.10) u(t)+ A(t-s)w(s)ds=f(t) a.e. on [0, T].

Again a function u: [0, o)-H is said to be a solution on [0, ) if it is a solution on
[0, T] for every T > 0.

Our results are formulated in Theorems 1 nd 2 of 2. These results concern
existence and uniqueness of solutions of equations (1.1) and (1.7) respectively. In 2 we
also give some comments including comparisons to earlier related results. In 3 we
prove Theorem 2. (Theorem i follows as a special case.) In 4 we give some examples.
Our key assumption on the nonlinear functions g(s) is that they should be maximal
monotone mappings. We do not however require these mappings to be subdifferentials
of convex functions.

Our notational habit follows that of [4]. Thus for example (., denotes the scalar
product in H and l. denotes the norm in H and L(H). We say that a function v is of
essentially bounded variation if it is a.e. equal to a function of bounded variation.

2. Statement of results.
TH.EOREM 1. Assume

(2.1) a W1’1(0, T;R), VT>0,

(2.2) a’ is of essentially bounded variation on [0, T], VT>0,

(2.3) a(0)> 0,

(2.4) g is a maximal monotone operator in H,

(2.5) fe W1’1(0, T; H), VT>0,

(2.6) f’ is of essentially bounded variation on [0, T], T>0,

(2.7) ]’(0) Dg."

Then them exists a unique solution u of (1.1) on [0, ) satisfying

(2.8)

(2.9)

u is Lipschitz continuous on [0, T],

w L(0, T; H), /T> 0,

T>0,

and such that (1.6) holds for every >= O.
In Theorem I in [7] Londen uses (2.1) and (2.3) but assumes (2.2) to hold only for

some T0>0 and instead of (2.5), (2.6) the condition f W1’2(0, T; H), /T>0. The
main difference between our result and that of Londen is however that in the latter g is
assumed to be the subdifferential of a proper, lower semicontinuous convex function
q: H(-; o]. Our assumption (2.4) is obviously much weaker. But note that we
then have to assume f(0) Dg whereas Theorem 1 in [7] uses only f(0) Do.

In [1] Barbu has studied (1.1) under the hypothesis that g is a subdifferential. In
addition he analyzes the case when g satisfies certain continuity and boundedness
conditions and is not necessarily a subdifferential. He uses kernels of positive type, the
main advantage being that one can allow a(0 + ) + c. In [3] Barbu has also considered
certain operator-valued kernels.



A NONLINEAR VOLTERRA INTEGRAL EQUATION 795

If the kernel a(t)=- 1, >-0 then (1.1) formally reduces to the evolution equation

du
dt
--+gu(t)gf’(t), u(0) f(0).

This equation has been extensively studied, see for example [4].
It is quite clear that Theorem 1 is a special case of the following:
THEOREM 2. Assume (2.5), (2.6) and

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

A wl’l(o, T; L(H)), VT> O,

A’ is of essentially bounded variation on [0, T], VT > 0,

T1 > 0 such that A’(t) is symmetric ]’or a.e. [0, T1],

A(0) aoL ao > O,

a measurable setE c [0, oe) such that m{[0, eo)\E} O, 0 E, and E g(t)
is a maximal monotone operator in H,

a function e:[0,00)-R, ::IT2>0, ::lho>0 and ::1 a constant L such that
var (e;[t, t+ T2])-<q<l Vt>-O, andsuch that

Iga(t)x-gx(s)xl<=le(t)-e(s)l(L(txl+ l)+lgx(s)xl) Vx H,
Vh (0, ho], Vs, E, s _-< t,

(2.17) f(O) Dg(O).

Then there exists a unique solution u of (1.7) satisfying

(2.18) u is Lipschitz continuous on [0, T], VT>0,

(2.19) w L(O, T; H), VT>O and such that (1.10) holds for every t>= O.

If A(t)-= I, >= O, then (1.7) formally reduces to

du
d--7+g(t)u(t)f’(t), u(0) f(0).

This equation has been studied among others by Crandall and Pazy [5] and Evans [6].
The assumptions they use on the t-dependence of g(t) are similar to the hypothesis used
here but on the whole also weaker. It is to be observed that they study the equation in a
general Banach space.

3. Proof of Theorem 2. We approximate the equation (1.7) by

(3.1) ux (t)+ Io A(t- s)gx (s)ux (s) as =f(t)

where ga (s) is the Yosida approximation of g(s) (when s E) (see [4]). But before we
can treat this equation we must draw some conclusions from the hypothesis on g(t):

LEMMA 1. If (2.14)--(2.16) hold then Dg(t) is independent of (= Dg), E and
vL"(O, r;H)zg(t)v(t)L"(O, T;H), T>0, 1-_<p-<o, h (0, ho].

Proof. Let r, s6E be such that [r-s[<-T. Then (2.15) and (2.16) imply that
[gx(r)xl- when h-Oiff[gx(s)xl-c when h 0 and this gives (see [4, p. 28])
Dg(r) Dg(s) which implies that Dg(t) is independent of t. Let T > 0, p [1, ] and
h (0, ho] be arbitrary and suppose v 6L"(0, T;H). It follows from (2.15) that e is
continuous a.e. on [0, T] and this together with (2.14) and (2.16) gives that for a given
xH gx(t)x is a.e. continuous from the right in [0, T]. We conclude that
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gx(t)x is measurable. By (2.14) gx(t): H--> H is Lipschitz continuous (see [4,
p. 28]) for fixed E and so gx (t)v(t) is measurable because v is measurable
by definition. From (2.16) and using the Lipschitz continuity of g(0) we
deduce

Igx(t)v(t)l<-2 max le(s)lL([v(t)l+ 1)+(2 max le(s)l+ 1)s[0,T] s[0, T]

1 l lxl)(Iga (O)xl +- Iv(t)l +-
if E f’)[0, T] and x H. From this inequality the second conclusion follows and
completes the proof of Lemma 1. I-]

Applying Lemma 1 and a standard argument made possible by the Lipschitz
continuity of g (t): H -H that follows from (2.14) if E, we deduce from (2.5) and
(2.10) that there exists a function u, absolutely continuous on every interval [0, T] and
such that (3.1) holds for every >_- 0. We also see that G(t) g (t)u (t) L(0, T; H)
for every T > 0. Differentiating (3.1) yields

(3.2) u(t)+ A(O)Gx (t)+ A’(t- s)Gx (s) ds f’(t) a.e. >_- O.

From this equation we will under the hypothesis of the theorem extract some
suitable bounds on G and ux, which guarantee that we get a solution of (1.7) when we
let h 0. The solution will first be constructed on an interval [0, T] where T_-<

min { rx, r2} and is chosen to satisfy the conditions (3.16), (3.18) and (3.29). We observe
that T depends only on q, L, T1, T2 and the values of A(t) on [0, rx].

The next lemma gives a crucial bound on G.
LEMMA 2. If (2.5), (2.6), (2.10), (2.11), (2.13)--(2.17) hold, then

(3.3) sup [Iall(o,r<,
x (O,Xo]

Proof. Let h >0 and let h (0, h0] be arbitrary. By (2.13) and (3.2) we have

1 d
2 dt [ux(t+ h)-ux(t)[2=(u’(t+ h)-u’(t), ux(t+ h)-ux(t))

ao(gx (t + h)ux (t + h)- gx (t + h)ux (t), ux (t + h)- ux (t))

ao(gx (t + h)ux (t)- gx (t)ux (t), ux (t + h)- ux (t))

t+h

+ (f’(t + h)-f’(t)- f A’(t + h s)G (s) ds
aO

+ A’(t- s)Gx (s) ds, ux (t + h)- ux (t) a.e. 6 [0, T].

When t+h E, ga(t+h) is monotone and so by (2.13), (2.14) and the absolute
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continuity of u integration of the preceding inequality over (0, t) yields"

1/21u (t + h)- u (t)l2 - 1/21ua (h)- u (0)12

+Io (aolga(s+h)u(s)-ga(s)u(s)l
s+h

aO

lu. (s + h)- u. (s)[ s.

An application of Lemma A5 in [3] to the inequality above now gives

[u. ( + h)- u. (t)l = [u. (h)- . (0)1

+ aoJo lg" (s + h)u. (s)- g. (s)u. (s)l s

(3.4) + [’(s-h)-’(s)[ ds

f+
Jo

[e’(s + h r)- e’(s r)[ [a (r)l dr ds

s+h

Our next purpose is to divide by h in (3.4) and let h 0 +. To this end we need some
estimates for the different terms on the right side of (3.4). Obtaining these estimates will
occupy us until the relation (3.15). By (3.1)

1 1
g lu. (h)- .. (01 g l(h)-t(0)l

(3.5)

+ [A(h s)l IG.(s)[ ds.

It follows from (2.6) that limho+ If’(h

(3.6) lim sup
1

hO+
If(h)-f(0)[ lim sup

1 h

o+

By (2.7), (2.14), (2.15), (2.16) (with x=/(0)), (3.1) the Lipschitz continuity
gx (s): H H and the fact that [g (s)x N [g(s)xl if x e Dg(s) and s e E (see [3, p. 291)
we can deduce

1Ig. (s)u. (s)l Ig. (s g(0)l+ lu. (s)-f(0)[

1

1
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This inequality combined with (3.5), (3.6) and the continuity of ]A(h s)l and ux (s) now
yields

(3.7) lim sup
1

h-O+ -lUx (h)- ux (0)[-< c4.

From (2.5), (2.10), (3.1) and an application of HSlder’s inequality we obtain

and now using (2.16) we get

olgX (s + h)ux (s)- (s)ux (s)l dsgx

<- I. [e(s + h)- e(s)[[Z(lu. (s)l + 1)+ IG (s)l] ds
(3.9)

-<_ (LIIAIIIo.)IIG I1o,
T-h

| [e(s + h)- e(s)l ds, [0, T- h ].
Jo

We have assumed of T that

(3.10) 0< T=<T2
holds and so (2.13), (2.15), (3.9) and an application of Lemma A1 in [3] yield

lim sup
1 IothO+ -’ ao Igx (s + h)ux (s)- gx(s)ux (s)l ds

(3.11)
<-- (aoLqllAIIc(O,T)+ aoq)llGx[Ic(O,T)+ aoqc6, [0, T).

By (2.6) and another application of Lemma A1 in [3] we have

1
(3.12) lim sup Jo f’ f’

hO+ -- (s + h )- (s)l ds <-var (f; [0, T]), 6 [0, T).

The relation (2.11) and the same lemma that was used above imply

Iololim sup
1 IA’(s+h-r)-A’(s-r)llO(r)l drds

hO+ -’
(3.13) <-IlGx [IL(o,T) var (A’; [0, rl) ds

-<_ var (A’; [0, rl)Tlla,llo,,
We also have, adding and subtracting an additional term,-- A’(s + h r)Gx (r) dr ds

e [0, T].

A’(s + h -r)Gx(r) dr-A’(O+ )Gx (s)l ds

+ IA’(0 + )1 fo lax (s)l ds.
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By (2.11) lims-,o+ A’(s) A’(0 +) exists and together with the integrability of Gx this
implies that the first integral on the right side in the preceding inequality converges to
zero by the dominated convergence theorem. The second term can be estimated by
using H61der’s inequality and so

lim sup
1 fo’ ]Is

+h

h-O+
A’(s + h -r)G(r) dr ds

(3.14)
<-IA’(O+)ITIIG[I,, /[0, T).

Combining (3.4), (3.7), (3.11), (3.12), (3.13) and (3.14) we have

11 o,)< sup lim sup
t[0,T) h0+

< 7 + (aoLqIIAIIL<O,T) + aoq + var (A’[0, T])T

We have assumed of T that

+ IA’(0 + )l T)IIGx lie.

(3.16)
T

ao Io IA’(s )l ds > 0

holds. By (2.10) this is possible for T>0. Now we obtain from (2.6), (2.13) and (3.2)

Ior Ia’(s )l ds)-(3.17) Ilallo,r) <-_c8+(ao
We have also assumed of T that it satisfies the condition

(3.18)
aoLqllAllLl(o, r)+ aoq + var (A’; [0, TI)T + IA’(O + )IT

T

< ao Jo IA’(s)l ds.

This is possible by (2.10), (2.11) and (2.15). The assertion of Lemma 2 now follows from
(3.15), (3.17) and (3.18).

It is now possible to deduce convergence of ux when h 0. First we prove
LEMMA 3. If (2.10)-(2.14), (3.1) and (3.3) hold then I [Gx(s)-G,(s)] dslO

when h, tx 0 and [0, T].
Proof. If the assertion of Lemma 3 does not hold then we can conclude exactly as in

[7] (see (3.16)-(3.24) in [7]) that there exist sequences {h,}, {t,,} 0, d >0, toe [0, T]
such that if we put h, Ga.-G,. we obtain

’(3.19) h,(s) ds >= d, n 1, 2,...,

(3.20) h,,(s) ds <= 2d, n 1, 2,...,

and

(3.21) h, (s) ds <= 4d,

We have assumed that T is such that

[0, to],

n=1,2,..., s, s2 e [0, to].

(3.22) 0 < T_-< T1
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holds. It follows by integration from (2.10) and (2.12) that A(t) is symmetric if
[0, T]. This fact, (2.10), (2.12) and (3.22) yield for an arbitrary z L2(0, T; H) and
[0, T]

ioz(s), A(s r)z(r) d ds =- A(t) z(s) ds, z(s) ds

1
a’(s) z(r) dr, z(r) d ds(3.23)

o a’(s- r) z(p) dp, z(s) r s.

To see this, just perform an integration by parts two times and use the symmetry of A
and A’.

It follows from (2.10)-(2.12) and (3.22) that we can construct a sequence {B} with
the following properties:

(3.24) B W’(O, T; L(H)), B A’ pointwise a.e. in [0, T] in the norm topology,
T

0.2) [ Ik(s)l ds var (a" [0, T]), m 1, 2,..

and

(3.26) Bin(s) is symmetric if s 6 [0, T], rn 1, 2,.

Now we claim that

(3.27) - B ’(r) z (p dp, z (p ) dp dr ds

1io’ ( i,’-- B,,,(t-s) z(r) dr, z(r) d ds.

This relation is a consequence of B, W’(O, T; L(H)), (3.26) an integration by parts
and a change of variable.

Combining (3.3), (3.23) and (3.27) we obtain

(3.28)
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+- (a’(t-s)-B,,(t-s)) h,(r) dr, h,(r) d ds

We have assumed of T that it is such that

(3.29) ao-16svar(A’;[0, s])-24 IA’(r)ldreb>O whense[0, T]

holds. By (2.10) and (2.11) this is possible.
Using (2.10), (3.3), (3.19), (3.20), (3.21), (3.24), (3.25), (3.28), (3.29)and the

dominated convergence theorem we conclude that it is possible to choose m such that
for n 1, 2,...

(3.30)

I] (h,(s), Io A(s-r)h,(r) dr) ds

d2 Io>=- ao-2d2 Ia’(s)] ds- 8d2to var (a" [0, To])

-lOd2 IA’(s)lds
bd2

>-
bd2

4 4

Write (3.1) with , ,n, A tzn, take differences, multiply by h,, and integrate over
(0, to). This yields when using (3.30)

(ux. (s t,. (s ), gx. (s )ux. (s)- g,. (s )u,. (s )) ds
(3.31)

bd2

4

But g (t)ux (t) g(t)Jx (t)ux (t) a.e. [0, to] and so by the monotonicity of g(t), implied
by (2.14) when E,

(3.32) (-Jx.(t)ux.(t)+J,.(t)u,.(t), gx.(t)ux.(t)-g,.(t)u,.(t))<=O, a.e. [0, to].

Integrate (3.32) over (0, to), add the result to (3.31) and use ux(t)-Jx(t)ua(t)=
,gx (t)ux (t) a.e. [0, to] and we get

t
< 0.(3.33) (A,Ox.(s) xnG,.(s), Gx.(s)-G,.(s))ds <

bd2
4

Recalling (3.3) and letting An,/Zn 0 we conclude that (3.33) is contradictory and
so the assertion of Lemma 3 holds.

Now we have the necessary tools to prove convergence of ux. Take A An, tzn for
any {A,}, {tzn}- 0 in (3.1), take differences and perform an integration by parts justified
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by (2.10). This gives

(3.34)
A’(t- s) G, (r)- Gt,, (r) dr ds.

It follows from Lemma 3, (2.10), (2.11), (3.3), (3.34) and an application of the
dominated convergence theorem that

lim ]u, (t)- ut,, (t)] 0, [0, T].

From this fact combined with (3.3), (3.8) and the dominated convergence theorem we
can deduce that u, is a Cauchy sequence in L2(0, T; H) and so by the relation
Ja(t)u(t)= ux(t)-,G(t) and (3.3) it follows that there exists an u L2(0, T; H) such
that

(3.35) Jx,ux, u in L2(0, T; H) when n

From (3.3)we deduce that

sup
x(0,x]

and so by the weak sequential compactness of L2(0, T; H) there exist a subsequence of
{A,} (also denoted {A,}) and w L2(0, T; H) such that

(3.36) G. w in L2(0, T; H)(weakly) when n oo.

In order to show that (1.8) and (1.9) hold, we need the following.
LtSMMA 4. Let (2.14)-(2.16)hold. Let D,={u[u L2(0, T’, H), u(t)Dg.a.e, on

[0, T]} and define , on D, by ,u ={vlv L2(0, T; H)v(t) g(t)u(t) a.e. on [0, T]}.
Then , is a maximal monotone operator in L2(O, T; H).

Proof. From the monotonicity of g(t) a.e. follows that is monotone in
L2(0, T; H). To obtain the result that is maximally monotone it is enough to show that
R(I+A)=L2(O, T;H) for some A>0. Let (0, A0] and let vL2(0, T;H) be
arbitrary, g(t) is maximally monotone a.e. t[0, T] and so u(t)=J(t)v(t)=
(I + Ag(t))-lv(t) is defined a.e. on [0, T]. It follows from Lemma 1 and the definition of
g (t) that u L2(0, T; H) and the assertion of the lemma is obtained. [-I

As is maximally monotone it is demiclosed so using (3.35) and (3.36) we have

u 6 D, w 6 du,

or by the definition of ,
(3.37) u(t) Dg, w(t) g(t)u(t) a.e. on [0, T].

Using (3.1) and the fact that the convolution operator with A as kernel by (2.10) is a
bounded linear operator in L2(0, T; H) (and so also weakly continuous) we easily
conclude from (3.35) and (3.36) that (3.38) holds a.e. on [0, T].

This fact combined with (2.5) and (2.10) yields that u is absolutely continuous and
SO

(3.38) u(t)+ A(t-s)w(s) ds fit), [0, T].
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By (3.37) we can without loss of generality assume that

(3.39) u(T) Dg, T E.

As the set {vL2(0, T;n)[llvl[oo,<-_C} is closed in the strong topology of
L2(0, T; H) and convex it is also closed in the weak topology and so (3.3) and (3.36)
imply that

(3.40) w L(0, T; H).

Now that we have proved the existence of a solution of (1.7) on the interval [0, T] we
use an induction argument to construct a solution on [0, c). Suppose we have a solution
of (1.7) on [0, To] that also satisfies the conditions (3.38)-(3.40) for T replaced by To.
Consider the equation

v(t)+ A(t- s)g(To + s)v(s) ds f(t + To)
(3.41)

rT"o def

Jo A(t+ To-s)w(s) ds fo(t).

Using (2.5), (2.6), (2.10), (2.11) and (3.40) we conclude that foe W1’1([0, T]; H) and
that f6 is of essentially bounded variation on [0, T]. (3.38) and (3.39) yield that
fo(0) u (To) Dg. We can now apply the preceding arguments and construct a solution
v of (3.41) on the interval [0, T] such that (3.38)-(3.40) (with [ replaced by [o) are
satisfied. If we define

u(t) if [0, To]
a(t)=

v(t- To) if 6 (To, To + T]

then t is a solution of (1.7) on [0, To + T] such that (3.38)-(3.40) hold with T replaced
by To + T. The induction argument applies and gives a solution u on [0, ) such that
(3.38) and (3.40) hold for arbitrary T. The only thing left of the proof of the existence
part of the theorem is to show that u is Lipschitz continuous on every interval [0, T]. By
(2.5), (2.10)and (3.40)we can differentiate (3.38)which yields

u’(t)+ A(O)w(t)+ Jo A’(t- s)w(s) ds f’(t), a.e. _-> 0.

Using (2.6), (2.10) and (3.40) it follows from this equation that u’L(0, T; H),
VT > 0 and so by the absolute continuity of u it follows that u is Lipschitz continuous on
every interval [0, T].

To prove uniqueness and thereby complete the proof we use the same method as in
(3.74)-(3.83) in [7]. It is easily seen that this method can also be applied under the
assumptions of this theorem. In particular note that no subdifferential properties of g
are used.

4. Examples. Let D, be a bounded open subset of R with sufficiently smooth
boundary F and let W"’", Wo’’" stand for the Sobolev spaces. We shall consider a
nonlinear differential operator of the form

(4.1) Au (- 1)I"ID"A (x, u, ., D"u),
where A,,(x, z) are real functions defined on f x R rv. As(x, z) is measurable in x and
continuous in z for all a. Assume there exist p > max {1, (2n/(n + 2m))}, h Lq(f),
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(1/p + 1/q 1), and a constant C such that for all a

(4.2) [A,(x, z)[ =< C(Iz[’-1 + h(x)), a.e. x f, z R N.
For any (z, y) Rr RN and for almost every x f the following inequality is assumed
to hold

(4.3) E (A(x,z)-A(x, y))(z,,-y,)>_-0.

Let H L2(’) and V Wo’P(D). V’ is the dual of V and (., the duality pairing. If
we identify H with its own dual we have V c H c V’ the imbeddings being continuous
and dense. Define A" V V’ by

(fi, u, v)= Y f As(x, u, ., D’u)Dv dx.(4.4)

It follows from (4.2) and (4.3) that is monotone and demicontinuous from V to V’
(see [2, prop. 1.2, p. 49]). We assume that for some Z > 0

(4.5) lim
u>+ lul _

This is for instance the case if there exist k L1(-)and positive constants c2, c3 such that

(4.6) 2 A(x,z)z,>--cl E [zlO-c=[zol=-k(x), a.e. xea.

If we define gu Xu on Dg {u Vlfiu H} then we see just as in the proof of

Theorem 2.5 p. 140 in [2] that g is a maximally monotone operator in H.
Suppose in addition that we have a function K" [0, oe) R that satisfies

(4.7) ::le such that K(t)>-e >O, Vt->O.

(4.8) lTo>0such thatvar(K;[T, To+ T])<-qe, q<l,lT>-- O.

We define g(t)= K(t)g. Clearly g(t) is maximally monotone in H for all -> 0. We
also have for any A > 0

1Igx (t)x gx (s)xl -- [Jx (t)x -Jx (s)xl

1__ lJ’x (s)(I + Ag(s))Jx (t)x -Jx (s)(I + Ag(t))Jx (t)xl

<-[g(s)Jx (t)x g (t)Jx (t)x <- [g (s)-g(t)l gJ (t)x

<--_ [K (s)-K (t)l 1_ Igx (t)x I.
An application of Theorem 2 combined with the preceding remarks now yields
COROLLARY. Assume (2.1)-(2.3), (4.1)-(4.5), (4.7)-(4.8) and

(4.9) fe wl’X(0, T;L2(I))), ’qT>0,

(4.10) f’ is of essentially bounded variation on [0, T], VT>0,
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(4.11) f(0)L2() is such that the linear functional on W"(l)) defined by

Wo’(l)) Y f A, (x,/(0, x),..., D/(0, x))D’v (x) dx

belongs w L2().
Then there exists a unique function u: [0,)L2() such that

(4.12) u is Lipschitz continuous on every interval [0, T],

(4.13) u(t) W’p () for a.e. 0,

(4.14) there exists a function w: [0,)L2() such that wL(O, T;L()),
T>0,

(4.15) for a..e. 0 and for all v WY’o(O) we have

f, w(t, x)v(x) dx Z [ K(t)a(x, u(t, Du(t, x))Ov(x) dx

and

(4.16) the following equation holds in L2(’) for all >- 0:

u(t, x)+ Io a(t-s)w(s, x) ds =f(t, x).
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MONOTONY PROPERTIES AND INEQUALITIES FOR GREEN’S
FUNCTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS*

PHILIP HARTMAN

Abstract. We derive monotony properties for G(., s) and deduce inequalities for G, where G(t, s) is
the Green’s function belonging to a nonsingular, disconjugate, linear nth order differential equation and to
a multipoint boundary value problem.

1. Introduction. The object of this note is to derive monotony properties and
inequalities for Green’s functions G(t,s) for N point boundary value problems
associated with a real disconjugate nth order linear differential operator, i.e.,

(1.1) Lx Dnx + pi(t)DJx, D Dt d/dt,
i=0

N

(1.2) Di-lx(ai)=O forl<-_j<-N, l<-i<=mi, mi=n,
i=1

where a a <’" < an b, mi > 0 is an integer, and N => 2. Condition (1.2) means
that x(t) has a zero of order at least m at ai. In this paper, unless otherwise stated,
we make the following hypothesis.

(H) pi(t) C[a, b], for O<-_j <n, is real-valued and (1.1) is disconjugate on

[a,b].
The operator (1.1) is called disconjugate on [a, b] if no solution x(t)O of Lx 0

has n zeros on [a, b]. In this definition of disconjugacy, it is immaterial whether or not

zeros are counted with their mutliplicities when the coefficients Pi are real-valued; for
a more general result, see Hartman [5] and, for a simple proof for the case at hand, see

Opial [8].
Our inequalities for the Green’s function G(t, s) implied by Corollary 2.1 and

Proposition 2.1 below reduce, for the case N 2, to those of Bates and Gustafson [1].
Our proof-is simpler than that of [1] and is obtained with a minimum of calculation.
Calculation is minimized by a systematic use of the adjoint boundary value problem
and the avoidance of particular fundamental sets of solution of L and L* in 5. Our
proof is particularly simple in the case N= 2 where the adjoint boundary value
problem is obtained by replacing L by its formal adjoint L* and rnl, m2 by n-
rt

For applications, it is useful to know bounds for the derivatives DG(t, s)of the
Green’s function, but these can be obtained from bounds for G and bounds for the
coefficients of L; cf., e.g., [4, pp. 480-481].

Some monotony properties of G(t, s) are given in Theorem 2.1k. The case N 2
and k 1 is implicit in [1]; see the remarks below following Theorem 2.11. Other
monotony properties are given in Theorem 2.2.

The referee has called my attention to the paper [2] which has appeared since this
one was submitted for publication. In it, Bates and Gustafson show, for example, that
]G(t, s)]_-<max {IG,(t, s)] 0<k <n}, where Gk(t, s) is the Green’s function for the
two point boundary value problem belonging to N 2, ml k, m2 n k in (1.2).

* Received by the editors September 20, 1976, and in revised form January 24, 1977.
f Mathematics Department, Johns Hopkins University, Baltimore, Maryland 21218. This study was

supported by the National Science Foundation under Grant MPS75-15733.
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2. Statement of results. Recall that if (1.1) is disconjugate on [a, b], then there
exists a (unique) Green’s function G(t, s) C([a, b] [a, b]) with the property that if
f(t) C[a, b], then

b

x(t) Ia G(t, s)f(s) ds

is the (unique) solution of Lx =f satisfying the boundary conditions (1.2). The
function G is determined by the conditions: For fixed s (a, b), x(t)= G(t, s) satisfies
Lx=O on a<=t<s and s<t<-b, the boundary conditions (1.2), and Di-lx(s+O)
Di-lx(s--0)--0 or 1 according as 1 <-i < n or n.

THEOREM 2.11. Assume hypothesis (H). Let I<-J<N and x=xjl(t) be the
solution of Lx 0 determined by the conditions

(2.1) Di-lx(ai) =0 forjySJ and l<-i<=mi,

(2.2) Di-lx(aj)=Oor l accordingas l <-i<mori=m..

Let s (a, b) be fixed. Then

N

(2.3) (-1)()Dt{G(t,s)/xl(t)}>O [or a <- <-_ b, o’(J)= Y. mj,
j=J+l

holds unless either J N, mN 1, aN-a < s < b, and

(2.4) 1)={)D,{G/x}=-O or >0 according as a <-t<=sors<t<-b,

or J 1, m 1, a < s < a2, and

(2.5) (-1)(J)D,{G/xjI}>O or =-0 according as a <-t <s ors<-t<_b.

For N 2, Bates and Gustafson [1] essentially give Theorem 2.11 (cf. the proof of
their Lemma 3.4, pp. 333-334) but, because of a misstatement of an implication of
Coppel [3, p. 108] they seem to assert that (2.3) always holds.

Since G(t, S)/XJx(t)--’> 0 as a and G(t, s)/xjx(t)--> D"G(a, s)/D"xl(aj) as
ai(: a), Theorem 2.11 implies
COROLLARY 2.1. For f 1,..., N, put

(2.6) yi(s)=Dt G(a,s) fora<-s<-b.
Then, for fixed s (a, b ),

(2.7) O<-(-1)(J)G/Xl<-(-1)(J)yi(s)/D"Xl(ai) foraj <-t<-ai,

(2.8) (-1)()G/xjl>-(-1)"()yi(s)/D"’x(a)>=O fora<-ai<-_t<-b,

(2.9) O>=(-1)(JG/xl >-(-1)(J)y(s)/Vmx(a) forai<-_t<=aj,

(2.10) (-1)(JG/xj<-(-1)(J)y(s)/Dmxj(a)<-O [ora<=t<=ai<=aj.

Note that yi(s) C[a, b]. This is clear if mi < n 1. Also if mi n 1, then N 2
and a is a or b, and the continuity of yi(s) is again clear.

This corollary will be much more useful for giving bounds for G if we give a more
"explicit" characterization of the function yj in (2.6):

PROPOSITION 2.1. Assume that pi(t) Ci[a, b] for ] 0,. , n 1 and define the
operator L* by

n-1

(2.11) L*x*--(-1)"D"x*+ 2 (-1)iDi[pi(t)x*].
/=0
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Let X*(t, s) be the Cauchy function for (2.11), i.e., x*(t)=X*(t, s) is the solution of
L’x* 0 satisfying the initial conditions

(2.12) Di-Xx*(s)- 0 or 1 according as 1 <= < n or n.

Then there exists a function y/(t) with the properties that x*(t)= y(t) is a solution of
L’x* 0 on (a, a+l) for k 1, , N- 1 and satisfies the boundary conditions

(2.13) D-ax*(a) 0 for 1 <- <- n m,

(2.13) D-ax*(a+O)=D-x*(a-O) forl<k<N, l<-i<=n-m,

(2.13,) D’-lx*(as) -DmjDi-lx*( aj) for 1 <-_ <= n ms,"

and there exists a function y/(t) with the properties that x*(t)= y(t) is a solution of
L’x* 0 on (ak, ak+l) for k 1, , N- 1 and satisfies the boundary conditions
(2.141) Di-lx*(al) D’D’ 1X*(a, ai)

(2.14,) Di-lx*(a, +0)= Di-lx*(a -0)

(2.145) Di-lx*(as)= 0

Furthermore, the function (2.6) is given by

for l <-_i <-n-ml,

for l<k<N, l<-i<-n-m,

for l <-i <-_n-ms.

(2.15) yi(t)= y(t) for a <- < ai and yi(t)= y(t) forai < <- b.

Remark. For the case j N, we have that x*(t)= yN(t)= yt) for a <= t--<_ b

satisfies (2.13k) for 1 --< k < N, while (2.13N) becomes

(2.13v) Di-lx*(aN) 0 or (--1)m’ according as 1 <= < n ms or mN,

Correspondingly for j 1, x*(t) yl(t) y(t) for a <- <_- b satisfies

(2.14]) Di-ax*(al)=Oor(-1)"1 accordingas l<-i<n-mlori=n-ml,

and (2.14k) for 1 < k -<N. The reduction of (2.13u) to (2.13) and (2.141) to (2.14)
follows from

(2.16) Dk-1D,-1X*(s,s)=Oor(-1)-1 accordingas i+k<n ori+k=n;

cf; e.g., [1, p. 329].
Remark. The assumption Pi Ci[a, b] (instead of Pi C[a, b]) is for convenience

only and can be avoided if Proposition 2.1 is suitably reformulated.
If mj>l, then Theorem 2.11 is the first of a sequence (k--1,..., mj)of

statements concerning "monotony" properties of G(. ,s). For if W(ul,..., u)
denotes the Wronskian determinant of the functions ul,’’ ", ui, then D,{G/xI}
-2W(Xyl a(. s)).xJ1

THEOREM 2.1k. Assume hypothesis (H). Let 1 <=J <=N, 1 <-k <=m, and x Xk(t)
be a solution of Lx 0 determined by conditions

(2.17) Di-lx(ai)O forjJ, l<-i<-mi,

(2.18) D-lx(a)=Oor l accordingas l<-i<-mj-kori=m-k+l,

while D-lx(a) is arbitrary for m- k + 1 < <-_ m ilk > 1. (In particular, Xk has a zero

of order exactly m k at aj.) Let s (a, b) be fixed and

(2.19) Wf(t, s)= W(Xk, XZk-1, XI, G(t, s)).

Then the inequality

(2.20) (-1))x-l(t)Wf(t,s)>O fora<-t<-_b
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holds unless either J N, ms k, aN-1 < S < b, and

(2.21) (-1)(Jx[-1V 0 or >0 according as a<-t<-s or s<t<-b,

or J 1, ms k, a < s < az, and

(2.22) (-1)(S)xS--1Wf>0 or --0 according as a <-t <s ors<=t<-b.

The proof of Theorem 2.1k, and hence of Corollary 2.1, give the following
extensions of these results.

COROLLARY 2.2. Assume the analogue of hypothesis (H) in which [a, b] is
replaced by (a,b) [or (a,b] or [a, b)] and let a<al<. .<aN<b [or a<al<. .<
aN <-- b or a <- al <. < an < b]. For al < s < aN, extend x(t)= G(t, s) to (a, b) [or (a, b]
or [a, b )] as a solution of Lx 0 without discontinuities of its derivatives at a 1, aN.
Then, for s (a 1, ar), instead of s (a, b), Theorem 2. l k and Corollary 2.1 are valid for

(a, b) [or (a, b] or [a, b)].
More monotony properties are contained in the following generalization of

Theorem 2. lk.
THFORZM 2.2. Assume hypothesis (H). Let 1 _-<J(1)<J(2)<... <J(I)<-N and

l<-_k(i)<=ms(i) for 1<-_i<-_I. Let x=xs(i)k(t) be a solution of Lx=O defined as in
Theorem 2.1 with (J, k)= (J(i), k), 1 <- k <-_ k(i). Put

(2.23) uz(i(vvJ(1)...J(I) (t, s)= W(xj((i), Xj(1),k(1)_l, xj(l, xj(z)k(2), xs()l, G),
so that (2.23) is the Wronskian ofK + 1 [unctions (o]’ t), where

(2.24) K =k(1)+... +k(I).

Define S(t, s) by

-I }
-I(-1

(2.25) S(t, s)-- (t- as(i)) mr’i’-k(i) H (t- ai)"’ I;lrk( " k(I).. (t, s).
i=1 iJ(i)

Then S is continuous, and

(2.26) (-1)’S>0 fora<=t<-b, ’= k(i r(J(i))+ E k
i=1 /’=i+1

unless either (J(1),..., J(I))= (N-I + 1,..., N), aN-X <S <b, ms(i) k(i), and

(2.27) S =-- O or (-1)S > O according as a <- <- s or s < <- b

or (J(1),..., J(/))= (1,... ,I), a <s<at+l, mj(i)=k(i), and

(2.28) (-1)$ > 0 or $ 0 according as a <- < s or s <- <-_ b.

Remark. We can also extend this result as Theorem 2.1 is extended in Corollary
2.2.

Theorem 2.1, 1 _---k =< ms, will be proved in 3, Theorem 2.2 in 4, and Pro-
position 2.1 in 5.

3. On Theorem 2.1, 1 <-k <-m. The proof will depend on the following lemma.
LFMMA 3.1. Assume hypothesis (H). Let a < s < b and let x z (t) be a solution of

Lx=O on [a,s) and (s,b] satisfying Di-z(s+O)=Di-z(s-O) for l<-i<n. If z(t)
has at least n + 1 zeros (counting multiplicities), then either z(t)=-O on [a,s] or on
[s,b].

This is implied by the proofs of Lemma 16 and Theorem 11 in Coppel [3, p. 108].
Proof of Theorem 2.1. First, note that if m --n- 1 for some ], then N 2 and
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ax a and aa b, so that there is no difficulty about the existence and continuity of
D’G(t, s) at aj. From the fact that

N

G(t,s)/l-] (t-aj)"’>0 fora<-t<-b, a<s<b
1=1

(Levin [7] and Pokorny[ [9]; cf. Coppel [3, p. 108]), it follows that

y,r(s)/(mj!) I-I (aj-ai)",>0, where y(s)=Dt G(a,s).

Hence

(3.1) (-1)(Jyj(s)>0 for a <s <b.

As aj, we also have, for 0 <= <--_ mj,

(3.2) D[G(t,s)---yj(s)(t-aj)"’-’/(mj-i)!;

for 0 < < k,

(3.3) D]{G(t, S)/Xrk (t)}--- y(s)k !(t- aj)k-i/(k --i)!;

and for 1 < j < k, 0 < < k-j,

(3.4) D’{xj/xrk}---(k-])!(t-a)--i/(k-j-i)!.
A standard identity for Wronskians gives

(3.5) X)-kk-1Wk= W(1, xz-a/xk,"’,

cf., e.g., [6, p. 310]. By (3.3) and (3.4), the right side of (3.5) is the determinant of a
matrix which at a has zero entries above the main diagonal, and diagonal ele-
ments 1, 1!, 2!,..., (k-1)!, y(s)k!. Thus, by (3.1),

(3.6) (-lf’XYk-l(a)W(a,s)>O for a <s<b.

Suppose that, for some fixed s (a, b), there exists a to such that x)k-! Wf 0 at

to. Then to aj by (3.6). If to a,..., aN, then there exist constants a,..., ak

and (not all 0)such that

k

(3.7) z(t)= ajxi(t)-flO(t, s)
=1

has a zero of order k + 1 at to, a zero of order m at ai(a), and a zero of order
mr k at a. If to a(a), then constants a, , ak, fl (not all 0) can be chosen
so that z has a zero of order m+k at t=a (cf. (3.5)), a zero of order mi at

ai(# ai, a), and a zero of order mj k at a. In either case, z has at least n + 1
zeros on [a, b]. Hence z -0 on either [a, s] or [s, b], by Lemma 3.1.

Note that fl 0, for otherwise z axl +... + cekXk-=-0 on [a, b]. In this case,
/3 a ak 0 since x,..., xk are linearly independent. But this contradicts
(Ol 1," ", Olk, ) O. Also, we have (a 1," ", ak) 0.

Suppose, for example, that z =-0 on [a, s]. Then z S0 on (s, hi, for otherwise
G ,aixi/ on a _-< t _-< b does not satisfy the boundary conditions (1.2), in particular,
the condition at a. Consider, for a moment, only Is, b]. Then z has a zero of
exactly order n-1 at t=s (in view of G=,aixi/[3 for a<=t<s and the jump
conditions on Di-G at s). Since z0 on [s, b], it follows from the disconjugacy of
(1.1) that z(t) 0 on (s, b].
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Consequently, J N, mN -k and aN-1 <S. For if J N, then z has a zero of
order mN -> 1 at aN(=b), and if J N and mu > k, then z has a zero of order
mN k -> 1 at aN (--" aj b).

Suppose, if possible, that there exists a tl (s, b], such that x)k-1Wj 0 at tl. In
particular, tl ar(=b) by (3.6). Then there exist constants yl," ’, ’k and 8 (not all 0)
such that Z Yyjxj- 8G has a zero of at least order k + 1 at tl. As above, 8 0 and
(y, , y) 0. For convenience, suppose that/3 8 1.

Now consider t[a,b]. On [a,s), Zl#0, for otherwise /3=8=1 implies that
z=-z vanishes at tl(S,b). Also, zl#0 on (s,b], for otherwise G=ajx on [a,s)
and G aixji on (s, b] does not satisfy the boundary conditions (1.2), in particular,
the condition at a(=b). Since zl has at least (n + 1) zeros on [a, b], we have a
contradiction (Lemma 3.1). This proves Theorem 2.1.

4. Proof of Theorem 2.2;. We first show that if Theorem 2.2 is modified by
replacing ">0" by "S0" in (2.26)-(2.28), then the proof of the modified statement
can be obtained by the arguments of 3. To this end, we verify that S is continuous
and not 0 at aj(). It is sufficient to prove that

(4.1) -K- ,,,()..-aa_ W(1, /XJ(1)k(1), G/XJ(1)k(1))Xj(1)k(1) ’" J(1)...J(I) Xj(1),k(1)-I

is continuous and not 0 at aj(. The continuity is clear. If it vanishes at
then there exist constants ak and/3, not all O, such that z(t)/Xj(1)k(1), where

I k()

z(t)= E E aj(i)x(i)(tl-fla(t, s),
i=1 k"l

has a (K + 1)-fold zero at aj(). Thus z(t) has a zero of order K + mj()-k(1) at
aj(, a zero of order mi-k(i) at aj(i, > 1, and a zero of order mj at ai,

j J(i). Thus z(t) has n + 1 zeros on [a, b] and, by Lemma 3.1, z(t)=-O on [a, s)or
[s,b].

Arguing as in 3, we see that/3 # 0. If z ---0 on [a, s], then a()>-_s for otherwise
G(., s) does not satisfy the boundary condition (1.2) at a(). Also z(t) 0 on (s, b],
with a zero of order n-1 at s, so that ajo>s and k(i)=m(), 1<-i<-_I, and ai<s if

J(i). In particular, (5.1) does not vanish at a(x.
Analogous arguments show that $ is continuous and not 0 at t- a(), 1 <_-i <_-L

The proof of the modified Theorem 2.2 now follows that of Theorem 2. lk.
We now proceed to show that sgn $ (-1)" when S # 0. On the t-intervals on

which S : 0 in (2.26), (2.27)or (2.28), sgn S does not depend on the choice of the
solutions x(), 1 < k <- k(i). For if {x()}, {(} are two admissible sets of solutions,
then {rxj(v, + (1- r)()k} is also (for a fixed z, 0

_
z _<- 1). But the corresponding sgn S

does not depend on r (by continuity considerations). Also sgn S does not depend on
s (a, b) or the operator L, and can be determined by considering the trivial operator
L=D". In fact, if one considers the set of linear differential operators L=
D" +Y.p(t)D as a metric space with dist (L,)={max[pi-[’a<=t<-b}, then the
subset of disconjugate operators is open and connected, and contains L =D"; cf.
Coppel [3, pp. 95 and 107]. Thus sgn S is given by

(4.2) sgn V(t), where V(t)= H(t)-K-W(y(lk(t), ", YJal, P),
I

(4.3) H(t) [-[ (t- aj(i))mr’’’-k(i) H (t- ai)"’,
i=
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and yjk(t), P(t) are the polynomials
N

Yjk(t)=(--1)(:)(t--a)’’-k 1-I (t-ai)’J/(m:-k)!, P(t)= I-I (t-ai)’Jn!.

I,rk(1)’"k(I) iI,rk(1)...k(I)For if G, vv(1)...ja) belong to D as G, v (1)-..a belong to L, then y P(t) is
the solution of D"y 1 and (1.2), so that

P(t)= G(t,s)ds

and
b

W(yj(1)k(1), YJ(x)l, P)= Ia ,,k(1)...k(I)[/
v,, j(1)...j(X) t, S) ds.

Consequently, it only remains to show that (4.2) is (-1)’.
Note that if z:(i) y:()/H .and O P/H, i.e.,

zj(i) (- 1)((’))(t aj(i))k(i)-k H (t ao.))k(i)/(mj(i) k)!,

I

( H (t-- aj(i))(i)/tt !,
i=I

then a standard identity for Wronskians (cf. [6, p. 3 l O]) gives the first of the relations

V(t)= W(z(,)(,), ", z(t),, O)= (K!/n !)W(z(,)(,), ", zj(i)1).

The last relation follows from the fact that the last row of the (K + 1) (K + 1) matrix
with determinant W(Zj(,)k(,),’’’,Za),, Q) is (0,...,0, K!/n!), for Q is a poly-
nomial of degree K with leading coefficient 1/n! and Z()k is a polynomial of degree
less than K.

It is clear that W, W(Z(1)k(_),’’’, Za)x) 0 since it is the Wronskian of a
fundamental set of solutions of D’z-0. At t-a(x), the kth diagonal element for
l=<k <-k(1) is

(-1)’((1))(k(1)-k) I-I (a(1) a.0. )p,))’q)/(mj(1)- k)! (-1)’(’

i1

where p > 0 is a positive number and

!

z(i)= r(J(i))+ E k(j).
/’=i+1

Also, at aj(1), the elements above and to the right of these diagonal elements
vanish. Furthermore, the elements in the (K-k(1))x (K-k(1)) matrix in the lower
right corner are precisely k(1)! times the elements in the matrix of the determinant
W2 W(ZJ(2)k(2), ZJ(I)I) at ay(x), where zy(i)g/(t--a(1))(x) for i> 1ZJ(i)k
Thus

Wl(aj(,))= (--1)k(’)()pW(a(1)), where p >0

is some positive number. Similarly, Wz(t) 0 and

W2(aj(2)) (- 1)(2)’(2)p W3(a(2)), where p > O,
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and W3 has an obvious definition. This process continues, and we finally get

Wt(aj(i)) (-1)k(t)’(x)p, where p >0.

Thus, we have

sgn V (-1)’, where r Y. k(i)r(i).
i=1

This proves Theorem 2.2.

5. On Proposition 2.1. We shall use the boundary value problem adjoint to
(1.1)-(1.2). in order to explain this, we associate a differential operator on L2(a, b)
(called L again) with (1.1)-(1.2). Introduce the space H,2[a, b] {x(t): x C"-[a, b],
D-x is absolutely continuous, and Dx L:(a, b)}. The domain of the operator L is
D(L)--{x(t)Ha[a,b]’x satisfies the boundary conditions (1.2)}. When (1.1)is
disconjugate on [a, b], the inverse L-x of the operator L exists, is a bounded integral
operator on L2(a, b), with the continuous kernel G(t, s). The adjoint L* of L is easy to
describe if, for example, we assume that pk(t) Ck[a, b] in (2.11). In this case, the
domain D(L*) of the adjoint L* of (1.1)-(1.2) is the set of functions x*(t) which are
piecewise smooth in the sense that x* H2(ai, ai/) for j 1, , N- 1 and satisfies
the boundary conditions

(5.11) Di-x*(al)=O for l <-i <-_n-m,

(5.1k) Di-x*(a +0)= Di-x*(a -0) for 1 < k < N, 1 <_- _<- n m,

(5.1) Di-ax*(au)= 0 for 1 <_- _-< n ran.

When (1.1), hence (2.11), is disconjugate on [a, b] (Levin [7]; cf. Coppel [3, p. 104]),
so that L and L* have bounded inverses on L2(a, b), then (L*)-1 (L-I)* is an integral
operator with kernel

(5.2) a*(t, s)- G(s, t).

That the domain D(L*) of L* is as described above follows from the formal
Green identity

Iab NI Iai+l(x*Lx-xL*x*)dt=
i=

E (- 1)’D’x (--1)k-lDg-i-l(pkx*)
i=1 i=0 k=i+l

with p. -= 1; that is, in terms of inner products on L2(a, b),

(LX, X*)--(X, L’x*) (-1)iOix ., (-1)-lo’-i-(px*)
k=i+l

N-1 n-1

-ID-i-12 2 (-1
/’=2 i=0 kk=i+l a--O

Standard arguments show that the last equation is meaningful and that the right side is
0 for all x D(L) if and only if x* e D(L*).

For fixed s (a, a+) and ] 1,..., N-1, x*(t)= G*(t, s), as a function of t, is
a solution of L’x* =0 on (a., s), (s, a.+) and on (a, a/) for i], satisfying the
boundary conditions (5.1), and D-x*(s+O)-D-x*(s-O)=O or 1 according as
lNk<n or k=n.
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By (2.6) and (5.2),

(5.3) yi(t) Df",G(t, s)l,=,,.s=, DT’O*(t,
In order to verify Proposition 2.1, put

Y*(t, s)= G*(t, s) for a <- < s, Z*(t, s)= G*(t, s) for s < t_-< b,

for fixed s (a, b). Extend the definitions of Y* and Z* by the formula

Z*(t, s)- Y*(t, s) X*(t, s) for a <- s, -<_ b.

(Note that if n 2, then this extension of x*(t)= Y*(t, s) on s < -< b is the solution of
L’x*=0 satisfying the initial conditions Di-lx*(s)=Di-lY*(s-O,s) for i=
1,. , n. A similar remark applies to Z*.)

For fixed s (ai, ai+l), x*(t)= Y*(t, s) is a solution of L’x*= 0 on each of the
t-intervals (a, s), (s, a/l) and (ak, ak/a) for k # i, satisfying the boundary conditions

(5.41) Di-lx*(al) 0 for 1 <_- <- n

(5.4) D-Ix*(a +0)= D-lx*(a -0) for 1 < k < N, 1 <_- _-< n m,

(5.4N) Di-lx*(au)-" -D-xX*(b, s) for 1 <- <-_ n mN.

This is clear from the boundary conditions satisfied by Y*= G* for a _-< < s and
Z* G* Y*+X* for s < t_<-b.

It follows that x*(t)=DY*(t,s) is a solution of L*x*=O on each of the
intervals (ai, s), (s, ai+l) and (ak, ak+l) for k # satisfying

(5.51) Di-lx*(al) 0 for 1 <_- -< n ml,

(5.5k) D-lx*(ak +0)= Di-lx*(ak --0) for 1 < k < N, 1 <- <-_ n ink,

(5.5N) D’-lx*(aN) -D"D-IX*(b, s) for 1 <= <- n raN.

This characterizes the kernel G(t, s)= DS’Y*(t, s) for a -< < s, s # a. Similarly, we
can characterize G =DS’Z*(t, s) for s <t<=b, s ai. The last part of (5.3) and
continuity considerations show that these characterizations for a <- < s and s < _-< b,
when s : a;, are also valid when s a for some aj. Hence s aj in (5.5) gives the
existence of y(t) in Proposition 2.1. Analogously, we obtain the existence of yl(t).
This completes the proof.
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A STABILITY CRITERION OF DIAGONAL DOMINANCE TYPE*

F. NAKAJIMA

Abstract. We consider a stability criterion for solutions of a linear system with coefficient matrix of
diagonal dominance type. The result is applied to improve Fink’s result [2] for the existence of almost
periodic solutions of Li6nard’s equation.

1. Introduction. In a linear system

(1.1) =A(t)x, xR"’ (’=-t)
let A(t)= (aij(t)), i,/’ 1, 2,..’, n, be an n n matrix of continuous functions for-< < c. It is known that the zero solution is uniformly asymptotically stable, if

(1.2) aji(t)<-O forl<=j<-n and -e<t<

and if there is a constant 8 > 0 such that

(1.3) 2 la(t)l+6--< la,(t)[ for 1-<_j <= n and -< <
i= (ii)

(cf. [1, p. 59]). As is stated in [5, p. 23], the condition (1.3) is called the strict diagonal
dominance condition for A(t) and it is a sufficient condition for

(1.4) det A(t) O.

A natural extension of (1.3) is the diagonal dominance condition that

(1.5) E lai(t)l <- ]aj(t)] for l_-<j_-< n and -< < c.
(i i)

In this paper we propose to extend the above stability criterion (1.2) and (1.3). In
Theorem 1, we shall prove that the zero solution is uniformly asymptotically stable, if
A(t) is bounded on (-c, o) and if conditions (1.2), (1.4) and (1.5) are satisfied. The
restriction that A(t) be bounded is essential for the theorem. But, system (1.1) with
A(t) bounded does arise naturally in many situations, for example, the case where
A(t) is periodic or almost periodic.

One great advantage of this extension will be seen in the following applications.
In Theorem 2, we shall obtain a stability criterion for linear second-order scalar
equation with variable coefficients. In Theorem 3, we shall prove the existence of
almost periodic solutions for Li6nard’s equation with almost periodic forcing term.

Let R" denote n-Euclidean space and set R (-o, ). For x (Xl, xe, ., x,)
R ", we define the norm of x by

i=1

Let x(t, to, Xo) be the solution of system (1.1) through xo at to.

* Received by the editors July 21, 1976, and in revised form January 24, 1977.
t Mathematical Institute, T6hoku University, Sendai, Japan. This work was supported in part by the

Sakkokai Foundation.
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DEFINITION 1. The zero solution is said to be uniformly stable if for each e > 0,
there exists a 8(e) > 0 such that

Ix(t, to, Xo)l < e for >= to

whenever Ixol < a(e).
DEFINITION 2. The zero solution is said to be uniformly asymptotically stable if it

is uniformly stable and if for each e > 0, there exists a T(e)> 0 such that

Ix(t, to, xo)l<e for t>-_to+ T(e)

whenever [x0l <-- 1.
Remark. In Definitions 1 and 2, if we are concerned only with to >_-0, we say that

the zero solution is uniformly stable for >_-0 and is uniformly asymptotically stable for
>_- 0, respectively.

2. Stability criterion.
THEOREM 1. In system (1.1), let A(t) be bounded on R. Assume that conditions

(1.2) and (1.5) are satisfied for all R and that there is a constant a > 0 such that

}det A (t)[ a on R.

Then the zero solution is uniformly asymptotically stable.
Remark. It is known that if A(t) satisfies (1.3) with a constant 8>0, then

[deta(t)[>=6"(cf. [5, p. 16]).
To prove the theorem, we need the following lemmas.
DEFINITION 3. A square matrix A is said to be irreducible if A cannot be

transformed to a matrix of the form

P U

by permutation of indices, where P and Q are square matrices of order ->_ 1 and O is a
zero matrix.

LEMMA 1. If a square matrix A is irreducible and satisfies (1.5) and iffor at least
one j,

i--1 (ii)

then A is nonsingular.
For the proof, see [5, p. 23].
LEMMA 2. If a nonsingular n x n matrix A (aii) satisfies (1.5), then all principal

minors ofA are nonsingular, namely,

det( aih ahi’#O forl<-jl<j2<...<j.<-n.
\ ai,,h ai,,i,,/

Proof ofLemma 2. Let A be an m x m (m < n) principal minor of A. Then, for a
permutation matrix O,

where A2 has (n-m) rows and m columns and QT denotes the transposed matrix of
Q. Moreover, from the definition of irreducibility, we can choose an m x m permu-
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tation matrix Q. such that

B Cz

(2 1) QA1Q T B2 \\
m--- \ \

\

O

where Bi is an ri ri irreducible matrix, Pi=1 ri m, and G has (ra + r2 +" + ri-)
rows and ri columns for 2 p. In particular, in the case where A is irreducible, Ba
must be A itself, and the matrices B2, B3,""", Bp, C2, C3,""", Cp are not present.

Setting P (Q I)Q for (n m) (n m) unit matrix L we have

Q,nAIQTm
B PAPT

A2QT
O \B.

D1 02 D.

where A2QTm (D1, D2,’", D) and Di has (n- m) rows and ri columns. Since the
diagonal dominance condition (1.5) is invariant under the permutation of indices, B
also satisfies (1.5). Hence, letting

Bi (bik ), Ci (Cik ), Di (dik )

for a fixed i, 1 <-i <-p, we have

(2.2) 2 +2 Ic, l + 2 Id, [ [bl (1 <-_ k <= r,),
/=1 (i#k)

where the summations on ] are taken along columns and Ca 0 for convenience.
If Ci O or D O, then

Y, [Cik l+ Y Idik > 0 for some k, 1 _<- k <_-

and hence for this k,

Ibl<lbl
j=l (j#k)

by (2.2). Therefore it follows from Lemma 1 that

(2.3) det Bi # 0,

since Bi is irreducible. If Cg O and D O, then we have the form of

det B det Bg x (. .)

which also implies (2.3), because det B : 0. In any case, we have det Bi # 0. Since
these are true for all i, 1 -< =< p, it follows from (2.1) that

detAx S0.
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LEMMA 3. If system (1.1) satisfies conditions (1.2) and (1.5), then the norm of
solution x(t), Ix(t)l- Y.i=l Ix,(t)l, is nonincreasing, and consequently the zero solution is
uniformly stable.

For the proof, see [1, p. 59].
Proof of Theorem 1. As is stated in Lemma 3, the zero solution is uniformly

stable, and hence it is sufficient to show that for each e > 0 there exists a T(e)> 0 such
that

Ix(t, to, Xo)l<e atsomet, to<-_t<-to+T(e),

whenever ]Xol <-- 1.
Suppose that this is not true. Then there exists a constant e > 0, a sequence of

solutions {x(t, k)} and a sequence {tk} such that

[x(t,k)[>-e ontk <--t<=tk+k 2

and

Ix(t, k)] <- 1.

Since Ix(t, k)[ is nonincreasing, we have

e<-Ix(t,k)l<-_l ontk <--t<--tk+k 2

and there exists a subinterval [Sk, Sk nt- k] of [tk, tk + k 2] such that

1
t’Ix(t, k)l-lx(t’, k)l <- for sk <-- t, <-- Sk + k.

Setting q(t, k)= x(t + sk, k), we obtain

(2.4)

(2.5)

b(t, k) A(t + Sk)p(t, k),

e<_-Io(t,k)[=<1 onO<-t<-k,

(2.6)
1

]q(t, k)l-[q(t’, k)l < forO_-<t, t’-<_k.

Since A(t) is bounded, it follows from (2.4) and (2.5) that {q(t, k)} is uniformly
bounded and equi-continuous on each finite interval of R, and thus, by Ascoli-
Arzela’s theorem, {q(t, k)} can be assumed to converge uniformly on each finite
interval of R.

Defining y (t) by

y(t)= lim to(t, k),
k-eo

it follows from (2.5) and (2.6) that there is a constant fl > 0, e _<- fl <- 1, such that

lY(t)l =/3 for >_-0.

Since y(t)=(yl(t), y2(t),’’ ", y,(t)) is continuous on R, we can choose an interval
I [o.1, o’2] (0 < o’1 < o.2) such that

Yh(t), yj2(t),’.., yjh(t)>0 on/,

Y/h+l(t), yi.+2(t), , Yi..(t) < 0 on I
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and

yi..+l(t)-=yi..+2(t)=-. yi.(t)-=-0 on I.

Here we note that {/’1, j2,""", jm} Q because y(t)0. Then

h

]y(t)] I; y;o(t)- I2 yo(t)=
p=l p=h+l

onL

Letting

(2.7)
h

f(t, k)= E .(, k)- E .(, k)
p=l p=h+l

we have

lim f(t, k)= [y (t)[ =/3 on I,

and there is a sequence {0k} c I such that

(2.8) lim/(0k, k)=0.

Moreover, since I is compact and A(t) is bounded on R, we can assume that

lim Ok 0 for some

and

lim A(Sk + Ok)= B for some n x n matrix B.

Clearly B satisfies (1.2), (1.5) and [det BI--> a.
Differentiating both sides of (2.7) at 0k and using relation (2.4), we find

](Ok, k)= ( . as.s.(Sk +Ok)qs,(Ok, k))
p=l q=l

,--h+l ql aid, (Sk + Ok)qi, (Ok, k)

and

lim/(Ok, k)= bs.s.Ys.(O)
p=l q

E bid.Yi.(O
p=h+l q

where B (bis), since we have

lim qs(Ok, k)= Ys(O for l <-j <=n

and

yi.(O)=O form+l<=q<-n.
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By (2.8), we have

(2.9)
0= Y’, b.p.,- Y, b.p., yj,(0).

q=l p p=h+l

Since B satisfies (1.2) and (1.5),

h { --<0 for l<-q<=h,
2 bidq- bidq >0 forh+l<q<mp=l p=h+l

Therefore each term of right hand side of (2.9) is nonpositive, because we have

Y"(0)f
>0 for l<-q<-h,

<0 forh+l_-<q-<_m.

Then it follows from (2.9) that

&. b.;. yo (0)= op--1 p= +1

which implies

for 1 -<_ q =< m,

h

b.d,- bjp.,=0 forl<_-q_<-m
p=l p=h+l

since lye, (0)l 0 for 1 _-< q _-< m. Thus we have

(210) det( bhhbi,,h bi,d,1=0.
On the other hand, B satisfies (1.5) and ]det BI--> a > 0, and thus it follows from

Lemma 2 that all principal minors of B are nonsingular, which contradicts (2.10). This
proves that the zero solution of system (1.1) is uniformly asymptotically stable.

COROLLARY. If system (1.1) is defined only for >-0 and all assumptions of
Theorem 1 are satisfied for >-0, then the zero solution is uniformly asymptotically
stable for >-O.

Proof. We construct the system defined on R by

(2.11) 2 Ao(t)x, x R ",

where

;A(t) fort=>0
Ao(t)

A(0) for t<0.

Since system (2.11) satisfies all assumptions of Theorem 1 on R, the zero solution is
uniformly asymptotically stable on R, and furthermore, since system (1.1) coincides
with system (2.11) for >-0, this proves our conclusion.

3. Application 1. We now apply Theorem 1 to the second-order scalar equation

(3.1) 2 + a(t)2 + b(t)x O, x6R,

where a(t) and b(t) are continuous on R.
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THEOREM 2. Let a(t) and b(t) be positive and bounded on R. Assume that there
exist positive constants al, a2, 1, [2 such that

(i) o1 <-a(t)<-a2, 1 <--b(t)<--3 on R,
(ii) 3a1 > O2,

and
(iii) (3a1-az)(a1+a2)_-> 8/32.
Then the zero solution of (3.1) is uniformly asymptotically stable, and consequently,

for any solution x(t),

[x(t)l +12(t)l - o as t- oe.

Proof. First of all we shall show that there is a constant A > 0 such that

(3.2) A 2_ 2a(t)A + 2b(t)_-< 0 on R,

which is equivalent to showing that

(3.3) inf (a(t)+4a(t)-2b(t))>-_sup (a(t)-4a(t)-2b(t))>O.
tR tR

From conditions (ii)and (iii), we have

2x/al- 2/32 => ce2- Cel

and hence we have

which implies (3.3).
For this , let

2 inf x/a(t)-2b(t)>-supa(t)-inf a(t)
tR tR tR

Then equation (3.1) is equivalent to the system

(ti): A(t)(Uv)(3.4)
t

where

1 (-b(t) 2
A(t)=- \_b(t)

a(t)h + b(t)
a(t)h + b(t)]"

We shall verify that A(t) satisfies all assumptions in Theorem 1. It is clear that
A(t) is bounded on R and det A(t)= b(t)>-. The conditions (1.2) and (1.5) require
that

(3.5) -b(t)+ I-b(t)[ <-- 0
and

(3.6) -a (t)A + b(t)+ Ih 2_ a(t)h + b(t)[ N O.

Condition (3.5) is trivial and (3.6) is equivalent to (3.2). Hence, .by Theorem 1, the
zero solution of (3.4) is uniformly asymptotically stable, and consequently the zero
solution of (3.1) also is uniformly asymptotically stable and

Ix(t)l+le(t)l-o as too.
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4. Application 2. We shall consider the existence of almost periodic solutions of
Li6nard’s equation

(4.1) J +f(x)2 + g(x)= e(t), x R,

where e(t) is almost periodic in t.
THEOREM 3. Let f(x) be continuous and g(x) be once differentiable. Assume that

them exist positive constants a, fix, 2 such that

dg
[(x ) >-_ , th->_(x)>-_

and

for x R

Then there exists an almost periodic solution p(t) which is unique and whose
module is contained in the module of e(t). Moreover, for any solution x(t),

Ix(t)-p(t)l + I2(t)-p(t)l 0 as

Remark. The case where a2> 2/32 was discussed by Fink [2]. Theorem 3 contains
the case where a2= 2fl2, and furthermore a perturbation method enables us to permit
a2< 2fl2, if la 2- 2/321 is sufficiently small.

First of all we shall state the existence theorem of bounded solutions of equation
(4.1) due to Loud [3].

LEMMA 4. In equation (4.1), suppose that

dg
[(x ) >= a > O and "x (X ) >= fl > O on R.

Then all solutions x(t) ultimately satisfy

E 4E E 4E }Ix(t)l =< min +a2, -- +/3[../.a
I(t)l

where E sup, le(t)l.
It is easily seen that the following lemma is a special case of Theorem 3 in [4].
LEMMA 5. [n the system

2=F(t,x), xeR",

let F(t, x) be almost periodic in uniformly for x R" and ]’or each r > 0 let them exist a
constant L L(r) > 0 such that

IF(t,x)-F(t, y)l<--LIx-yl forlxl, ly]<=r and tR.

If x(t) is a bounded solution on R and if[or any solution y(t), Ix(t)-y(t)l is monotone
decreasing to zero as o, then x(t) is a unique almost periodic solution and its module
is contained in the module ofF(t, x).

Proof of Theorem 3. The proof is similar to Theorem 2 in [2] which used
conditions (1.2) and (1.3) as a stability criterion, but we shall employ Corollary 1
instead of them. We first let

2
(4.2) u x, v (2 + F(x))x--,
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where

F(x)= f(s) ds -x.
Then equation (4.1) is equivalent to the system

(4.3)
ti = -F(u +- v,

f =F(u)-2g(u)a -v +-e(t).a
All solutions of (4.3) are bounded in the future, because all solutions of (4.1) are
bounded in the future together with their derivatives by Lemma 4. Hence it follows
from the almost periodicity of e(t) that there is at least one bounded solution on R, say
(uo(t), vo(t)).

Considering the difference between (Uo(t), Vo(t)) and any solution (u(t), v(t)) of
(4.3)

w(t) Uo(t)- u(t), z(t) Vo(t)- v(t),

we get the variational equation

(4.4) (.’) A(t)(Wz),
where

-p(t)
a

p(t)--q(t)
ot

p(t)= f((1 s)u(t)+ suo(t)) ds -’
and

dg
q(t) x((1 s)u(t)+ SUo(t)) ds.

Clearly p(t)>-_a/2 and/3x _-< q(t)-</32.
We shall verify that A(t) satisfies all assumptions in Corollary 1. First of all, A(t)

is bounded in the future, because (Uo(t), Vo(t)) and (u(t), v(t)) are bounded in the
future. It is clear that the diagonal elements of A(t) are negative and

detA(t)=q(t)>=131 onR.

The diagonal dominance condition (1.5) for A(t) requires that

-p(t)+ p(t)--q(t) <-- O, ---t- -- <-- O,

which is equivalent to

q(t)<--_ap(t)
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and this is satisfied by

q(t) <- 2 <- a2/2 <-- ap(t).

Therefore, by Theorem 1 the zero solution of (4.4) is uniformly asymptotically stable
and

luo(t)-u(t)[/lvo(t)-v(t)lo as t,

where the convergence is monotone decreasing by Lemma 3. Thus, applying Lemma 5
to system (4.3), we find that there exists a unique almost periodic solution with the
module contained in the module of e(t). From the property of transformation (4.2),
this proves our conclusion for equation (4.1).

REFERENCES

1] W. A. CO’’EL, Stability and Asymptotic Behavior of Differential Equations, Heath Math. Monograph,
1965.

[2] A. M. FINK, Convergence and almost periodicity of solutions offorced Linard equations, SIAM J. Appl.
Math., 26 (1974), pp. 26-34.

[3] W. S. LOUD, Boundedness and convergence of solutions of g+c+g(x)=e(t), Duke Math. J., 24
(1957), pp. 63-72.

[4] G. SEIFERT, Almost periodic solutions and asymptotic stability, J, Math. Anal. Appl., 21 (1968), pp.
136-149.

[5] R. S. VArG,, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.



SIAM J. MATH. ANAL.
Voi. 9, No. 5, October 1978

978 Society for Industrial and Applied Mathematics

0036-1410/78/0905-0006 $01.00/0

A NOTE ON THE RAYLEIGH POLYNOMIALS*

E. C. OBIf

Abstract. Some formulae and representations of the nth order Rayleigh functions, o-,,, and their
associated polynomials, b,,, are used to determine polynomials which dominate, or are dominated by,
and to discuss improved lower bounds for their real roots. In the process the ties between b,, and the
Catalan numbers are enhanced.

1. Introduction. The nth order Rayleigh polynomials, 4,,, arises as explained
below. Consider the infinitely many zeros, jr,,,, m 1, 2, 3,. ., of z-" J,,(z), ordered
by IRe (/’,,,,)l < Re (/’,,+1)1, where J is the Bessel function of order u. On letting

(1) o-,(u) X (j,,,)-2n n 1, 2 3
m=l

and expressing J in its Weierstrass infinite product expansion using the zeros, j,,,, we
find the following series derived in [1, pp. 528-529]"

1/2zJ,+l(Z)--L(z) 2 ’n(P)z2n.
n=l

If we replace J.+ and J. with their own power series and equate correspondin
coefficients of z 2n on both sides of the above equation, we find

Also, by using the well-known derivative formulae connecting Jv with j+, it can be
shown [ 1, (22)] that

(**) (u + n),(u) Z (u),_(u) (n > 1).

Now putting n 1 in (,) we obtain (u) =(u + 1). Using this and letting n 2 in (**)
we get the formula for 2(u). In this way formulae for successive orders, n, may be
obtained inductively. (The first few of these are listed at the end of article for
reference purposes.) Thus, for each n, ,(u) is a rational function of u, viz. ,(u)=,(v)/(, (u)) where ,, , are polynomials.

This rational function is called the Rayleigh function of order n. Its denominator,
H,, may always be calculated by the simple algebraic formula, H,(u)=
4"H=(u+k)["/], where [x] denotes the greatest integer tunction. But a simple
algebraic formula for the numerator, 6, (and hence for , itself) is unknown. This
,(u) is called the nth order Rayleigh polynomial in v. Among its many amazing
properties are that its leading coefficient, e,, for each n, is always the nth Catalan
number (see 2 and last paragraph of this paper) and if d(n) is the degree of
then d(n)-d(n- 1) provides a formula for number of the nontrivial divisors of n
[2, (7)]. Recent studies of ,(u) and ,(u) yielding representation formulae and ties
with Riccati differential equations, etc., were carried out by Nand Kishore in [1]-[5].
Many analytic properties of the Rayleigh function and m(u) are given in [7].
Rayleigh, Lamb, Airey and others (cf. [8, p. 502]) had used the function to study and
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" Department of Mathematics, University of Nigeria, Nsukka Campus, East Central State, Nigeria.
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deduce the smallest positive zeros of J, for various orders, u. In view of the definitions
above, we will sometimes find it convenient to use 4, in the form.

(la) 4,(v) =4" H (v+k)"/ko,,(v).
k=l

In what follows we discuss a number of facts about the properties of b, and an
improved lower bound for its real roots.

2. The polynomial on (-o, -n + 1). In [2, 5] it is shown by Kishore that -n is
a lower bound for the real zeros of 4,, and that all these zeros lie within (-n, -2). In
this section we will narrow this interval first to (-n + 1,-2) and then discuss the
possibility of further improvement on the lower bound by as many as n-[n/2]-1
units.

Let

1(2n-2e,, d(n)=deg 4),,(u),n\n-ll’

and, by a theorem of Kishore [3, p. 515], write (la) in the form

(n) n--1

(2) b,(v)= Z 2"’ 1-I (v+j)""
i=1 j=2

where (2i) at most one ni 0;
c(n) n--1

(2ii) Y. 2"’ e,, Z nq d(n) 1 2n + Y’. [n/s]
i=1 j=2 s=l

for each 1, 2, ., c (n);
and (2iii) for each integer s (1, n), n > 3, there is a summand in (2) with -s as a
zero of multiplicity <=[n/s] (i.e. there is such that O<ns<=[n/s]). As before Ix]
stands for the greatest integer function, and the number c (n) satisfies

In/2]

c(n) Z c(k)c(n-k), with c(1)= 1.
k=l

The number e,, is called the nth Catalan number.
Now let e be fixed in 0-< e < 1, and consider the interval u =<-n + e. If d(n) is

even, then on rewriting (2) in the form

d(n)

(2a) th,,(v) 2"’I1 (v+b,s), 2<=bi,<-n-1, c=c(n),
i=1 s=l

we have on v -< n + e, that

d(n) d(n)

1-I (1--e)=e,,(1--e)d(")>O.
i=1 s=l i=1 s=l

On the other hand, if d (n) is odd, then on u =< -n + e,

d(n) d(n)

th.(v)=- 2"’ 1-I -(v+b,,) <=- 2"’ I-I (l-e)
i=1 s=l i=1 s=l

-e.(1-e <0.

Well-known in combinatorial mathematics, e,, has many other noteworthy properties which we
mention at end of article. Meanwhile, due to (2ii), the leading coefficient of each 4),, is equal to e.. See also
(4a) and (60.
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Thus . never vanishes on (-co, -n + 1). Hence all real roots of b. lie somewhere
within [- n + 1, 2). Let wi(v) =- w.,i(v) be the product [I in (2a). Considering log wi,

we have

(3)

d(.)

6 ’.(u) Z Z (2"’w,(u))/(v + b,s),
i=1 s=l

a(.)

2"’
v -b birChit(/])

i=1 s=lE ’i’nt..bis)2
But if d(n) is even, w(u) >0 on (-co, -n + 1), and so

(3a)

while if d (n) is odd,

’(v)<O on(-co, -n+l);

(3b) ’(u) >0 on (-co, -n + 1).

If n 4 or 5, d(n)= 1 and b. is linear in u, and hence b." vanishes. The following
lemma helps to test the sign of ." when n > 5.

LEMMA 1. d(n) > 1 iff n > 5.
Proof. Since d(n)> 1 itt In/2]+-- .+[n/n]>n, the sufficiency follows easily by

induction. The necessity holds since if n -< 5, d(n)= 0 or 1, in contradiction.
Now since u + b, < 0 on (- co, n + 1) for each r 1, 2, ., d (n), the lemma

implies that

d(.) 1
(u + bis) Z

r=l t,’+bir
when n > 5.

Thus, since w is positive or negative on (-co, -n + 1) according as d(n) is even or
odd, it follows that

(3c)
is positive or negative on (-co, -n + 1)

according as d (n) is even or odd, if n > 5.

We exhibit an inequality between b.(u) and e.{-(u +2)}d(") on (-co, -n + 1]. If
we let e-+ 1 following (2a), b.(u)->O on (-co, -n + 1] and we also have, if d(n) is
even,

.(v)= 2"’ -(v+b,,) <- 2"’[I -(v+2)
i=1 i=1 s=l

=e.{-(v+2)}a(").

If d(n) is odd, then similarly .(u)=<0 on u<=-n+l and we also have
-e.{-(v + 2)}a").

Noting that d(n) is even iff ,= [n/s] is even, we summarize as follows"

(4a)

(4b)

n--1

If Zk=l [n/k] is even, then on (-co, -n +e), ONe < 1, the Rayleigh poly-
nomial, ,(u), is a positive strictly decreasing function which lies above the line
y =e,(1-e)a("), and is dominated by the polynomial e,{-(v +2)}a("). Further-
more, in view of (3c), the concavity of, is upward (n > 5) in the interval;
if .k= [n/k] is odd, then on (-co, -n +e), 0<e= < 1, the Rayleigh polynomial,
49,(v), is a negative strictly increasing function which lies below the line y
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(4c)

)d(n),e, 1 e and dominates the polynomial e, { (u + 2)}a (,. Furthermore, in
view of (3c), the concavity of 4,, (n > 5) is downward in the interval;
If uo is a real zero of cb,, then n + 1 <- uo < 2.

The following lemma leads to a further narrowing of the interval of (4c) for the
real nonintegral roots.

LEMMA 2 (Kishore [6]). (a) The Rayleigh function, trn(u), given in (1), is positive
on (-n, -n + 1) for all n;

(b) If v<=-n-2, and 2<-m <-n, then (cr,,(u)/r,_l(U))<{m/(2n(n +4))};
(c) cr,(u)<0 on (-n +1, -n +2) if n >4; and
(d) r,,(u)>0 on (-n +2, -n +3) ifn>5.

We give a proof of (a) by a short method. (The proofs of (b), (c) and (d), due to
Professor Kishore, are quite lengthy, but an outline is given for convenience.) To
prove (a), we will first note the following main aspects of a representation for r, (,).
Let us express the function in the form

(n)

(5) tr,,(v) Y’. 2-N’P-I(u) (see [3, (20)])
i=1

where Ni 2n-ni >0. Pi(’), obtained in the proof of (5) (see [3, (19), (20)]), is the
polynomial

(5a) Pi(’) fi (’ +j)t./j-.q
j=l

where no is as in (2), with

(5b) nil ni,, 0 and [n/j]- nq >- O,

due to (2) and (2iii). The degree of Pi is now seen easily, in view of (2ii), to be 2n 1. It
is also clear now that Pi has positive integral coefficients and only negative integral
zeros lying in [-n, 1], and that one may write P in either of the forms

(5c) Pi(v) H (1,, +. bis)a"
s=l

where l _-< b _-< n, l _-< a, _-< n, =la=2n-l, 1--<m--<n,or

2n--1

(50) Pi(u)= H (u+bs), l<=bs<-_n.
$-----1

We remark that the most important thing about {P}"I for our purposes is that

"--1 a,- 2n- 1, i.e. the Pi’s have a common degree. Also, putting (5b) into (5a), we
see that Pi always retains the factors (,+ 1) n fold, and (u+ n)one fold. As usual an n
fold factor is counted as n factors.

Proof ofLemma 2(a). Take (5a, d). Since (,+ n)is always a factor of Pi, and since
-n < , < -n + 1, only this factor is positive, leaving behind 2n- 2 negative factors.
Therefore each Pi > 0 in this interval.

Outline ofprooffor Lemma (2b). After verification for m 2 =< n, induct on m via
the recurrence,

m--1

( + 1)o’,,(u)= Z O’k( + 1)o’,,-k(V)
k=l

(see [1, (20)]).
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which may be written as

(v+ 1)O-re(V) 0-1(V + 1)0-.-1(V) + Y {0-k+l(V + 1)/0-k(V+ 1)}o-k(/) / 1)O’m-l-k(/)).
k=l

Here k-< m- 2, so that the quantity in the braces satisfies the inductive hypothesis.
Thus

m 1 m--2

(+ 1)0-m (/)) < 0-1(/) + Y. (+ 1),,__,()1)0-m-l(u)+2n(n +4) k=l

m--1
0"1(/2 / 1)0-,-1(/)) + (v + 1)0-m-1().

2n(n + 4)

Divide both sides by (v + 1)0-m,-l(V) and use u --< n 2 to get

0-. (u) 1 m 1 m

O’rn--l(/) <4n(n + 1) +2n(n +4) 2n(n +4) <2n(n +4)"

Outline of prooffor Lemma 2(c). Write the recurrence formula,
n--1

(5e) (/) + n)0-. (u) Y 0-k (/))0-,,-k (u)
k=l

as

n-3

(5f) (/)+n)0-n(/))=20-1(/))0-n-1(/)) + Z 0-k+l(/))0-n-l-k(/))-
k=l

Here apply the formula (5e) to 0-n--l(/)), SO that (5f) becomes

(/) + n)0-n(/)) 20"1(/))
1 n--2 n--3

/) / n 1 kE1 o-k (/))0-n-l-k (/)) k=lE
Multiply both sides by/) + n 1 to get

(5g)

n-2

(/) / n 1)(/) + n)0-. (/)) 20"1(/)) Y.
k=l

n-3

+(/) +n- l) Z
k=l

n--5Here break up each sum k into two sums k=l +k=.-4, SO that the right side of
(5g) becomes, after we collect terms and expand,

(5h)

{(/) / tl 1)0"k+1(/)) / 20"1(/))0-k (/))}0-n-l-k (/)) /

k=l

Divide inside and multiply outside of each pair of the braces, {-}, by O’k(/)), to
introduce the new quantity,

(?) (v + n 1) 0-k+l(P__) / 20"1(/)),
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to which, since k + 1 =< n, Lemma 2(b) applies; then (’) reduces to

v+n-1 1 v+n-1 1
2(n+4) 2(v+l) 2(n+4) (-2)(v+l)

v+n-1 1
<2(n+4) 2(n-2) <0’

for n+l<v< n+2.

Thus (?) <0, on (-n + 1, -n +2).
Since k -< n 5, and v < n + 2, then v < k. Therefore 0-k (v) < 0 [2, (18)].

Similarly each of 0-,-1-k(v), 0-1(v), 0-3(v), and 0-,-4(v) is <0 in (5h). This result,
together with 0-)< 0, implies that the quantity in (5h) (and hence (5g)) is negative.
Thus,

(v+n-1)(v+n)0-.(v)<O for-n+l<v<-n+2.

Outline ofprooffor Lemma 2(d). The reader may check from the functions listed
at end of article that except for n 5, 0-.(v)>0 everywhere in (-n +2,-n +3), for
1 =< n =< 8. We therefore assume below that n > 8. Write (5e) as

n--3

(5i) (v +n)0-.(v)= 20-1(v)0-.-1(v)+20-z(v)0-.-z(v)+ Y. 0-(v)0-._(v).
k=l

Now apply formula (5e) to 0-._1(v) and 0-.-z(v) above; also write the quantity on the
extreme right of the above equation as the sum of the first two terms and the rest;
collect terms, readjust subscripts so that the above is equal to

0-k (/)0-n-1-k (b) - 0-k ()0-n-2-k
v+n--lk=x V+n--2k=l

n--5

+O’lO’n--l(/)+O’20"n--2(/) + Z O’k+20"n-2--k(l)"
k=l

First apply formula (5e) again to 0-._ and 0-.-2 and collect terms. But

--2 --3

Z 0-k0-.-a-k(V)=20-0-.-z(V)+ Y’. 0-k0-.--k(V)
k=l k=2

so the above reduces to

60-2(v)
v+n-1

30"1(1,’)
._()+ .__()

v+n-1

3r(v) .3-["

+ Z +.--(u).
k=l

Another use of formula (5e) on .-z and a readjustment of subscripts in the second
suation above reduce the above to

6rZ(v) .-3

(v + n 1)(v + n 2) kl= 0"k0"n-2-k(l)) -[
30"1(v)

,+,.__()
v+n-l=a
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Multiply this result, as well as the left side of (5i), by (l) +n -2)(l) +n- 1). After
canceling out redundant factors, break up each summation (except the last one) into
two sub-summations so as to get

(5j) (l)+n-2)(u+n-1)(l)+n)cr,,(u)

6crY(l)) Z O’kCr,,-2-,(l)) + 6crY(l)) Z
k=l k=n-5

+ 3(l)+n--2)Crl(l)) Z
k=l

n-4 )]+ 3(v+n-2)Crl(V) Z
k =n-5

n--6

+ 3(l) + n 1)cr2(l)) ] O’kO’,,-2-k(l)
k=l

._
)]+ 3(l) + n 1)cr2(l)) O’kCr,-2-k(l)

k =n-5

._
)]+ (l)+n-1)(l)+n-2) Z O’k+2O’,,-2-k(l)

k=l

n-6

:[&r(l))+3(l)+n-1)o’2(l))] E CrkCr,-2-k(l))
k=l

+ 3(l)+n-2)cra(l)) o’,+lcr,,-2-,(l))
k=l

+ [6cr12(l)) + 3(l) + n 1)o-2(l))]
n-3

k -5

n-4

+ 3(l)+ n-2)Crl(l)) 2
k=n-5

n-5

+(l)+n-1)(l)+n-2) Z O’k+zo’,,-2-k(l))
k=l

(5k)

(51)

(5m)

3(l) + n 2)crl(l))
Crk+a(l))

k=l Ok(l
+3(l) + n I)o’2(l)) + 6cr2(l)) }O’kO’,,-2-k (l))

2

+ {3(v + n 2)Crl(V)
= ()

+3(+n- )()

+6r(v) }o’,o’,-2-, (v)
+ {3(v + n 1 )o"2(l)) -[- 6or(v)}cr3(v)cr,_5(v)

n-5

(5n) +(l) + n -1)(l) + n 2) Z crk+z(l))cr,,-2-k(V).
k=l

In (5k), k<=n-6, so that k+l<=n-5; then since -n+2<u<-n+3, we have
u< -(k + 1), u< -k, and l)< (n 2- k). Therefore [2(18)] o-,(u),
O’k+(u),cr,,-z-k(l)) are all negative in (5k). It is now easy to see that (Sk)>0.
Similarly, all of (51)-(5n) are positive on n + 2 < u < n + 3. Thus the left side of (5j)
is positive in this interval and the result follows.
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THEOREM. Let n > 5. If -n + 1, -n + 2, and -n + 3 are not roots of &,(v), then
every real root lies in (- n + 3, 2), and , > 0 on (- oo, n + 3] if d (n) is even, and
d), < 0 otherwise.

Proof. By (4c) every real root lies in [-n + 1, -2) so we only consider that
interval. Let

--2 --3

r [n/k]; t= , [n/k]; d/=- 1-I (u+b), 1 <-b <-n-2;
k=l k=l s=l

2

2---- 1-I (v+as), n-l<as<n 3= [I (v+b’), l<b’<n-3
s=l s=l

3

H (v+a’), n-2<a’=,=<n.
$=1

Then (la) can be written in the form

For n => 5,

4’, (u) 4"12cr, (u) 4n340"n (r,).

n--2 n--

so in view of (2ii) r d (n) + 2n 3 and d (n) + 2n 4. Now if d (n) is even, then r is
odd and is even, so on (- n + 1, n + 2) we get ffa < 0, O. > 0, while on (- n + 2,
n + 3) we get 3 > 0, if4 > 0. But by Lemma 2, r, (u) < 0 on (- n + 1, n + 2) and > 0
on (- n + 2, n + 3). Therefore,

(5p) 4,(u)>0on both (-n +1, -n +2) and (-n +2, -n +3) if d(n) is even.

Similarly,

(5q) 4,(u)<0 on both (-n +1, -n +2) and (-n +2, -n +3) if d(n) is odd.

The result follows.
Remark. The real nonintegral zeros of b,, are seen therefore to lie within

(- n + 3, 2), n > 5. It is believed that when n > 8 all these zeros lie probably within
only (-In/2]- 1, 2), and that, in any case, at least one of them lies in (- 3, 2). The
second part of the preceding statement is true for at least the first eight b,,’s.
Furthermore, it is not known whether there is an n for which 4, has an integral zero.
A conjecture of Kishore [3, p. 518] states that there is not.

3. The polynomial on [-2, az). th,, behaves here nearly the same way as it does
on (-, -n +3), except that now bn(u) >0 for all n. We show directly from (2) that
b,(u)-> 1 on u_->-2, for all n; in fact that on u_->-l, ch,(u)>-_en. We also obtain a
dominating polynomial.

By induction on n, with a recurrence formula for b, (u), it is shown in I-2, 5] that
bn>0 on u_->-2. Then in view of (2), there is k, l<-_k<-c(n), such that the
component

.--1

2"k H (u
j=2

of 4. is positive at u -2. Then u + 2 cannot be a factor of this component (rtk2--0),
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and we write this component in the form

n--1

2" I-I (,’ +j)"’.
./=3

Thus, with ] -> 3 and each component of (2) nonnegative on [- 2, c), we obtain

n--1

(6) 4,,(-2) ->2"k 1-I (-2+])"k’->l.
j=3

In (3) it is clear that 4,’ > 0 on v > -2, so that 4, is strictly increasing on (-2, oo). By
continuity it follows also that 4, is strictly increasing on all of [-2, oo). This and (6)
lead to

(6a) b, (v) _-> 1 on [- 2, oo).

Next fix e, 0 -< e =< 1. Then on [- (1 + e), oo), u + bis --> 1 e > 0 for each bis; and
hence, from (2a),

1 (2n-2)(6b) 4,,(u)_->- (l-e)a(") on , > -(l+e),
n\n-1

for all n, with equality holding when n 1, 2, 3. Letting e 0, we see that

1 (2n-2)(6c) 4,, (v) _-> -\ n 1 /
on [- 1, oo).

As before, using Lemma 1, we see that

(6d) 4,">0 on[-(l+e),oo), foreachn>5;

while by using (2a), we see that

(6e) 4),, (v) -< 2"’1-I (v +n- 1)=- (v+n-1)a(")---h,,(,).
i=1 =1 n \ n-1 l

Summarizing the foregoing, we have:
(6f) The Rayleigh polynomial of order n lies above the lines

1(2n-2] and y h,( n+2 e)y=l, y
n\n-1/

on the intervals , _-> -2, u _-> 1 and , _-> -(1 + e) respectively; 4,, (u) is strictly in-
creasing (n > 3) on , => 2, concave upwards (n > 5) on u _->- 2, and majorized by the
polynomial h,,(u) on [-2, oo) for all n _-> 1.

We remark in passing that on [-n + 1, -2], 4, (u) lies too far within the horizon-
tal .strip y +h,(-2) for n > 3, so that there, 14,1 << h,(-2); and that in view of (4a),
14, _-<h,(-u-n- 1) on ,-<-n + 1 by continuity, for n > 3; and that by expanding
(2a) the leading coefficient of 4,, (u) is

2 2"’
1 (2n 2] (see [3, (17)]),
n n-l]

which equals the leading coefficient of h,,(,), so that since the two polynomials have
the same degrees,

lim 1.
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Also in view of (6a), Y,n= tn (9) is a divergent series at each point of at least the region
[-2, o). This is in contrast with ZnC=l O’n (/2), which converges uniformly (see [7, 4])
on [0, oo).

We have seen in 2 and 3 some roles played by the Catalan numbers, e,,, in 4,.
These numbers appear quite often in combinatorial mathematics. It is known that if
is the family of all the ways in which a given planar regular (n + 1)gon can be
partitioned into triangles by n- 2 diagonals that do not intersect inside the polygon,
B,, is the family of all binary products of a given element taken n times, where these
products are assumed to be neither commutative nor associative, and if $,, is the set of
all the points, x (Xi)/2n]-2 E R 2n-2 such that X1 :d:: 1 and Xa +" +Xk > 0 if k < 2n + 2
and 0 if k 2n / 2, then all the above sets have the same cardinality: their common
cardinal number is e,,. As we already know, the leading coefficient of every Rayleigh
polynomial of order n is en, while by 3, th, (9) lies between e,, and e,,(u /n 1)a(’) on
[-1, o). L. Shapiro [in Amer. Math. Monthly, 82 (1975), no. 6, p. 634] has shown
that the number of ideals in the ring of n n upper triangular matrices is en-2. Finally,
for the nth order Rayleigh function, it can be shown via (5) and (Sd) that o-,,(9) on
(- 1, oo) lies between e,4 (u + n)l-2n and e,,4 (u + 1)1-2n. The first eight poly-
nomials are listed below for reference purposes, as numerators of corresponding trn (u)
(see [2, (2)])"

1 1 2
1.

4(u + 1)’
2. 4z(u + 1)2(9 /2)’ 3. 43(u / 1)3(u /2)(u +3)’

59+11
4. 44(9 / 1)4(9 + 2)2(9 + 3)(9 +4),

5.
149+38

4(, + (, +2(, +3(,, +4(, + 5’
3429 + 36292 + 10269 + 946

46(9 / 1)6(9 / 2)3(9 / 3)2(9 +4)(9 + 5)(9 +6)’
31329 + 131692 +43249 + 3580

47(9+ 1)7(9 + 2)3(9 + 3)2(9 + 4)(9 + 5)(9 + 6)

42995 + 764094 + 5375293 + 18543092 + 3113879 + 202738
48(9+ 1)8(9+2)4(9+3)2(9+4)2(9+5)(9+6)(9+7)(9+8)
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ASYMPTOTIC EXPANSIONS OF FRACTIONAL
INTEGRALS INVOLVING LOGARITHMS*

R. WONG-

Abstract. Let b(t) be a locally integrable function on [0, o) and satisfy

&(t)’-- -a E cm(ln t) as t-,
m=0

where/ => 0 and y is arbitrary. Asymptotic expansions are obtained for the fractional integral of order
defined by

1 IoI’&(t) Fa) (t-s)-ld(s)ds, a>0.

1. Introduction. Let 4 be a locally integrable function on [0, ) and let Re a > 0.
The operator I of integration of order a is defined by

1 Io’ -lb(1.1) I4,(t)=F(a) (t-s) (s)ds.

In a recent paper [1], Berger and Handelsman have studied the asymptotic behavior
of I4(t) as -, when 4(t) satisfies

(1.2) b(t)’exp (-ctv) E dmt-" as t-o,
m=0

where p > 0, Re c -> 0 and Re rm ’ o as m - o.
In this paper we consider the ease

(1.,3) 6(t)" -t3 E cm(ln t)v-m as t- 0o
m=O

where Re/3 -> 0 and /is arbitrary. Functions having the asymptotic form (1.3) arise in
various problems of applied mathematics [3], [6].

Our investigation is motivated by a study of the nonlinear integral equation

1 Io’ )-1(1.4) c(t)=- (t- s /2{f(s)- b (s)} ds, n >- 1,

where f(t) is nonnegative, bounded and locally integrable on [0, ) and has an
asymptotic expansion of the form

(1.5) f(t)--- Y. y,,t-" as c,
m=0

with 3,0>0 and ao < a < a2 < "’. In [4] and [5], Handelsman and Olmstead have
obtained the dominant term (and in many cases the leading two terms) of the formal
asymptotic solution to (1.4) for various values of n and ao. We are particularly

* Received by the editors April 14, 1976, and in final revised form February 2, 1977.
f Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2. This

research was partially supported by the National Research Council of Canada under Contract A7359.
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interested in the special case n 2 and ao> 1 since the solution b(t) has the asymp-
totic behavior

(1.6) as --> oo,4)(t)"/t- In

which is of the form being considered in the present paper.
Recently Bleistein [2] has developed a technique for obtaining the asymptotic

expansion of a class of integral transforms of functions whose asymptotic expansions
near the origin involve arbitrary powers of In t. Since the fractional integral (1.1) may
be put in a form similar to that considered by Bleistein, his results are closely related
to ours, although the two methods are quite different.

2. Asymptotic behavior of l(t). For the sake of simplicity it will be assumed
throughout the paper that the parameters c,/3 and 3’ are real, and that the function
b(t) is real and nonnegative. The extension to complex values of the parameters is
automatic and the extension to allow complex-valued functions b will not present any
difficulty. Also for simplicity we divide the discussion into three cases: (i) 0 _-</3 < 1, (ii)
/3 1 and (iii)/3 > 1. However, only Cases (i) and (ii) will be considered in detail. We
omit the third case, since it is very similar to the first two.

Case (i). Returning to (1.1), we write

(2.1) /b (t) Icb(t)+ Icb(t),

where I49(t) and I49(t) correspond, respectively, to the intervals (0, x/)) and (v/-, t).
LEMMA 1. If qb(t) satisfies (1.3) with 0 <- < 1 then there exists a fixed O > 0 such

that

(2.2)

Pro@ Choose 0<e <1-/3. Since (ln t)=O(t) as t-->oe, it follows from (1.3)
that b(t) O(t-/) as t-> eo and also that

(2.3) [o cb(s) ds O(t(1-t3+)/2) as

Set M max0=<__<a/2 (l-u)’-a. Then (t-s)-<Mt-1= for 0 <= s </and--

(2.4) F(a)l?qb(t)<-Mt- Io 49(s) ds.

Coupling (2.3) and (2.4), we obtain the result (2.2) with O 1/2(1-/3-e).
LZMMA 2. For ce > O, 0 <-- < 1 and any integer k >-_ O, there exists a fixed 6 > 0 such

that

(2.5) f /’/-;(1 u)-u-(In u)
aO

Proof. We again choose 0 < e < 1 -/3 and observe that (ln u)k O(U-) as u --> 0+.
Hence the integral in (2.5) is dominated by

M,, f 1/’/ru-- du O(t-(1-t3-)/2).
aO

The result (2.5) now follows by letting 6 1/2(1-/3-e).
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In order to simplify some of the expressions which occur, we introduce the
following notations:

L,(, y; t) j./_i_(t- s)"-ls- (ln s)" ds(2.6)

I01 ).-1 (ln(2.7) D(c,/3)= (1 u u- u) du.

In terms of the Beta function, we have

d
(2.8) f(a,/3)= (- 1)d- B(a, 1 -/3).

LEMMA 3. For > O, 0 <-- < 1 and y arbitrary,

(2.9) L, (/3, ,; t)--- "- o= (kY)l’ (a,/3)(ln t)-, as O(3.

Proof. In (2.6) we make the substitution s ut. Then

t) -t -1,/(1 u)"-u- (ln + In u) duy;

(2.10)

I11 )c-i -/3( ’nu)du"t-(ln t)" (1-u u l+lntl/47

On the path of integration t-a/2 <- u <- l, we have I(ln u)/lntl<-1/2. Hence, for every
fixed integer K _-> 0,

/ )K+I.lnu’]’= ()(In u)k .../(In -x)(2.11) (1 +In t] k=0 (In t)k
+ tk (-n

Inserting (2.11) into(2.10) and carrying out the integration term by term, we obtain
from (2.7) and Lemma 2

K (Y)fk(a,/3)(ln t)"-k +RK(t).L,(/3, V; t)= "- kEo=
Since the integral

Ill l--u )"-’u-O (ln u)K+I du
/,/

exists and is bounded as oo, the remainder term Rz(t) satisfies

(2.12) Rc(t) O(t"- (In t)"--1) as

The O-terms from (2.5) are included in that appearing in (2.12), and this lemma is
thus proved.

With the aid of these three preliminary results, we are now ready to state and
prove our main theorem.

THEOREM 1. Let c be locally integrable on [0, oo) and satisfy (1.3) with 0 <- < 1.
Then as t-

(2.13) I"qb(t)---t"- bt(ln t)v-t,
/=0
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where the coefficients bt are constants explicitly given by

c_ a(, 13).(2,14) bl F(o) k=0 k

Proof. From (2.1) and Lemma 1, we have

(2.15) I(t) I(t)+ O(t--)
where O is a fixed positive number. Writing

M

(t) ct-o(ln t)v- +R(t)
m=0

as too,

gives

(2.16)

where

1 M

Z c,L(, 3" m; t)+ rM(t)I(t)
F(a) ,,--o

1 I )a--1rt(t)
F(a)

s RM(s) ds.

From (1.3), it follows that there are constants K > 0 and c > 1 such that

Hence, by Lemma 3,

IRM(t)I =< Kt- (In t)-M-

K I47(t_s)_s_(ln S).v-M-1 ds

(2.17)
O(t"- (In t)"/-M-l)

Combining the results (2.16) and (2.17), we obtain

1
(2.a) r4’(t)= r(),;o2 cL(, m" t)+O(t-(ln t)"--)

as , and hence

for -> c.

as - c.

1 M

(2.19) I’qb(t) F(a----3 ,,=oE c,L(, 3’ m; t)+ O(t-(In t)v-t-1)

as , since the O-term appearing in (2.15) may be included in that appearing in
(2.18). Substituting (2.9)in (2.19)and regrouping the terms, we have for any L>-0

Iqb(t)= t-[=o b(ln t)- + O((ln t)-L-1)]
as , where the coefficients b are given in (2.14). This completes the proof of
Theorem 1.

Case (ii). In place of (2.1) we write in this case

1 t"-llo; 1 Io’ )-1 t-(2.20) I%b(t)=F(a) rb(s)dS+F(a) [(t-s 1])(s)ds,

and work only with the second integral on the right. Divide the range of integration at
s x/, and denote by J?4)(t) and J4)(t) the integrals corresponding, respectivy, to
the intervals (0, x/) and (x/}, t). In analogy to (2.2) we have an estimate for J1 b(t),
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which is asymptotically negligible with respect to Jck(t). Proceeding as in Theorem 1
and Lemma 3, we then obtain an asymptotic series for Jck(t) in powers of (In t)-a.
Since the argument here is similar to that for Case (i) we omit the details. The final
result is stated in the following theorem.

THEOREM 2. Let ok(t) be locally integrable on [0, ) and satisfy (1.3) with 1.
Put

(2.21) A(a)= [(1- u) 1]u (In u)du.

Then as --> oo

(2.22) 1j,o1ta-’*Ick(t)’F(a) 4(s) ds + t=o2 dt(ln t)r-z,

where the coefficients d are constants given explicitly by

1
C-k Ak (a ).(2.23) d F(a ) k=O k

A simple calculation gives

(2.24) A0(a) 4,(1)- g,(a),

where O(a)= F’(a)/F(a).
Remark. At the beginning of the section, we remarked that Case (iii), in which

/3 > 1 in (1.3), is similar to Cases (i) and (ii). From the above analysis it should now
become clear that we can indeed give the asymptotic behavior of I%b(t) in the third
case. The result is, however, more complicated than (2.13) and (2.22). We shall not
give it explicitly.

3. Expansions involving In in t. In 4 we shall see that the formal solution to
equation (1.4) may have the asymptotic form

[ (In Int)(lnt)
(ln Int)2(ln ](3.1) b(t)---t-t(ln t) Co+C /c2t)-l----+

where 0 <_-/3 _-< 1 and 3’ is arbitrary. Although the expansion is not of the type consi-
dered in (1.3), our method can again be used to give the large-t behavior of
The algebraic complexities, however, become overwhelming. In the following
theorems, we shall content ourselves with giving the leading five terms in the asymp-
totic expansions.

THEOREM 3. Let qb(t) be locally integrable on [0, ) and satisfy (3.1). If 0 <- < 1,
then as t-> o

In In 1
I%k(t)-- -(In t)TM do + dl In

+ d21n---
(3.2)

(In In t)2 In In
+ d3 (In t)2 - d4 (In t)2

+"" J’
where do=coF(1-B)/F(a-3 + 1), dl=cF(1-f)/F(a-3 + 1), d2 CoylY1
(a, /3 )/F(a ), d3=c2F(1-)/F(a-3 + 1) and d4=c1( 1)D,(a, fl)/F(a); Dq(a,/3)
being the constant given in (2.7) (with k 1).
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Pro@ For convenience, we set

(3.3) L.k(t) (In t)-k (In In t), k 0, 1, 2, ,
and rewrite (3.1) in the form

(3.4) b(t)= - cL,/,,(t)+ ez(t)

where the remainder ez(t)satisfies

(3.) e(t) O(L,(t)) as .
Let I &(t) and I &(t) be defined as in (2.1). Using the proof of Lemma 1 gives

(3.6) I?O(t)=O(t--)
for some fixed O > 0. From (3.4) we have

1
(3.7) I6(t)

F() =E0 cN(a, , y; t)+ E(t)

where

(3.8)

and

Nk(a, fl, y; t)= f,q(t--s)-lS-tLv.k(S)ds

as t-->

( lnu: (-1)(lnu)
(3.13) In 1+-/ =1 k (lnt)

This together with (2.11) gives

U)TM
t- ((ln _g_ )O\ (ln

(3.14) L.,k(tu)=L..,(t)+(y-k)L,/-1,(t)(ln u)+O(L,/_2,_l(t)(ln u)),

for k 1, 2,.... The constant involved in the O-symbol is independent of and u.

1 I]( )’-s-(3.9) E,c(t)=.r(c )
t-s %,(s) ds.

In view of (3.5), we have

(3.10) EK(t) O(NK(a,/3, V; t)) as

Further progress now depends on the asymptotic expansion of the integral
N(a, , ; t).

Since N0(a, , ; t)= L(, ; t), Lemma 3 gives

(3.11) No(,B,y;t)t- 2 O(a,)(lnt)"- ast.

In (3.8) we make the substitution s ut. Then

)--1 (tu)du.(3.2) N(a, , e; t)= - (1-u u-L,
/4

On the path of integration t-/2 u 1, we have 10n u)/ln tl. Hence, for every
integer K 1,
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We now substitute (3.14) in (3.12), and obtain from (2.7) and Lemma 2

Nk(a, fl, y; t)-[f0(a,/3)L,,k (t) + (V k)f, (c, )Z,_1, (t) + O(tr-2.-l(t))],

for k 1, 2,- , as . The O-terms from (2.5) are included in that appearing in
(3.15). On account of (3.11) and (3.15), we have

(3.16) E(t) O(t-OLv.(t))
Combination of (3.6), (3.7)and (3.16)yields

E CkNk(a, fl, y; t)+ O(t-Lr,r(t)).(3. 7) (t)

Substituting (3.11) and (3.15) in (3.17) and rearranging the terms, we obtain the
desired result (3.2).

THEOREM 4. Let (t) be locally integrable on [0, ) and satisfy (3.1) with fl 1.
Then as ,

1 o’O(s) as

(lnt)’[do+dllnlnt 1 (ln In t) lnlnt ]+d2 +d3+d4 +"+
0n 0n

as t-.

where do coAo(c), dl= ClAo(ce), d2 coAl(ce), d3 c2Ao(ce) and d4 cl(T- 1)Al(a);
Ao(a) and Al(a) being the constants given in (2.21) (with k O, 1).

The proof is similar to that used in Theorems 2 and 3.

4. Application to the integral equation (1.4). The results obtained in the preced-
ing section will now be applied to the solution of the integral equation (1.4). In terms
of the fractional integral operator I, equation (1.4) may be written as

(4.1) b(t) I1/2[f(t)-dpn(t)], rl >-- 1,

where f(t) satisfies (1.5), i.e.,

(4.2) f(t)--- Tot-a + y, -a’ +. ., as

We recall that for a > 0,/3 > 0,

(4.3) IIf=I+f.
Thus, applying 1 1/2 on both sides of (4.1) gives

(4.4) J0 If(s)- bn(s)] ds I1/249(t), n >- 1.

We assume, as did Olmstead and Handelsman, that b(t) has an asymptotic behavior
of the form

(4.5) 49(t) Cot- (In t)

The large-t behavior of I1/2cb(t) is given in 2. The behavior of the integral on the
left-hand side of (4.4) can be obtained by simple computation. Upon balancing the
terms of (4.4) asymptotically, we find/3 1/2, y 1 and Co /when n 2 and a0 > 1.
This is precisely the result (1.6) given in [5, eq. (2.10)].
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It is interesting to note that when n 2 and ao> 1, we have I1/2(t)0 as 0.
Hence it follows from (4.4) that

(4.6) e0= Io [f(s)-"(s)] as 0.

One can in fact show that (4.6) holds for 1 _-< n _-< 2 and ao> 1. This property of the
solution marks the distinct difference between cases in which 1-< n <_-2 and those in
which n > 2, since in the latter cases it was shown by Handelsman and Olmstead
[4, p. 381] that eo>0. In view of (4.6), we may write (4.4) as

(4.7) It [dpn(s)-f(s)] ds=[1/2qb(t)’ l <-n <-_2.

Returning to the case n 2 and ao > 1, we have

(4.8) c(t)--- t-1/Z/ln as - oo,

from which one would expect that 4(t) may have an asymptotic expansion of the form
(1.3). However any attempt to satisfy (4.7), as - oo, with the second term being of the
form Clt-1/2(ln t) leads to a contradiction in equating the coefficient Cl (although the
exponents seem to agree on both sides). By assuming b(t) to have an asymptotic
behavior of the form

[ lnlnt (lnlnt)2 ]x
1+C+C2+’’"(4.9) 4(t) 4ln In (ln t)

we obtain c= 2[(1)- (1/2)] and c2=c/rr.
The case n- and a0=>-} also deserves an attention. The leading term of the

asymptotic solution 4(t)is given by

1
(4.10) b (t) t- (In t)2 +... as eo,

see [5, eq. (2.6)]. The succeeding terms again involve the function In In t. We obtain

In In (In In t)2 ]1 (ln t)2
1 + Cl -[" C2 -[""(4.11) b(t)

36r In (In t)2

where c1= 4(0(1)- t#(1/2)-2) and c2=c21/4.
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ZEROS OF THE SOLUTIONS OF FIRST ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS*

CLEMENT McCALLA

Abstract. It is shown that all solutions of a class of first order autonomous functional differential
equations are oscillatory if the fundamental solution has a first zero T1. If the fundamental solution does not
have any zeros, we show that every solution with positive initial data is nonoscillatory. Upper and lower
bounds are given for the distance between successive zeros in terms of T1 and the delay a.

1. Introduction. A number of authors have studied the oscillatory behavior of
the solutions of first order functional differential equations, for example [1], [2], [6],
[8], [9], [10] and [11]. In particular, Myshkis [8, Chap. 4] considers the non-
autonomous first order functional differential equation of "stable type"

(1.1) x’(t)= | x(t-s)dsK(t, s), > to,
aO

with continuous initial function b (t), continuous delay function A(t)-> O, kernel K(t, s)
for fixed is of bounded variation in s and does not decrease, K(t, 0)=0, K(t, s)=
K(t, ) for s > A(t) and K(t, s) satisfies the condition of mean continuity. Defining

Mo sup / K(t,s) and Ao sup A(t),
[to,OO) s=0 t [to,OO)

and assuming that b(t)=>0, 0<Mo<oO and AoMo< 1, Myshkis shows that every
semicycle of the solution is large and with length greater than Mo-1. In addition,
Myshkis [9] considers the equation

x’(t) -M(t)x(t- A(t))

where M(t)>-0 is continuous. Defining

mo inf M(t) and -0 inf A(t)
t [to,CX3) t [to,CX3)

and assuming that A0< and ’0m0>e-1, Myshkis shows that every solution is
oscillatory.

More recently, a great deal of attention has been centered on the foundations of
the theory of functional differential equation; see for example Hale [5]. In this paper
we use a representation of solutions (2.2) and an addition type formula for the
solution (2.3) to obtain results on the zeros of a class of autonomous first order
functional differential equations assuming only the existence or nonexistence of a first
zero of the fundamental solution. If the fundamental solution has a first zero "TI," we
show that all solutions are oscillatory and obtain upper and lower bounds on the
distance between successive zeros in terms of "TI" and the delay "a." On the other
hand, if the fundamental solution has no zeros, we show that every solution with
positive initial data can have at most one zero and that the distance between suc-
cessive zeros of any oscillatory solution is less than the delay "a." Finally, we exhibit
sufficient conditions for the existence and nonexistence of a first zero of the

* Received by the editors March 18, 1976, and in final revised form February 14, 1977.
t Department of Mathematics, Howard University, Washington, DC 20059. This work was supported

in part by the National Science Foundation under Grant SER75-09043.
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fundamental solution of some differential equations in terms of the coefficients ap-
pearing in the equations and the delay "a."

2. Preliminaries. We consider the equation

(2.1)
X’(t) Aix(t + Oi)-" A(O)x(t- O) dO,

i=0

x(t)=h(t) -a<=t<-_O,

t>0,

where Ai, Oi are constants, a>O,-a=Or<" "<01<Oo=O,h(O) is given, h(.)
LP(-a, 0) for p -> 1, and A(. )6 Lq(0, a) where q p/(p 1). In addition we assume
that one of the following conditions is satisfied:

(C1): Ai -< 0, 1, , N- 1, AN < 0, and A(O) <- 0 a.e. with respect to Lebesgue
measure on [0, a].

(C2): A<-_O, i= 1,...,N,A(O)<=O a.e. with respect to Lebesgue measure on
[0, a], and A(O) is not a null function on any interval [a 6, a] for 0 < 6 <_- 60 and some
60>0.

Theorems giving the existence, uniqueness and the representation of the solution
to (2.1) can be found in [3] and [5]. The solution x(t) will be (absolutely) continuous
for > 0, continuous on the right at 0, and can be given in the form

x(t)=(t)h(O)+,Ylni di)(t+Oi-a)h(a)da
(2.2) 0

+ I_ da f_ dOa(O)*(t-O-a)h(a)

where (t), the fundamental solution of (2.1), satisfies (2.1) with initial data (0)=
1, (t)= 0 for -a _-< < 0. An expression for (t) can be found in [7].

The following lemma follows from the representation of solutions (2.2) and the
observation that the translate of a solution of the autonomous equation (2.1) is a
solution.

LEMMA 1.

(2.3)
x(t+s)=(t)x(s)+,lAi (t+Oi-a)x(s+a)da

0

+ I. da I_ dOA(O)*(t-O-a)x(s +)

fort, s>--O.

DEFINITIONS. (i) The solution x(t) is said to be oscillatory if it changes sign on any
interval [3-,

(ii) The interval [3-1, 3-2] is said to be a semi-cycle of the solution if x(t) 0 on
(3-1, 3-) and x(3-1) x (3-2) 0.

(iii) The semi-cycle [3-1, 3-2] is said to be large if 3"2- 3"1 a; otherwise it is said to
be small.

(iv) The solution x(t) is said to have first zero tl if tl >0, x(t)0 on (0, tl) and
X(tl)= O.

3. Main results.
THEOREM 1. If the fundamental solution (t) of (2.1) has a first zero T1 > O, then

all nontrivial solutions are oscillatory and have semi-cycles of length less than T1 + a.
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Moreover if T1 > a, all solutions with nontrival initial data of constant sign (including
zero) have large semi-cycles, change sign at each zero tn, and Ta < tn+l- t, < Ta + a.

Proof. Suppose that x(t) is a nontrivial solution of (2.1) and that x(t)>0 for
7. < < 7. + T1 + a and x(7. + Ta + a)=>0, where 7. >0. From equation (2.4) we.have that

x(T1 + 7" + a)= -,2 Ai O(T1 + 0 a)x(7 + a + a) da

0

(3.1) -_ da

_
dOlA(O)[O(r-o-)x(,+a+a)

a

<0.

This is a contradiction and hence every nontrivial solution must have a zero on an
interval of length Ta + a.

Let x(t) be a solution with initial data h(a) 0 and h(0)> 0 (the proof is similar in
the case h(0) 0). We define f(s)= x(ta + s) where the first zero ta > 0 exists by the first
part of the theorem. From (2.3) we have that

(3.2) o

and thus/a(s)< 0 for 0<s < ra. Hence [a(s) has a zero in [ra, T +a], that is, x(t) has
a second zero ta in [tl + T1, ta + Ta + a]. Moreover, x(t) changes sign at t2, since T > a
implies that 2(t2)>0. At the nth step, we define [,(s)=x(t,+s) and repeat the
procedure to show that x(t) has a zero t,+ in [t, + T1, tn + Z + a].

Remarks 1. Professors R. D. Driver and J. A. Yorke have communicated to the
author a proof of the first part of Theorem 1 independent of a representation of
solutions and based upon a consideration of the function F(t) log ((t)/x(t)), 0 < <
Ta and the hypothesis that x (t) > 0 for -a < < Ta.

2. The last part of Theorem 1 holds if we assume that the initial data h() 0
(N0) a.e. with respect to Lebesgue measure on [-a, 0] and that h(a) is not a null
function. If h (0) > 0 (<0), 0 < tl < T and if h (0) N 0 (0), T1 < ta < T1 + a.
Tnon 2. If the fundamental solution (t) of (2.1) is positive on R +, then

solutions with nontrivial initial data of constant sign (including zero) have at most one
zero on R + and hence are nonoscillatory. In addition, oscillatory solutions have small
semi-cycles.

Pro@ Suppose that x(t) is a solution with initial data h(a)O. If h(0)= 0, (2.2)
implies that x(t)< 0 on (0, ). If h(0)>0 and x(t) has no zeros, we are done; if ta >0
is the first zero of x(t), then (3.2) implies that x(ta + s)< 0 on (tl, ). Consequently, if
y(t) is an oscillatory solution with consecutive zeros T1 and r2, then-< a, else the
solution z(s)= y(r:+s) would have initial data of constant sign and thus be non-
oscillatory.

Example 1.

(3.3) x’(t)=Aox(t)-lAlx(t-a), alAlleeo.
The fundamental solution is given by

(3.4) cI)(t)= Y, (-1)"
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where (t)+ max (t, 0). It is easy to see that rl a + IA 11-1 eaa > a. From a result of
Myshkis [8], it follows that rx exists for alAxl>e -1 eaa and in this case clearly
Tl>a.

Example 2.

(3.5) x’(t) kEx(t-O) dO, k >0,

where ka < zr/2 and cos (2ka)+1/2ka sin (ka)< 0, i.e.,

(3.6) 1.004081 < ka < 1.570796. .
The fundamental solution is given by

(3.7) *(t) Y’. (- 1) k2.,-..--

,=o n
L; ),X, t- na ) =oH(t na ),

where

f(x, t) cos (k2+x)l/2t
and H(t) is the unit Heaviside step function. From (3.6) it follows that (t)>0 for
0 _-< -< a and that (2a)< 0. Hence T1 exists and T1 > a. Note that T1 zr/(2k)-<_ a if
ka >- zr/2.

So far we have considered examples in which the fundamental solution has a first
zero T1. We will now consider examples in which the fundamental solution (t) is
positive on R/. If the characteristic function A(A) corresponding to (2.1) has a real
root a, then (2.1) has a nonoscillatory exponential solution x(t)=et. Hence (t)> 0
for all _-> 0. For if (t) has a first zero, then from Theorem 1 every nontrivial solution
would be oscillatory and this is a contradiction.

Example 3.

(3.8) x’(t) k2x(t-O)dO, k >0,

where (ka)2<lz2(e"-1)-l=0.67102... and = 1.593624... is the value of x>0
maximizing the function f(x)= x2(ex- 1)-1. The characteristic equation

(3.9) A(1)= + k e- dO 0

has a real root e (-a-1, 0), since (-a-)< 0 and (0)> 0. Hence the fundamen-
tal solution (t) given by (3.7) is positive on R +.

Nxample 4.

o(3.10) x’(t) 2 [Alx(t + 0,)- [A(O)lx(t- O) dO, Kae < 1,
i=O

where

K Y’. [a,I + [a(0)l dO > o.
i=0

Driver [4] has obtained an asymptotic characterization of the solution of the
"differential equation with small delay" (3.10) from which one can conclude that the
solutions of (3.10) practically never oscillate. The interested reader should consult [4]
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for further details. The characteristic equation

(3.11) A(A)=A + E [Ai[ ex’+ [A(O)I e-xdO=O
i=0

has a real root a s (-a -1, 0), since A(-a-1)< 0 and A(0)> 0. Hence the fundamental
solution (t) of (3.10) is positive on R +.

Acknowledgment. The author wishes to thank the reviewers for their very
helpful remarks.
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S-ORTHOGONAL PROJECTION OPERATORS
AS ASYMPTOTIC SOLUTIONS OF A CLASS OF

MATRIX DIFFERENTIAL EQUATIONS*

ERKKI OJA?

Abstract. A class of nonlinear autonomous matrix differential equations is considered. Two special
cases of this class yield the differential equations of adaptive network models which were initially introduced
in connection with idealized neuron networks. It is shown that these equations exhibit an asymptotic
behavior that is intimately related with the matrix form of the Gram-Schmidt orthogonalization algorithm
in a real vector space, with respect to an inner product with an arbitrary positive definite symmetric weight
matrix S.

1. Introduction. Several applications of pattern recognition, associative
memories, and theory of learning systems are concerned with the problem of con-
structing projection operators on specified subspaces. Such operators frequently result
as asymptotic states or goals of learning in certain adaptive processes (for a review, see
[3]). Recently, Kohonen [3], [5] has suggested a dynamical network model whose
overall transfer matrix has interesting projection properties. The transfer matrix is
governed by the equation

d___ ad 2aa TC 2, >= O,
dt

where 4 is an n n matrix function of t, a R" is a vector and a > 0 is a scalar. In [5]
it is shown for the corresponding difference equation that the solution, starting from a
projection matrix, tends asymptotically to a projection matrix on a given subspace,
when the input of the network, or vector a, is suitably chosen.

In this paper, the above mathematical result is applied to matrix differential
equations of a more general type, to appear as equations (12) and (25) in following
sections. No physical implementations are here regarded; however, equations of this
class may represent the effect of certain variations in the basic network model
introduced in [3]. It will be shown that the relation between the initial and asymptotic
solutions is intimately connected with a step in the matrix form of the Gram-Schmidt
orthogonalization algorithm. Thus it will be seen that, in a sense, this class of equa-
tions is a continuous counterpart of the Gram-Schmidt algorithm in R" with an inner
product having a weight matrix that is either the unit matrix or a positive definite
arbitrary matrix.

2. Gram-Schmidt construction of an S-orthogonal basis by means of nonor-
thogonal projection matrices. This section is a brief presentation of well-known
properties of Gram-Schmidt orthogonalization, put in a form that allows comparison
with the asymptotic properties of matrix differential equations under study.

Let {aa, a2," "} be an arbitrary sequence of vectors in R". Consider the un-
normalized Gram-Schmidt algorithm

1 al,

(1) ai ak

* Received by the editors September 9, 1976.
? Department of Technical Physics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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where

(2) S {ill -< j =< k- 1 and d # 0},

yielding for every k the orthogonal basis {d,..., d} of the subspace L(a,..., ak)
spanned by the vectors al,’’’, ak. It is shown e.g. in [1, p. 37] that formulae (1), (2)
may be expressed in an equivalent matrix form as follows"

(3) dk &k-la,

_Chk-laa4k-1
a)k- ak

(4)
k-1

bo=L

if &_lak # O,

otherwise,

Now & is the orthogonal projection matrix on the orthogonal complement of
L(al,. "’, ak); consequently, every & is symmetric and idempotent.

Let now R be equipped with an inner product defined by

(5) (x, y)s x Sy y Sx,
where S is a symmetric positive definite matrix. Then a sequence of vectors
{h 1, h2, "} satisfying

(6) (hi, hi)s 0 if j

will be generated recursively from the vectors {al, a2, "} by the following algorithm:

hi al,

hk a , (h, ak )S
h hSak

----.q ak hi,s;, (hi, hi)s i;, hShi

(7)

(8)

Sd {Jl I -_< j =< k 1 and h # 0}.

where

(9)

Vectors {hi, h2," "} are S-orthogonal, or conjugate with respect to S; thus the above
algorithm may be termed an S-orthogonalizing algorithm. If the matrix mapping ak
into h is denoted by 0k-l, it is evident from (8) that the subsequent matrices g and
4,-1 are related as follows:

if hk # O,
hghS

(10) Ok Ok-l-hSh-
Ik-1 otherwise,

with

Oo=L
Substituting hk Ok-lak in (10) yields further

(11) Ok Ok-l-- if hk # O.
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Because of the well-known properties of Gram-Schmidt orthogonalization, the
matrices qk map each vector ak+l into a subspace S-orthogonal to L(al,..., a) or
orthogonal to L(Sal,..., Sa) in the Euclidean sense.

The two recursions (3)-(4)and (10)-(11)will be related to the behavior of matrix
differential equations in the following section.

3. Matrix differential equations and Gram-Schmidt orthogonalization. In the
sequel, let (. denote a continuous and differentiable matrix function defined on the
set of nonnegative reals R +. Let a R" be a real vector and P(.) and O(.) be
functions expressible as power series with real scalar coefficients. Consider the follow-
ing differential equation"

(12) d4 +

dt
_p(c)aarO(c r), R

Throughout this paper the assumption is made that (12) is autonomous, i.e., neither
the vector a nor the coefficients of P(.) and O(’) are dependent on t. The case in
which this assumption is not valid is treated elsewhere [6].

A special case of (12) has earlier been discussed by Kohonen [3] and by Kohonen
and Oja [5]"

(13) dc _ac2aa T. 2
ce >0,

dt

with initial condition

(14)

The solution is

(5)

with

(16)

if

(0)2 (0) / (0)T

b(t) b(O) + rk(O)aa b(O)rp(t)

#(t) {[3a (a rck(O)a)t + 1]-1/3- 1}(ab(O)a)-1

b (0)a

i.e., 0(t) is a scalar valued function of with initial value 0(0)= 0 and asymptotic value
limt_, 0(t) -(a q(0)a)-1. Then the solution of (13)-(14) converges to

(17) lim b(t) b (0)- qb(O)aab(O)(a rb (O)a)-1.

On the other hand, if b(0)a 0, then o(t) is identically zero, and b(t) remains equal to
(0).

The above solution can now be generalized to the present case of (12).
THEOREM 1. Let c(O) be an idempotent symmetric n x n matrix and a 6R a

constant vector. Let P(. and Q(. satisfy the following:
1. As functions of a scalar variable, they possess convergent power series expan-

sions on the interval [0, 1], vanishing at zero;
2. on the interval (0, 1], the function t9( )Q(. is positive.

Then the solution of (12) tends asymptotically to the matrix (17), if 4(0)a :0; if
b(O)a O, then cb(t) is identically equal to qb(O).
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Proot It is first shown that the solution of (12) is of the form (15). Substitution
yields

d(t)a 4(0)a[1 + q(t)a 4(0)a] d(O)ar(t)

where

(8)

Furthermore,

and by induction

r(t) 1 + q(t)d qb(O)a.

d(t)2a qb(t)c(O)acr(t)

b(0)2ar(t) + o(t)a qb(O)ack(O)ar(t)

d (O)ao-(t)2

d(t)’a b(O)ao-(t)’,

P(. ) may be represented in the form

(19) P(.)= 7rj(.)i
i=O

with 7ri real for each j and r0 0 because P(. vanishes at zero. This yields

(20) P(d)a= 7riqbia=d(O)a 7rirJ=b(0)aP(r)
i=l i=1

on an interval J of where 0 <_- tr(t)<= 1 and 0 <- p[b(t)] <- 1, p[. denoting the spectral
radius of a square matrix. It is evident that the point 0 is included in J since (15)
and (18) show that tr(0) 1, and the spectral radius of an idempotent matrix is at most
1.

Forming O(b)a in a similar fashion yields the following expression:

(21) P(d)aaTO(d7")= c(O)aa%(O)P(o,)O(r),
and substitution into (12) yields the scalar differential equation

(22) d____= _(ad(O)a)p(tr)O(tr), J,
dt

with initial value

(23) r(0) 1.

If b(0)a 0, the solution is trivially tr(t)= 1 everywhere, implying that q(t) is
identically zero and b(t) is equal to b(0). Therefore, consider the nontrivial case
b(0)a 0. The assumptions made on P(. ) and Q(. ) imply now that P(tr)Q(tr) is
continuous and satisfies a Lipschitz condition with respect to tr on [0, 1]. Therefore, it
follows from the Picard-Lindel/Sf theorem [2] that on J equation (22) has a unique
solution corresponding to the initial value (23). Denote this unique solution by tr*(t).
Since the positiveness of P(. )Q(. ) implies that the right side of (22) is strictly negative
as long as r (0, 1], it follows that on J the solution tr*(t) is monotonically nonin-
creasing. On the other hand, since P(.)Q(.) vanishes at zero, equation (22) has the
trivial solution tr(t)= 0 on R +. Uniqueness implies now that cr*(t) cannot vanish and
therefore it can be concluded that J is arbitrarily long. Since tr*(t) is now nonincreas-
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ing and bounded from below on R +, it tends to some number c? [0, 1]; however,
must be a root of P(. )O(" ), which implies that 0.But then, by (18), limt_,oo q(t)--
-(aT(O)a)-1, and substitution into (15)establishes the theorem.

In many cases a complete solution of (12) on R +, corresponding to a symmetric
idempotent initial matrix, is naturally obtained by putting (22) in the form

(24)
dw _(a&(O)a)t,

e(,o)o(,o)

by integrating and by solving for r as a function of t.
It is, however, the asymptotic solution (17) that is especially interesting because

of its relation with &(0). Equation (17) should be compared with (4), yielding the
general step in the Gram-Schmidt algorithm. As pointed out e.g. in [5], setting
b(0)= &k-1 and a ak in (13) results in the asymptotic behavior limt_. &(t)= &,
which corresponds to a step in algorithm (4). Theorem 1 above generalizes this result
to equations of the type of (12).

It will now be shown that a generalization of (12) produces an asymptotic
behavior that is intimately related with the S-orthogonalization procedure of (10).
Instead of (12), consider the following matrix differential equation:

(25) d___O= _p(O)aaTO(oT)SR (0), R +

dt

where 0(" ) is continuous and differentiable on R +, a R is constant and P(. ), O(" ),
and R(.) are again expressible as power series with real scalar coefficients. S is a
positive definite symmetric matrix independent of t.

It has been pointed out by Kohonen [4] that a special case of (25), with P(0)= 02,
0(4’) R(0) 0 appears as the differential equation of an adaptive network model
that is of interest in the mathematical treatment of idealized neuron networks.

To proceed with the solution of (25), consider the similarity transformation

(26) r(t) S/O(t)S-/
(27) 0(t) S-1/2F(t)S/2,
Denote further

(28) b=SX/2a,
Substitution into (25) yields

(29)

tR +.

a --S-1/2b.

dF sa/2d0S_I/2at-
-S/2p(o)S-1/2bb TS-/2Q(bT)SR (l)S-1/2

-P(r)bb rO(rr)R (r)

since naturally P(F)= S1/2p()S-1/2, etc.
The only basic difference between (29) and (12) is that on the right side of (29)

there appear matrix products of the form FTF, due to the factor O(FT)R(F), instead
of mere powers of FT and F. If, however, F were symmetric, then this difference would
vanish; for suitable initial conditions, Theorem 1 might then be used to construct the
asymptotic solution of (29) and, consequently, that of (25). This is established in the
following.
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THEOREM 2. In (25), let P(. ), 0(" ), and R(. satisfy Condition 1 imposed in
Theorem 1, and let P(. )O(. )R (.) be positive on the interval (0, 1]. Let a be a constant
vector and S a constant positive definite symmetric matrix. Furthermore, let (0) be
idempotent and such that SO(O) is symmetric. Then the asymptotic solution of (25) is
given by

(O)aaT(o)Ts
(30) ,-lim O(t)-- O(O)--aW’(O)rSO(O)a’u

Proof. Equation (26) implies that F(0) is symmetric if and only if S0(0) is
symmetric. Likewise, F(0) is idempotent if and only if 0(0) is idempotent. Then the
initial conditions of (29) are exactly those of Theorem 1; a construction similar to that
in the proof of Theorem 1 guarantees that (29) now has a solution of the form

(3) F(t)= r(0)+ /(t)r(O)bb rF(0),
with y(t) a scalar-valued function. Then Theorem 1 is applicable even in the present
case, implying that F(t) tends to

r(0)b Tr(0)
(32) lim F(t)= F(0)-

,- bWF(O)b
Employing the similarity transformation (26) yields

O(O)aarSo(O)
(33) lim 0(t)= 0(0)-, aTSO(O)a

which is equivalent to (30) when use is made of the facts that S0(0) is symmetric and
(0) is idempotent. This concludes the proof of Theorem 2.

Comparing (30) with the recursion formula (11), it is evident that setting 0(0)=
0k-1 and a ak yields limt_ 0(t)= 0 or the next step in the recursion (11). Thus
(11) is in a sense the discrete counterpart of the differential equation (25), one discrete
step there corresponding to integration over an infinite interval in the continuous
case. As was noted before, the same kind of relationship appears between the
recursion formula (4) and the original differential equation (12).

Since the solution of (12), starting from an idempotent and symmetric initial
matrix, converges to a matrix satisfying both these properties, it might be asked
whether this behavior of (12) is carried over the (25) in an analogous fashion. That this
is indeed the case is shown by the following:

COROLLARY 1. Let the functions P(.), O(" ), and R (.) as well as vector a and
matrix S be as in Theorem 2. If 0(0) is idempotent and self-adjoint with respect to the
inner product (.,.)s, then, likewise, is limt_, 0(t).

Proof. From the definition of the inner product (. ,. )s in (5), it is evident that 4,(0)
is self-adjoint with respect to this inner product if and only if S0(0) is symmetric. Thus
0(0) satisfies exactly the conditions of Theorem 2, implying that limt_ 0(t) is of the
form (30). Squaring the limit matrix of (30) shows that it is idempotent. That it is also
self-adjoint with respect to (.,.)s, or S lim,_, 6(t) is symmetric, follows from the
symmetricity of S0(0).

A matrix that is idempotent but not symmetric is a nonorthogonal projection
matrix [7]. Thus the analogy between the behavior of &(t) of (12) and that of 0(t) of
(25) is complete: Equation (12), turning orthogonal projection matrices into ortho-
gonal projection matrices by integration over an infinite interval, may be regarded as a
special case of (25), the role of S-orthogonal projections being taken by ordinary
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orthogonal projections. The same analogy is, of course, revealed in the two Gram-
Schmidt procedures of (4) and (10).
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AN ASYMPTOTIC PROBLEM FOR A POSITIVE DEFINITE OPERATOR-
VALUED VOLTERRA KERNEL*

OLOF J. STAFFANS

Abstract. We study the asymptotic behavior of the bounded solutions of a Volterra integral equation
in a Hilbert space. The equation is supposed to have a D-positive definite convolution kernel and a
nonlinearity which is the (possibly multivalued) gradient of a nonnegative function. The results we obtain
generalize earlier finite dimensional results.

1. Introduction. We study the asymptotic properties of the abstract nonlinear
Volterra equation

(1.1) x(t)+Io A(t-s)g(x(s))ds=f(t) (tR+).

Here f maps R + [0, ) into a real Hilbert space H, g maps (a subset of) H into itself,
and A is a function from R /

into L(H), the set of bounded linear operators on H. The
solution x of (1.1) maps R/

into H.
As a part of the definition of what it means for a function x to be a solution of

(1.1) we suppose g x L21oc(R +’, H). We want to be able to differentiate (1.1), and for
this reason A and f should be sufficiently smooth. More precisely, we suppose that f is
locally differentiable in the L2-sense, and that A is locally of bounded variation. The
(distribution) derivative of A is then a dominated, operator-valued measure (call this
measure/x), and (1.1) can be differentiated (cf. 6 below):

(1.2) x’(t)+ f dlx(s)g(x(t-s))=f’(t) a.e. onR +.
0,t]

When A is a smooth function, then (1.2) becomes

(1.3) x’(t)+ A(O)g(x(t))+ J0 A’(s)g(x(t- s)) ds f’(t) a.e. on R /,

i.e. the measure / is the sum of the point mass A(0) at zero and an absolutely
continuous part.

We do not go into the question of existence of solutions of (1.1) (i.e. solutions
satisfying g x Lloc(R/; H)), studied e.g. in [1], [2], [8] and [11]. However, it should
be pointed out that it is not known whether a solution of (1.1) exists under our
hypothesis. The existence proofs in general require at least A(0) to be strictly positive
(definite), A to be sufficiently smooth, and g to be maximal monotone.

Here we concentrate on studying the asymptotic behavior of solutions of (1.1), or
equivalently, of (1 2), which are bounded in the sense that suptR Ig(x(s))l2 ds <
c. We suppose that/x is positive definite (some authors refer to this by saying that A
is D-positive definite). The key condition on g (see (6.5), (6.9) below) essentially
amounts to assuming that g is the gradient (or subgradient) of a nonnegative function.
The derivative f’ of f should be sufficiently small at infinity.

The approach we use is the same as in [16]-[20], which treat the corresponding
classical Volterra equation, and it is a development of an idea of Halanay [6]. To avoid
unnecessary repetition we assume a certain familiarity with [16]-[20].

* Received by the editors January 17, 1977.
t Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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Before we can state the conclusion of Theorem 6.1 below on the asymptotic
properties of (1.1) we have to generalize several fundamental concepts used in
17]-[20] to infinite dimensional spaces. The first of these concepts is the notion of the
limit set F() of a function p, studied in 3. We let_ belong to L(R;H), i.e. the
space of functions p e Loc(R;H) such that suptn I+llp (s)l 2 ds < c. This space is the
dual of a Banach space, so we can define

F(p) { e L(R H)I% - weak* for some sequence tk c},

where Zh denotes the translation operator rh(t)=q(t+h). It turns out that F(q),
topologized with the weak*-topology, has the same nice properties as in the case
H=C.

The second thing we must do is to develop the theory of positive definite
measures in H. We give a necessary and sufficient condition (Theorem 4.1) for an
operator-valued dominated measure to be positive definite, generalizing thereby the
quite strong sufficient conditions in [10] and [12].

After that we define the spectral set z (x) of a positive definite measure. Loosely
spealing, it is the complement of the set of points where the symmetric part of the
Fourier transform of x is bounded away from zero in sufficiently many directions. This
set plays a crucial role in our next problem: What does the boundedness of a particular
quadratic integral with kernel x (see (2.4) and (5.2) below) imply about the asymp-
totic behavior of the integrated function q? We suppose that q L(R;H) so that
one can define F(q) as above. For each F(q) we define cr() as the support of the
distribution Fourier transform of , and let r(F()) be the closure of the union of the
sets r(O) as varies over F(q). The conclusion of Theorem 5.1 below is the same as in
the scalar case, namely o-(F(q)) c z (/x).

In 6 we apply the theory of the preceding section to get an asymptotic result for
(1.1). The conclusion of Theorem 6.1 reads o-(F(g x)) c z (x). In particular, if z (/x), then we get convergence of g(x(t)) to zero as oo, at least in a weak sense. We
conclude 6 with a short discussion on how our work relates to [8], and we refer the
reader to [8] and to [11, 5] for discussions of earlier asymptotic results for (1.1).

2. Preliminaries. Basically we use the same notations and conventions as in
[17]-[20], and we refer the reader to [20] for explanations of notations not defined
here.

The technique we use requires complex scalars, so we imbed the Hilbert space H
in its complexification (which we for simplicity also call H).

As before we let F(X; Y) stand for the space of functions of type F mapping X
into Y. For shortness we write F(0, T; Y) instead of F([0, T]; Y) whenever the set X
is the interval [0, T].

We use two new function spaces, namely L and L, which are mixed L"-spaces.
The functions p in LI(R; H) and L(R; H) are those which are locally L2, and satisfy

2 I (s)l
nZ

and

Inn+l ]1/2sup ]q(sl] ds

respectively. They are Banach spaces, with the norms indicated above, and L is the
dual of L21 (see [7, Thms. 1-2]).
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By Hw we mean H equipped with its weak topology. In particular, C(R;H,v)
stands for weakly continuous functions from R into H.

The Banach space of bounded linear operators on H is denoted L(H). We make
an extensive use of the set DM (R+; L(H))of L(H)-valued, dominated (Radon)
measures on R +. The basic facts about such measures are found in [5]. An L(H)-
valued measure Ix on R is (induced by) a continuous map from the set Y[(R) of
continuous, scalar-valued functions with compact support into L(H). We say that a
measure Ix on R is a measure on R + if it vanishes on (-oo, 0). The measure Ix is
dominated if there exists a positive measure u such that

The smallest measure , for which (2.1) holds is called the total variation (measure) of
/x, and it is denoted IIxl-If IIx[ is bounded, i.e., IIXI(R)< oo, then we call/x a bounded
measure. We write BM for the class of bounded measures.

The definition of an L(H)-valued function of bounded variation is completely
analogous to the definition of a scalar-valued function of bounded variation. We say
that a function of bounded variation is normalized if it is continuous from the right,
and we denote the class of L(H)-valued, normalized functions which are locally of
bounded variation and vanish on (-co, 0) by NBVloc(R+;L(H)). If A
NBVloc (R+; L(H)), then TA(t) is by definition the total variation of A on (-oo, t].
Note that TA(t) vanishes on (-oo, 0).

There is a one-to-one correspondence between the classes DM (R+; L(H)) and
NBV,o (R +; L(H)):

LEMMA 2.1. (i) If Ix DM (R +; L(H)), and if
(2.2) A(t)= Ix ((-oo, t]) (t R),

then A NBVloc (R +; L(H)).
(ii) Conversely, to every ANBVo(R+;L(H)) there corresponds a unique

measure tt DM (R+; L(H)) such that (2.2) holds; ]:or this , Ta(t)=ltl((-c, t])
(tR).

We only outline the proof of Lemma 2.1, which is not difficult. The proof of (i) is
completely analogous to the proof of the corresponding scalar statement. To prove the
opposite direction one first constructs an obvious map from the set of step functions
which are continuous from the left and have compact support into L(H) (cf. [13, pp.
225-226]). This map is then extended to Y[(R) by continuity, and it is easy to see that
the measure Ix which one gets in this way is dominated by the total variation measure
of A. (This part of the proof essentially only amounts to defining the Riemann-
Stieltjes integral of a continuous function.)

The convolution

(2.3) Ix * q(t) [ dIx(s)q(t-s)
0,t]

of a measure Ix DM (R +’, L(H)) and a function o L12oc (R +’, H) is well defined.
More specifically, we claim that the integral in (2.3) is defined a.e. [m] (m denotes the
Lebesgue measure), i.e. the set of points R for which the function s --> q(t- s) is not
Ix-integrable has m-measure zero, and that the map q-->Ix, q is continuous

-Jr-
from L(0, T; H) into itself for each T R It suffices to show ths in the case when
IxBM(R+;L(H)) and qL2(R+;H), because for each TR+, Xt0,r]Ix
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BM (R +; L(H)),/’[0,T]q9 L2(R +; H) and

/x * q(t) (X[0,TI/X) * (X[0,Tlqg)(t) (t [0, T]).

This particular case becomes a part of [5, Prop. 24.22], if one uses the fact that R is
countable at infinity to remove one assumption in that proposition"

LZMMA 2.2. Let tx DM (R L(H)), and let q be an H-valued, m-measurable
function on R. Then the map (s, t)-->cp(t-s) is Itz[ ( m-measurable.

Here I/1(R) m is the (completed) product of the measures and m.

Proof. There exists a Borel function 0=q a.e. [m]. As the function (s, t)->
(t-s) is Itz[(R)m-measurable, it suffices to show that the set a={(s, t)[O(t-s)
0(t- s)} has outer [tzl (R) m-measure zero. Pick some Borel set E such that m(E) O,

and (t)=q(t) (tE). Define F={(s,t)lt-sE}. Then A=F, and F is
measurable, so it suffices to show that I/x1 (R) rn (F) 0. This is equivalent to

I XF(S, t)dltx[ ) re(s, t)= [ XE(t--S)d[/x[ ( m(s, ,)= O.

However, Fubini’s theorem yields

I X(t-s)d[lzl(R)m(s, t)-I[I xE(t-s)dt] d[/x[(s)= 0,

so the proof is complete.
To avoid an extensive use of brackets representing inner products we have found

it quite convenient to use the operator * in the same way as in [20]. As before, for
A L(H), A* is the adjoint of A. For a H we define a* as the linear functional
a*/3 (fl, a) (/3 e H), where (., .) is the inner product in H. Clearly, aa* is the
la[2-multiple of the orthogonal projection onto the one-dimensional subspace span-
ned by a. The same definitions carry over to vector- and operator-valued functions.

For/x e DM (R/; L(H)), q L2(0, T; H) we define the quadratic form

(2.4) O(/x’ q’ T) Re I0,T] q*(t)I[0,, d(s)tc(t-s)dt.
By the preceding remarks on (2.3) this definition makes sense.

3. The limit set. As in [18] we use the notation S(0) for the curve

S()= b’lt R +},

where q is an arbitrary function in L2(R; H). By g(q) we mean the weak*-closure in
L2(R; H) of S(q). These notations remain fixed throughout this section.

In the discussion of S(q) and F(q) (defined in 1) we suppose throughout that H
is separable. This is no loss of generality, because, as the function q is strongly
measurable, the values of q (redefined on a set of measure zero) lie in a separable
Hilbert space H0 (see e.g. [5, Thm. 10.5]), and one can throughout replace H by Ho.

LEMMA 3.1. Let q6L2(R; H). Give g(q) the induced weak*-topology. Then
S(q) is compact, connected and metrizable. The limit set F(q) is a nonempty, closed and
connected subset of S(q) (hence compact), and the distance from ’o to F(q) tends to
zero as

Proof. The proof of [18, Lemma 2.1] applies with more or less trivial
modifications. In particular, the separability of H implies that L21(R;H) is separable,
and thus the weak*-topology is metrizable on g(q). It is also true that translation is a
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continuous operation in L(R;H) (cf. [7, Thm. 7]), hence a weak*-continuous opera-
2 (R" H).tion L

Compared to [18, Lemma 2.1] we have not only replaced C by H, but also
weakened the assumption on the local behavior of o, replacing L by L2. This is
important in the study of the asymptotic behavior of (1.1), because it matches exactly
the .smoothness which some proofs of existence of solutions give.
As in [18], if the function o belongs to some appropriate subspace of L, then one

can replace the weak*-convergence in L by a stronger convergence. In all cases the
central argument remains the same"

LEMMA 3.2. Let be a compact space consisting of H-valued functions on R.
Let S(o), and let be weak*-continuously imbedded in L(R; H). Then (o)

and the topology of is equivalent to the induced weak*-topology ofL(R; H).
Proof. The compactness of together with the continuous imbedding implies

that is weak*-compact in L(R; H) hence weak*-closed. Thus in particular, (0). The rest of the assertion follows from [14, p. 61].
In the special case when o L(R;H)we get
LEMMA 3.3. Let q L(R H). Then g(q)c L(R H), and on (q) the induced

weak*-topologies ofL and L2 are equivalent.
Proof. Let be the set {4’ L(R;H)I IlOll --<ll 011  equipped with the weak*

topology of L (L is the dual of La), and apply Lemma 3.2.
One cannot expect to be able to define F(q) in terms of pointwise convergence

unless q satisfies a Tauberian condition. The classical condition when H C is

lim {q(t + s)- q(t)} 0.
O

Depending on whether we put the weak or the strong topology on H we get two
possible generalizations"

(3.1) lim {q(t+s)-q(t)}=O inHw,
O

(3.2) lim {q(t+s)-q(t)}=O inH.
O

Any function which has a weak or a strong limit at ee satisfies (3.1) or (3.2), and so
does any weakly or strongly uniformly continuous function. Actually these two classes
of functions generate the whole class of functions satisfying (3.1) or (3.2) in the
following sense: Every q satisfying (3.1) or (3.2) can be split into the sum of two
functions x and y, with x weakly or strongly uniformly continuous, and y tending
weakly or strongly to zero (see Appendix). Clearly, if q is split in this way, then
F(q) F(x), and ’tq tends pointwise to a function in F(q) iff ’tx tends pointwise to the
same function. For this reason one can instead of assuming (3.1) or (3.2) just as well
take q to be weakly or strongly uniformly continuous.

We begin with the weakly uniformly continuous case. Pick a countable dense
subset A of H, and define - to be the vector space topology on C(R; Hw) induced by
the seminorms

(3.3) p,,,,(q)= sup la*q(t)l (n N, a A)
t[--n,n]

[14, Thm. 1.37]. This topology is metrizable [14, Remark 1.38(c)], so in particular
sequential compactness is equivalent to compactness. For q 6 BUC (R; Hw) (bounded
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and uniformly continuous), consider the set

* {0 BUC (R;Hw)I II011 _-< I1 11 , and ]’or each a A
the modulus of continuity of o*0 is dominated by
the modulus of continuity of *q},

topologized with the induced if-topology. It follows from Arzela-Ascoli’s theorem
(see e.g. [13, p. 179] with Y C) together with a diagonalization process that is
sequentially compact, hence compact. The set S of step functions with compact
support and values in A is dense in L(R;H) (argue as in [5, p. 147]), and clearly
--convergence of to 0 in implies

IRS*(t)(4t,(t) O(t)) dt - 0 (s S).

This, together with the fact that c is bounded in L, yields that the imbedding of in
L(R;H) is weak*-continuous. One can now apply Lemma 3.2, and one concludes
that - coincides with the induced weak*-topology of L.

There is yet one question which has to be resolved" Are these two topologies also
equivalent on to the topology a// of weak uniform convergence on compact sets
induced by the (uncountable) family of seminorms

(3.4) pn,t3(qg) sup Ifl*q(t)] (n N,/3 H)?
t[--n,n]

We claim that this is the case. Clearly //, so it suffices to show that 0?/ -. This
follows if one can prove that for each qo and each Pn,t3 in (3.4) the function
f(q) p,,(q- q0) is --continuous on . Fix f as above, and take a sequence a,, A
converging strongly to ft. Each function fm(q) p,,,,,, (( (0) is --continuous, and
fm f uniformly on as m - o0. This implies the --continuity of f.

Summarizing the preceding argument we get
LEMMA 3.4. Let q BUC (R; Hw). Then S(q)c BUC (R; Hw), and on S(q) the

weak*-topology ofL2(R H) is equivalent to the topology of weak uniform convergence
on compact sets.

The strongly uniformly continuous case is easier to handle than the weakly
uniformly continuous one:

LEMMA 3.5. Let q9 BUC (R;H), and suppose that the image of ( in H is
relatively compact. Then S(q)6BUC(R;H), and on S(q) the weak*-topology of
L(R H) is equivalent to the topology of uniform convergence on compact sets.

Note in particular the requirement that the image of q in H is relatively compact,
which has no direct counterpart in Lemma 3.3-3.4.

Proof. Define the topology on C(R; H) of uniform convergence on compact sets
as in [14, Example 1.44], replacing C by H. This is a metrizable topology. Let be
the set

cp {0 e BUC (R; H)I the image of 0 is contained in the
closure of the image of q, and the modulus of
continuity of 0 is dominated by the modulus of
continuity of q }.

This set is compact by Arzela-Ascoli’s theorem [13, p. 179]. Lemma 3.2 yields the
desired conclusion.

The preceding list of different convergence concepts is by no means exhausting.
One could continue e.g. by requiring q to be differentiable, putting boundedness
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conditions on various derivatives, and showing that Lemma 3.2 can be applied. One
could, on the other hand, go in the other direction and use topologies weaker than the
weak*-topology of L(R; H). This makes it possible to study (q) for functions q not
in L2(R;H). However, the cases we have considered here cover our present needs.

We conclude this section with a lemma on the relationship between different limit
sets"

LEMMA 3.6. Let A be a weak*-continuous map from (q) into L2(R +’, H1)
(where Hi is some Hilbert space) which commutes with translation. Then F(Ao)=
Ar().

Proof. By the continuity of A, if 7"tkq9 --’> I// I-’((O), then 7"tkAq9 ATtq9 --)A
F(Aq). Thus Ar(o) F(Aq).

Conversely, let %Acp s: e F(Aq). By the sequential compactness of S(q) we can
find a subsequence s of tk such that -p- e F(r). The first part of the proof yields
s Ath. Thus F(Acp ) Ar().

4. Positive definite measures. In [20] we developed a theory for positive definite
operator-valued measures in finite dimensional spaces. Part of that theory carries over
to infinite dimensions. The definition of positive definiteness is straightforward for
operator-valued dominated measures (Q(/z, , T) is defined in (2.4)):

DEFINITION 4.1. A measure txeDM(R+;L(H)) is positive definite
PD (R +; L(H)) if for every TR+ and every q9 L2(0, T; H),

(4.) Q(u, , T)_->O.

Every weakly continuous operator-valued positive definite function S on R (see
[21, p. 25]) induces a positive definite measure, i.e. the measure dl(t)=S(t)dt
(t R +) is positive definite. The proof of this fact, outlined below, is the same as in the
scalar case. It suffices to verify (4.1) for continuous functions q, because this class is
dense in L2(0, T; H), and Q(/, p, T)depends continuously on q in the L2(0, T; H)-
norm. For a continuous q the function q*(t)S(t-s)q(s) is continuous in s, t. Hence
Q(, q, T) can be approximated by a Riemann sum, which is nonnegative by the
positive definiteness of S.

In particular we observe that every strongly continuous contraction semigroup of
bounded operators on H induces a positive definite measure [21, pp. 29-30].

In [20] we gave a necessary and sufficient Fourier transform condition for positive
definiteness in the case H C". This condition does not automatically generalize to
infinite dimensions. What makes the situation more complicated is that positive
definiteness of/ does not in general imply that/2 +/2" is a dominated measure. One
can of course simply suppose that/2 +/2" is well defined and a dominated measure, or
put additional conditions on/z which imply that this is the case, but that leads to a
certain loss of generality. We have chosen to approach the problem in a slightly
different way, which involves no loss of generality: We base our theory on the
equivalence (i)(ii)of [20, Corollary 3.1], which is valid also here:

THEOREM 4.1. Let tz DM (R +; L(H)), where His a complex Hilbert space. Then
the following two statements are equivalent:

(i) PD (R +; L(H)),
(ii) a*/xa PD (R+; C) for every a in H.
Proof. Trivially (i) ::), (ii). Suppose that (ii) holds. We first verify (4.1) in the case

when the range of q lies in some finite dimensional subspace E of H. Let P be the
orthogonal projection of H onto E. Then Q(t, q, T)= Q(Ptx, q, T). By (ii) and [20,
Corollary 3.1], the measure P[ is positive definite in E, and consequently we get
(4.1) in this special case. The set of functions e L2(0, T; H) with finite dimensional
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range is dense in L2(0, T; H) and Q(, q, T) depends continuously on q in the
L2(0, T;H)-norm. Thus we get (4.1) for all qL2(0, T;H), and the proof is
complete.

Theorem 4.1 is not true for real Hilbert spaces; a counterexample is given in [20,
Remark 3.2]. However, after a suitable modification one can apply Theorem 4.1 also
in a real Hilbert space HR. Let Hc be the complexification of HR (Hc HR+ iHR).
Every operator A L(HR) extends to an operator in L(Hc) (A(a + ifl) Aa + iAfl),
and in the same way a measure /x 6DM (R +; L(HR)) extends to a measure in
DM (R+; L(Hc)). The original measure is positive definite over HR if[ the extended
measure is positive definite over Hc (simply split q L2(0, T; Hc) into its real and
imaginary parts). Thus one can apply Theorem 4.1 in HR, provided it is modified so
that a in (ii) takes it values in Hc and not in HR. In the special case when /z is
selfadjoint it suffices to take a HR in (ii), because then for any two vectors a,/3 HR,

+ + its) +
so the positive definiteness of a*/xa for a Hc follows from the positive definiteness
of a*tza for a HR.

COROLLARY 4.1. Let a 6Loc(R +’, L(H)), and suppose that for each a H, a*aa
is nonnegative, nonincreasing and convex. Then a defines a positive definite measure.

Proof. Combine Theorem 4.1 with Theorem 2.3 of [17].
This corollary generalizes Corollary (4.1)of [12].
COROLLARY 4.2. Let tz6DM(R+;L(H)) and suppose that for each

H, a*tx([0, t])a is a nonnegative and nonincreasing ]:unction of on R +. Then x is
positive definite.

Proof. Apply Theorem 4.1 and Proposition 7.2 of [20] (with n 1).
Corollary 4.2 generalizes the result one gets by combining Theorems 2.1 and 2.2

COROLLARY 4.3. If tZ 6BY (R+; L(H)), then
/2*(w)--> 0 (w R).

Here we define 12(oo)=+e-’dtt(s)(wR), and let /2(0)+/2*(0)_->0 mean
a*(/2(w)+/2*(w))a_->0 (a ell). Corollary 4.3 follows immediately from Theorem

)^4.1, because a*(fi +/2*)a 2 Re a*/2a 2 Re (a*/za (a H).. Asymptotic theory. Our next goal is to develop an asymptotic theory similar
to the one in [20, 4]. Throughout in this section we suppose (Q is defined in (2.4))

(5.1) PD (R +; L(H)), q L(R; H),

(5.2) sup O(/.t, re, T) < c.
TR

DEFINITION 5.1. The spectrum tr() of 6cL2(R;H) is the support of the
distribution Fourier transform (cf. [15, Chap. 1, pp. 61, 73]. The spectrum o’(F(q)) is
the closure of tO+r()o’(0).

We want to obtain an inclusion of the form cr(F()) Z(), where Z(/x) is "the
spectral set" of/z. A part of the problem is to find a good definition of Z(/z). Clearly,
the smaller we can make Z(/x), the stronger the inclusion tr(F(o)) Z(/x) will be. The
method used in [20] suggests:

DEFINITION 5.2. The regular set l(/z) is the set of points to 6 R for which there
exists e > 0 such that for each a H the scalar measure d{Re (a*/xa)^}(t)-e [al 2 dt is
positive in (to e, to + e). Its complement is called the spectral set of/x, and is denoted
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This is just a new way of writing [20, Definitions 4.1-4.2], and it makes sense
even when H is infinite dimensional. If Ix BMfq PD (R/; L(H)), then coo f(ix) iff
there exists e >0 such that the operator-valued function/2(co)+ t2*(co)-eI is positive
in (coo- e, coo + e).

With the preceding definition of Z(IX) the argument of Theorem 4.1 of [20] goes
through, and one gets indeed o-(F())c Z(IX). However, one does better if one from
the very beginning looks in just one direction of H at a time:

DEFINITION 5.3. The regular set f,(IX) of tx in the direction a is the set of points
co R for which there exists e >0 such that for each /3H the scalar measure
d{Re (/*t)}(t)- I*tl dt is positive in (co -e, w + e). Its complement is called the
spectral set of Ix in the direction a, and is denoted Z,(Ix). For each subset A of H we
let ZA(Ix) be the closure of UAZ(Ix), and finally put z(ix)= (’]a ZA(Ix), where A
varies over all separating subsets of H.

By a separating subset we mean one whose orthogonal complement is zero.
Clearly z(ix)c ZH(/x)c Z(/x). It is also clear that if/x is a scalar measure times the
identity, then z(ix) Z(Ix). We shall later give an example where z(ix) , Zn(Ix)
Z(Ix)= R.

In the case when Ix BMfqPD (R+; L(H)) we have co lq,,(ix) iff there exists
e > 0 such that/2 +/3, * eaa* >= 0 in (co e, co + e ).

LEMMA 5.1. Let (5.1)--(5.2) hold. Then for each
Proof. Let coo e lq(ix), and let e be as in Definition 5.3. Pick some r/ 6e(R; C)

such that (co) 0 (co (coo e, coo + e )), 0 < (co) < 2e (co (COo e, coo + e )), and define
a as the restriction of rt to R +. With the aid of Theorem 4.1 and Corollary 1.1 of 17]
we conclude that the operator-valued measure dix(t)-aa(t)a* dt is positive definite
(note that Re 1A5rt). Thus by (2.4) and (5.2),

sup Re{I a*(t) I rl(s)a*(t-s)dsdt}<.
TR 0,T] 0,t]

The desired conclusion coo cr(F(a*)) would follow if we could apply Theorem
3.1 of [18] (combined with Lemma 1.1 of [17]). Formally, we cannot do it, because we
have only a* L(R; C) and not a* L(R C). However, one can use the same
argument as in [16] and [18] to show that every function $ F(a*) satisfies r/ $=
0. Convolving this equation with an approximate identity 6, (n N) (see [14, p. 157])
and using the commutativity of convolution together with Theorem 9.3 of [14] we get
(coo-e, coo+e)f’lr(6, *0)= (nN). But 6, * -->0 in 5’ as n--> oc, so coolor(O).
This completes the proof of Lemma 5.1.

THEOREM 5.1. Let (5.1)-(5.2) hold. Then o-(F())c z(/x).
Proof. We must show that for each separating subset A of H we have o-(F())c

Za(/x). Fix A. By Lemma 5.1,

Ua AO’(F(O :
49 )) C ZA(tj,).

Lemma 3.6 (with HI C) yields F(a*)= a*F(), so we get

Us6AO’(OI*F( )) c ZA(Ix).

But this implies tr(F()) c ZA(Ix), because A is separating and ZA(Ix) is closed (cf. [15,
Chap. 1, p. 61]; two distributions u and v are equal if a* u a*v for a in a separating
subset of H). This completes the proof of Theorem 5.1.

Analogues to Theorems 4.1 and 4.3 of [18] also hold.
There are cases where the set z(ix) is .strictly smaller than the sets ZH(IX) and

Z(IX). This is most easily demonstrated with the following example: Let , be a scalar,
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finite measure with Re/3(to)> 0 (to R), let A L(H) be positive, selfadjoint, having
zero in its continuous spectrum but not in its point spectrum, and define Au. We
claim that z(/)= . Let E be the resolution of the identity associated with A [14,
Thm. 13.30], and let Y be the range of E((A, )). As zero is not an eigenvalue of A,
the space Y >0Y is dense in H, hence separating. We claim that Zy(/Z) , i.e.

Z()= (a Y). Obviously this implies our earlier claim z()= . Let a Y.
Then we can find h > 0 such that a Yx. Take an arbitrary B H, and decompose it
into Y and B-x 6 Y. For an arbitrary 6 R we get

Re (*)(w) Re P(o)*Afl

Re (w)[a +(-)*a(fl-)]

where we have used the facts that Y and Y are invariant subspaces of A, that A is
positive on Y, and that J hI on Y. As a*fll a*fl] N we find that
Z()= . Consequently Zv() z()= .

We claim that, on the other hand, ZH() R. To prove this it suces to find
some aH such that Z()=R. Take an orthogonal sequence of unit vectors
a Y-- (this is possible because zero is in the continuous spectrum of A), and define
a N2 a,. Then

la*. - Re ( * )" 2",a, (w) Re (w)aaa,2 Re (w)0 (n),

which shows that Z()= R.

6. An inlegral equation. We want to apply the preceding theory to study the
asymptotic properties of the integral equation

(6.1) x(t)+ A(t-s)g(x(s))ds f(t) (teR+).

Here g is a possibly multivalued map from its domain Dg contained in H (which we
here take to be a real Hilbert space) into H. We suppose that

(6.2) A e NBVlo (R +; ()),
(.3 fe LAC (R+; ), f’ e L(R+; U),

where LAC stands for the class of locally absolutely continuous functions. We call x a
solution of (6.1) if it satisfies (6.4(6.6) below"

(6.4) x C(R +" H), x(t) Dg a.e on R+

(6.5) there exists a function q Loc(R +" H) such that q(t) g(x(t)) a.e on R +

(6.6) x(t)+ fo a(t- s)o(s) ds f(t) (t R +).

We claim that a solution x of (6.1) is necessarily locally absolutely continuous and
satisfies

(6.7) x’(t)+ I[0,,] dlx(s)q(t-s)=f’(t) a.e. on R +,

where/z is the dominated measure corresponding to A (see Lemma 2.1). To show this
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one first uses Fubini’s theorem, then a change of variable, and then Fubini’s theorem
once more to verify that

O,t] O,t-s]

This together with (6.3) and (6.6) implies that x is locally absolutely continuous, and
differentiating (6.6)one gets (6.7).

Before we can apply the theory of 3-5 we need some further assumptions:

(6.8) x PD (R +; L(H)),
there exists a nonnegative function G on Do Og

(6.9) such that G(x(t)) G(x(0))+ J0 q*(s)x’(s) ds (t R+),

(6.10) f’ L(R +; H),
(6.11) q L(R+; H).

THeOReM 6.1. Let (6.2)-(6.6) and (6.8)-(6.11) hold. Then r(F(q))e z(tx). In
particular, if z(lx then ’,q 0 weak* in LZoo(R H) as

Here q is extended to R e.g. by zero outside R +, and H has been imbedded in its
complexification so that our previous definitions of r(F(q)) and z (x) can be applied.

Proof. Multiply (6.7) by q*(t), and integrate over [0, T]. This yields (5.2). Thus
by Theorem 5.1, cr(F(q)) c z(/x).

If z(x)= Q, then r(O) for each 4 F(q), and thus F(q)= {0}. Lemma 3.1
yields -q 0 weak* in L(R H) as - oo, completing the proof of Theorem 6.1.

COROLLARY 6.1. In addition to (6.2)-(6.6), (6.8)-(6.10) suppose that
L(R+; H), and that z (ix) . Then ’p --> 0 weak* in L(R H) as

Proof. Combine Theorem 6.1 with Lemma 3.3.
COROLLARY 6.2. In addition to (6.2)-(6.6), (6.8)-(6.10) suppose that

BUC (R+; Hw), and that z(/x) . Then q(t) tends weakly to zero as

Proof. We extend q to R defining q(t)= q(0) (t < 0), and then apply Theorem
6.1 and Lemma 3.4.

COROLLARY 6.3. In addition to (6.2)-(6.6), (6.8)-(6.10) suppose that
BUC (R +; H), that the image of in H is relatively compact, and that z(lx) . Then
q(t)- O (t- oo).

Proof. We extend q to R defining q(t)= q(0) (t < 0), and then apply Theorem
6.1 and Lemma 3.5.

Theorem 6.1 overlaps Londen’s Theorem 2, Corollaries 1 and 4 of [8]. We
assume much less on the kernel/x than Londen does (cf. [20, Proposition 7.2] with
n 1), but then we have to shift (6.11) from the conclusion to the hypothesis. Our
(6.9) is somewhat stronger than the corresponding assumption in [8]. The conclusion
o-(F())c z(/x) of Theorem 6.1 has no direct counterpart in [8], but it is related to
Londen’s conclusion x’ Le(R/; H). Under Londen’s assumption on/x, z(tz)c {0}, so
Theorem 6.1 yields r(F())c {0}, i.e. F(q) contains nothing but constant functions.
Londen’s x’ L2(R+; H) trivially yields F(x’)= {0}. Both statements o-(F(q)) {0} and
F(x’)---{0} express the fact that the solution x of (6.1) acts more and more like a
constant as oo. It can be shown that (for Londen’s kernel) the former implies the
latter.
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Appendix. The following lemma was referred to in 3:
LEMMA A.1. Let o6L(R;H) satisfy (3.1) or (3.2). Then o(t)=x(t)+ y(t)

(t R ), where x is bounded and weakly or strongly uniformly continuous, and y tends
weakly or strongly to zero as - o.

The proof is completely similar in the weak and the strong case, so we do not
distinguish between the two.

Proof. Take some nC(R;R)such that n(t)=l (t-<0), n(t)>0 (t>0), and
w(t)o 0 (t c). Define

t+(t)

i01[r/(t)]-a [’j, 0(s) ds o(t + n(t)s) ds,

y(t)=q(t)-x(t)= J0 [q(t)-o(t+rt(t)s)] ds (t6R).

Then x is continuous on R, and uniformly so on (-o, 0]. It follows from (3.1) or (3.2)
that o(t)- o(t + rl(t)s) 0 (t c) uniformly for s [0, 1]. Hence y(t) 0 (t c). Thus
both q and y satisfy (3.1) or (3.2); hence so does x. Together with the continuity this
yields uniform continuity of x on R/, and completes the proof.
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ON THE ASYMPTOTIC BEHAVIOR OF FINITE ENERGY SOLUTIONS
OF AN ABSTRACT INTEGRAL EQUATION*

OLOF J. STAFFANS’

Abstract. We define an energy function for a solution of the abstract nonlinear integral equation

x’(t)+Oo(x(t))+ fo a(t-s)Og,(x(s))dsf(t) (tR+),

and study the asymptotic behavior of the solutions for which the energy function is bounded. We also
investigate the problem of getting an a priori bound on the energy function.

1. Introduction. We study the asymptotic behavior of the solutions of the ab-
stract integral equation

(E) x’(t)+Oq(x(t))+ fo a(t-s)O$(x(s))dsf(t) (tR +)

(we write R / for the interval [0, c)). Our setting is the same as in [3]. We have a real
reflexive Banach space W continuously and densely imbedded in a real Hilbert space
H. We identify H with its own dual, and by transposing the imbedding of W into H
we obtain an imbedding of H into W’ (the dual of W). We are given two convex lower
semicontinuous proper functions : H-+(-c, ] and : W-+(-, c], and let
and 06 be their subgradients (see e.g. [2]). Then 0q maps H into itself, and 04 maps W
into W’. We suppose that 4’ has a lower semicontinuous extension to H. The functions
a and f belong to C(R /; R) and Loc(R /; H), respectively.

The existence results for solutions of (E) found in [1], [3]-[5] provide us with a

notion of a solution of (E) (although none of these apply without a number of
additional assumptions). We call x a solution of (E) if the following conditions are
satisfied:

(1.1i)

(1.1ii)

(1.1iii)

(1.1iv)

x C(R +’, W), x’ Loc(R +’, H), O(x(O))<

there exists v Loc(R +" H) such that v(t) Op(x(t)) a.e. on R +

there exists w Loc(R +" W’) such that w(t) O0(x(t)) a.e. on R +

x’+v(t)+Io a(t-s)w(s)ds=f(t) a.e. onR +.

Here x’ is the distribution derivative of x. Note that, because of (1.1iii), the integral in
(1.1iv) is a continuous function with values in W’. However, it follows from (1.1i)-
(1.1iv) and f Loc(R /; H) that the same integral also belongs to Loc(R /; H).

We suppose in the sequel that the function a is positive definite. In this case the
following method has recently been used to study the asymptotic behavior of a
solution of an equation of type (E): One takes the inner product in H of w(t) and
(1.1iv), and integrates over [0, T]. With appropriate assumptions on 0, 4 and f one

* Received by the editors September 20, 1976.
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then shows that
T

(1.2)
TR
+Sup Io ( W(t), Io a(t- s)w(s) ds) dt < oe,

and uses (1.2) to draw conclusions about the asymptotic behavior of w. Unfortunately
this approach does not work here, because the terms that one is supposed to integrate
are not integrable, unless in addition to (1.1)one has w L12oc(R/; H). In particular,
the integral

T

is not well defined unless w Lo(R /’, H).
We avoid the problem of how one should define (1.3) by simply replacing it by a

different quadratic form O(w, t) (see (4.2) below), which is easy to define, and which
can be used in exactly the same way as (1.3) when one wants to study how w behaves
asymptotically. We define O(w, T) with the aid of Fourier transforms, and it differs
from (1.3) in the case when w Lo(R +; H) only by the use of a norm in W’ instead of
a norm in H. If we suppose that I. [H >--I" W’ (which we can always do by rescaling one
of the norms, if necessary), then

T

O(w, T)<-Io (w(t), Io a(t-s)w(s)ds) dt,

whenever the right hand side makes sense. In particular, (1.2) implies

(1.4) sup Q(w, T)<.
TR

As we show below, (1.4) yields almost exactly the same conclusion about the asymp-
totic behavior of w as (1.2) does. The only difference is that one has to work in W’
instead of working in H.

The question whether all solutions of (E) under reasonable conditions on , q,
and f (e.g. (5.2), (5.5) and (5.6) below) satisfy (1.4) remains open. However, it is very
interesting to observe that some solutions do, in particular, all those that the existence
theorems in [1], [3]-[5] produce (whenever they apply). Of course, this does not
exclude the possibility that there exist other solutions which do not satisfy (1.4) (even
when (5.2), (5.5) and (5.6) hold).

This work overlaps Theorem 3(iii)of [3], and especially a remark made in its
proof. In [3] the kernel a is nonconstant, convex and sufficiently smooth, which
implies that w only can have a trivial asymptotic behavior (convergence to zero).
When w LlZoc(R +’, H), then a somewhat more general, strictly positive definite kernel
is allowed. The condition on f used in [3] depends on the convexity of the kernel a,
and it is quite different from our (5.6). On the other hand, our (5.2) has no direct
counterpart in [3] (although it is somewhat similar to the local boundedness of 0O
required in [3]). Theorem 3(ii) in [3] yields a Tauberian condition (uniform continuity)
on w, and that makes it possible to state the results of Theorem 3(iii) of [3] in terms of
pointwise convergence rather than in terms of the weak*-convergence in L(R; W’)
used by us.

Theorem 4 of [3] contains an asymptotic result for (E) when the kernel a is not
necessarily positive definite. Instead it is assumed that 0q dominates 0O (see [3, line
(1.18)]), and this makes it possible to obtain estimates which imply w L(R+; H).

This work can be considered as a continuation of [11].
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2. Notations and definitions. In 2-4 we let B be a complex reflexive Banach
space. We are really more interested in the case when the scalars in B are real, but the
technique we use requires complex scalars. Note that it is no loss of generality to take
B complex, because every real Banach space BR can be regarded as the "real part" of
a complex Banach space Be. One simply considers BR X BR aS a complex Banach
space Bc BR+ iBR, defining multiplication by complex scalars by (c + i)(x, y)=
(cx-/3y,/3x + cy). We refer to Be as the complexification of BR. The dual of B is
denoted B’.

Our asymptotic theorem (Theorem 4.1 below) applies to functions o in the mixed
LP-space L(R; B). These functions are locally L2, and satisfy

sup j [q0 (S)[2 ds <.
GZ

The space LZoo(R B) is the dual of a Banach space (cf. 11, 2]), and by LZ(R B)w.
we mean L(R; B) endowed with its weak*-topology.

The limit set F(q) of a function q L(R B) is defined by

F(q) { 6 L(R B)lYtkqO in L(R B)w., for some sequence tk

(here and in the sequel we write " for the translation operator ’hq(t)= ((t + h)). Its
properties are studied in 3.

The spectrum cr(q) of a function q L2oo(R; 13) is by definition the support of the
distribution Fourier transform of ( (see [8]).

We denote the (distribution) Fourier transform of a function q by q3. If is
integrable, then q3 is also given by q3(60)= R e-tq(t) dt.

Functions defined on R + are extended to R by zero outside R +.
Throughout this paper the function a is taken to be continuous and positive

definite (in the sense of [9, Remark 2.2]). The set Z(a), referred to in Theorem 4.1
below, is basically the zero set of the real part of the Fourier transform of a. If e.g.,
aL(R+’, R), then t/ C(R’, C), and the preceding definition makes sense as it
stands. In general one does not have a L(R +’, R), and then a more complicated
definition is needed. By Bochner’s theorem, there exists a positive finite measure A
such that

(2.1) a(t)
1 Ia e dA(o) (tR+)

(the measure A is actually the real part of the distribution Fourier transform of a). We
call A strictly positive at a point Oo if there exists e >0 such that the measure
dA (o)-e do is positive in (Oo-e, oo + e) (here do is the Lebesgue measure). Finally,
we define Z(a) to be the set where A is not strictly positive.

By Xro,Tl we mean the characteristic function of the interval [0, T].

3. The limit set. The following basic result on the limit set F(o) of a function

o L(R; B) is a minor extension of Lemma 3.1 in [11] (there B was a Hilbert space):
LEMMA. 3.1. Let o Laoo(R; B). Define (o) as the closure of S(o) {’dcJt R +}

in L(R B)., and give it the induced topology. Then (o) is compact, connected and
metrizable. The limit set F(o) is a nonempty, closed and connected subset ofS(o ) (hence
compact), and the distance from ’d to F(0) tends to zero as t-->

Proof. When B is separable, then the proof in [11] (see also [10]) applies with
trivial changes. If B is not separable, then one argues as follows. The values of
(modulo a set of measure zero) lie in a closed separable subspace V of B. As closed
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subspaces of reflexive Banach spaces are reflexive, one can apply Lemma 3.1 with B
replaced by V. It then only remains to show that the closure (q) of S(p) in
L2(R; B)w. is the same as the closure (q) in L2(R; V)w., and that L2(R; B. and
L(R; V. induce the same topology on (). It is easy to see that the topology
induced by L(R;B. on () is weaker than the L(R; V)w.-topology (use [7,
Thm. 4.9] and the fact that the quotient map of B’ into B’/V is continuous). Thus, in
particular, g()= (). On the other hand, g() is compact in L(R; V)w., hence
compact in L(R;B)w., hence closed in L(R;B)w.. Thus ()=(). The
equivalence of the two topologies on S() follows from the uniqueness of a compact
Hausdorff topology [7, p. 61].

Remark 3.1. Also Lemma 3.3-3.5 in [11] are true in reflexive Banach spaces.
The proofs in [11] are formulated for the case when B is a Hilbert space, but after
some minor modifications they apply also in the more general case when B is a
reflexive Banach space.

4. An asymptotic theorem. Before we can state our asymptotic theorem we have
to define the functions P and O. For La(R; B), we define

(4.1) P() I (W)I2 dl (w),

where is the measure in (2.1). We claim that P is convex and continuous on
L(R; B). The convexity follows trivially from the linearity of the Fourier transform
and the convexity of the square of the norm in B, whereas the continuity is an
immediate consequence of the fact that convergence in L(R;B) implies uniform
convergence of Fourier transforms.

The function O is defined by

(4.2) O(, T)= P(X[O,TI)
for Lo(R +’, B) and T R +. Clearly X[O,T] L (R’, B), so the preceding definition
makes sense. Note that for fixed T, O(, T) is a convex and continuous function of
in the L2(0, T; B)-norm, hence also weakly lower semicontinuous in L2(0, T; B).

THeOReM 4.1. Let L(R B), and suppose that SUpTn+ 0(, T)<. Then
each F( ) satisfies () Z(a).

Proof. We first claim that a B’ F(a) implies )) Z(a). Fix a B,
and define a. Then e L(R;C). Clearly [0,T] a[O.T]). In parti-
cular,

I ,1 n ).

This, toether with sup+ Q(, T)< yields

sup
TR

It is a matter of straightforward computation (see the proof of Lemma 6.1 in [9]) to
show that

T T

l,o.rl (m)d1()o (t)o a(t s)(s)dsdt,

where we have defined a(-t)= a(t) (t >0). Hence
T T

sup Io q(t)Io a(t-s)(s)dsdt<o.
TR
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One can now apply the scalar theory developed in [10] (see [10, Thm. 3.1] and also
the last paragraph in the proof of Lemma 5.1 in [11]) to conclude that
implies r()c Z(a). This verifies our claim.

Take some arbitrary 6 6 F(q). Then for each a B’, one has a6 F(ao) (cf. [11,
Lemma 3.6]). By the preceding argument, o’(a)cZ(a), or equivalently,
supp (aO) =supp (a)= Z(a), where we use supp to denote the support of a dis-
tribution. But this implies supp c Z(a) (see [8, Chap. I, p. 61]), and completes the
proof of Theorem 4.1.

5. The integral equation. We want to apply Theorem 4.1 to study the asymptotic
behavior of a solution of (E). Whenever we refer to a solution of (E), we are really
thinking about a specific set of functions x, v, w satisfying (1.1). Thus, whenever x is
given, we also consider v and w given.

Substitute 0 w in Theorem 4.1, and let B be the complexification of W’ (in
particular, the norm used in (4.1) is the norm of the complexification of W’). The
hypothesis then becomes

(5.1i) w L(R+; W’),

(5.1ii) sup O(w, T)<
TR

We claim that (5.1) follows from (5.2)--(5.3) below:

(5.2)
is nonnegative, and there exists a constant
such that z zOO(x)implies IZ[w,-< K(1 + O(x)).

sup E(T)<, where E(T)= g,(x(T))+ O(w, T).
TR

Since both O(x(T)) and O(w, T) are nonnegative, the condition (5.3) implies both
(5. lii) and

(5.4) sup p(x (T)) <
TR

Obviously (1.1iii), (5.2) and (5.4) yield w L(R+; W’), hence also (5.1i).
We call E the energy function of a given solution x of (E). If (5.3) holds, then we

say that the solution has a finite energy.
Summarizing the preceding argument we get
PROPOSITION 5.1. Suppose that (5.2) holds, and let x be a finite energy solution of

(E). Then o’(y) Z(a) for every y F(w).
Without any further conditions on , # and f one cannot expect a solution of (E)

to have a finite energy, as this is not true even in the scalar case W H W’= R. One
needs some assumption connecting q and g,, and some global bound on f, e.g. the
following:

y &p (x) and z 0g, (x) f’l H implies (y, z) -> 0,

(5.6) f LI(R +; W).

It remains an open question whether under the conditions (5.2), (5.5) and (5.6) every
solution of (E) has a finite energy. The answer is affirmative in the special case when w
in (1.1iii)satisfies w6Loc(R+;H), because then the following computation can be
justified. Take the inner product in H of w(t) and (1.1iv), and integrate over [0, T].



872 OLOF J. STAFFANS

This yields
T T

(5.7) 4(x(T))+ fo (w(t), fo a(t-s)w(s)ds)dt<-_ 4(x(0))+ Io (w(t),fl(t))dt,

where we have used (5.5) to drop one term. By (1.1iii), (5.2) and (5.6),

(5.8) I(w(t), f(t))[ _-< a(t)(1 + 4(x(t))) a.e. on R +,
where the function a(t)=Klf(t)lw satisfies a6LI(R+’R)., The double integral in
(5.7) can be written

ior( io ) 1
(5.9) w(t), a(t-s)w(s)ds dt= Io,w)()ldA(),

where H is the complexification of H (the identity (5.9) is proved in [9, pp. 234-235]
in the scalar case, and the same proof applies here). Recall that we without loss of
generality can take . ]H ]" [W, hence also ]. [. ]. Then it follows from (5.9) that

T

(5.10) Q(w, T)N o (w(t), o a(t-s)w(s) ds) dt.

Combining (5.7), (5.8) and (5.10) we get
T

(5.11) O(x(T))+O(w, T)NC+J0 a(t)O(x(t))dt,

where C O(x(0))+R a(t) dt, and, in particular,
T

O(x(T))N C + J0 a(t)O(x(t)) dt.

Gronwall’s inequality yields supteR O(x(t))< . Substituting this in the right hand side
of (5.11)we finally obtain (5.3).

If w Loc(R +; H), then the preceding argument breaks down. However, it is still
possible to verify (5.3) in some cases. In particular, the existence theorems in [1],
[3]-[5] produce solutions which have a finite energy whenever a, , and f in addition
to (5.2), (5.5) and (5.6) (and a positive definite) satisfy whatever is needed to apply
these theorems. This is due to the fact that one constructs a solution of (E) by solving a
sequence of approximate equations (E,), and making the solutions x, of (E,) con-
verge to a solution x of (E). To each x, corresponds a w,, and one defines E, (T) as in
(5.3), but with x, w replaced by x,, w,. Each w, satisfies w, Lo(R+; H), and the
approximate equations are constructed in such a way that the argument above applies,
yielding

sup E,(T)<.
nN,TR

As n, it is shown that x,(T)x(T) weakly in W, and w,w weakly in
L2(0, T; W’) for each fixed T R +. Thus by the weak lower semicontinuity of 0 and
Q one gets (5.3), i.e. the constructed solution has a finite energy.

6. Examples. To illustrate the theory of ff 5 we discuss two examples. In partic-
ular we concentrate on the verification of (5.2), which is not used in [1], [3]-[5],
although it is satisfied in most of the examples given there (with the right choice of the
space W). The conditions (5.2) and (5.6) combined are a special case of MacCamy’s
and Wong’s Condition (F0) [6].



FINITE ENERGY SOLUTIONS 873

We begin by discussing [3, Example 1]. Let D. be a bounded open domain in RN

with smooth boundary 0fL and consider the integro-differential equation

(6.1) u,(t, x)- Au(t, x)+ Io a(t- s)g(u(s, x)) ds F(t, x)

for (t, x) (0, ) x fl, together with the boundary condition

On--- ,(u) a.e. on (0, oe)x(6.2)
On

and the initial condition

(6.3) u (0, x) Uo(X ), x f

(here the letter x is used as a parameter, and u takes the place of the function x in (E)).
The kernel a is supposed to be continuous and positive definite. It is shown in [3] that
under appropriate conditions on g, F, y and u0 the problem (6.1)-(6.3) can be
transformed into the form (E), with , 4’ having the properties mentioned in 1, and
that (5.5) holds. Here we describe only that part of this transformation which is vital in
the proof of (5.2), and we refer the reader to [3] for a full description.

We suppose that g satisfies

(6.4) g C(R R ), g is nondecreasing, g(0) 0,

(6.5) Ig()l -<_ Cl(l[p-l/ 1)

(6.6) G(c) C211 p
3 ( R ),

where c, c2, c3, p are constants, Cl, C2>0, C3>0, p>--2, and G()=jo g(rl) dq (
R). Choose W L (D; R), H L(f; R), which gives W’ L/(-I)(f; R). Define

[a G(u(x)) dx (u W).(6.7) O(u)=

Then 0 is nonnegative, convex and continuous on W, and dO, given by

(6.8) 00(u) go u,

maps W continuously into W’ (in particular, it is single-valued).
We claim that (5.2) holds with this choice of 0, W. Take an arbitrary u W, and

use (6.5)-(6.8), Minkowski’s inequality and some obvious estimates to get

][O(U )l[ w’ [ Ia ]g (u (x ))lg/(P-1) dx]
(P-1)/P

-)/p

[In (,u(x), + l )P dx C [,]U,Iw / (C4)lIp](p--<-Cl

0(u)= f G(u(x)) dx >= f (C2[U(X)lP--C3) dx

where c4 a dx. This implies

(6.9) lim sup
Ilullw--,

which together with the nonnegativity of 4’ and the fact that 0O is bounded on
bounded sets yields (5.2).
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Applying Proposition 5.1 to this particular example we conclude that every finite
energy solution of (6.1)-(6.3) (i.e. a solution for which (1.1), (5.3) hold) satis-
fies o’(y)c Z(a) (yF(gou)), where we consider gou as a map from R/ into
LP/tP-I(f; R). In particular, if Z(a)= (which is true e.g. when a(t)= e-t(t R/)),
then the left-translates g(u(t + s, x)) (t, s R/; x ) of go u tend weak* to zero in
L(R; LP/(P-1)(-; R)) as t-> oo. Moreover, if in addition F6LI(R+; LP(-; R)), then
any solution constructed by an approximating method of the type outlined in 5 has a
finite energy.

Remark 6.1. The bound (6.6) is not needed in the proof of existence of solutions
of (6.1)-(6.3) (see [3]). On the other hand, the existence proof in [3] instead uses a
number of additional assumptions not mentioned above.

As a second example we consider the equation (cf. [4])

(6.10) u(t, x)- | a(t- s)g(u,(s, X))x ds F(t, x)
o

for R /, 0 < x < 1, with the boundary and initial conditions

(6.11) u(t, 0)--u(t, 1)=0 (tR+), u(O,x)=uo(x) (O-<_x_<- 1).

Again a is continuous and positive definite. We suppose that g satisfie, (6.4)--(6.6)
with p 2 This time take W H01.(0, 1; R), H L2(0, 1; R), which gives W’
H-l(0, 1;/). Use the norm IlU[[w [ [u,[2 dx]/2 in W. Define

(6.12) O(u)= fo G(u,,)dx (u W).

Then 4 is nonnegative, convex and continuous on W, and it has a lower semicon-
tinuous extension to H (define (u)= (u H\ W)). The subgradient 04: W W’,
given by

(6.13) | g(Ux)Vx dx (u, v W)
Jo

is single-valued and defined everywhere on W. Another way to write (6.13) which
corresponds more closely to (6.10) is

(6.14) 0(u)=-(g(Ux))x (u W),

where the differentiations should be interpreted in the distribution sense. It follows
from (6.5)-(6.6) (with p 2), (6.12), (6.13), the Schwarz inequality and Minkowski’s
inequality that

[loO(u)ll ,-- sup (OO(u),v) sup f g(u,,)vxdx
Ilollw-- Ilollw-- .0

fO ] 1/2
-<_ (g(u.))2 dx

Io  (Ux)dx >-c lIull -c ,

Cl(llullw+ 1),

As in the previous example we conclude that (5.2) holds.
Applying Proposition 5.1 we find that every finite energy solution of (6.10)-

(6.11) satisfies cr(y)cZ(a)(yF((g(Ux))x)). If in addition FLI(R/;H(O, 1; R)),
then e.g. the solution constructed in [4] is a finite energy solution.
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Remark 6.2. Some additional assumptions are needed before one can apply the
existence result in [4]. In particular, the derivative of the kernel a is not allowed to be
bounded, so e.g. the case a(t)-- 1 (the nonlinear wave equation) is excluded.
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ESTIMATES ON THE EXISTENCE REGIONS OF PERTURBED
PERIODIC SOLUTIONS*

M. FARKAS

Abstract. The n dimensional perturbed system of differential equations 2 =f(x)+ Ixg(t/r, x) is consi-
dered. It is assumed that g is periodic in the variable with period z and that the unperturbed system
2 f(x) has a nonconstant isolated periodic solution with period z0. Explicit bounds of a region are given in
which the "small parameter" tx may vary. To each Ix in this region there belongs a period " such that if this
value of z is written into the perturbed system it has a periodic solution with this period. In the estimates
data gained from the right hand side of the system and from solutions of a variational system of the
unperturbed system only are used and no information about the solutions of the perturbed system is
needed.

1. Introduction. In papers [1] and [2] the author has considered controllably
periodic perturbations of an autonomous system. The perturbed system was assumed
in the form

(1.1) f(x)+ gg(, x, g, "r)
where x R n, the dot means differentiation with respect to tR, / is a "small
parameter" and z is a real parameter. It was assumed that the unperturbed system
2 f(x) has a nonconstant, isolated periodic solution p with period z0 and that g is
periodic in the variable with period z. An auxiliary variable, the "initial phase" p of
the solutions has been introduced and under fairly general conditions it has been
proved that to each "small enough" value of I#1 and I1 there belongs a unique initial
value and a period - such that if this value of z is written into (1.1) the system has a
periodic solution with this period. The main condition is that the number 1 is a
simple characteristic multiplier of the variational system corresponding to the solution
p of the unperturbed system. This condition is sufficient for p to have an isolated path
(see [3]).

The aim of the present paper is to establish explicit bounds for the parameters
among which the existence of the perturbed periodic solutions is ensured. Similar
investigations have been carried out in cases different from ours by D. C. Lewis [7], H.
I. Freedman [4], [5] and others (see the references in papers [4] and [5]). Our method
is related to the method applied by Freedman; namely, an implicit function theorem is
used. However, in spite of the fact that a "critical case" is treated here, the use of
vanishing Jacobians has been avoided. This has been achieved at the expense of
establishing the existence of functions of two real variables instead of a single one. As
a consequence a more complex implicit function theorem had to be applied. At the
same time we had to establish the region where the Jacobian does not vanish, a
condition which in paper [4] was taken for granted.

In 2 for better understanding we collect (in a somewhat modified form) the main
results of the references that are to be used in the subsequent sections. The tough job
of giving estimates for the differences of the solutions and of the derivatives of the
solutions is accomplished in 3. The main results are contained in 4.

Throughout the paper if x is an element of R n, its coordinates are denoted by the
same letter with subscripts, i.e. x =(Xl, X2,’", x,). At the same time in matrix

* Received by the editors December 28, 1976.
? Department of Mathematics, Budapest University of Technology, 1521 Budapest, Hungary.
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algebraic operations the elements of R are dealt with as column vectors. For the
norm of a vector u col (ul, u2," u,,,) we shall use lu[ max/lull. If D is an n by m
matrix, i.e. D [dik] (i= 1,2,... ,n; k= 1,2,... ,m), its norm is defined by
m maxi.k Idil. It is easy to see that besides some other basic properties IDul <=
If in particular the matrices A and B are quadratic matrices of order n (m n), then
IABI <= IAI IBI. Naturally, some other norms could be used as well and, in fact, in some
cases might yield sharper results. We shall have to apply "tensors with three sub-
scripts". Thus, if E=[egt], (i,k,l= 1,2,...,n) its norm is defined by [El
2n maxi.,,t lei,tl. The inner product of E and the vector x R is the matrix

Ex eiklXl (i,k=l,2,...,n).

If y R then

Exy=( elktXlyto’’’, entdxtyt)g n.
k,l=l k,l=l

It is easy to see that ]/xl I/[Ixl and [Exylltllxllyl, Finally, if the function f:
R" belongs to the C2 class we shallapply the following notations"

and

f (x) [f (x)]

fx (x ) [fx,,, (x )]

(i,k=l,2,...,n)

(i,k,l=l,2,...,n),

the former being the "Jacobi matrix", the latter a tensor with three subscripts whose
elements are the second partial derivatives of the coordinates of f.

2. Some results to be applied. The following implicit function theorem, due to
D. C. Lewis [6], is presented with a new proof here.

THEOREM 2.A. Consider the system of n equations with n + m unknowns

(2.1) z(u,v)=O

where u (ul,..., u,,), v (Vl, , v,) and with the notation

W {(u, v)6 R x R"" lul <= a, Iv[ <= fl}

with some constants a > O, > O, the function z" W- R" belongs to the CZw class;
assume that z(O, 0)= 0 and det z’(u, v)# O, (u, v) W; the linear system of equations

(u, v)dh + z’ (u, v)= O,(2.2) z u,

clearly, defines the functions dh" W-R for each h 1, 2,. , m uniquely and d h

col (dhl, dh2, dh)6 Cw; if we construct the n by m matrix D [d, de, d"] out

of the column vectors d h there exists a A > 0 such that

(2.3) ID(u, v)l <-A, (u, v) W;

let (, , c,) be any vector of positive coordinates (Ch > O, h 1, 2," , m) such
that

(2.4) Ic[ max [c[ < min a, Xh
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and U {u e R": lu[ < [c[}; then there exists one and only one function w: U- R" such
that w clu, [w(u)[ </3 if u U,

(2.5) w(0)= 0

and

(2.6) z(u, w(u))=-O, u U.

Proof. If a function w" U-->R" is in the C class, [w(u)l</3 for u U, and w
satisfies the condition (2.6), then differentiating the latter identity with respect to u,
we get

z’(u, w(u))w’(u)+z’(u, w(u))=-O (h 1, 2,..., m),

i.e. w’, (u )= dh (u, w(u)). Conversely, if a function w is in the C class, Iw(u)[</3 in
U, w(0)= 0, and w satisfies the system of partial differential equations

(2.7) V’u dh (u, v) (h 1, 2,..., m),

then, clearly, it satisfies (2.6) as well.
For system (2.7) the "condition of complete integrability"

(2.8) d[ + d’d d" l, h-dd =0 (h,l=l 2,... m)Uh

holds in W. To prove (2.8) assume that the solution of (2.2) has been substituted into
(2.2) and differentiate this identity first with respect to u, then with respect to v. In the
latter case we multiply the derived identity by the column vector d from the right. In
the first case we get:

.1 h Ar z,vd h, O"Z vu,’: ut -b Z uhu

in the second:

zvo, +zvdv + Zuhv.

(Here, as it was pointed out in the Introduction,

Ahz.]l lh.l
Z Z vivia a i,

i,/=1

which is considered as a column vector. The writing out of the arguments has been
suppressed everywhere.) Adding the last two identities, we obtain

Zutdh .+ zvdh, z.]hAl t,c]htAl d O.u + z UhU + Z + Z + Z UhV

Interchanging the roles of h and and subtracting the tyro identities yields

(d h, h,dl l, dlvdhz ,, +d -d, )=0.

Since the matrix z’ is regular in W, equation (2.8) follows.
In what follows we are going to show that (2.7) has a solution w Cb for which

the conditions Iw(u)[ </3 in U and w(0)= 0 hold.
Let u* be an arbitrary point in U and consider the system of ordinary differential

equations

(2.9)
dx
d--7 D(u*t, x)u*

with the initial condition x(0, u*)= 0. The right hand side of (2.9) where the vector u*
occurs as a parameter is continuously differentiable for u* e U (i.e. [u*[ < [c[), [x[ </3
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and Itl < a/Icl (it is to be recalled that by (2.4) a/Icl 1). Let us denote the supremum
of the right hand side of (2.9) by M. According to (2.4)

M= sup ]D(u*t,x)u*l <- sup ID(u*t,x)llu*l<--_Alcl< .
lu*l<lcl lu*l<lc]
Itl<a/Icl
Ixl<t Ixl<t

By the local existence and uniqueness theorem system (2.9) has a unique solution
x(t, u*) satisfying the initial condition x(0, u*)=0 defined in the interval (-a, c)
where

a=min(]-)>l,
and Ix(t, u*)l< for te (-c, c). As it is well known this solution is a continuously
differentiable function of the parameter u* for all (-c, c) and u* U.

Now we are in the position to construct the required solution of (2.7). Let us
define a function w" U R" the following way"

(2.10) w(u*) x(1, u*), u* e U.

Clearly w C, Iw(u*)l</3 in U and w(0)= x(1, 0)=0. We have to show that the
function defined by (2.10) is a solution of the system (2.7).

For this purpose let us differentiate the identity

2(t, u*)=-D(u*t, x(t, u*))u*
with respect to the coordinates u (h 1, 2,- , m) of the vector parameter u*"

’ (t, u* * (u*t,x(t, u*)=-- D,(u*t, x(t, u ))t + Y. D, ))x,, (t, u* u*
i=1

+ dh(u*t, x(t, u*)).
If we take into consideration also that x(0, u*)=-0 and hence x(0, u*)= 0 we see
that the function X’u(t, u*) is a solution of the inhomogeneous linear system

9 D’,(u*t,x(t, u*))u*yi
i=1

(2.11)
+D’,(u*t, x(t, u*))u*t + dh(u*t, X(t, u*))

satisfying also the initial condition y(0)=0. At the same time by substituting the
function y tdh(u*t, x(t, u*)) into (2.11) and applying (2.9) and (2.8) we can see that
the latter function satisfies the same system and, clearly, the same initial condition.
Thus

X’u(t, u*)=- tdh(u*t, x(t, u*)).

Applying the last identity at t- 1, we get

(U*) * dhw, Xu(1, u )= (u*, x(1, U*)) dh(u * W(U*)),
(h =1,2,. ., m).

With the star in the last identity dropped, this shows that the function defined in (2.10)
(which is to be read also without the star) satisfies the system (2.7) of partial differen-
tial equations. Thus the existence of a function w satisfying all the requirements of the
theorem in the whole region U has been proved.
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The uniqueness of the function w" U -> R can easily be proved by some standard
method. This part of the proof is presented here for sake of completeness. It is,
clearly, sufficient to prove that (2.7) has only one solution satisfying the initial
condition v(0)= 0 and Iv(u)l </3 in U. Assume that w: U--> R" is such a solution and
define a function of a single variable by

w(u) W(Ul, 0,. , 0), lull < Icl.
This function, obviously satisfies the system of ordinary differential equations

dwl(ul)
dUl

d(u, 0,..., O, w(u)),

and wl(0)=0. Thus, w is unique and hence the values of w are also uniquely
determined for lull < Ic[, u2 u, 0. Let [Ul*[ < Icl and consider the function of a
single variable

w(u) w(u*l, u, o,..., o),

This function, obviously, satisfies the system

dw2(u2)= d2(ua*, u2, 0,..., 0, wZ(u2)), lu2l < Icldu2
and the initial condition w2(0) w(u*). Thus w2 is unique and hence the values of w
are also uniquely determined for [u[< [c[, [u2[< ]c[, u3 u, 0. If we proceed
further in a similar manner, the uniqueness of the solution in U follows, and this
completes the proof.

In the rest of this section a theorem due to A. Ostrowski is quoted. Its proof can
be found in [8]. Here the theorem is presented in a slightly modified form but these
minor changes effect the proof only slightly. The theorem is concerned with the
question, "How much does the solution of a system of linear (algebraic) equations
vary if the coefficients and the constant terms are perturbed?" At the same time it
gives bounds among which the elements of a regular matrix can be varied without
becoming singular.

Consider the linear system

(2.12) Ax =b

where A [aik] is a regular n by n quadratic matrix, b col (ba,’’’, bn), a column
vector of dimension n, and x col (x,..., xn), the column vector of solutions. A
perturbation of the matrix A and the vector b is denoted by 6A [6aik] and 6b
col (6ba,..., 6b,), respectively; i.e. the system

(2.13) (A + 6A)(x + 6x)= b + 6b

is considered whose solution is denoted by x +6x =col (XI+X1,’’’,Xn
System (2.13) is multiplied by A- from the left; this yields

(I + A- 6A)(x + 6x ) A- b +A- 6b

where I is the n by n unit matrix.
TI-IEOIEM 2.B. If IA-6A < 1, then the matrix A + 6A is regular and we have for

the difference 6x of the solutions of (2.13) and (2.12)

( IA-116AI )(2.14) I’xllA-al I’bl+(lbl+16bl)l-lA-a 6AI
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The only assumption, IA -1 6AI < 1, under which the inequality (2.14) is proved
by Ostrowski is obviously valid if the perturbation [6AI is small enough, more pre-
cisely if

1
(2.15) IAI < iA_----r.
This inequality is also a sufficient condition for the regularity of the matrix A + 6A.

3. Estimates tot the variations ot perturbed solutions and their derivatives. Let
) be an open and bounded ball in R" with center in the origin, assume that the
functions f: fi- R and g: R x fi- R belong to the C2 class in the closure fl of the ball
), and consider the perturbed system of differential equations

(3.1) 2 f(x)+ tzg(, x)
where x R, z >0, and it is also assumed that g is periodic in the variable with
period z, i.e.

g(s+l,x)--g(s,x), sR, xfl.

The function g is assumed in a somewhat simpler form than it was originally in [1].
Keeping to the original more general form of g would not cause any theoretical
difficulties; however, it would increase the length of the calculations and formulae.

Along with (3.1) consider the unperturbed system

(3.2) 2 f(x).

It will be assumed that (3.2) has a nonconstant periodic solution p" R -> f with period
Zo>0 and, further, that the number 1 is a simple characteristic multiplier of the
variational system

(3.3) 1) f’x (p (t))y.

The notations pO p(0) (p, p0) and /0 /0(0) col(, .opn) are intro-
duced. It will be assumed, without loss of generality, that

(3.4) /0 #- 0, /0 =0, (i=2,3,...,n).

Vectors orthogonal to/i will be denoted by h. Because of (3.4) the first coordinate of
such a vector is zero" h (0, h2, , hn). The solution of (3.1) that assumes the value
o op +h (in the hyperplane passing through p and orthogonal to/i) at =q will be

denoted by x(t; q, pO + h, tx, z). As has been pointed out in [1], for small enough I1 all
solutions with initial values close enough to 0, x p0 can be written in this form.
The condition of periodicity (with period z) is

def

z(/x, q, z, h)= x(q9 + z; p, p+h, tx, z)-p- h 0.

The Jacobi matrix of the function z with respect to the variables z, h2," h. is

J(/x, q, ’, h) [2(p + 7-; qg, pO+ h,/z, z)+ x’.(q + z; q, pO+ h,/x, 7"),
o z)_e2 o "r)- e"]X h (O nt" "l" (0 p + h, tx ,. X hn q9 "" "l" (49, p + h,



882 M. FARKAS

where e2= col (0, 1, 0,. , 0), , en= col (0, 0,..., 0, 1). It has been proved in [1]
that

(3.6) det J(O, O, to, O) O,

assuring the existence of uniquely determined continuously differentiable functions
pOr(, o) and h(, o) such that the function x(t; q, + h(/z, 0),/z, r(, q)) is a periodic

solution with period r(, o) of system

ic f(x)+ zg
-(z, )’

x

and r(0, 0)= to, h (0, 0)= 0. The aim of the present paper is to give an estimate for the
region in which the variables/x and q may vary. For this purpose estimates are needed
for the norm of the difference J(, q, r, h)-J(0, 0, to, 0) and for A occurring in (2.3).

The following quantities are considered to be known:

Fo max If(x)l, Go max Ig(s, x)l,

(3.7) max If’(x)l, G1 max [g’(s, x)[,
xfi xsfi

sR

F2 max (x)l, max Ig’s(S, x)l.
x xsfi

sR

Y(t) will denote the fundamental matrix solution of the unperturbed variational
system (3.3) that assumes the unit matrix at t=0, i.e. I= Y(0). This matrix is
considered to be known along with its inverse Y-(t) and

(3.8) K= max IY(t)l, K_= max IY-(t)l.
t [-’to/2,"rol t [-’to/2,’to]

It is to be noted that the first column of Y(t) is (1/pl)P(t) and the ith one (i
2, 3,. ., n) is x,,(t; 0, pO, 0, to). Thus

(3.9) P max IP(t)l
n n

te[-ro/2, ro], (i=2,3,...,n).

In the following estimates, of course, each F, G and K can be replaced by an upper
bound.

The path of the periodic solution p will be denoted by 3’=
{x Rn: x p(t), [0, to]} and its distance from the boundary of the ball by

r dist (,, front f)> 0.

The domain in which the "initial phase" q and the period - varies will be restricted
from now on by

(3.10) I,1 < to/2, Ir-rol < to/2.

Since ro need not be the least positive period of the function p, conditions (3.10) do
not restrict generality, at least, as far as periods greater than ro are concerned.
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First of all we need bounds for IIxl and Ihl such that for arbitrary q and - satisfying
(3.10) the solution x(t; q, pO + h, Ix, r)of (3.1) should be defined and its path contained
in for t [re, o + r].

LEMMA 3.1. If IX and h are such that

(3.11) 23-aoro] + Ihl< r exp (- Fl’rO),
then the solution x(t; q, pO + h, Ix, r) is defined and x(t; q, pO + h, Ix, r)e for all and
r satisfying (3.10) and [q, q + r].

Proof. Consider the identities

o(3 12) (t; q, + h, Ix, r)-- f(x(t; q, p + h, Ix, r))+ Ixg x(t; q, + h, Ix,

(3.13) #(t-c)=f(p(t-o)).

Integrate the difference of these identities from q to > q"

x(t; o, pO + h, Ix, r)-p- h -p(t- qg)+p

-= pO+

+ Ixg x(u; q, + h, Ix,

Provided that the path of the solution x is in f in the interval [q, t) we get from here

Ix(t; q, pO+ h, Ix, ’)-p(t- q)l

--<lhl+ (falx(u; q,p+h, ix, )-p(u-)l+aolzl)du.

Applying Gronwall’s lemma, we obtain

Ix(t; p, pO + h, Ix, -)-p(t- qg)l <- (G01z I(t- u)+ Ihl) exp (Fl(t q)).

The solution x(t; q, pO+ h, Ix, ’) is defined and its path is contained in as long as

(3.14) dist (x(t; p, pO + h, Ix, ’), 3,)< o’.

The left hand side of the last inequality is less than the left hand side of the previous
3one. Since 0 <_-t-q -<_ -< 5’o, inequality (3.14)follows from (3.11)for all [q, q + ’],

and this completes the proof.
From now on it will be assumed that Ix and h satisfy (3.11). The following three

lemmata yield estimates for the variations of the columns of matrix J(ix, q, -, h). The
abbreviated notations

’(t)= x’ (t" pO -)-x’ (t +’o-" "0, 0, ’o),X hi hi qg, + h, IX, hi q pO,
pO6f’(t)= f’(x(t; q, + h, Ix, ’))-f’x(p(t + ’o- ’- q))

(i =2, 3,...,n),

will be used. Obviously, 6X’h,(q +’) is the difference between the ith columns of the
matrices J(ix, q, ’, h) and J(0, 0, ’o, 0).
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LEMMA 3.2. If conditions (3.10) and (3.11) are satisfied then
3316x (q + 7-)] <- ((G07-01 + Ihl+ Fo17- 7-01)F27-0 exp [-F7"o]

(3.)
+ G17-olixl+ Flr- ro[)if- exp [-7-o(F1 + Ollix

(i=2,3,... ,n).

Proof. Differentiating the identity (3.12) with respect to hi we get

pO ) (f’x(X(t; pOh, qg + h, ix, =- q + h, ix, 7- ))
(3.16) \

)),+ ixg’x x(t; q, + h, ix, 7-) Xh,(t; qg, + h, ix, 7-).

Substituting q 0, h 0, ix 0, 7- 7-0 and writing + 7-0-7- q for t, we obtain the
identity. ,(t + 7-0-7--q; O, p, O, 7-0)=-- f’(p(t + 7-0-- 7- q ))X’h,(t + 7-0-- 7- q O, p, O, 7-0).

Subtracting the last identity from the previous one and integrating the difference from
q to > c, we get

’(t" pOX h, qg, + h, ix, 7-)-- X h, + 7-0 7- qg O, p, O, 7-0)
0 pO=-- X h, qg qg, p + h, ix 7- ) X h, 7-0 7- O ,0,7-0)

+ i ((f(x(u q’ P+ h’ ix’ 7-))

+ ixgx x(u q, p + h, ix, 7- hi q, p

r "0, 0 ))X U + 7-0-- q p 0, 7-0

+ f,,(x(u q, pO + h, ix, 7-))+ ixgx x(u; , + h, ix, 7-)

))) ’(u+-o - "o, ))-ffp(u+zo-z- Xh, --, p O, zo du,

or applying the notations previously introduced, we get

6X’h,(t)=--6X’h,(q)+ I ((f’(X(U; q, p+h, ix, 7-))

+ ixg -, x u q, + h, ix, 7- 6 hi(U)
(3.17)

+ f’(u)+ixgx -,x(u;q,
u + 7-0 7- p O 7-0))Xhi’ -q O, O, du

In order to continue, an estimate is needed for Ix,,()l and I/’(t)l. Clearly
0 7-)_XX hi (q9 X hi ((4 (O, p -]- h, ix, hi (7"0 7-; O, po, O, 7-0)

oe X h, (7-o 7- 0, p 0, 7-0)

(0" 0, o o
Xhi p O, 7-0)--Xhi(7-0--7-; O, p O, 7-0).
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(3.21) If(t)lf2(aoolcl+lhl+fol’-’ol)exp (-fl ’o),

Applying the last inequality in (3.19), we get

t[,+,1.

Making use of (3.18), (3.21), (3.7) and (3.9), we get from (3.17) the following
inequality"

+ I, ((El + Itx[al)[X’hi(U)l

/(f2(aozol, l/lhl/folz-zol)exp (Flro)+ Itx }G du,

t[w, w+r].

Applying Gronwall’s lemma, we get

I,X’h,(t)l

((F2(aozo[/x[ + [hi + Folz- ’o1)exp (-}F17"0)+ all/x I)(t- q)

)+Flair-to exp [(Fa

Substituting =q +z and taking (3.10)into account, we conclude (3.15)readily.

EXISTENCE REGIONS OF PERTURBED PERIODIC SOLUTIONS

As is well known, x,(t; 0, po, 0, Zo) satisfies system (3.3), thus

(t; 0 o]Xh,(q)[-- f’x(p(t))Xh, p O, ZO) dt
aO

Hence applying (3.7) and (3.9), we have

(3.18) Ix;,()l F1g,-,ol.
n

Applying mean value theorems for the elements of the matrix 6f(t) we easily obtain

(3.19) ISf2(t)[F2]x(t;,p+h,,)-p(t+o--)l.

To estimate the right hand side, one may proceed as in the proof of Lemma 3.1.
Besides (3.12)one has to consider, instead of (3.13), the identity

p(t + ,o- ) (t + ,o-, )).

The procedure yields

Ix(t; ,p+h,,

(3.20)

(Gool + Ihl+ Fol ol) exp (FIT0).
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LEMMA 3.3. If conditions (3.10) and (3.11) are satisfied, then

12 (q + ’r; g,, pO + h, Ix, "r)- (’to; 0, pO, 0, ’to)[

(3.22) 12(q + r; q, pO + h, Ix, r)-p(ro)l
3<_- Fa(Goro[ix + [hi+ Fo[r zo[) exp (-}F170) + aolz I.

Proof. Substituting q + r into (3.1,2), + zo into (3.13) and subtracting the
two identities, we obtain

12( +z; q, pO+ h, Ix, z)-P(zo)l

]f(x(q+r q,p+h, ix, z))-f(p(zo))+ixg(q " o ))1,x(p+z;q,p +h, ix, z

<=FllX(q + r; q, p+ h, Ix, z)-p(ro)l + lIx[Go.

Taking into account (3.20) at + z, we can conclude (3.22).
LEMMA 3.4. If conditions (3.10) and (3.11) are satisfied, then

(3.23) Ix;(q+z; q,p+h, Ix, z)[<-IIx[2qv+3z----Gexp[zo(F+Gl[Ix[)].
TO

Proof. Differentiating (3.12) with respect to z, we get

2’,(t; re, pO + h, Ix, r) (f’x(X(t; q, pO + h, Ix, r))

))+ Ixg’ x(t; q, pO + h, Ix, z) x’,(t; p, + h, Ix, r)

-Ix g’ x(t; q, + h, Ix, z)

Integrating from q to > q, we obtain
0 7")x’,(t; , po + h, Ix, r)- x,(q q, p + h, Ix,

=-- f’x X U p, + h, Ix, r)) + Ixg x (u re, + h, tx, p + h, Ix, r)

u,/u o ))Ix-r-,g 4,-. x u q, p + h Ix z ) du

The second term on the left hand side is zero since x(q; q, pO + h, Ix, z)--- pO + h does
not depend on r. Taking into account (3.7) and (3.10) for e [(, r +z], we have the
inequality

ix,,(t. q, pO+ h, Ix, z)[ < I ((Fl+lIxlG)lx’,(u" p, pO+ h, Ix, r)l+lIx,
q+z )"2 G, du.

Applying Gronwall’s lemma, we have

Ix’ (u- pO+ h, <1 1 2 Gsr exp [(F, +[IxIal)rl.

[qg, q +r].

With (3.10) taken into account again and with the substitution =( + r into the last
inequality, (3.23) follows.
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The following two lemmata are needed for giving estimates for A of (2.3) in our
case.

LEMMA 3.5. If conditions (3.10) and (3.11) are satisfied, then
0t,(q +r; q, p + h,/x, r)-x,(ro, 0, pO, 0, ro)l

(3.24)
+(Gro+ F2KK_ Gor)(Gorol tl + Ihl + Folr- rol) exp (Fl’O)
+ GIKK-1Gor2ol txl + KK-1 Golf- rol)exp [-ro(F1 + Gll

Proof. The proof is similar to the proof of Lemma 3.2 and will not be given in
detail. However, attention is drawn to the fact that x’(t; 0, p, 0, to) satisfies the
inhomogeneous linear system

3 f’x(p(t))y + g(oo’ p(t))
and x, (0; O, pO, O, to)= O, thus

(t" 0 pO O, ’o) Y(t) Y-l(u)g p(u du.XIx

LEMMA 3.6. If conditions (3.10)and (3.11)are satisfied, then
0 7.)_X 0Ix( /; , p / h,/x, (ro; 0, p 0, o)l

--< ((aool / Ihl/ Fol ol)F2o exp (@fifo)(3.25) 3 3

+Golg +Fll- ol)P exp [o(F1 + al I)],

Proof. The proof is similar to that of Lemma 3.2 and will not be given in detail. It
is to be noted that x(t; q, pO, O, ’o)--p(t-o) and hence x’(t; q, pO, O, to)-= -p(t-q).
Thus [x(t; q, pO, 0, o)l-<e (see (3.9)).

4. Main results. The estimates given in the previous lemmata make the appli-
cation of Ostrowski’s results possible to the problem outlined at the beginning of 3.

Lewis’ implicit function theorem (Theorem 2.A) is to be applied to the period-
icity condition (3.5) from which (v, , vn) (z, h2,"’", h,) are to be expressed as
functions of (Ul, u2) (tz, o). The Jacobi matrix J(/x, q, -, h) of z with respect to the
variables r, h at z 0, q 0, - o, h 0 is, by (3.6), nonzero. As it is easily seen from
the remark preceding (3.9),

J(0, 0, ’o, 0)=

o 0 0 0

0 0 0
+ Y(ro)- I

0 0 0

where the first term on the right hand side is an n by n matrix whose elements are all
zero except the one standing in the first row and first column. This matrix is considered
to be known along with its inverse, which will be denoted by

j-l= J-l(0, 0, to, 0)

for short.
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Let al, a2, a3, /1, i2, 3 be arbitrary positive numbers satisfying the following
inequalities, respectively:

(4.1) Go’roa -[-/1 < 0" exp (23-El’tO),

a2(FiGo’ro exp (-Fl"rO) + Go+4Gs exp [-’o(F1 + ala2)])
1(4.2) +/2(1 + Fo)F1 exp (F17o) <

3 2(a3(F2Go’ro exp (F’ro) + G’ro)

(4.3) +/33((1 + Fo)Fzzo exp (F17"o) + F1)) exp (’roGla3)

1
exp (- F1to).< j-1IK

Further, let us define

a=min(al, a2, a3,?),
/3 man (/31, /32, /33, -),
H1 n(a(F Gozo exp (Flzo) + Go + 4Gs exp [zo(F1 + Gla)])

+/3 (1 + Fo)F1 exp (F1 zo)),

H2 (-a 2(F2Gozo exp (-Fazo) + Ga’o)

+/3 (-(1 + Fo)F2zo exp (-Fazo)+F1))K exp [-zo(F1 + Gla)],

H max (H1, H2),

A J- 11KK_ Gozo + 1-1J-’lH

1 -IJ-1lS

(( a+)

+-}(G’ro + FzKK-1 2Go’ro)(-Go’roa + +Fo exp (-}F1Zo)
+G,KK_IGoz6a + KK_IGo) exp [zo(F, + Gla)]

+ J-1]HKK_lGo,ro),

(F1 (-}Go’roa + +Fo exp (-}Fl"ro)

33+ Goa + (-(-Go’roa + + Fot3 )Fzzo exp (Flzo)
+Glzoa + F1/3)P exp [23-7"o(F1 + Gla)]),

(4.4) A 2 max (A1, A2).

Finally we introduce the notation

U= 0x,)R2"ltxl<min a, x ,]ql<min a, x
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THEOREM 4.1. To all (, ) U there belongs one and only one -(, o) R and
one and only one h(/z, o)= (0, h2(/z, o),..., hn(/z, q)) such that the solution of system

which at = assumes the value x pO+ h(g, ) is periodic with period z(, ), the

functions z" U R, h" U R having the properties z C, h C, ]z(, )-zo[ < ,
]h (, )] < B in U, (0, 0) zo, h (0, 0) 0.

Proof. The proof consists of checking the validity of Theorem 2.A for the system of
equations (3.5).

We have for the variation of the Jacobi matrix of the system

:(, , , h)-(O, O, o, 0)1

=n max {[A( +z; ,p+h,, )-p(zo) + x’( + z; ,p+h,, )[,
0 )_X 0Ix,( +; , p + , , ,(o, o, p, o, o)1, (i 2, 3,..., n)}.

Applying Lemmata 3.3, 3.4 and 3.2 and taking into consideration (4.2) and (4.3), we
see that for I1 a, I a, -ol and Ihl ,

1
]J(, , , h)-J(0, 0, o, 0)lH ij_ 1.

Thus, by (3.6) and Theorem 2.B, the matrix J(, , z, h) is regular.
We have two systems now for (2.2), namely,

0(4.5) J(, , z, h)d1= -xg( +z; , p + h, ,
and

(4.6) J(g,,z,h)d2= -((+;,p+h,#,z)+x(+z;,p+h,,)).
As is seen from the proof of Lemma 3.5,

,. o (t)g(,p(t))dt.
Clearly, 2(o; 0, p, 0, o) (o) (0) , and since x(t’, ,pO, O, ro)p(t-), we

0 0have x(o; 0, p 0, to)=
Therefore at 0, o and h 0, systems (4.5) and (4.6) assume the form

fro (t)g(,p(t))dt,s(0, 0, o, 0) Y(o) Y-

J(0, 0, zo, 0)d2= 0,

respectively. Hence

dl __j-1 y(TO) Y-(t)g p(t) dt, d O.

Estimates can be given for d(g, , z, h) and d:(, , , h) and thus for the n by 2
matrix D(., q, z, h)= [d t, d:] by applying Lemmata 3.5, 3.3, 3.6 and Theorem 2.B. It
turns out that for [g a, ][ a, ]z- zo] , ]h] we have [dX(g, , , h)[
1, [d:(g, , z, h)[ : and, as a consequence,
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where A has been defined by (4.4). Thus condition (2.3) is fulfilled with our A, and this
completes the proof.

Attention is drawn to the fact that this result contains two important special cases.
The first case occurs when the perturbation does not depend on the state of the
system, i.e. in system (3.1) the function g does not depend on x"

(4.7) =/(x) +/zg().
The rest of the assumptions made for system (3.1) and the unperturbed system (3.2)
are considered to remain valid. In this case G1 0 and, as a consequence, inequalities
(4.2) and (4.3) for the determination of a2, a3,2,3 become linear. The deter-
mination of a,/3 and also of A becomes considerably simpler.

The second case occurs when the perturbation is autonomous, i.e. the function g
does not depend on t:

(4.8) =f(x)+tzg(x),

while the rest of the assumptions remain valid. In this case Gs =0 and, as a
consequence, inequality (4.2) is linear and the expressions fortH1 and A1 are simpler.
Since the perturbed system (4.8) is autonomous the functions -: U --> R and h: U --> R
are constant in the variable , i.e. the period and the initial value of the perturbed
periodic solution depend solely on/z (- a, a) f3 (-/3/A,//A) and not on the "initial
phase".
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A POSITIVE KERNEL FOR HAHN-EBERLEIN POLYNOMIALS*

MIZAN RAHMANf

Abstract. Explicit forms of the coefficients E(x, y,z) in the expansion Q, (x )Q, (y
Y.=o E(x, y, z)Q,,(z), where Q,(x) Q,(x" a,/3, N) is the Hahn polynomial in the integer-valued variable
x, 0=<x-<N, are given. It is shown that if a <-/3 <-N and /3-a is a nonnegative integer, then E is
nonnegative for all x, y, z and N. However, if a -</3 <-N but/3-a is nonintegral, then E is nonnegative
only under the stronger restriction/3-a >N- 1.

1. Introduction. Positivity of integrals and sums of special functions has been a
theme of many recent papers (see, for example, [1]-[9], [14]-[20], [22]-[25]; for an
excellent review article on this topic and for further references see Gasper [20]).
Apart from their well-known applications in harmonic analysis, certain positive sums
and integrals have found applications in coding theory [27] and probability theory
[11 ], [21 ]. The positive sum that we are going to present here may indeed be viewed as
an extension of certain results known in coding theory mainly through the works of
Delsarte 12].

In [15] Gasper studied a convolution structure for the Jacobi series by computing
the kernel K(x, y, z; a, t3) where

I_ )(1+ 1(1.1) R" (x)R’(y) K(x, y, z a, )R"’ (z)(1 z z dz,

with R’’)(x)=P(’)(x)/P(,,’’)(1), and then establishing the nonnegativity of the
kernel for a >=/ _>--1/2. Since the Jacobi polynomials P(f’O)(x) are known to be the
continuous limit of the Hahn polynomials

(1.2) On(x)=On(x;ot,,N)=3f2[-n, n+a+/3+l, -x ]a+l, -N
x 0, 1,..., N; n 0, 1,..., N, a similar convolution structure can be expected for
these polynomials as well. However, as Gasper observed in [20, p. 393] the
coefficients in

N

(1.3) O, (x; a, , N)O, (y a, fl, N) E E(x, y, z a, , N)O,, (z a, , N)
z=0

are not all nonnegative for a,/3 >- 1. So we need to consider the case when either a
or fl or both are less than or equal to -1. In particular, if a,/3 <-N the 3F2 functions
on the right of (1.2) remain well-defined, and are orthogonal with a positive weight
function. In this region there appears to be no continuous analogue of the Hahn
polynomials and, in fact, they may be called Hahn-Eberlein polynomials. The Eber-
lein polynomials [13] used by Delsarte [12] and Sloane [27] correspond to the case

(1.4) fl=-N-1, a=-V+N-1 withV>_-2N.

When a and/ are restricted by (1.4), a nonnegative coefficient in the expansion
(1.3) has been found by algebraic methods in coding theory (see, for example, Sloane
[27, p. 244]). The purpose of this present paper is to approach the problem from
hypergeometric series point of view and, of course, to establish some general criteria
for the nonnegativity of the coefficients E(x, y, z; a, , N) in (1.3).

* Received by the editors May, 1976, and in final revised form February 23, 1977.
f Department of Mathematics, Carleton University, Ottawa, Ontario, Canada K1S 5B6. This work was

supported by the National Research Council of Canada under Grant A 6197.
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Apart from some well-known formulas of hypergeometric series [10], [26] two
important tools in our work are the following formulas"

Q, (x; a, fl, N)Q, (y a, fl, N)
(1.5)

(-1)"(B + 1). r (__l)r+s(t, +Ol + +
(a + 1). r=o/" s=o/" (-N)r+s(-N)+

(-x)(-y)(x-N)(y -N)
(a + 1)(fl + 1)sr!s!

--X
(1.6) p+lFq+l

c +/./, al,"’,ap]=i(;)(c),(P’_)x-, [-Y,bl, bq y=0 (c + )x p+1" "q+
C

[17]
al,..., a,]b, bq

[18].
We have also made extensive use of the following identities in Pochhammer

products [26, p. 239]:

(a)m+, =(a)m(a +m),, (a)m_,=(-1)"(a)m/(1-a-m),,

(a)m (-1)m(1-a m)m.

Using orthogonality of the Hahn polynomials with respect to the weight function

(1.7) p(x;a,,N)=(x+a)(N-x+fl)/(N+o++ l)x N-x N

we can invert (1.3) to obtain
N

(1.8) K(x, y,z;a,,N)= rr,O,(x;a,,N)On(y;a,,N)O,(z;a,,N),

where

K(x, y, z a, 8, N) E(x, y, z a, ,8, N)/p (z a, ,8, N)

and

(1.9) rr,
(-1)" (-N), (a + 1),,(a +/3 + 1), 2n +a +/3 + 1

n!(/3 + 1).(N + a +/3 +2), a +/3 + 1

We may now discuss the case in which either a or/3 or both are between -N
and -1.

Obviously neither a nor/3 can be an integer in that range since p(x), O,,(x) and
r, could become infinite. Even for nonintegral a,/3 we can show that not all E can be
positive. This can be settled here if we quote (2.13) and (2.14), which we derive in the
next section, for the special case x + z y. A little simplification yields

(1.10)
E(x, y, y -x; a,/3, N)= K(x, y, y -x; a,/3, N)p(y -x; a,/3, N)

(xy) (/3+ l+N-y)x

(xN) (a + i)x

In particular, if we set x 1 a ,/3 - we get

2y
E(1, y, y-l;-, -23-, N) -7-77.. (N- y -1/2).

This is negative if N > y and positive if N y.
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Also setting a -N +,/3 -N + 1/2 we obtain

E(x, y, y-x;-N+,-N+1/2, N)=.

Again the sign of E depends on N, x and y. For instance if we take x 1, N y 2
then E=-I, while for x 1, y =2, N=3 we get E=-. The situation remains
essentially the same when only one of the parameters a,/3 lies between -N and -1.
Suppose -N <=/3 <- 1 and is arbitrary. Writing + N, 0 N NN 1, the factor
that determines the sign of E in (1.10) is (t + 1 y)x/(a + 1). For x 1, this blows up
at -1 if y + 1, and is nonnegative if > -1 and y N + 1 but negative if x is odd
and y > + x. On the other hand, if a <-N then (a + 1) has the sign (-1) but the
numerator (t + 1-y) can be of any sign depending on the magnitude of and y.

The search for a nonnegative representation of E can, therefore, be concentrated
on the region , B <-N. In 2 we shall obtain a double series representation of
K(x, y, z) K(x, y, z; a, , N) and in 3 and 4 we shall obtain conditions under
which this is nonnegative.

2. A double series representation of K(x, y, z). Our first step is to observe that
the double sum in (1.5) can be replaced by

O(x; a, , N)O(y a, , N)
(2.1) =(-1)"(+1), -(-n)+,(n+++l)+(-x)(-y)(x-N)s(y-N),

( + 1), =o ,=o (-N)+(-N)+,( + 1)( + 1)rs
x, y, n 0, 1, ., N; likewise we shall write

(2.2)
=o (a + 1)(-N)k!

z=0, 1,-..,N.
Substituting (2.1) and (2.2) in (1.8), we obtain

N (--Z)k N N--r

EK(x, y, z) =oY (a + 1) (-N),k’. ,=o =o
(2.3)

v (-n),(-z),(n +a +t +
O,,(z; a, fl, N)= Y’.

(--X)r(--y)r(X N)(y -N)
(-N),+s(-N),+, (a + 1)r(/ + 1)r!s!

where

Tr+s,k

(2.4)

v (-N),,(-n),(-n),(a + + 1),,(a +/3 + 1 + n),(a +/3 + 1 + n),
.=o n!(N+a +/3 +2).

2n+a+/3+l
a+/3+l

N (-N),,(-n)(-n),(a + 3 + 1).(a +/ + 1 + n)(a + 3 + 1 + n)pE
=max(p,k)

2n+a+/+l
a+/3+l

n!(N+a+ +2).
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Evidently the sum on the right is symmetric in p, k so we need to consider only
one case, say, k >_-p. Then

N (-N)nn v(a + + 1)n (a + + 1 + n ), (a + + 1 + n),
T,,k (--lf+k E

.=k (n-p)(n-k)(N+a +fl +2).
(2.5)

2n+a++l
a+fl+l

which can be shown to reduce to a very well-poised hypergeometric series

(-lfNk (a + + 1)+(a+ +2)2
(a +fl + 1)(N +a +fl +2)(N-k)(k-p)

(2.6)
+/3+ 1 +2k, a+/3+l

+k+l, a+fl+l+k+p, k+l, -N+k

a+/+l
+k, a+/3+l+k, k-p+l, N+a+/3+2/2

/

+k_]
This series can be summed by using a special case of Dougall’s theorem for very

well-poised hypergeometric series (see, for example, Slater [26, p. 56]):

5F4[a 1 +1/2a, b, c, -m ]_ (1 +a)m(1 +a-b-c)m(2.7) 1/2a, l+a-b, 1+a-c, l+a+mJ-(l+a-b)m(l+a-c),,’
We thus obtain m 0, 1, 2,.. .

(2.8) T,

Hence

K(x, y, z)=

ifk +p<N,

N!(a + [3 + 2)N
(a + fl + 1)N

k!p!(a + + 1)+p
(N-k)!(N-p)!(k +p-N)!

if k +p ->_N.

(-1)u(a+fl +2)u -’(-x),(-y),(x-N)(y-N)(r+s)!
N!(a + + 1)N r=0 s=0 (-N),+s(a + 1),(/3 + 1)sr!s!

N (--Z)k(a + fl + 1
=u-E (a + 1) (k + r + s N)!’

provided z ->_ N-r-s -> 0, and 0 otherwise.
Using the Chu-Vandermonde theorem [5]

(2.9) 2F1 I-n, a]=(b-a)nb (b).

we then have

(2.10)
K(x, y, z)=

(a +/3 + 2)N
N!(a + 1)z(fl + 1)u-z

min(x,y) N-,

E E (-1)+’+
r=0 s=0

(-x),(-y),(x N) (y -N)s(-z)u_,_(r + s)!(fl + 1),+
(-N),+ (a + 1),(/3 + 1)r!s!

For the sake of definiteness let us assume

(2.11) z <=x <= y.
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Symmetry of the kernel will then allow us to extend the results to the cases with x,
y, z interchanged.

For further reduction of K(x, y, z) two cases must be distinguished:

(i) x+z<=N; (ii) x+z>N.

In case (i) it can be seen that

(2.12) K(x,y,z)=O ifx+z<y

and

K(x, y, z)=
(a + 1)z =y-z

z-y+, (-z + y r)s(-z + x r)s(N z + 1)s(N z + fl + 1)E
=o (-Z)s(N-z+ + 1-r)(N-z + 1-r)s!

if x +z =>y.
Replacing r- y + z by k, we get

x+z-y (-x -z + y)k (-N + Y)k(--Z)k(--fl -N + Y)kK(x, y, z)= A E (1 + )(1 + Z)k(a + 1 + z)kkk=O y --X y y
(2.13)

4F3[-k y +x N-z + 1, N-z +fl + 1,
l -z, N-y+l-k, N-y++l-k

(-x),(-y),(x N)r-z-,(y
(a 4- 1)r(fl + 1)N-z-r(N-z- r)!r!

where

x!y!z!(N-x)!(N-z)!(a + +2)u(2.14) A=(N!)Z(x +z-y)!(y-x)!(y-z)!(a + 1)y-z(/3 + 1)u-y(a + 1)z"
Case (ii) is a little less straightforward than case (i). One must first split the double

sum in (2.10) into two parts as:

N--r N-z N-r N-r

E=E E + E
r=O s=O r=O s=N-z-r r=N-z+l s=O
r+s>N-z

For the first series on the right we replace s N + z + r by s in (2.10) and for the
second series we replace r-N + z 1 by r. Thus we obtain

(2.15) K(x, y,z)=KI(x, y,z)+K2(x, y,z),

where

(2.16)

Y (-N + x),(-N + y)r(-N + z),(-a -N+ Z)r
K(x, y, z)= B

,=0 (1 + x + z-N),(1 + y + z-N),(fl +

4F3[-N+y+r, -X+x+r, N-z+l, N-z+fl+l]-z, r+l, /3+l+r

x+z-N-1 (--X--Z +N)r+l(-y-z +N),+I(N-z+ + 1)r+l
K2(x, y, z)=B E

r=0 (-Z)r+l(N-z +ix A-- 1)r+l(r + 1)!
(2.17)

F[-N+y, -N+x, N-z+r+2, N-z+r++2]
4 3[_z+l+r, r+2, /3+1 J’
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with

(2.18) B
(x + z N)!(y + z N)!(c + 1)z(a + 1)u-z

We shall now combine K1 and K2 by using the following reductions"

y u--, (-N + x),+k(--N + y)k+r(-N + z),(-a -N + z),B-1KI(X, y, z)= ,..r=0 ,Z"=0 (1 + X + Z N),(1 + y + z -N),(fl + 1),+(r + k)!

(N-z + 1)(N-z + fl + 1)

=Y(-N+x),(-N+y), (-N+z),_k(-a-N+z),_,
p=o (fl + 1)pp! k=o (1 + X + z--N)p_k(1 + y + z--N)p_k

(2.19)
(N-z + 1)(N- z +/3 + 1)k

(-z),k!

N(.y (-N + x),(-N + y),(-N + z),(-a -N + z)p
,=o I + x + z N), I + y + z N)v (B + I ),P

P (-x-z +N-p)t,(-y-z +N-p),(N-z + 1)k(N--z +fl + 1)k
k=0 (a + 1 +N-z-p),(N-z + 1--p)k(--z)kk!

Also

N-y (-N + x)p(-N + y)p x+z--N-1 (--X Z "t- N)r+I(-y z + N)r+lB-1K2(x, Y, Z) E E
p=o (/3 + 1)pp! ,=o (-z)r+l(N-z +o + 1)r+1

(N z + fl + 1 )r+ (N z + r + 2)(N z + r + fl + 2)
(-z + 1 + r)p(r + p + 1)!

But

(1 + x + z -N)(1 + y + z -N)
(-a-N+z),(-N+z),

(--X Z + N)r+l(-y Z + N),+I(N z + r + 2)p
(N-z +a + 1),+1

(-x-z +N-p)p(-x-z +N-p+p),+I(-y-z +N-p)p
(-y-z +N-p+p),+I(N-z + 1)+,+

(a+ 1 +N-z-p)p(a+ 1 +N-z-p+p),+l(1 +N-z-p)p(1 +N-z-p+p),+l

(-x z +N-p)p+,+l(-y z + N-p)p+,+l(N- z + 1)p+,+l
(a + 1 +N- z --P)p+r+l(1 +N- z --P)p+r+l

Hence

(2.20)

(-N + x),(-N + y)(-N + z),(-a -N + z),B-1K2(x’ Y’ z)=
p=o (1 + x + z N),(1 + y + z N),(fl + 1)pp’.

x+z--N-1

r=O

(--x Z +N-p)p+,+l(-y z + N-p)p+,+l
(N-z + 1)+r+l(N- z +/3 + 1),++1

(-z)p+r+l(N-z +a + 1 -p)p+r+l
(N-z + 1-p),+,+l(p + r + 1)!
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A sum of the two series on the right of (2.19) and (2.20) can now be written down
immediately"

Ny (-N + x)v(-N + y).(-N + z).(-a -N+ z)vg(x. y. z)= B
,=o (l+x+z-N)v(l+y+z-N)v(fl+l),p!

x+z+’-N(--X--Z +N--p)k(--y--z +N-p)k(N-z + 1)k(N--z +fl + 1),
#,=o (N-z +a + 1--p)k(N--z + 1--p)k(--z)kk!

(2.21)

" (-N + x).(-N + y)(-N + z).(-a -N + z).=B
p=o l + x + z N)t, l + y + z N)t, (fl + l )t,p

4F3[-X-Z, +N-p, -y-z +N-p, N-z + 1, N-z +fl + 1]
[N-z +o + l-p, N-z + l-p, -z J"

3. Nonnegativity of K(x, y, z) when x + z-< N. Observing that, by reversing the
order of summation, we get

4F3[-k y + x, N- z + l, N- z + 8 + l, -k]-z, N-y+l-k, N-y+fl+l-k

(-k y + x).(N- z + 1)(N- z + fl + 1) (_1)
(-z)(N- y + 1 k)(N- y + fl + 1 k)

[z+l-k, -fl-N+y, -N+y, -k]4F3
l+y-x, -N+z-k, -fl-N+z-k

we can reduce the kernel in (2.13) to

,+z-y (-x-z + y)k(N- z +/3 + 1)k
(3.1) K(x,y,z)=A k=oY (a + 1 +y z),k,

a,,

where

(3.2)
(N-z+l) F[-k’ -N+y, -/3-N+y, z+l-k]a= 7-_-;_;/i-/4 3 -N+z-k. l+y-x, -fl-N+z-k

It is at this point that formula (1.6) seems crucial. Choosing al c -N + y and
-y + z k, we obtain

-k, -N+y, -fl-N+ y, z + l-k ]4F3 -N+z-k, l+y-x, -fl-N+z-kJ
(3.3)

_
(k)(-N+y,t(-y+z-k), [-1, -fl-N+y, z+l-k]-=o (-N+z-k),

-13F2
l+y-x, -fl-N+z-k J

(l+y--z)k (-k),(-N+y)l ,[-l, -fl-N+y, z+l-k]
(N z + 1) /=0 -7 7’/ii 31 ’2 k 1 + y x, -/? N + z k J"

Anticipating the simpler results that follow later, let us set

(3.4) fl +N + 1 =-e.
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Then (3.1) transforms to

+z-y +z-y--l (--X Z "i" y )k +l(--Z E )k+l(--N .-b y )l )lK(x, y, z)=A Y E (-1
,=o k=o (1 + y -Z)l(O + 1 + y -z),+lk!l!

(3.5)
l+y+e, z+l-k-l].3Fe

l+y-x, z+l+e-k-lJ

We now make use of yet another formula, due to Thomae [10, pp. 17-19] but
given explicitly in Gasper [18]:

(3.6) 3Fz[-n, a, b] (d b ),,3Fz[-n, c a, b ]c, d (d),, c, l+b-d-n

Use of this in the 3F2 series above gives

[-l, l + y +, z + l-k-l]3F2
l+y-x, z+l+e-k-I

(--X E )l Ik-,
(1 + y-x)l ,.=o (1 +x +e-/).,(1 +z +e -k-l).,m!

Simplifying some Pochhammer products, we then obtain

+z-y (-x + z + y),(-N + y )l(-X E )l )lK(x, y, z)= A /=0E (1 "- y --Z )I(1 + y --X )l(Ol + 1 + y --Z )ll).
(--1

(-l),(e),,,(l+y+e).,(-z-e)-,,,(_l)
.,=o (1 +x +e-l).,m!
,,+z-y-i (-x z + y + l), (-z e + m ),
=o (a + 1 + y -z + 1),k

But the last series over k sums to

(a + 1 + y + e + m),,
(a + 1 + y -z + l)x+z-y-i

by the Chu-Vandermonde theorem (2.9). Hence K(x, y, z) becomes

(a + 1 + y + E)x+z-yX-y (--X--Z -}- y)/(-N + y)I(--X--E)I(--Z
K(x’Y’z)=A(a+l+y-z),+z-y l-O (l+y-x)l(l+y--z)t(--a--x--z-s)tl!

(3.7)
[-l, e, l+y+e, a+l+x+z+e-l]4F3 l+x+e-l, l+z+e-l, a+l+y+e

In the special case e 0 we obtain

(3.8)

K(x, y, z)= K(x, y, z; o, -N- 1, N)

(a+l+y)x+z-y 4F3[-x, -z, -N+y, -x-z+y]=A(a + l + y-z)x+z_ l+y-x, l+y-z, -o-x-z

Since we are considering the case y -< x + z <= N, the series on the right of (3.8) is
obviously positive if

(3.9) a<--N-1.
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It can be seen easily from (2.13) that the coefficient A is also positive for these
values of a and/3.

For e # 0, the 4F3 series in (3.7) does not have any obvious sign pattern in the case
(3.9). Further transformations are therefore called for. Fortunately the sum of the
denominator parameters of this 4F3 exceeds the sum of the numerator parameters by
1 and hence it is balanced. Using the well-known transformation formula [10; p.56]
for a balanced 4F3:
(3.0)

4Fa[-m, :, ,/, r] (v-()m(W-()m c,[ --m, u-, u-n,(
U, V, W (V)mi 4"’3[U, 1-v+(-m, 1-w+(-m’

m=0, 1,2,- u+v+w=+l+(-rn+l, we get

s, l+y+s, a+l+x+z+s-l]4F3
l+x+e-l, l+z+e-l, a+l+y+s

(l+x-l)l(l+z-l)t
(1 + x + e l)(1 + z + s 1) 4F3[-/, Ce, e,

a+l+y+s,
--X --Z

(l+x-l)(l+z-l)
(1 + x + e -/)t(1 + z + e l)

[-l,a y+l+e, a+l+y, l+y-x-z](z y l)l(X y
(-x)(-z) +l+y+s, l+y-z, l+y-x

(1 + y x),(1 + y -z),,F3[-l. y + 1 + e,

(-x-e)(-z-s) [ a+l+y+e,
a+l+y, + y-x-z]1+y-z, l+y-x

Note that in the above derivation we have applied the formula (3.10) twice. The
kernel in (3.7) then takes the final form

(3.11)

K(x, y, z)= A
+- (-x -z + y)t(-N + y )l(a+l+y+e)x+z-y Z(a + l + y-z)x+z_y 1=0 l!(-a-x-z-e)

4F3[-/, l+ y-x-z,
a+l+y+e,

y+l+s, a+l+y]1+y-z, l+y-x

The series on the right hand side is evidently positive if e >-1 and a =<
-N- 1-e =/3. We have thus proved the following theorem:

THEOREM 1. Let x, y, z be any three nonnegative integers between 0 and N
satisfying the inequalities

(3.12) O<__z<=x<_y<_x+z<_N.

Then the coefficients E(x, y, z; a, B, N) in (1.4) are positive in the Eberlein region

(3.13) a <-fl <-N.

Symmetry of K(x, y, z), as is obvious in (1.8), and the positivity of the weight
factor p(z; a, ,N) in (1.7) imply that the theorem also holds if any pair of the
variables x, y, z in (3.12) is interchanged. Symmetry also implies that K(x, y, z)= 0 if
any one of the variables exceeds the sum of the other two.
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4. Nonnegativity of K(x, y, z) when x + z >N. As in case (i) we first reverse the
4F3 series on the right of (2.21):

4f3-x-z+g-p, -y-z+N-p, N-z+1, N-z+/3+I1IN-z +a + l-p, N-z + l-p, -z

(--y--Z_ +N-p)x+z+p-N(N-z + 1)x+z+p-N(N--z +18 + 1)p+x+z-N(_l)X+z+p-N
(4.1) (N-z +a + 1--p)x+z+,-N(N--z + 1--p)x+z+,-N(--Z),++,-N

4F3[-I-z+N-p, -x, N-x+l-p, -a-x].
! -x-p, l+y-x, -B-x-p

Use of (1.6)once again gives

-x-p, l+y-x, -J-x-p

_’+’-N(X+Z+P-N)(-X)’(-P)"++’-N-"
k=o k (-x --P)x+z-N+p

I-k, N-x+l-p, -a-x].3F2
1+ y -x, -fl -x-p

The factor (-p),++p_N_ vanishes unless k x + z -N. The series then actually starts
from k x + z -N. Making the transformation k -(x + z -N) k we get

-x,
-x-p, 1+y-x, -B-x-p

_(--X),+-N(I_ +X +z-N)(_I) (--p)(--N+z)k
(--x--p),+z-N+p =0 k(1 +x +z-N)

+ + l
l+y-x, -fl-x-p

(4.2)
(--X)+-N(1 + X + Z -N), y, (-p),(-N + z)k(a + 1 + Y)x+z-N+k

1
+ x + ;-;

[-x-z +N-k, -fl-N- i, -a-x]3F2
-fl-x-p, -a-x-y-z+N-k

(1 + x + z N)p (a + 1 + y),+z_N (--P) (-N + z) (a + 1 + x + y + z N)
(I +x)p(I + y--x)+-N =0 k!(l +x +z-N)(l + y +z-N)k

+z+k-N (--X Z k q--/)l (E)/(--C X )l
/=o (N-x + 1-p+e)t(-a-x-y-z +N-k)tl!"

The reduction in the second last step needed the use of (3.6). In the last line we have
set/3 -N- 1 e.

Setting (4.1) and (4.2) in (2.21) and carrying out some simplifications we obtain

F(x+l+e)F(N-x+l) (a + 1 +y)+z-N
K(x, y, z)= B

F(N-x+I+s)F(z+I) (a+l+N-z
N-y (-N + y)(-X + x e ) (-p)(-g + z)(a + 1 + x + y + z N)(4.3) Y
=o (-N e )pp /-"=o k !(1 + x + z N) (1 + y + z N)
+z+k-N (--X Z k -t- g)l(E )/(--c X)l
=o (N-x + 1 +e-p)(-a-x-y-z +N-k)l!"
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The triple series on the right can be transformed as

N-y +z@k--N (-N 4- z )k (0 4- 1 4- X 4- y 4- Z N)k (--X Z k 4- N)l(e, )l(--Ol X )l
S

k=o /=o k!l!(l+x+z-N)k(l+y+z-N)k(-a-x-y-z+N-k)t

where

N-y-. (-N + y),+. (-N + x e ).+ (-p k)E
p=o (p+k)!(-N-e)p/,(N-x + l +e-p-k)t

(4.4)

(-N + y )k(-N + x e )_,
(_ 1)+ N-XY’- g (-N + y + k)e(-N + x e + k l)e

(-N e ) =oZ" (-X- e + k )p!

(-N + y)(-N + x .)k_l(--X 4- l)N_y_k(_ 1)+
(-N-e):(-N-+k)N_y_:

(-N + y). (-N + x e )_,(-x + l)N_y_k
(_1)+’

(--N--e)N-y

by the Chu-Vandermonde theorem (2.9).
Using (4.4) in (4.3) and simplifying, we finally obtain

N-y (-N + x e )k (-N + y )k (-N + Z )k (a + 1 + X + y + Z N)k
K(x, y,z)=G E

--o (1 + x + y N) (1 + x + z N), (1 + y + z N),k
(4.5)

[ -x-z-k+N, e,-a-x, N-x-y-k ]4F3 N-x + 1 +e-k, -x, -a-x-y-z +N-k

where

(4.6)

y!z!(N-x)!F(y + 1 + e)F(z + 1 + e)(a + 1 + y)x+z-N
/ x!\ 2 (ce+I--N--e)N

C -..) (x + z N)!(z + y N)!(y + x N)!F(N x + 1 + e )F(N + e + 1)
(o + 1 +N-z)x+z-N(a + 1)z(a + 1)-z

The special case of e 0 gives

(4.7)

where

(4.8) Co

K(x, y, z )=- K (x, y,z; a, -N -1, N)

4F3[X-N, y-N,
Co

l+x+y-N,
z-N. a+l+x+y+z-N]
l+y+z-N, l+z+x-N J’

(xN-z N-x N-y (a + 1--N)N (a + 1 + Y)x+z-N
(ce + 1)z(a + 1)-z (o + 1 + N-Z)x+z-N"

If a V+N-1, V a positive integer >_-2N as is the case in coding theory
application [12], then K vanishes if x + y + z > V and is evidently positive if x + y +
z <- V. The kernel in (4.7) is essentially the same as Pii in Sloane [27, p. 244].

For a nonintegral a <-N- 1 the nonnegativity of K is not at all obvious in (4.7).
This is because while a + 1 + x + y + z N itself is negative when x + y + z _<- 2N, the
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Pochhammer product (a + 1 + x + y + z --N)k may start having positive factors for
some k, where N [(x + y + z)/2] < k <_- N y.

Since the 4F3 series in (4.5) is balanced, we can use (3.10) once again to transform
it to another balanced 4F3. There are, of course, many possibilities. But the form we
finally wish to achieve is obtained by applying (3.10) in two stages. First, we employ
the correspondence m+-x+z+k-N, +-N-x-y-k, rl--e, +--a-x, u---
N x + 1 + e k, v -x and w N a x y z k. In the second stage we use the
correspondence m x + z + k N, " -a x, r/N x + 1 k, ( 1 + y + e, u
1 + y x, v N x + 1 + e k, w 1 a x z +N k. Simplifying the resulting
Pochhammer products we finally obtain

(4.9)

u-y (y N), (a -/3 + x + y + z 2N),
K(x, y,z)=D 2, =o k !(1 + x + z N),

4F3[I+a+Y’ l+y+e, k+y-N, N-x-z-k]a-/-N+y, 1+y-x, l+y-z

where

V

(4.10) (xN) (yN) (zN)

X Z

y!(x + y N)!(y + z -N)!

r(y+l+e)(a+l-N-e) (a--N+y)x+z-
F(N + l + e )(a + l)z (a + l)u_z (a + 1 + N-z)x+z_"

In (4.9) and (4.10) we have exhibited the explicit dependence on a-/3 at places
where it plays a crucial role.

It can be seen from the above expressions that a necessary condition when a,

fl <-N for the nonnegativity of K(x, y, z) is that a <=/3 <-N. For, suppose y N,
x + z N + 1. Then, from (4.9) and (4.10) we obtain

[ (xN)]- (a+l--N--e)N
K(x,N,N+I-x)= x2 x>l.

(cg + 1)N+I-x(C + 1)_ a + x

This is negative if fl < a <-N. For a nonnegative representation of K(x, y, z) it is
therefore necessary to restrict to the region a _-</ <-N.

Apart from the factor De in (4.9) the expression that seems to control the sign
pattern of the terms of the finite series is (a-fl + x + y + z- 2N)k. Accordingly, we
shall distinguish between the two cases: (i) x + y + z <_- 2N and (ii) 2N < x + y + z _-< 3N.

Case (i). x + y + z <-2N. For a =< fl <-N the 4F3 function in (4.9) is obviously
positive under the restrictions on x, y, z stated before. Also, if/3-a is a nonnegative
integer the series for K(x, y, z) is a series of nonnegative terms and hence the kernel K
is positive since De is. However, the situation is not so straightforward if fl-a is not
an integer. First, let us split the series in (4.9) into two parts:

N-y M N-y

k =0 k =0 k =M+I

where M N- [(x + y + z)/2]. The first series on the right is obviously positive. The
terms in the second series are also positive in the range/3-a _>-N-1, fl <-N. We
need, therefore, to consider the second series only in the region 0</3-a < N-1.
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Even in this region the product (a- +x + y + z- 2N)k has positive factors only
when k _-> 2N x y z +/ a + 1. Thus the nonnegativity of K(x, y, z) hinges on
the sign of the series

r_y (y N)(a -/3 + x + y + z 2N)
k=2M+[b] k!(1 +X +z--N)k

4F[l+a+y, l+y+e, N-x-z-k, k+y-N]
a-[3-N+y, l+y-x, l+y-z

(4.11)

(y N)2M+tb](Cg + X + y + Z 2N)2M+tb
(2M + [b])!(1 +x + z--N)2M+[b]

r-y-2t-[bl (y N + 2M+ [b])([b]- 6 + 2tZ)l
,=0 (2M + [b] + 1)t(1 +x +z-N+2M+[b])l

4F3[l+a+y, l+y+e, N-2M-[b]-x-z-l,
a--N+y, 1+y-x, l+y-z l+2M-N+[b]+y],

where b =/3 a and tx 0 or 1/2 according as x + y + z is even or odd.
While the factor in front of the series is positive the terms of the series itself have

alternating sign with the first term positive if z -1/2 and the first two terms positive if
/x --0. However, if we denote the 4F3 function by al then

N-y-2M-[b]-I

at al+l 2 . m

(1 +a + y).,(1 + y + e),.(1 +2M-N+[bl+ y + 1)m-1
(N-2M-[b]-x-z-l),,,-1

m!(a -/3 -N + y),. (1 + y X)m(1 + y --Z),

x+y+z+l N}l+2M+[b]+
2

l-> 0. Since the expression within the curly brackets is positive the series on the right
has only nonnegative terms. Therefore, at-> a+a, >-0. Also,

O<-N-y-2M-[b]<l+x+z-N+2M+[b] and 2+[b]-b<l+2M+[b].

Hence the terms in the alternating series above are; monotonic decreasing. The series
on the right of (4.11) is, therefore, positive.

Case (ii). 2N < x + y + z _-< 3N. If e > 1 and/3 a is a nonnegative integer, then,
because of the factor (a -/3 N + y)+z_r in D, the kernel K(x, y, z) vanishes when
x + y + z 2N =>/3 a + 1. On the other hand, if/3 a is still a nonnegative integer but
0 < x + y + z 2N =</3 a then the terms on the right of (4.9) are nonnegative and
hence K is positive.

However, the situation changes radically in/3-a is not a nonnegative integer. In
this case K(x, y, z) remains positive for all permissible values of x, y, z if /3-a >
N- 1,/3 <-N, as can be verified directly from (4.9) and (4.10). For 0</3-a <N- 1
let us consider the example: x y z N,/3 -N- 1. Then from (4.7) we obtain

K(N,N,N;a,-N-1, N)=

This can be either positive or negative.

(a + 1 N)r (a -/3)N
(a + 1)N (a + 1
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We summarize the results of this section in the following theorem:
THEOREM 2. Let x, y, z be any three nonnegative integers satisfying the inequalities

(4.12) O<-_z<-_x<-y<=N, x+z>N.

Then:
(i) /f fl < a < -N, some of the coefficients E(x, y, z; , , N) are negative.
(ii) If <= fl <-N and fl- is a nonnegative integer then E is nonnegative. In

particular, E vanishes if x + y + z 2N >= fl + 1.
(iii) If fl- is not an integer and < <-N then E is positive for all values of

x, y, z satisfying (4.12) provided > N- 1. When 0 < fl <N- 1,
positive in the region x + y +z <=2N but can have any sign when
x+y+z<=N.

Note. At the time of writing this paper the author was unaware of Professor
Charles F. Dunkl’s recent work containing a double series representation of
K(x, y, z). His results, obtained by group-theoretic methods, agree with ours in the
special case/ -N- 1, but for/ +N + 1 -< 1 his double series is not quite the same
as ours. His double series is also expressible in terms of 4F3 functions, but unlike our
results, they are not balanced.

Professor Dunkl’s paper, entitled Spherical functions on compact groups and
applications to special functions, is to appear in the Proceedings of Rome Conference
on Harmonic Analysis, March 1975.

Acknowledgment. I would like to thank Professors R. Askey and G. Gasper for
bringing Dunkl’s paper to my attention. Thanks are also due to Professor Dunkl, who
sent over a preprint of his paper as well as some valuable comments.
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INTERPOLATION AND APPROXIMATION OF
GENERALIZED AXISYMMETRIC POTENTIALS*

ALLAN J. FRYANT’t"

Abstract. Using a function theoretic approach, this paper deals with the uniform approximation of
generalized axisymmetric potentials (GASP’s) by GASP polynomials. Analogues of the Runge and Walsh
polynomial approximation theorems are obtained. Approximation of a GASP which is regular on the
closure of a region by GASP polynomials interpolating on the boundary is considered, where conditions on
the choice of interpolation points which yield the interpolants uniformly convergent at a geometric rate are
found. Solution of the Dirichlet problem by GASP polynomial interpolation to the boundary values is
discussed, and a constructive solution given in the case of an ellipse.

1. Introduction. Solutions of the equation

02U 02U 2tx Ou
(1.1)

Ox2 Oy2 y Oy

where/x is a nonnegative real number, are called generalized axisymmetric potentials
(GASP’s). In the case where 2/x n- 2, n 2, 3, , these functions are harmonic in
R n, i.e. satisfy Laplace’s equation

---+ +-;-= O,0x 0x2

with x Xl and y--(x +... +x)1/:. The case of noninteger values of 2/x was first
extensively studied by Weinstein, and was motivated by a number of applications (see
[22] and references included there). For example the well-known Tricomi equation
can be transformed into (1.1) with/z .

Let 12 be a region in the x, y-plane which is symmetric with respect to the x-axis.
We say that u is a GASP which is regular in 12 if u C2(12), satisfies (1.1) for all
(x, y) 12, y 0, and Ou(x, 0)/0y 0 on the intersection of 12 with the x-axis. Such
functions are necessarily symmetric, i.e. satisfy u(x, y)= u(x,-y). We say that u is
regular on cl (12) if u is regular in some region 12’= cl (12).

In developing approximation theoretic results for GASP’s, Gilbert’s A, integral
operator [10, pp. 165-169] will be used as a principle tool. The A, integral operator
transforms analytic functions of a single complex variable to GASP’s:

(1.2) u(x, y)= A,(f) . ILf(Z)(’-- ’-l)2tx-l’-i dF,

where z x + iy(+ ’-1)/2, L {e i. 0 _<-- b _--< zr}, and c, lie (Sr- st-l):"- sr-1 dr]-1-
If u is a GASP which is regular in a neighborhood of the origin, it has the

"ultra-spherical harmonic" expansion

F(2/x)F(n + 1)a.r.C (cos 0),u(x,y)=
=0 F(n+2/x)

where (x, y)= (r cos 0, r sin 0), and C are the Gegenbauer polynomials. The cor-
responding A. associate is then f(z)= .=o a.z". It should be noted that the A.

* Received by the editors September 20, 1976.
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associate of a GASP is the analytic continuation of its restriction to the axis of
symmetry, i.e. f(z)= u(z, 0).

The operation of "taking the real part" provides a transformation from analytic
functions of a single complex variable to harmonic functions in two dimensions, and
thus allows the development of an approximation theory for harmonic functions which
is based upon results from constructive function theory (see [18]-[20]). In a similar
manner the A, integral operator will be used to transform results regarding the
polynomial approximation of analytic functions to corresponding approximation
theoretic results for GASP’s. Uniform convergence will be considered throughout the
paper, where for a given region 11, I1" will always denote the uniform norm over
cl (12). A region will be called axiconvex if x + iy f implies x + iAy 11 for every
A el-l, 1].

2. GASP polynomial approximation. For convenience we express rnC (cos 0) in
rectangular coordinates, i.e. define C (x, y) rnC’, (cos 0). C (x, y) is a homo-
geneous polynomial of degree n in x, y and satisfies equation (1.1). A GASP poly-
nomial of degree n is then a sum of the form k--0 akC (x, y), where an -0.

Using the A,, integral operator, we first obtain a Runge theorem for GASP’s as
an immediate consequence Runge’s function theoretic result.

THEOREM 2.1. Let f be a bounded axiconvex region and u be a GASP which is
regular on cl (). Then there exist GASP polynomials qn such that q, --> u uniformly on

Proof. Gilbert has shown [10 pp. 177-179] that a point (x, y) is a singularity of a
GASP u(x, y) if and only if x+iy is a singularity of its A associate. Thus the
axiconvex regions of regularity of u and its A associate f coincide (this later result
has also been obtained by Erd41yi [8]). Thus f is analytic on cl (fl), and by Runge’s
theorem there exist polynomials p, which converge uniformly to f on cl (f). Let
q, AN(p,). Then qn is a GASP polynomial (of the same degree as Pn), and for every
(x, y) 6 cl

iu(x, y)-qn(x, y)l=lA.(f-p.)l

(_1)22--ce [f(x + iy COS t)-p,(x + iy cos t)](sin t)2tz-1 dt

Therefore Ilu q.II IIZ- p.ll- 0.
We next show that the approximating polynomials can be chosen so as to

converge at a geometric rate, and determine the maximal degree of this convergence.
THEOREM 2.2. Let 12 be a bounded axiconvex region, and ck be the conformal

mapping of 12 onto the exterior of the unit disk, with ch(c) o. Let u be a GASP which
is regular on cl (). If to is the largest number for which u is regular interior to
Fo {z" Ich(z)l p}, then for every R where 1 < R < p there exist GASPpolynomials qn
of degree n such that

(2.1) IlU qnll <= M/R ",

where M is a constant depending only on R. Further this degree of convergence need not
obtain for R > p.

Proof. Since u is regular on cl (f) it follows that p > 1. Further, since u is regular
interior to Fp, its A, associate is also analytic on this region. Thus for 1 < R < p there
exist polynomials pn of degree n such that Ilf-p.ll<--_M/R , where M is a constant
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depending only on R [20, p. 79]. Defining qn A,(pn) and arguing on the continuity
of the linear operator A, as in the preceding theorem then yields (2.1).

To show that this degree of convergence need not obtain for R > p, consider the
case where f= D, an open disk of radius r centered at the origin. Then
{z" Izl rp}, and since the axiconvex regions of regularity of u and its A, associate f
coincide, Fp is the circle of least radius which is centered at the origin and passes
through a singularity f.

Suppose that for some R > p there exist GASP polynomials q, of degree n
satisfying (2.1) where II" is the uniform norm over cl (Dr). Let p, A, (q,), and let
r’ < r be the chosen sufficiently large so that Rr’> rp. Then for z

(u q,) I [u(r, ) qn(r, )]K(z/r, ) d,f(z)-p(z)=A,
3--1

where

/xF(/x)222- 1(1 2)"-/2(1 z2/r2)
K(z/r, )=

7r[1-2(z/r)+ z2/r2]’+

(For a development of this integral representation of the inverse transform A1, see
[10, p. 173].) Now K(z/r, ) is uniformly bounded for all z 6Dr’, so6 [-1, 1]. Thus

f p, <-- kllu q, <- kM/R ",

where k is a constant independent of n. But since p, is a polynomial of degree n, this
degree of convergence implies that f can be analytically continued throughout the disk

Izl < Rr’ (see [17, p. 21]). Since Rr’> rp and f has a singularity on the circle Izl- w, we
have a contradiction.

Using the A, integral operator, a great number of results regarding various types
of polynomial expansions of analytic functions can also be transformed to analogous
results regarding GASP’s. For example the A, transforms of the Faber polynomials
yield GASP polynomials which retain the usual expansion properties associated with
the Faber polynomials. Consider a bounded, simply connected region f, where
w 4(z) z +ao+az- +... maps the compliment of 1 onto the circular region
Iwl > and let q 4-1. The Faber polynomials f,(z) associated with the region are
defined by

,’(t______) Z f(z)U", [17, p. 130].
tp( t) z

For a bounded axiconvex region 1, we define the GASP Faber polynomials u, as the
A, transforms of the Faber polynomials for f:

u,(x, y)= A,(f,)= a, L(x + iy cos t)(sin t)2t-1 dt.

Appealing to the well known expansion properties of the Faber polynomials [17, p.
138], we obtain the following result immediately.

THEOREM 2.3. Let f be a bounded axiconvex region, and w=th(z)
z + ao + alz- +... map the compliment of 12 onto the circular region w > p, and let
q= ch-1. I] u is a GASP which is regular on the region BR bounded by FR
{z: Ib(z)l R}, then u can be expanded into a series of GASPFaber polynomials

(2.2) u(x, y)= Z a,u,(x, y)
n=O
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where

Further,

a,
zl=,

u(q(z), O)z dz, p<r<R.

lim sup lanl 1/n= 1/R,

and the series (2.2) converges uniformly on compact subsets of BR.
We note that for a disk centered at the origin, the GASP Faber polynomials are

C(x, y)=r"C(cos 0), and (2.2) becomes the usual "ultra-spherical harmonic"
expansion of u on the disk.

A region will be called star-shaped if it is convex with respect to a point on the
x-axis. Using the result of Theorem 2.1 and the fact that GASP’s are invariant under
homothetic transformation yields the following analogue of Walsh’s polynomial
approximation theorem.

THEOREM 2.4. Let 1 be a bounded, axiconvex, star-shaped region, and u be a
GASP which is regular in 12 and continuous on cl (). Then there exist GASP poly-
nomials q, such that q, - u uniformly on cl (1).

Proof. Without loss of generality, assume 1 is star shaped with respect to the
origin. Express u in polar coordinates u(r, 0). Since GASP’s are invariant Under
homothetic transformation, the functions

u,(r, O)= u r, n= l, 2,
+1

are GASP’s which are regular on cl (f). Let e > 0. Since u is uniformly continuous on
cl (fl), there exists an n such that Ilu- u,[I < e/2. Further, since u, is regular on cl (),
Theorem 2.1 provides a GASP polynomial qk for which Ilu,-qkll<e/2. Thus

3. Approximation by GASP polynomial interpolation. We next consider the
uniform approximation of a GASP which is regular on the closure of a region by
GASP polynomials which interpolate it at points on the boundary.

For C. {(Xk, Yk)}=0 we define

V(Cn) det [C (x/, y/)], k,/" 0, 1, , n,

and

V(x, y; C.)= V(C.)l(xk,rk)=(x,r).
Let f be a region, u be any function defined on 0f, and C. 0. If V(C.) 0, then
clearly

L,(x, y; C,; u) U(Xk, Yk)Vk(X, y; C,)/V(C,)
k=0

is (for a given value of/x) the unique GASP polynomial of degree n which interpolates
u at the points (Xk, Yk), k O, 1,’’’, n.

We first consider the case of interpolation on a disk, obtaining an Hermite type
formula for the error in approximation by GASP polynomial interpolants. For con-
venience results are stated for the unit disk, D1 {z: Iz] < 1}. Note that if u is a GASP
whichis regular on cl (D1), then u has the expansion u(x, y) Ek--0 akC (x, y), where
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lim sup [ak[;1/k 1/R, R > 1, and the series converges uniformly on compact subsets of
{z-Izl < RI. Also if C,, {(x", Y")},=0 c OD1, and x" -- (" for k ], then

v(c,)o.
To 3.1. Let u(x, Y)=k=0 akC(x, y) be a GASP which is regular on

" for k . en on the unitcl (DI), and C. {(x") ym)}=0 = OD1, where x")
xi

circle x2 + y 1,

1 Iv w.(x)h(()
u(x, y)-L.(x, y; Cn; u)=/ w.(()(-x)

where

w.(r) I-I (sr- x"), h(sr) u(sr, /1 sr2) Y akC (),
k =0 k =0

and y is any simple closed rectifiable curve about [-1, 1] lying within the ellipse
En ={(R ei + R-1 e-i*)/2" 0_--< b _--< 2rr}, where lim sup la, 1/ 1/R.

Pro@ Since C (x, y) C", (x/r), re xe + ye, we have C (x, c] xe) C (x),
and thus

(3.3) u(x, /1 x2) Y a.C. (x).
.=0

With the use of Bernstein’s bound on the growth of polynomials in the complex plane
11, p. 42], the well known inequality

implies

Since

F(n +2ix)
--<F(n + 1)r(2)’

r(n +2/x)
(st)i=<F(n + l)F(2tx)

xe{-1, 1],

R", SteER.

lim[ F(n+2/x) ]l/n,-, r(n + )r(ztz)
1,

this implies that the function given by (3.3) can be analytically continued throughout
the region 12R interior to ER, for the series ,=0 a,C (r) converges uniformly for "restricted to compact subsets of 12R. Further, since L,(x, y; C,; u) is a polynomial of
degree n in x and y and is even in y, L,(z, z2; C,; u) is a polynomial of degree n
in z, and interpolates h(z) u(z, /1 ze) at the points ("

xj [-1, 1], ]=0, 1, , n.

Thus by the Hermite remainder formula [20, p. 50],

1 Iv w.(z)h()
d,u(z, /1-zZ)-L.(z, x/1-z2; C.; u)=/ w.()(-z)

where 3’ is a curve lying within ER and z is interior to y. In particular if y is a curve
about [-1, 1], we have on the circle x2 + y2_ 1,

1 I, w,(x)h(()
d.u(x, y)-L.(x, y; C.; u) =/ w.(()((-x)

Since a nonconstant GASP which is regular in a region cannot attain a maximum
at an interior point 14], the result of this theorem provides a bound on the difference
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u- Ln throughout the disk. That is,

1 II wn(x)h()d(3.1) [lu L, -< max
xt-,, --g w.()(- x)

By using this bound it is possible to determine necessary and sufficient conditions on
the choice of interpolation points C, c OD1 which yield GASP interpolating poly-
nomials that converge uniformly on cl (91). The following two theorems were first
obtained for axisymmetric harmonic functions in R3 (that is, solutions of the equation
(1.1) in the case/x ), [9]. Since the results for the general case > 0 follow from the
bound (3.1) in an entirely similar manner, we omit their proofs here.

() [ork Also letLet C, {(xm ym)}=o = 0D1, where xm xiTHEOREM. 3.2.
.)W.(X)= H=0 (X--X ), and 0.(z)= 2w.(z)/("+)/(z), where (z) z + (z2- 1 and

the branch is chosen so that 4()=. Then

L.(x, y; C.; u) u(x, y)

uniformly on cl (Da) for every GASP u which is regular on cl (D1) g and only g either

(i)

uniformly on compact subsets of C[-1, 1] (C extended complex plane), or

(ii) lim M/"+= 1/2,

where M, max [w,(x) I, x [-1, 11. Further, in this case IIu-L.II<M/R, where R is
any number greater than 1 and less than the radius of the largest disk centered at the
origin in which u is regular, and M is a constant depending only on R.

() for k j. ThenTHEOREM 3.3. Let C, {(x(n) yn))},=0 C OD1, where x(") x

L,{x, y; c; u)--> u(x, y) uniformly on cl (B1) for all GASP’s u which are regular on
cl (B1) if and only if ]:or every (Xo, y0) such that xg + y > 1, the GASP interpolating
polynomials L(x, y; Cn, Vi), ]= 1, 2, converge uniformly on cl (B1) to the solutions of
the respective Dirichlet problems having boundary values

1
V,(x, y)=

(x Xo) + y
and

X
X
2 2Vz(x, y)

(x Xo)2 / y’
/ y 1.

Thus, for example, the interpolants converge uniformly at a geometric rate for
the following choices of Xkn), k 0, 1, 2," n.

1) Vandermonde points" Xk chosen to maximize the Vandermonde determinant

IV(Xo, x2,’’-, x,)] Idet [1, Xk, X,,.’’,
over the interval [- 1, 1].

2) Fe]er points" x("= ck(zk), where (z)= (z + z-1)/2 and zk are uniformly dis-
tributed (see [17, pp. 22-28]) points on the unit circle.

3) Chebyshev points" x (") cos [(2 k + 1)Tr/(2n + 2)], the zeros of the Chebyshev
polynomials.

Appealing to the result of Theorem 2.2, we next determine a condition on the
choice of interpolation points which yields uniform convergence in the case-of an
arbitrary bounded axiconvex region.
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THEOREM 3.4. Let be a bounded axiconvex region, and C* {(x(n), y(n))}=0
maximize the determinant lV(C,) over Of. Then

lim L.(x, y; C*. u)= u(x, y)

uniformly on cl (f) for every GASP u which is regular on cl (). Further, the con-
vergence is at a geometric rate, i.e.

where M and R are as given by Theorem 2.2.
Proof. First note that since f is a bounded axiconvex region, for every n,

V(C*) 0. (This is easily proved by induction and appeal to the maximum principle
for GASP’s). Therefore given any n + 1 values ak, k=0 ak Vk(X, y; C* )/V(C* is the
unique GASP of degree n which assumes these values at the points (x("), y(")),
k 0, 1,. , n. In particular, if p,(x, y) is a GASP of degree n,

L,(x, y; C*, p,)=-p,(x, y).

Let q, be the GASP polynomial approximants to u given by Theorem 2.2. Then
for (x, y) cl (),

lu(x, y)-L,(x, y; C*,

L u(x,, y,)
V,(x, y; C*)

=o v(c*. L q.(x,, y,)
Vk(x, y; C.*)

,=o v(c* +q.(x, y)-u(x, y)

--<][u-q.ll(l+ )V(x, y; C*. )/ V(C*. )I).
k=O

Since

max V(C,)I max V(C,)I
Cn el (f) Cr, Of

[Vk(X, y; C* )/ V(C* )I <= 1 for every (x, y)cl (12). Therefore

Ilu L.II =< (n + 2)llu q.II =< (n + 2)M/R".
4. Remarks concerning the Dirichlet problem. Over the past 15 years the con-

structive solution of the Dirichlet problem for Laplace’s equation in two dimensions
by harmonic polynomial interpolation to the boundary values has been extensively
developed (see [1]-[6], [13]). This success suggests the possibility of solving the
Dirichlet problem for more general elliptic equations by interpolating to the boundary
values with polynomial solutions of the equation. The above results regarding the
uniform convergence of GASP polynomial interpolants to a GASP which is regular on
the closure of a region should be regarded as a first step in this direction. Before
closing, we provide here some initial remarks concerning such a constructive solution
of the Dirichlet problem for GASP’s.

The solution of the GASP Dirichlet problem for a bounded, axiconvex region f
having a smooth boundary always exists and is unique [16]. That is, if v C(8),
v(x, y) v(x, -y), then for any/z > 0 there exists a unique GASP u which is regular in
f, continuous on cl (12), and equals v on Of. Thus letting CS(OI2)= {v: v C(OI2), and
v(x,-y) v(x, y)} we have the following result.

THEOREM 4.1. Let 1 be a bounded axiconvex star shaped region having a smooth
boundary. Then the GASP polynomials are dense (uniform convergence) in CS(OI2).
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Further if v CS(Of) and {q,,} is a sequence of GASPpolynomials uniformly convergent
to v on 0, then {q,} converges uniformly on cl () and lim q, provides the solution of
the corresponding Dirichlet.

Proof. The density is an immediate consequence of Theorem 2.4 and the exis-
tence of the solution of the Dirichlet problem. The latter claim is an immediate
consequence of the existence of the solution of the Dirichlet problem, and the
maximum principle.

Using the result of this theorem, solutions of the Dirichlet problem on an ellipse
by GASP polynomial interpolation to the boundary values can be obtained as
immediate consequences of well known results regarding the convergence of poly-
nomials interpolating a continuous function on an interval. Let E be an ellipse having
an axis (either major or minor) along the x-axis. We suppose (for convenience) that
this axis is the interval [-1, 1]. Let v(x, y) be a continuous function defined on E
which is even in y, and Cn {(xn), ym)},=ocEwherexm x(,n, fork Cj. Then E has
equation x2+y2/b2= l, and for (x, y)E, v(x, y)-v(x, bl-x2). The. function
v(x, b/1-x2) is continuous on [-1, 1], and since L,(x, y; C,; v) is a polynomial of
degree n in x, y, and even in y, L,(x, bx/1- x 2", C,’, v) is a polynomial of degree n in x,
and interpolates v(x, bx/1 x2) at the points x") [-1, 1],/" =0,..., n. Further, by
Theorem 4.1, the uniform convergence

(4.1) L,(x, b/1-x2; Cn; v)- v(x, bx/1- x2), x [-1, 1],

is sufficient to insure that the GASP interpolating polynomials L,(x, y; C,; v) con-
verge uniformly on the closure of the region interior to E, with limit the corresponding
solution of the Dirichlet problem.

The convergence (4.1) has been perhaps the most extensively studied problem in
the theory of interpolation and approximation, yielding here a great number of
theorems regarding the constructive solution of GASP Dirichlet problem on an
ellipse. For example, appealing to the result of Bernstein [15, p. 50] we have the
following.

THEOREM 4.2. Let f {(x, y):x2+yz/b2< 1}, and v(x, y) be even in y and
satisfy a L(pschitz condition of any positive order on 012. If C, {(Xk), yk)"+1
where

2k-1Xk") COS
(2n + 2-- r,

then lim,_oo L,(x, y; C v) provides the solution of the corresponding Dirichlet problem
and the convergence is uniform on cl ().

Proof. It suffices to show L, v uniformly on 0. Since v(x, y) satisfies a Lip-
schitz condition of order a > 0 on 0, f(x)= v(x, bx/1- x2) satisfies a Lipschitz condi-
tion of order a/2 on [-1, 1]. Thus by Bernstein’s theorem, the polynomials of degree
n which interpolate f at

2k-1Xk) COS
(2n + 2)

r, k 1, 2,. , n + 1,

converge uniformly to f on [-1, 1]. But these are precisely L,,(x, bx/1-x2; C,; v).
The reader may find it of interest to compare this result (and others which can be

obtained similarly) with that of Walsh [21] regarding the solution of the Dirichlet
problem on an ellipse for Laplace’s equation in two dimensions by harmonic poly-
nomial interpolation to the boundary values.
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ASYMPTOTIC BOUNDS OF SOLUTIONS OF THE FUNCTIONAL
DIFFERENTIAL EQUATION x’(t) = ax(At)+ bx(t)+f(t), 0< A <1"

ENG-BIN LIM

Abstract. In this paper, the author studies the asymptotic bounds of the solutions of the function
differential equation

x’(t) ax(At) + bx(t) +f(t)

where 0 < A < 1, a 0 is a complex constant and b 0 is a real constant. His results generalize that of Kato
and McLeod [4].

1. Introduction. The objective of this paper is to study the asymptotic bounds of
the solutions of the nonhomogeneous functional differential equation

(1.1) x’(t) ax(At)+ bx(t)+ f(t)

where 0< A < 1, a 0 is a complex constant, b 0 is a real constant and f(t) is a
continuous function defined on the interval [0, o). The corresponding homogeneous
equation

(1.2) x’(t) ax(At)+ bx(t)

arises in !-6] where Ockendon and Taylor study the motion of a pantograph head on an
electric locomotive. Equation (1.2) has been discussed by Kato and McLeod [4].

Throughout this paper we use the notations: c In A < 0 and K (In Ib/al)/c. We
summarize our results in the following theorems.

THEOREM 1. Let b < O. Assume that f’ exists. Let f(t) O(t) and f’(t) O(t-1)
where a is a real constant. Then:

(i) If <, every solution of (1.1) is O(tK) as t-c.
(ii) If a , every solution of (1.1) is O( In t) as t-.
(iii) I[a > , every solution of (1.1) is O(t) as t-o.
THEOREM 2. Let b >0. Let f(t)= O(t). Then every solution of (1.1) is O(e bt) as

cx3.

2. Preliminaries. By a solution of (1.1) we mean a complex-valued continuous
function x(t) defined in some subinterval of [0, c) and satisfying (1.1). Let t0>0 and
suppose that the solution x(t) of (1.1) is known for [At0, to]; then x(At) is known for

[to, A -1to] and the solution can be extended uniquely to the interval [to, A -1 to] by
solving (1.1) and requiring that the solution be continuous at to. By continuing this
process we see that the solution exists for all t _-> to. Thus, given a continuous function
q(t) defined in the interval [At, to], there is a unique solution x(t) of (1.1) for t-> to
satisfying the condition x(t) q(t) for t [At0, to].

DEFINIWION 1. Let x(t) and g(t) be complex-valued functions defined on [0, o).
We say that x(t) is O{g(t)} as tc if there are constants K>0 and N>0 such that
Ix(t)l--< glg(t)l for t-> N.

LEMMA 1. Let c < O, y > O, and be a complex number such that Ill erc. Let
W(s) be a solution of the difference equation

(2.1) W(s)- lW(s + c) h(s)

* Received by the editors September 9, 1976, and in revised form February 22, 1977.
t School of Mathematical Sciences, University of Science of Malaysia, Minden Penang, Malaysia.
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916 ENG-BIN LIM

where h(s) is a continuous function. Suppose that

(2.2) [h(s)[ K e-ts for s >-_ So

where So, K1 and [3 are positive constants and W(s)l <- g= for s [So / c, So] where K2 is
a positive constant. Then there is a constantMdepending on 3’, , c, So, K1, and K2 such
that

(i) [W(s)[<=Me-S fors>-so, if y<fl.
(ii) W(s)[ _-< Ms e-s for s >- So, if 3’ ft.
(iii) W(s)[ <-Me-s for s >- So, if 3" > .
Proof. Let s-->So. Then there is a nonnegative integer n and a number s1 e

[So, So- c] such that s Sl nc. It is easy to show by induction that (2.1) implies

(2.3) W(sa-nc) l"+lW(sa +c)+ h(sl-ic)l"-i,
i=0

(2.4) [W(s)I<=K2 e("+ -[-- g e-t*+"c e(-)i.
i=0

Case (i)" 3" </3. Since c < O, the series

e(-v)ic
i=o

is convergent. Let i=o e(-v)ic K3. Then by (2.4),

W(s)l--< Kz e "Yc+’Sl-TS -- K1K3 e-51

K2 eo- + KIK3 e-s.
Let M1 K2 e*o+ KIK3. Then W(s)[ 2M1 e-r* for s g So.

Case (ii)" T -From (2.4),

[W(s)IK2 e-+K1 e-V*x+v"(n+ 1)

ge eS-s + gl e-S+Vsx-vS( sx +c-s)c
K1 K1<=,V e-O-’* +--so e-’* +- , e

2KI<= K2 eo-+_ s e-.
Let M2 Kz eVS/So + 2Ka/[cl. Then W(s)l <-- 2Mzs e-vs.

Case (iii): 3" >/3. From (2.4), we obtain

(2.5) W(s)l -< K2 evs-v + K1 e-tsl+v"c e(t-v)’.
i=0

Let K4 1/(e(-)c- 1). Then

W(s)l <= K= e-O- / KIK4 e-S+"C[e(-)("+a)c + 1]

<--K2 es-vs + K1K4 e(t3-)c-ts + K1K4 e(-13)sl-s.

Since s <= So-C and 3" >/3, therefore

W(s)l--< K2 e*-* /gg4 e(a-)c-* / glg4 e---.
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Let M3 K2 e TM + KK4 e(v-)(s-c). Then

W(s)[ <- 3M3 e-s for s_-> So.

The proof of the lemma is completed by taking M 2M1 + 2M2 + 3M3.
3. Proof of Theorem 1. Let 6 > max {a, K}. Let e s, W(s) t-x(t). Then

x(t) eSW(s), and

dx [ eS sdW]-(t)= W s + e -s _l
e

Substituting this into (1.1), we obtain

(3.1) dW(s s) e
ds

+ (8 b e W(s) ah W(s + c) + e e-f(eS).

Since f(t)= O(t) there are positive constants Ks and to such that I[(t)l -< Kst for all
t _-> to. Let g(s) f(e’) e-s. Then

(3.2)
Ig(s)l <-- K5 e e-s

Ks e(-) if s ->_ In to.

Equation (3.1) can be written as

d
(3.3) -s [eXp (6s b eS) W(s)] ah eS exp (Ss b eS) W(s + c) + exp (6s b eS) eSg(s).

Choose so_->ln to so large that 6-1/2beS>O. Then 8s-be is increasing for any s
in I,, [so- mc, so-(m + 1)c], rn 0, 1, 2,. . Let

M" max {I W(s)l, s I’}, m O, 1, 2,...,

/3., max {M.,, gs/lbl}, m O, , 2,....

Write -., So-(m + 1)c, m =0, 1, 2,.... Let s I.,+1. Integrating (3.3), we obtain

exp (St- b e t) W(t)ls. ah e exp (St- b e ) W(t + c) dt + e exp (St- b et)g(t) dt.

This can be written as

W(s) exp [(e’ e")b 8(s rm)] W(’r’)

I.+ ah exp (b e 6s) e’ exp (St- b e t) W(t + c) dt

+exp (b es- s) e exp (St- b e)g(t) dt.

Therefore,

W(s)l <= M., exp [(e e")b 6(s

+ M.,lalh exp (b e 6s) e exp (6t- b e) dt

+ Ks e(-)’" exp (b e" 6s) e exp (6t- b e) dt, by (3.2).
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Since 6 > K and lalA a < 131, w have

W(s)] _-< Mm exp [(e* e*m)b 6(s rm)]

+ M.,Ibl exp (b e 6s) e exp (t- b e t) dt

+Ks (_a).= e ,)
ib

e b[exp(b Ss) e exp (St- b e at.

Thus

W(s)l <-_ M,,, exp [(e e")b 6(s ’J’m)]
(3.4)

+ M,,, +]7 e(-)" exp (b e 6s)., Ibl e exp (6t- b e dr.

The integral is integrated by parts to give

]Is[ ,be ) )
d be

(3.5)
L 6 b e

exp (6t- b e + exp (6t- b e
6 b e

dt.

The expression (3.5) is equal to

[( ]1 [ (- )
d be

1 exp(t-be +0 exp(s-be
_be

Due to the choice of So, the O-term in the last expression is uniform in s, 6, So and m.
The above expression can be written as

exp (6t- b et)ls,,,+ 0[6 exp (6s b e s) exp (- r,,,)].

Substituting this into (3.4) we obtain

Thus

+ 0[6 exp (6s b e s) exp (- "rm)] }.

Let r min { 1, 6 a}. Then r > 0 and

W(s)l <- Bm[1 + O(e-r")],

This implies that

S Ira+

Mm+I=<B,[1 + O(e--rr")] and so Bm+I--<B,,[1 + O(e-r")].
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Hence
m-1

Bm B1 I--I [1 + O(e-rri)], m 2, 3,....
i=o

Since ri So-(i + 1)c,

H [1-+-O(e-rri)] H [lFO(erci)]
i=0 =0

Thus the convergence of the infinite product

1-I [1 + O(erci)]
i=0

implies that B,, is bounded for all m. So M,, is bounded for all m, This proves that
W(s) is bounded and x(t)= O(ta).

Differentiating (1.1), we obtain

x"(t) aAx’(At) + bx’(t) + f’(t).

Let 8 be the same constant as above. Note that f’(t)= O(t-). Let

’= (ln Ib/(aa)l)/c.
Then ’ - 1. Thus - 1 > max {a- 1, ’}.

By the above argument, x’(t) O(ta-). Since W(s) t-ax(t) e-a*x(t), therefore
W’(s) 6 e-a*x(t) + e-aSx’(t) e s.

Since x(t)= O(ff) and x’(t)= O(ff-1), W’(s) is bounded. Equation (3.1) can be
written as

(aA] W(s + c)=
1

_[(3.6) W(s)
\ b/ - e W’(s) + SW(s) eg(s)].

Let

1 e_h(s)= [W’(s)+6W(s)-eSg(s)].

Then equation (3.6) can be written as

W(s)- lW(s + c) h(s)(3.7)

where

Aa-

and there are positive constants A, B and So such that

Ih(s)l<-Ae-S+Be-s, s>--_So.

Case (i): a < K. If K < 1 + a, we choose 8 such that < 8 < 1 + a. Then

Ih(s)] <- (A + B) e("-a)s s > So

Let 3’ 8- , /3 8-a. Then y </3. Therefore by Lemma 1, there is a constant M
such that IW(s)l<-Me(K-a)s for s>-_So. Thus x(t)= taW(s) O(eKS) O(H) as t-+oo.
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If K ->- 1 + a, choose 6 K + 1/2. Then ]h(s) _-< (A + B) e-s, s -> So. Let y 6 t<, fl
1. Then y </3. By Lemma 1, there is a constant M such that [W(s) -< Me<K->s for
s => So. Thus x(t) O(t) as ->.

Case (ii)" a . Choose 6 + 1/2. Then Ih(s)l <= (A + B) e-s, s >= So. By Lemma
1, IW(s)l<=Mse->s for s>-so. Thus x(t)= O(t In t) as t.

Case (iii)" a > . Choose 6 a + 1/2. Then Ih(s)l <-- (A + B) e->s, s >- So and y
6->=6-a. By Lemma 1, [W(s)l<-Me-)s, s>-so. Thus x(t)=O(t) as t--> o.
This completes the proof of Theorem 1.

4. Proof of Theorem 2. Equation (1.1) can be written in the form

(4.1) d--td (x(t) e -bt) ax(At) e-bt + f(t) e -bt.

Choose to so large that Abt > c In for t-> to. There is a constant K > 0 such that
f(t)l <= Kt, >- to. Let

’m=tO/A m, m=0, 1,2,...,

I,,=[to/Am, to/Am+l], m =0, 1, 2,

Let " I,,+1 and let M,, sup {Ix(t) e-btl" I,,}. Then Ix(t)l <= Mme Im. Integrat-
ing (4.1) and taking modulus, we obtain

Ix(r) e-bl <- IX(7"m) e-l + lalMm e(A-1)bt dt +K e-bt dt

<-- M,, +M, O(e(x-)b,) +K O(e(;t-1)br’).
Let B,,=max{K,M,n}. Then Ix(-)e-b’[<--Bm[l+O(e(-)b’")]. This implies that
Mm+ <-- Bm[1 + O(e(a-1)b")], and so Bm+ <- Bm[1 + O(e(a-1)b")]. Hence

m--1

B,,--<Bo 1-I [1 + O(e(a-)b")].
i=0

Thus B,, is bounded and so is M,, for all m. Therefore x(t)- O(e bt) as t-+oo. This
completes the proof of Theorem 2.
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MULTILINEAR GENERATING FUNCTION FOR THE
BIORTHOGONAL POLYNOMIAL SETS*

KONHAUSER

K. R. PATIL, AND N. K. THAKARE:

Abstract. The purpose of this note is to obtain a multilinear generating function for the Konhauser
biorthogonal polynomials.

1. Introduction. The polynomials

Z:(x; k)
F(kn+a+ 1) (_l)(n) x

n! y=o j F(kj+a+l)’

1 xi ()()Y(x; k) . (-1)’
s+a+l

r=0 s=0 k

form a biorthogonal system; see Carlitz [1], Preiser [6] and Konhauser [3], [4]. We
shall call Z (x; k) and Y (x; k) the biorthogonal polynomials of the first and second
kind, respectively.

The operational formula

(1.1) exp (tO)[xf(x)] x" 1 tkxk)-("+/kf[X(1 X kkt)-l/k]
where 0 xk+xk/l d/dx, follows from formula (1.9) in Mittal [5] by changing the
variable x to x k.

It is easy to see that
--(a+l+kn)

(1.2) Y+a (x" k)
x

exp (x)O[exp (-x)x+l].

The purpose of this note is to obtain a multilinear generating function for the
Konhauser biorthogonal polynomials.

2. Multilinear generating function.
THEOREM. For the Konhauser biorthogonal polynomial sets {Z(x; k)} and

{Y(x; k)} we have the generating relation

nl,rt2,-..,rtr=0
(m + nl + n2 +" + nr) v’+x (x" k)am+l+rt2+...+n

-[ [U ’Zn (yi S)/(1 + i)sni]
i=1

(2.1) e X{mr}(-(a+l)/k-m)(l+A)

( x )’2
1=0 k x+/

.O;[(a+A+l+l)+m.(l+fl),... (l+fi,)s.

Sr / k Sr /
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where l, is a confluent hypergeometric function of n variables defined by [2, p. 445]

q[a; ba, be,"’, bn; Xa, x2,"’,

(2.2)
fi (xi)miZ ama+m2+"’+mn (bi)m,mi I,

ml,m2,...,mn=O i=1

and .for convenience we have

At=l- ui, r=1,2,3,....
i=1

Proof. Let /(Ul, u2,’", ur) denote the left-hand side of (2.1). Replace ui by
uikx k (i 1, 2,..., r) and use the relation (1.2) to obtain

Ir(UlkX k, u2kxk, UrkX k)

k exp (X)X-(+l+km)om+nl+’’’+nr
tll,2,’"

exp(-x)x fi (uikxk),,. .+ ’Z.; (y,; s)/(1 +/3,)s.,.
i=1

One also has (see Rainville [7, formulas (1), (7), (8) on pp. 132, 133])

"(x" k)t [ a+l a+2 a+sZ =exptoFs -;,,’",
,=0 (1 +a),, s s s

On account of this we now have

k exp (-x)x++mL(ukx, uzkx, ukx)

0 fi exp (uiO)oF,[ i + l ei+2
i=1 S S S

ui exp (-x)x a+ 1,

(+/-o)=exp U 2
i= nl,n2,’" ",nr:O

( l)n+n2+’"+nr

fi [()ni/ s] 00(-1 o+l+l., !(1//3,)., om+"l+"=+’"+"rY, x
i=a i=o l!

Z (--1) l+n’+n2+’’’+nr exp ui x
l, nl,n2,...,nr=O i=

+o+l+k(m+nl+n2+"’+nr)

1! k k
+ m)

nl+n2+’"+nr

i=a /
ni!(l + i)n,

Using (1.1) we observe that the above expression is equal to

/,hi,n2," ",nr=O

"Xa+l+l+(m+nl+nZ+...+nr) k k
m+n+n2+’’’+n"

fi
i=1

+ m)
nl+n2+"’+nr

][ ]
(A+l){-(t+l+l)/k-(m+nl+n2+’’’+nr)}

1 uikx k
ni !(1 + fli).

i=1
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Hence, replacing ui by ui/kx k (i 1, 2,. ., r) on both sides, we get our final result"

L(Ul, u2, ur)= eX(zr)(’+l)(-(+l)/k-m)

(c+A+/+l) ( x )1
+m

nl,n2,’" ",nr=O k nl+n2+"

i=1 [Sa+1] ni(l + i).,

This completes the proof.

3. Particular cases.
1. Put 0, k s 1 in (2.1) to get the relation obtained by Srivastava and

Singhal [8].
2. Put 0, k s r 1 in (2.1) to have a bilinear generating function for the

generalized Laguerre polynomials, namely

(m+n)
n=0 (1 +)L+n(x)L(Y)zn

[=(l+)(1-z) m-lexo +m+l;+l,+l; 1- 1-z

In this context see Erdlyi et al. [2].

elege. The authors are grateful to the referees for inviting their
attention to the work of Mittal and also for various suggestions which led to the
improvement of the paper.
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ON A GENERALIZED EULER-POISSON-DARBOUX EQUATION*

D. W. BRESTERS"

Abstract. Solutions of the following Cauchy problem are obtained by means of Fourier transform
methods:

02U 02U A OU

Ox Ot ot-c u,
i=1

u(x,t)=f(x) att=0.
u,(x, t)= 0

Special cases for the parameters A and c are considered and the regularity of the solutions is studied in some
detail.

1. Introduction. In a previous paper ([3]) the author investigated the Cauchy
problem

02U OU
Au =0

Ot2 Ot

(1.1) U(X, t)=f(x),} att=0,
u,(x,t)=O

oZu/ox andA is aparameter.wherex=(xl, x,),Au=Yi=l
A method was developed which enabled us to obtain solutions for all values of

the parameter A, including the so-called exceptional values A =-1, -3, -5,. . The
results of [3] will be used freely in this paper and for further information the reader is
quite often referred to [3]. The present research is concerned with the solution of the
following problem:

02U OU 2At c
Ot Ot

u (x, t) =/(x), !
u,(x,t)=O J at t=0

where , and c are parameters. This problem was studied earlier by Young [11].
Following Weinstein 10] he first obtains solutions for _-> n. Solutions for other values
of , are then found by means of recurrence relations.

In this paper we use a Fourier method. For , _-> n this was done first by Carroll [4]
(also cf. Carroll and Showalter [5]). He obtained expressions which are identical to
those found in our 2.2. It shall appear, however, that the same method, which uses
Fourier transforms with respect to the space variables only, can give us solutions for
all values of ,, including the exceptional ones , =-1,-3,-5,.... The case in which, -1, -3, -5,. is discussed in 2. The solution will be found as a generalized
function defined on S, the space of testing functions which decrease, together with all
their derivatives, faster than any negative power of Ix as Ix I-, Here Ix denotes the
Euclidean norm /xZ) The variable is considered as a parameter.
We shall need several results on these generalized functions (distributions). Most of

* Received by the editors November 4, 1976, and in revised form September 27, 1977.
? Institute of Applied Mathematics, University of Amsterdam, Amsterdam 1004, The Netherlands.
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them may be found in the well-known book by Gel’land and Shilov [6]. For some
rather special results on Fourier transforms the reader is referred to [2].

In 2.1 we show that for A > n. our distributional solution is regular; i.e. it can be
expressed by means of convergent integrals. We shall show that in this case our
solution is equivalent to the one given by Young. In 2.2 we obtain an explicit form
for the solution for arbitrary A -1,-3,-5,. . Next we show that for c 0 one
obtains again the results of [3] while for , 0 one obtains the solution of a Cauchy
problem for the Klein-Gordon equation. In 2.4 we discuss the regularity of the
solution. Finally, in 3, we give a brief discussion of the solution in case A takes one of
the exceptional values -1, -3,. .

2. Solution of the Cauchy problem.
2.0. General description of the method. The problem under consideration is to

find distributional solutions u (t, x; A) of the initial value problem

I )A u(t,x’A)=c2u(t,x’A),
3t2

(2.1) U (0, X A ) f(x),

u,(O, x; a) o.
As in the case c 0 we perform Fourier transformation with respect to x only. We
obtain

k+c++ a(t,k;a)=o,

(2.2) a(O, k; A) f(k),
a,(o, k; a )= 0

where k (kl," , kn) and k 2 k2 +. + k2,,.
First we construct a solution x(t, k) of (2.2) which satisfies the differential

equation and the initial data

d. (0, k)= ,
0 tx(t,k)=O at O.
ot

Once we have found tx (t, k) the solution of (2.2) is given by

(2.3) t (t, k; A (x (t, k)./(k)
and the solution of (2.1) shall be

u(t, x; A)=F [(x (t, k)] f(x)
(2.4)

Gx (t, x) * f(x)

where F denotes the inverse Fourier transform with respect to k (kl,’’’, kn),
and the symbol denotes convolution with respect to x (xl, , x,) only.

We call Gx (t, x) the "fundamental solution" of problem (2.1). In order to prove
that (2.4) actually represents the solution of (2.1) we shall have to show later on that

(i) G (t, x) is a well defined distribution in S’, the dual of the space Sx contain-
ing testing functions depending on x;
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(ii) Gx (t, x) is twice continuously differentiable with respect to the parameter
for all => 0;

(iii) the convolution product in (2.4) exists for a large enough class of functions
and distributions f(x).

By means of the transformation

(t, k)= t(1-/2h(t, k)

the differential equation in (2.2) becomes a Bessel differential equation which for
h -1,-3,-5,... has the following solutions satisfying the initial conditions
x(t, k)= 1 and (O/Ot)ax(t, k)=0 for t=0:

x(t, k) 2(X-l’/e(A +2 )" {(ke +ce)l/et}(1-x’/eJ’x-l’/e {(ke

+ At(1-x)/2J(l_X)/2 {(k 2 + c2)1/2t}.
Here A denotes an arbitrary complex number which vanishes for h 0. In the case in
which h =-1,-3,-5,. we obtain

_2(x-1)/2
)/2){(k2 + c2)/2t}o-}/2 2)/=t}(t, )=

F((1-a
g(-)/2{(k+c

(.
+Bt(l-X/aJ(l_l/a {(k + c)/t}

where B denotes an arbitrary complex number.
From (2.5) and (2.6) it is evident that we have a unique solution for I N 0 only. It

is also clear that for the exceptional values" of the parameter I we shall have a
solution of a different character. This is due to the appearance of the Bessel function
of the second kind Y(z) in (2.6).

The problem is thus to find the inverse transformF [(t, k)]. In this section we
restrict ourselves to the case in which I -1,-3,-5,.... The inverse transform
mentioned above is then most easily found by considering c as an additional
independent variable.

From the results of [3] we obtain, for I N 0,

_. r((a + 1)/ (t x ---/
(2.7) F21c[Ox(t, k)] (,+1)/2 r((a -n)/2)

where x 2 x +. +x and g is the variable corresponding to c. As a consequence we
have

a. (t, x)=[2’[d, (t, k)]]
(2.8) 1-" r((a + 1 )/2). [ (t x )-.-vl.,

It is easily seen that Gx (t, x) as defined by (2.8) is a well-defined distribution on Sx, the
space of testing functions depending on x. The variable is considered as a parameter.
Consequently we have that our original problem (2.1) will, for A >-0, be solved by

u(t, x; A)= Gx(t, x) * f(x)
(2.9)

t-r((a +1)/2) r(t2-x2-r=)?-"-2/2]
(n+1)/2, r((a ---/ j

f(x,)L
where denotes convolution with respect to x only.
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In 2.4 we shall see that for a large class of initial data f(x), (2.9) is a well-defined
distribution which represents the unique solution to the Cauchy problem (2.1) for all
A->0. For a more explicit form of the solution we obviously need the Fourier
transform

(2.10) F[(t:-:-

However, before embarking on the calculation of (2.10) we show first in the next
subsection that for > n the solution can be expressed as a classical integral which is
equivalent to the expression found by Young [11].

2.1. The solution for , >n. In order to make our results comparable to those of
other authors we introduce the symbol to for the surface of the unit sphere in R. The
introduction of this symbol is due to the fact that most authors follow the Weinstein
method which contains as a first step the solution in the case where > n, , integer.
The solution is then found as a mean value of the initial data over a multidimensional
sphere. In our method the introduction of o is fully arbitrary and amounts to putting

From (2.9)we then find

2rrs/2

(s>0).oos F(s/ r)

u(t, x, ,, c)
wx-, tl_XF[(t2 x 2_r_2,(x_,,_2>/2])+ .".,x,,
60A+I

which equals, for A > ,
wx-,

_
tl-XFi(t2 x 2

o 1+ n-2)/2lf(x + ) d
X+l

where we denoted (1, 2,""", ) by g Here we assumed that

F[(t x --’("--/1*
is a regular distribution. It is easily seen that this assumption actually holds if

Putting t and t (and hence d d), we obtain

u(t, x; a; c) ="-

_
F[(l-n- )--/l(x +nt) dn

+1

2 oa-. f(x + nt) (1 n v cos
+1

or equivalently

o)a-. ff f(x+rlt)(1 ’0
2 2)(a--n--2)/2U(t, x, I" C) -v cos cutdvdrt

(.0a +1

(2.11)
r12+v2<1

(1--rl z)’/2

--nit f 2 2)(X-n-2)/22
a)a

f(x + rtt) (1 r/ v cos cut dv dn.
O)h+l 2<1 0

If, in the last result, we replace c by ic, this is exactly the solution as given for > n by
Young. The integral with respect to v, appearing in (2.11), obviously converges for
> n only.



928 D.W. BRESTERS

It is possible to obtain solutions for other values of h by means of analytic
continuation with respect to h. This is the general method for extending the domain of
definition of certain integrals depending on a parameter. It is described e.g. by
Gel’land and Shilov in [6; Chap. I, 3]. As an example we take the case where A n.
The integral (2.11) in that case is no longer convergent. However, using the fact that
the distribution

(1-n -v

has a first order pole at ( n -2)/2 -1 (i.e. n) with residue

(1- r -v
we easily obtain that

(2.12) u(t,x;n;c)= .2 f(x+nt)cos(c(1-n
(-On + 2--1 (1 --T/2)1/2 dr/.

Using quite different methods.Young arrives at the same result (cf. [11]). In
principle one may in this way obtain solutions for all values of h. However, instead of
using analytical continuation to extend the integral representation (2.11), we prefer to
follow the more direct way of calculating the required Fourier transforms by means of
the tables available e.g. in [6]. It should be remarked, however, that this is essentially
the same method since the abovementioned tables were constructed by means of
analytic continuation.

2.2. General solution or -1,-3, -5,. .. From the table of Fourier trans-
forms as given in [4] we use the following:

/F(v ()--/F[(1- x2)_; s] zr + 1) Jr+l/2 ($)

where v --1,-2,-3,.... If we use the formula

(1 x2)_ (/-1)(1- X2), 1, 2,"
F(v + 1) =-l

we may generalize this formula to one valid for all values of v"

f[_(px2) ]. 1/2 ()-),-1/2+ 1)’
s rr Jv+l/2 (s).

Using a suitable transformation we arrive after some elementary calculations at

(2.13) fcr[(t2-xe-’2)(+h-n-2)/2]--Trl/2( C )
(n-h+l)/2

--(AA 7-- j p J(h-n-1)/2 (pC),

where 0 (t-x)l+/ and J(z) is the Bessel function of order u. Consequently we
obtain from (2.9) and (2.13) the following formula for the solution u(t, x; ; c) of the
initial value problem (2.1), valid for _-> 0:

(2.14) (c2_.)
(’-n-1)/2 F((A+ 1)/2) tl_a p(,-n-e)/2 J(h 1)/2(pc)*f(x).u (t, x A c) 7rn/2

For h -> n Carroll obtained the same result (cf. [4, (4.4)]). A special case (c 1) for
more general values of h has been considered by Ossicini [8], [9].

It is easily seen (also cf. [3]) that (2.14) gives the unique solution for h >_-0. In the
case in which h < 0 but h -1,-3,-5,. , the situation can be described as follows.
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We have as a consequence of (2.5) that (2.14) still gives us a solution. However,
we may add any expression of the form

and still have a solution. Here

is an arbitrary solution of

tl-u*(t, x; 2-h c)

u*(t,x;2-A;c)

02 2- A 2. 2uA
20t] u =c

0

satisfying one initial condition:

u*(0, x; 2-h; c)=0.

For details the reader is referred to [3].

2.3. Relation to other Cauchy problems. First of all we check whether for c - 0
we indeed obtain the solution of the Cauchy problem for the ordinary E.P.D. equation
which we found in [3]. We use the formula

1
limz-J(z) v-1,-2,...
z-,o 2"F(v + 1)

to obtain

(2.15) lim c-J(co)=
c-,o 2F(v + 1)

Consequently
2(A--n--1

-’ + ,f,(x): ,,(t, x; . o)(2.16) lim u(t, x" A" c)= -a (t2 )/ZF((h + 1)/2)
c-O w"/zr((h n + 1)/2)

for h -1, -3, -5, and (h n 1)/2 -1, -2, . The condition (h n 1)/2
-1,-2,. can be deleted if we use the formula

limc0 J-l(OC)
2F(u + 1) =_/

26(l-(t2-x2), 1, 2, 3,.

In this way we obtain complete agreement with the results of [3].
More interesting is the case in which A 0. We should then obtain solutions of

the following initial value problem for the Klein-Gordon equation"

02V 2AV =C
Ot

v (t, x) f(x),
at 0.

v,(t,x)=O

By letting h tend to zero in (2.10) we easily obtain

()
(--n--1)/2

O(X, /)= (1-n)/2tp (-1-n)/2J( -1/ (oc) * [(x)
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with p (t2- x2)l+/2. Clearly the first factor in the convolution is concentrated within
the light cone as it ought to be.

The behavior near the cone 2- x 2 0 will clearly depend on n being even or odd.
More information on this behavior is obtained in the following way.

From the definition of the distributions

where O is an arbitrary quadratic form (cf. [6, p. 275]) we derive that

(2.17) p"Y.(p)= Y (-1)i(tZ-xZY++"
i=o j! 22i+"F(v +j + 1)

in case u #-1,-2,-3,. . If, however, u is a negative integer some care is needed.
One might be inclined to use the formula

(2.18) J_k(Z)= (--1)kJk(Z) (k pos. integer)

and thus arrive at

( 1)i+kz2i
(2.19) z-kJ_k(Z)= (--1)kz-kJ(z)= Y 22)-k

i=o i! F(k +] + i)

Substituting (t2--X2)1+/2 for z in (2.15), one arrives at the conclusion that the dis-
tribution in (2.17) is completely regular for v -1, -2, -3. However, this substitution
is not allowed because formula (2.14),does not hold in the case where z (tZ--x2)l+/2.

If Z is a real variable, (2.18) is derived by deleting terms containing
1/(F(-k +] + 1)) at the poles of F(-k +] + 1), i.e. at ] 1, 2,. , k- 1. If, however, z
is replaced by (t2 X21/2+ terms containing

(tZ-x2)7k+i
r(-k +/" + 1)

appear in (2.17). In this case both the numerator and the denominator have a pole at
j 1, 2,. , and consequently these terms cannot be deleted but give rise to 6-type
singularities. It is then easily seen that (2.19)should be replaced by

(2.20) ’ (-) )P-kJ-k(O)= j-_--k a(J)(t2-x +(--1)P-kYk(P),
j=O

k=1,2,3,...

The second part of (2.20) is identical with the right-hand side of (2.19) in case
2; =p =(t2--X2)1/2. It may be considered as the regular part of the distribution
p-kJ-k(p), k 1, 2,’ . As a consequence we now easily obtain for n even

2) (-n-1)/2j(
(-n--l)/2

(2.21) v(t, X)-- 7 77"(1-n)/Zto -1)/2 (pC) *

where the singularities on the light cone -x2- 0 are of the power type. The highest
order singularity in this case is a term containing

(t2--X2)(+-n-1)/2 * f(X).
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In case n is odd we obtain

V(X, t) ()
(-n-)/2

7r(1-n)/2 -1)/2J(n+/ (pc)

(n--1)/2

]=0

(-1)iS) a)},j! 22J+(n+l)/2(t2--X f(x),

the highest order singularity thus being found in the term containing

o(n-l)/2 (ta + x 2) * f(x).

It should be remarked that the distribution which in (2.21) and (2.22) is convoluted
with f(x) is not the "fundamental solution" of the Cauchy problem as it is usually
defined but its derivative. The fundamental solution of the Cauchy problem is defined
as that particular elementary solution to our differential operator which vanishes for
t< 0 (cf. [71 or [21).

After some rather tedious calculations it may then be shown that there is a
complete agreement between the results obtained above and those obtained pre-
viously by the author for the Klein-Gordon equation (cf. [2, Chap. iii]).

2.4. Existence and regularity, it is easily seen that for all values of h except -1,
-3, -5,. the distribution

(2.22)
F((h + 1)/2) 1-hp(x-n-)/2j(xn/2 -n-1)/2(o],r.C,

has its support within the sphere ]x t. (As we saw in 2 we consider as a parameter
taking positive values only.) Consequently the convolution in (2.10) exists in the
distributional sense for arbitrary f(x)S’ and the existence of u(t,x; ; c) in the
distributional sense is guaranteed for all _-> 0. We now investigate whether necessary
and sufficient conditions on f(x) can be given such that u(t, x; h;c) is a classical
solution to our Cauchy problem, i.e. a twice continuously differentiable function with
respect to and x which satisfies (2.1). The differentiability with respect to is obvious
for all > 0 and arbitrary initial conditions. The differentiability with respect to x can
be investigated as follows.

The relevant part of (2.10) for considering the regularity is the part containing the
highest order singularity. This obviously is

(2.23)
(t2--X2)(+X-n-1)/2

* f(X)F((A n + 1 )/2)

and a necessary and sufficient condition for regularity will be that (2.23) is a twice
continuously differentiable function of x. In order to obtain conditions on fix) for
(2.23) to be twice continuously differentiable we consider the following distribution"

(2.24) 0’ (ta- x2)- * fix), v # -1,-2,

where m [u + 1] the largest integer smaller than or equal to u + 1. In case m is
negative the symbol O"/Ox’ denotes the primitive of order -m with respect to xi. The
distribution (2.24)can be written as

O- {o(tZ--xZ)(tZ--x2)} * fiX),
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from which it is easily seen that its most singular part is

(2.25) g(t2- x2) * f(x).

The latter is defined and a continuous function of x whenever f(x) C. Consequently
(2.24) exists in the classical sense for f(x)e Co and will be a C2-function whenever
f(x) C2. As a further consequence we obviously have that

(t2- X2) * f(x) C2 if f(x) C2-m.
In the case of the distribution (2.23) we obtain that it is regular and belongs to C2 if we
require that f(x) be not less than 2-[A n + 1/2] times continuously differentiable. In
the case where (-n- 1)/2 is a negative integer the same result is even more easily
found.

Young [11] obtained that it is sufficient for f(x) to have not less than (n -A +4)/2
continuous derivatives. Comparing with our results, we easily see that Young gave
indeed sufficient conditions. In the case in which n-A is an odd integer there is a
disagreement between the two conditions and the Young condition on f(x) is one too
high.

For 0 our results on regularity agree with the ones we obtained on the
Klein-Gordon equation in [2]. We there found that f(x) should be not less than
2 + In/2] times continuously differentiable.

We now obtain that f(x)should be not less than 2- [(1- n)/2] times continuously
differentiable. Though these expressions are certainly not equivalent, they yield the
same results in our case because n takes positive integer values only.

Again the conditions which Young derives for the solution of the damped
wave equation to be a classical solution are sufficient but, in case n is odd, not ne-
cessary.

3. The exceptional values of ,. If A takes one of the values -1, -3, -5,. , we
obtain solutions which are quite different from those found in the previous section.
For c 0 we investigated these exceptional cases in detail in [3]. As for all negative
values of A we have that the solution is not uniquely determined. Using the arbitrari-
ness described in 2.2 we may find the most convenient form for the fundamental
solution G(t, x) (cf. [3]). We obtain:

F((n -A + 2)/2) e+(n+l)i/2tl_XF[(t2(3.1) G(t,x)=
F((1-A)/2) r("+1)/2 x2.tr2+i0)(-"-2)/21"

For details, the reader is referred to [3, 4]. Contrary to the situation in the previous
section the fundamental solution is no longer concentrated within the sphere Ix t.
As in [3] one may show, however, that the convolution

(3.2) u(t, x; a; c)= a.(t, x) f(x)

exists for all f(x) S’ and > 0.
A more explicit form for the fundamental solution G(t,x) will depend on

the region under consideration. In the interior of the sphere Ixl we find from the
tables of Fourier transforms in [6] that Ga (t, x) is any linear combination of the distri-
butions

G(aa)(t, x)= ta-O<-"-a)/Z r-r<)
-r(n+1-X)/2 (pC)

and

G(a} (t, x) tl-Xp (x-n-1)/2 r-r(2)
(.+_)/ (pc)
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or equivalently

(3.3) Ga (t, x) Atl-ap(X-n-1)/2J(n+ 1-Xp(X--n-1)/21-a)/2 (pc)+Bt Y(n+l-X)/2 (pc)

where A and B are complex constants and Y is the Bessel function of the second
kind. One may show that A is arbitrary while B depends on , and n and never
vanishes. Consequently the second part of (3.2) is characteristic for the solution in the
exceptional cases.

Outside the sphere Ix a fundamental solution is given by

(3.4) Gx (t, X)= tl-x(X-n-1)12K(n+l-x)12 (C)
where fi (t2- x2)a__/2 and K is the modified Bessel function. In the solution (3.2) both
the expressions (3.3) and (3.4) will appear.

The fundamental solution displays singularities on the light cone. As in the
case where c 0 we find that the singularities are of different type depending on n
being even or odd. It is also easily seen that classical solutions can be obtained under
the same conditions on f(x) as in 2.4. However, even under these conditions there
may occur logarithmic singularities in certain time-derivatives of u(t, x; A;c). This
may be seen in the following way (also cf. [3]):

The Fourier transform of u (t, x; a; c) always contains, according to (2.6), a term

C" {(k 2 + c2)l/2t}(1-x)/2 Y(1-x)/2 {(k 2 + c2)1/2t} f(k).
From the behavior of the function Y(z) near z 0 it is easily seen that for t-+ 0 the
derivative of order 1- a,

behaves like

(t) 1-xt(t, k;a; c),

{(k 2 + c 2)1/2}1-A Yo{(k 2 + c2)1/2t} f(k).
Consequently it has a logarithmic singularity at 0 which vanishes if

(k 2 + c2)o-/2(k) O.

As a final result we obtain (in analogy to [3, 4]) that in the cases where ,
-1,-3,-5,..., the time derivative of order 1-A of a solution has a logarithmic
singularity unless we assume that the initial condition f(x) satisfies

(A C2)(1-a)/2f(x) O.

This generalizes an earlier result of Blum [1].

REFERENCES

[1] E. K. BLUM, The Euler-Poisson-Darboux equation in the exceptional cases, Proc. Amer. Math. Soc., 5
(1954), pp. 511-520.

[2] D. W. BRESTERS, Initial value problems for iterated wave operators, Thesis, Enschede, Netherlands,
1969.

[3] , On the equation of Euler-Poisson-Darboux, this Journal, 4 (1973), pp. 31-41.
[4] R.W. CARROLL, Some singularCauchy problems, Ann. Mat. PurR Appl. Ser. IV, 56 (1961), pp. 1-31.
[5] R. W. CARROLL AND R. E. SHOWALTER, Singular and Degenerate Cauchy Problems, Academic

Press, New York, 1976.



934 D.W. BRESTERS

[6] J. M. GEL’FAND AND G. J. SHILOV, Verallgemeinerte Funktionen, Bd. I, Deutscher Verlag der
Wissenschaften, Berlin, 1960.

[7] E. M. DE JAGER, Theory of Distributions, Mathematics Applied to Physics, E. Roubine, ed. Springer-
Verlag, New York, 1970, pp. 52-110.

[8] A. OSSICINI, Problema singolare di Cauchy, relativo ad una generalizzazione dell’ equazione di
Eulero-Poisson-Darboux, Atti Accad. Naz. Lincei. Rend. C1. $ci. Fis. Mat. Natur., 35 (1963), pp.
454-459.

[9] , Problema singolare di Cauchy, relativo ad una generalizzione dell’ equazione di Eulero-
Poisson-Darboux. I! caso k =< p- 1, Rend. Mat. e Appl., 23 (1964), pp. 40-65.

10] A. WEINSTEIN, On the wave equation and the equation ofEuler-Poisson, Proc. Symposia Appl. Math.
Vol. 5, McGraw-Hill, New York, 1954, pp. 137-147.

[11] E. T. YOUNG, On a generalized E.P.D. equation, J. Math. Mech., 18 (1969), pp. 1167-1175.



SIAM J. MATH. ANAL.
Vol. 9, No. 5, October 1978

1978 Society for Industrial and Applied Mathematics
0036-1410/78/0905/0018 $01.00/0

THE SCATTERING OF ACOUSTIC WAVES BY A SPHERICALLY
STRATIFIED MEDIUM AND AN OBSTACLE*

DAVID COLTON

Abstract. The problem of the multiple scattering of a plane acoustic wave by a quasi-homogeneous
spherically stratified medium of compact support and a bounded obstacle is considered. It is shown that this
problem can be reformulated as a singular integral equation over the boundary of the scattering obstacle
alone. The integral equation can be regularized and inverted in the space of continuous functions defined
over the boundary of the scattering obstacle.

1. Introduction. In problems associated with the scattering of acoustic waves the
method of integral equations is probably the most satisfactory method for obtaining
approximations to the solution in the case when various asymptotic methods fail (cf.
[14]). This is chiefly due to the fact that the solution is defined over an unbounded
domain, thus presenting severe difficulties in the use of other approximation methods
such as finite differences. Nevertheless many problems still remain in connection with
the method of integral equations, particularly in connection with the stability of
approximation methods near an eigenvalue of the integral equation (cf. [2]). In
propagation problems in an inhomogeneous medium additional difficulties are
presented in the use of the method of integral equations in that the integral operators
are now defined over a region in E3 (cf. [15]), thus making approximate quadrature
schemes rather prohibitive. However in those cases where the inhomogeneous
medium is of rather simple nature, e.g., when it is spherically stratified and of compact
support, it seems reasonable to expect that in many instances the use of volume
integrals can be eliminated and the problem reformulated in terms of an integral
equation defined only over the boundary of the scattering obstacle. That this is indeed
the case was shown in [4] where it was assumed that the scattering obstacle was
starlike with respect to the origin. This was accomplished by combining the method of
integral equations as recently extended by Ursell [12] and Jones [9] with that of the
theory of integral operators in exterior domains as developed by the author and
Wolfgang Wendland [3], [4]. In this paper we shall continue this work and consider
the case when the scattering obstacle is no longer starlike with respect to the origin
and is in fact completely separated from the spherically stratified medium. Although
this distinction makes little difference in the case of the integral equation method
involving volume integrals, it plays a crucial role in attempting to formulate the
problem as an integral equation over the boundary of the scattering obstacle, and a
completely new approach must be derived. This we shall do in this paper, basing our
approach on R. P. Gilbert’s "method of ascent" [7], [8] and the work of Leis [10] and
Brakhage and Werner [1] on the reduced wave equation in a homogeneous medium
(for recent extensions of the work of Brakhage, Werner and Leis see [11]).

Mathematically we can formulate our problem as follows. Let a plane wave of
frequence co moving in the direction of the z axis be scattered by a quasi-homo-
geneous spherically stratified medium B of compact support outside of which is
situated a "hard" bounded scattering body D with smooth boundary OD. Let c(r)
(r= Ixl for x6 []3) denote the local speed of sound and assume that c(r)=co a
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constant for r > a. Then after factoring out a term of the form e -iwt we are led to the
problem of determining the velocity potential u(x) from the equations

(1.1) u(x)= e ikz + us(x),

(1.2) A3u + k:B(r)u 0 in E3\/,
OU

0 on OD,(1.3)

(1.4) 1}rnr\---r ikus O,

where k W/Co > 0, B(r)= (Co/c(r))2, , is the inward pointing unit normal to 0D, and
us(x) denotes the velocity potential of the scattered wave. We shall make the assump-
tion that B (r) is a continuously differentiable function of r. In {} 2 of this paper we shall
reformulate (1.1)-(1.4) as a singular integral equation over 0D, and in 3 we shall
show that a unique solution of this integral equation exists in C(OD), the Banach space
of continuous functions over 0D with respect to the maximum norm. Since it shall be
seen that the above mentioned singular integral equation can be regularized, a variety
of known methods are available for its numerical solution (cf. [5]).

2. The formulation of (1.1)-(1.4) as a singular integral equation over OD. We
shall look for a solution of (1.1)-(1.4) in the form

1 Io ikR

&o+ E
0P5 n=0

a,,,h1) (kr)P (cos 0) e

(2.1) + E (2n+l)ij,(kr)P,(cosO), X3\/[’-jB
n=0

ira4,

E b,,,u,(r)P’(cos O)e ira4’’, xB
n=0

where R Ix-l, x (r, 0, 4) in spherical coordinates, a is a complex constant such
that lma O,h(,1)(kr) is a spherical Hankel function, ],(kr) is a spherical Bessel
function, P"(cos 0) is an associated Legendre polynomial, Pn(COS 0) a Legendre
polynomial, and

(2.2) u,(r)=r"[1-2rlo o-2n+2R3(r,r;ro"2 0) dtr]
where R (x, y;Xo, yo) is the Riemann function for

k2

(2.3) R,,y+-B(vxy)R =0
with the subscript denoting differentiation with respect to x0. The density/x () and the
constants an,,, bn,,, n 0, 1, 2,. ., -n <_-m <_-n, are unknown and are to be deter-
mined from (1.1)-(1.7). The parameter a is introduced in order to insure the inverti-
bility of the integral equation arising from (2.1) (see {} 3), the functions un(r) are
solutions of the differential equation

dZun 2du, [ 2B n(n 1
(2.4)

dr2+-r--r + k (r)------+)]un0r
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represented by means of R. P. Gilbert’s "method of ascent" [7], [8], and we have used
Sonine’s formula to expand e ikz. Note that if the constants a’, and b," are such that
u (x) as defined by (2.1) is continuously differentiable across OB, then one can conclude
that in fact u(x) C2(R3\D) and satisfies (1.1), (1.2) and (1.4). Assuming for the time
being the convergence of the series in (2.1), we have from (1.3) and the discontinuity
properties of single and double layer potentials that

ei’ 1 Io ,0 eikn
d.,

a 0 I0 0 e
(2.5) +

D"() --R-- do

+ E
O [h)(kr)P,(cos O)ei’ea], xOD.

0 anmo P--
Note that the differentiation of the second integral with respect to ux cannot be taken
under the integral sign (In [4] the problem of singular integrals was avoided by using
the representation due to Jones [9] and Ursell [12]; however for technical reasons this
approach is not suitable for the present problem since D does not contain the origin.)

If we now set =(p, 00, 40) in spherical coordinates and require u(x) to be
continuously differentiable across OB, we have, using the addition formulae

ikRe____= (2n + 1)j.(kr)h)(kp)P.(cos y), r <p,
R .--o

(2.6) cos 3’ cos 0 cos 00 + sin 0 sin 00 cos (4 40),

P,(cos 3’)
m

(n + m)!
P(cos O)P(cos Oo)ei’+-%,

the following algebraic system that must be satisfied by a." and b..,:

b.’u. (a ) a.’hl (ka ) + &.o(2n + 1)i"l". (ka )

3’,., Io i.,,o+- DtX(lh (kplP’(cos Oole do

r""Io 0+a,- p tz()[h0ue (kp)PT(cos 0o)e ,6o]
(2.7)

(a dha)(ka)
b.

du"
a. + 6o(2n + 1)i

dr dr dr

+ ()h (kp)P. (cos 0o) e do
2 D

--imooa() [h (ko)PT(cos00)e Ida,

where &i denotes the Kronecker delta and
(n-m)
(2n+ l)],(ka),Y" (n+m)

(2.8) . _(n-m) )d](ka))(2n(n+ m + 1
dr
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The system (2.7) has a unique solution provided

(2.9) A, =det
-h(2)(ka) u.(a)
d (,,1) du,(a)

--rh (ka)
dr

LEMMA. A, : 0 for any n >--O.
Pro@ If A,, 0, then from the theory of ordinary differential equations u,(r)

and hl)(kr) are linearly dependent for r _->a. But this is impossible since u,(r) is real
and not identically zero.

Using Cramer’s rule to solve the system (2.7) we have

(2.10)

where

(2.11)

anm rnO q
i-" (n m )! Io27r (n +m)! D

(t) 1 + a h (kp )P’2 (cos 00) e do)

bnm =-n 6mOq-
i-" (n-m)! Io )(

o
a

19 (nl) --imrbo do)]+ -e)h (ko)Py(cos Oo)e

c (2n + 1)i" det

* (2n + 1)i" detCn

dr

u,(a)

du,(a)
dr

].(ka) h)(ka)
d].(ka) dh)(ka)

dr dr

i"+1(2n + 1
ka 2

Assuming the convergence of the resulting series we now have from (2.10) and (2.5)
that tz (x) is the solution of the integral equation

(2.12)

19 ikze (I + T)/z

xOD,

where

f(x)=-2 c. 0

,,=o A. O’x
[h(2) (kr)P(cos 0)1,

c.,i-,(n_m),( Oe) im(rb-dP)r(x; tj)= Y [h)(ko)PT(cos O)PT(cos Oo)e
(2.13)

o= A" 1 + [h (ko)h (kr)P,(cos )].

We shall now show that the series appearing in (2.12) are convergent. From the
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asymptotic behavior of spherical Bessel and Hankel functions and (using (2.2))

(2.14)

we have

(2.15)

u,(a) a"(l+ O(nl-)),
du,(a)

dr
=na 1+O

nn C1 22.n !(n + 1)!

(2.17)
--u F(x; t) <- Cs

.=0
n2(n + 1)2 a2 "’n+ l(a2k"If<x)l-< c6 y

,=02 n!\ r /

where Cs and C6 are constants. Since B (3 D 3 we have that for x, j OD, p > a > O,
,>a>0, and hence the series iia (2.17) (and hence (2.12))are convergent. More
generally, the above estimates show that the series in (2.13) are absolutely and
uniformly convergent for x N3\B, OD, and hence if/x(x)s C(OD) can be deter-
mined from (2.12), (2.1) gives u(x) for x [3\D LIB. For x B we have from similar
estimates that the series for u (x) in B (as given by (2.1)) is majorized by the series

(2.18)
aZ,k )/a\":)C7 E +C8 E n(n+l

,=o 2"n .=o

where C7 and Ca are constants. Since p>a it is seen that the series (2.18) is
convergent. Hence if/x(x) C(OD) can be determined from (2.12), (2.1) and (2.10)
give the solution of (1.1)-(1.4). (2.12) is a singular integral equation over OD; however
it can be .regularized (el. [2], [10], [11]) and hence is amenable to analytic and
numerical approximation methods, provided the operator I + T is invertible in C(OD).
Therefore to complete the discussion of our problem (1.1)-(1.4) it remains to be
shown that (I + T)-1 exists in C(OD). This shall be the topic of the next section.

3. The invertibility of I+T in C(OD). In order to establish the invertibility of
the operator I+ T in C(OD) it is first necessary to establish the following uniqueness

where Cs and C6 are constants. Since B 71D we have that for x, 1 e OD, p > a > O,
t OD that the series appearing in (2.12) are majorized by

1)!2"

(2.16) iha)(/o)l C(Non!2).,

where the constants C1 and C2 are independent of n. From (2.15) and the inequalities
(el. [61)

[P.(cos )1_-< ,
[P’, (cos Y)I =< 1/2n (n + 1),

nn C2
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result for the solution to (1.1)--(1.4). The proof of the lemma below proceeds along
classical lines (cf. [13]) except for the conclusion where, due to the fact that B(r) is not
analytic, it is no longer possible to appeal to the analyticity of solutions to (1.2).

LEMMA. Let u (x)6 C2([]3\D) C (It3\D) be a solution of (1.2) in the exterior ofD
satisfying the Sommerfeld radiation condition (1.4) at infinity and the boundary condi-
tion Ou/Ou 0 on OD. Then u(x)= 0 for x [3\D.

Proof. Let f). be a ball centered at the origin containing B CI D in its interior.
Then from Green’s formula

(3.1)
I I. (u +/-a aau dv Io ( a u u

\D D

a- u do.
a Or

Since k and B(r) are real and Ou/O, 0ti/0u 0 on OD we have from (3.1) that

-u dw =0.
Or

But outside BUD, u(x) is a solution of A3U-t--k2u =0 satisfying the Sommerfeld
radiation condition and hence in 53\ we can expand u(x) in the form

(3.3) u(x)= E E gt,,h1) (kr)P7 (cos 0) e i"’,

where the series (3.3) converges absolutely and uniformly. By the orthogonality of
spherical harmonics and the formula

(3.4) h(2)(kr) h)(kr)-h)(kr) h)(kr)=kr2

we can conclude that from (3.2) and (3.3) that

n=0

which implies that u (x)= 0 in [3\,. By the analyticity of solutions to A3U q- k2u 0 we
can conclude that u (x)= 0 in 1t3\B I,.J D. But inside/ we can expand u (x) in the form

(3.6) u(x)= Y E &,u,(r)P"(cos O) e im4,
---0

and from the fact that u (x) is continuously differentiable across r a we have

d(3.7) b,,,u, (a b,,crr u, (a O.

If/,,, # 0 then u,(r)= 0 from the theory of ordinary differential equations since u,(r)
is a solution of (2.4). But u,(r)O and hence b,,, =0 for n =>0, -n <=m =< n which
now implies u (x)= 0 in 3\D.

We are now in a position to establish the invertibility of I + T in C(OD).
TI-IZORZM. The operator (I+T)-1 exists in C(OD). Hence the solution to (1.1)-

(1.4) exists and is given by (2.1), (2.10) where Ix (l+T)-x[f(x)-(O/OUx)ez with f(x)
defined by (2.15).
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Proof. The operator I + T is a singular integral operator. However, as previously
mentioned, it can be regularized, and hence the Fredholm alternative is valid. Let Ix
be a solution of (I + T)IX 0 and define u (x) by

1 I |e_’ikR

(3.8) (1) _imdau (x) + .Y.=om =-. a.,h. (kr)e (cos 0) x e 3\D t_J B,

= E imdab...u. (r)P. (cos 0) e x B,

where the constants a.m and b.. are given by (2.10) with the terms (c.)!(A.)6.o and
(c*)/(A.)6o absent. Then (3.8) defines a solution u(x) of (1.1) satisfying the Som-
merfeld radiation condition (1.4) at infinity, and since (! + T)IX 0 we have Ou/Ov 0
on OD. From the preceding lemma we can now conclude that u (x)= 0 outside D. Let
b > a be the distance of D from the origin. Then, using the addition formula for Bessel
and Legendre functions as in 2 of this paper we have for n -> 0, -n <-m _-< n,

a.,,.h(1)(kr).
(3.9) [2n + l (n- m)’ I(n- m)t ( au) (.1) ]+ oz() 1 + h (ko)Py(cos Oo)e-i’ dw /’.(kr)=0

for a <r<b. Since h(2)(kr) and f.(kr) are linearly independent, (3.9) implies that
a.. 0 for n _-> 0, -n <-m _-< n. Since u(x)= 0 outside D we now have from (3.8) that

tx () doo, x OD.(310) 0=-aix(x)+--7r c, ix(f-.;)--[-dw+---.Tr o

But from (3.10) and [1] we can conclude that ix(x)= 0 for x OO, and hence by the
Fredholm alternative (I +T)-a exists in C(OD).

We note in closing that the operator I+T can be regularized (cf. [2], [10], [11])to
yield an equation of the form (1 + K)IX =g where K is a compact operator defined on
C(OD), and hence a wide variety of procedures are available for approximating the
density Ix(x)(cf. [5]).
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COMPARISON THEOREMS FOR LINEAR BOUNDARY
VALUE PROBLEMS*

JAMES S. MULDOWNEY?

Abstract. Conditions on a linear differential operator L are given which guarantee the nonexistence of
nontrivial solutions to certain homogeneous boundary value problems. Less restrictive conditions for the
nonexistence of nontrivial nonnegative solutions are found and applied to questions of disconjugacy. Some
new proofs of known results as well as new disconjugacy criteria are obtained.

1. Introduction. Let L denote the n th order linear differential operator defined
by

Ly y(n)+aay(n-1)+ +any,

if y ACn-a[a, b], where ak are real valued functions of class Cn-k on [a, b]. Also let
the boundary form U: ACn-a[a, b] -> R be defined by

Uiy (Miiy(i-l)(a)+Nijy(i-)(b)), i= 1,..., n
/=1

where Mj, Nii are real numbers such that the n x 2n matrix [M" N] has rank n; the
form U is then said to have rank n. This paper is concerned with boundary value
problems of the form

(L; U): Lx f, Ux y, x AC’-[a, b]

where fsa[a, b] and 3’ Rn. Conditions on the homogeneous problem

0(L; U): Lx O, Ux O, x C"[a, b]

which guarantee the nonexistence of nontrivial solutions to this problem, and more
particularly conditions which ensure the nonexistence of nontrivial nonnegative solu-
tions, are found. In the special case

Uiy y(i-)(a), i= 1,..., k, Uy y0-k-)(b), k + 1,..., n,

the problems (L; U), 0(L; U) are denoted (L; k, a, b) and 0(L; k, a, b) respec-
tively. Discussions of boundary value problems may be found in the books of
Coddington and Levinson [2] and Reid [14].

The main tools in this paper are the Lagrange identity and the boundary-form
formula described below. A complete discussion may be found in [2, Chapter 11]. The
Lagrange adjoint L* of L is defined by

L*y=(-1)nyO’)+(-1)n-(axy)O’-)+... +any

and Lagrange’s identity is

(1.1) vLu-uL*v [uv]’,

if u and v are n times differentiable functions, where

[uvl 2 (--1)iu(k)(an-,nV)(i)
m=l j+k=m-1
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and ao 1. For a boundary form U of rank n, there exist boundary forms Uc such that
the 2n x 2n matrix

Mc N
has rank 2n; U and Uc are called complementary boundary forms. For each pair of
complementary boundary forms U, Uc of rank n, there exists a unique pair of
complementary forms U*, U* such that

(1.2) [xy](b)-[xy](a)= gx U*y + Ux U*y

if the functions x, y are n 1 times differentiable at a and b. This is the boundary-form
formula. Note that, in general, if U is specified then adjoint boundary forms U*
depend on the coefficients in L, and conversely if U* is specified U depends on L (cf.
[2, Theorem 3.1, p. 289]). However, in the case of the boundary form U (k, a, b) it
is always possible to choose U* (n- k, a, b).

The first comparison result proved in this paper, Theorem 3.1, states that if
(L*; U*) has a solution with y 0, f->_ 0 ( 0) then there is no nontrivial nonnegative
solution to 0(L; U). This theorem is extended in Theorems 3.2 and 3.3 by the
introduction of a class W(U*) of functions H(t, s). It is shown that if [L*sH(’, s)]_ is
’small’ for some H W(U*), then 0(L; U) has no nontrivial nonnegative solution,
and if [L*H(., s)l is ’small’, then 0(L; U) has no nontrivial solution.

2. The classes Yg(U*), p(U).
DEITO 2.1. A function H: [a, b] [a, b] -> R belongs to the class (U*) if,

for each [a, b],
(i) H(t, ) C([a, t)[3 (t, b]) C-2[a, b],
(ii) (O-/Os-l)H(t, t+)-(o-l/s-)H(t, t-)=( 1),
(iii) U*H(t,. 0.
Note that if, in addition to (i), (ii), (iii), y- H(t,. satisfies L*y- 0 on [a, t)

(t, b] for each [a, b] then H is the Green’s function for (L; U). However, this
condition is not required here; indeed if G is any Green’s function corresponding to
any differential operator Lo of order n and satisfies U*G(t, .)=0, then G s (U*).
However (U*) does not consist entirely of Green’s functions or generalized Green’s
functions since, if H (U*) and K: [a, b] x [a, b]-> R is such that

K(t, ) C"[a, hi, U*K(t, )= 0

for each [a, b], then H +K s (U*).
DEFINITION 2.2. (U), 1 <_-- p <_- oo, denotes the set of functions /: [a, b] --> R such

that /_->0, and lxoL#[a,b] if xAC"-[a,b] and Ux-O, where p[a,b] denotes
the usual Lebesgue class.

DEFINITION 2.3. If Ul, "", U, C"[a, b], to," ", r, are nonnegative integers
such that r0 +" + r, n and to, , t,, s [a, b], then

Cn(Ul,’’’, Un)[ to,’’’,

ro rm

denotes the determinant of the n x n matrix the kth row of which is

[Uk(to), u(kr-l)(to), uk(tm), ur’--)(t)l.
In particular ?g’,(u,’’’, u,)[] is the Wronskian determinant W(u,..., u,)(t)=
det [u/-) (t)].
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Throughout this paper, a+ 1/2(lal + a) and a_ 1/2(lal-a) for any real number a.
The following proposition follows from Lagrange’s identity (1.1) and the boun-

dary-form formula (1.2). The suffix s in Ls denotes the variable to which the differen-
tiation pertains.

PROPOSITION 2.1. Ifg (U*) and x AC"-[a, b ], then

b b

-Ux U*cH(t, )+ Ja H(t, s)Lx(s) ds Ja x(s)L*H(t, s)ds.(2.1)

Proof. From (1.1) with u x, v H(t,. ), it follows that

b b

(2.2)
fill(t,. )](b)-[xH(t,. )](t+)+ fill(t,. )](t-)-[xH(t,. )](a).

But from the conditions (i), (ii) of Definition 2.1

fill(t,. )](t-)-[xH(t,. )](t+)
(2.3) )[ 0--a O"- )]=(-)"x(t oSn_n(t, t+)-os,_n(t, t- =x(t),

and from the boundary-form formula (1.2)

fin(t,. )](b)-[xn(t,. )l(a)= Ux un(t,. )+ Ux u*H(t, .)
(2.4)

Ux. un(t,. ),

from condition (iii) of Definition 2.1. Combining (2.2), (2.3) and (2.4) gives (2.1).
Proposition 2.1 shows that any solution of the problem (L; U) must satisfy the

integral equation
b eb

(2.s) x(t)=-r. n(t, )+ J, n(t, s)t(s) es J (s)Ln(t, s)s

if H (U*). Proposition 2.2 gives conditions under which a solution of (2.5) is also a
solution of (L; U).

PROPOSITION 2.2. (a) IfH (U*) is such that 6 R", l[a, b] and
b

(2.6) 0 -6. UH(t, )+ J H(t, s)(s) ds

for each [a, b] implies 6 0 and O, then any solution of (2.5) such that x
AC"-X[a, b] is a solution of (L; U).

(b) IfH (U*) is such that the only solution of
b

(2.7) x(t)= -J x(s)LH(t, s) ds

is the zero solution, then a solution of (2.5) is also a solution of (L; U).
Proof of (a). If x satisfies (2.5) and x AC"-[a, b], then

6 Ux-, Lx-L
from Proposition 2.1, satisfy (2.6)so that x satisfies (L; U).

The conditions of part (a) are satisfied if H (U*) is a Green’s function for a
boundary value problem associated with any differential operator L0 of order n and
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the components of the vector valued function U*H(t,. ) are linearly independent on
[a, b]. In that case the right-hand side of (2.6) satisfies Lox A, but since x 0 it
follows that A 0; therefore t U*cH(t,. )= 0 and hence 8 0.

Proof of (b). From Proposition 2.1, any solution of 0(L; U) satisfies (2.7); thus
0(L; U) has only the zero solution. Therefore, given y and f, (L; U) has a unique
solution. The conditions of part (b) also imply that (2.5) has a unique solution which
must therefore be the unique solution of (L; U).

PROPOSITION 2.3. For each boundary form U of rank n the class (U) is
nonempty. In particular (U) contains a Green’s function.

Proof. If bi Cn[a, hi, 1,. ., n, are such that W(bl, , bn)= det
0, det [Uibi] 0 and L0 is defined by Loy W(bl,..., b, y)/W(b,..., ) then
0(L0; U) has only the trivial solutions so (Lo; U) has a Green’s function G(t, s)
and H (U) if H(t, s)= (-1)’G(s, t). It will be shown that the constants
may be chosen so that ci(t)=e’t, i-1,..., n, satisfy the required conditions.
Without loss of generality it may be assumed that a =0, b 1. If the constants
A 1," An are distinct then W(b, , b) O. Also Ubj =/x(hi) where

[j,i(/ )__ [Mikl k-1 .at_ Nikt -leX ].
k=l

An inductive proof is given that the constants A 1, An may be chosen so that the
determinants det [/xi(Ai)] 0, i, j 1,. , m, 1 <_- m _-< n. Choose A so that/Xl(A 1) 0;
this is possible since the numbers Mk, NIk are not all zero. Suppose that
A 1," , Am-l, 1 < m <_-- n have been found so that det [/xi(A.)] 0, i, j 1,. , m 1,
and that det [/xi(A)] 0, i,/" 1,..., m for all choices of Am. It follows that for each
choice of Am the ruth row of the matrix [/x/(A)] may be expressed as a linear
combination of the first m- 1 rows, i.e.

m-1

l,m(i])’-- E Ci[-i(t]), j 1,..., m.
i=1

Considering the first m- 1 of these equations it follows that since det [i(Ai)] O,
i,/" 1,..., m- 1, the numbers ci are uniquely determined and, in particular, are

m-1
independent of Am. Thus the mth equation/Xm(Am) i=1 Cii(Am), for all Am, implies

Mm E ciMi], Nmi 2 cigi], ]--1,’’’, n,
i=1 i=1

contradicting rank [M: N]- n. This contradiction completes the proof.

3. Results. Theorem 3.1 which has a very simple proof may be considered a
generalization of the Sturm comparison principle for 0(L; 1, a, b) when L is a second
order differential operator. A number of important results which have other proofs in
the literature are corollaries to Theorem 3.1.

THEOREM 3.1. If there exists 0 ACn-l[a, b] such that

(3.1) U*O 0, L*O _->0,

with strict inequality holding on a set of positive measure, then there is no nontrivial
solution x of o(L; U) such that x >-0 on [a, b].

Proof. If such a solution x exists, then x > 0 a.e. on [a, b] since otherwise there
would exist a point z [a, b] such that x0-)= x’(z) x("-l(z) 0 implying x 0
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on a, b ]. From (1.1) and (1.2)

O [xg/](b)- [xg/](a )
b bIa (Lx -xL*)= Ia XL* < O,

and this contradiction proves the result.
A stronger version of Theorem 3.1 in which it need not be assumed that L*O >--0

follows from Theorem 3.2 (cf. Corollary 3.2.1).
The operator L is said to be discon]ugate on an interval I if the only solution of

Lx 0 having n zeros or more in I counting multiplicities is the trivial solution. A
result of Levin [7] and Sherman [15] shows that L is disconjugate on I if and only if
the problem 0(L; k, a, b) has no nontrivial nonnegative solution for each [a, b] c I
and k 1,. , n 1. Also L is disconjugate on I if and only if L* is disconjugate on I
(cf. Coppel [3, Chap. 3]). These observations will be used to give examples of
applications for Theorem 3.1 in the following corollaries.

COIOLLAR 3.1.1. If L is disconfugate on I and (-1)n-kqn _--> 0, then the problem
o(L + qn k, a, b) has no nontrivial nonnegative solution when [a, b c L

Proof. If L is disconjugate on I, then so also is L* and the solution of L*O 1,
O(a) 0(-k-1)(a) O(b) O(k-1)(b)= 0 satisfies (-1)"-k0>0 on (a, b) if
[a, b] c L This follows from a theorem of Pdlya [13, Thm. V] or from the sign of the
appropriate Green’s function (cf. [3]). Therefore (L +q,)*O L*O +q,O >-L*O >0 on
(a, ).

The following comparison principle was first stated by Levin [7]. The first pub-
lished proof is due to Nehari [11].

COROLLARY 3.1.2 (Levin, Nehari). Suppose that

Liy Ly + qn,iy, 1, 2,

where qn,1 <- 0 <= qn,2 on an interval L If L1 and L2 are disconjugate on L then so also
is L.

This follows immediately from Corollary 3.1.1 and the result of Levin and
Sherman [7], [15]. The following more general disconjugacy criterion also follows
from Theorem 3.1 and the result of Levin and Sherman.

COROLLARY 3.1.3. A sufficient condition for the disconjugacy ofL on an interval I
is that, ]’or each [a, b c I and k 1,. , n 1, there exists a function Ok AC’-I[a, b
such that

(3.2) ffk(a) ff(k-1)(a) Ok(b) 07-k-l) (b) 0

and Lqk >- 0 on [a, b] with strict inequality on a set of positive measure. A necessary
condition is that all such functions should also satisfy (-1)n-kOk > 0 on (a, b ).

The necessity of this condition follows from P61ya’s Theorem V [13] or from the
sign of the Green’s function for (L; k, a, b).

COROLLARY 3.1.4. Suppose n > 2, al(t) a,-l(t) 0 and

where
p,(t) <- a,(t) <-_ r,(t),

1
qt2(t)

(n even),

1
o._(t)’

t(a,b),

a+b]1--(nodd), t a,
2Ol(t)

b)t
2
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i)(neven), (n odd), a,
2

(Tn (t)
1 O2(t)

b)(-,-7i’ t
2

and 0k(t)= 4,k(a, b; t)=(t--a)k(b--t)"-k/n!, k 1,..., n-1. Then L is disconiugate
on [a,

Proof. First observe that (-1)"-L& 1/ + (- 1)"-a, ]; thus (-1)"-L&
0 if (-1)"-a, g- 1/& and (-1)"-L > 0 on a set of positive measure since
C[a, b] and 1/& is unbounded on (a, b). Since

p,(t) max
0k(t)

n k even
1

tr,(t) min g’k(t): n k odd

decrease and increase respectively if [a, b] is replaced by [a’, b’] c [a, b], it follows that
(-1)"-kLg&(a’,b’; t)>-O for each subinterval [a’,b’] of [a,b] and k= 1,..., n-1.
Thus L is disconjugate on [a, b], from Corollary 3.1.3.

In the case n =2 the conditions of Corollary 3.1.4 reduce to a2(t)<=cr2(t)
2/((t-a)(b- t)), a < < b; thus the result in this case neither implies nor is it implied
by Lyapunov’s inequality (cf. [6, Thm. 5.1, p. 345]). If the functions &k of Corollary
3.1.4 are considered for general operators L then a disconjugacy criterion of
Bessmertnyh and Levin [1] is obtained.

COROLLARY 3.1.5 (Bessmertnyh and Levin). Suppose n > 2 and for each [a, b]

nl[ (n- 1)n-1ai(t)l(b a)* +
i=1 n!n

(3.3)
ln-jl a) + (n-- lf’-I

i=a ]!n
’ai(t)’(b

n

Then L is disconfugate on [a, b].

a,(t)+(b-a)" <- 1,

a, (t)_(b a)" <= 1.

Remark. The second inequality may be improved as indicated below.
Proof. Let g/,,k(t)=O,,k(a,b;t)=(t--a)k(b--t)"-k/n! k=l,...,n-1. It is

asserted that, if e [a, b],

(3.4) I4,n,k (t)[ < (n 1)n-a n -n !n" (b a), ’’’("-i)v,.,k (t)l--< (b/!n a)’,

] 0,..., n- 1 with strict inequality holding almost everywhere if /> 0. The result
now follows from Corollary 3.1.3 and the observation that both expressions on the left
in (3.3) are increasing functions of b a. To prove the assertion (3.4), first observe that
the set of all polynomials g,(t)with [4,(")(t)l 1, having n zeros in [a, b] and at least one
zero at each of the points a, b satisfy [4,(t)l<=(n-1)"-l/(n!n")(b-a)", t[a, b], and
that equality can be achieved only for 4’,,k(t), k 1, n- 1 and then at a single point
only. Now consider the functions g,,,k(t). By the preceding observation

(n -2)"-2 ),-114;,,(t)l<(n_l)!(n_l),_(b-a k=2,... ,n-Z,

and it may be verified directly that

1Ig,;,k(t)l<=--(b--a)"-l; k 1, n- 1,
(n- 1)!n
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with equality holding at an endpoint a, b in each case. Since ((n 2)/(n 1))n-2 __< 1/2 it
follows that

and hence

(n --2)n-2 .1 1

(n 1)!(n 1)"-= (n- 1)!2(n 1)= (n- 1)!n’

1 (b_a),_l k= 1 n-1
(n- 1)!n

To establish the bounds on the higher derivatives observe that On,k(t)=
((t-a)/n)On-l,k-x(t) k=2,... ,n-1 and proceed by induction on n and . The
omission of the case k 1 is unimportant from considerations of symmetry. Since
n, (- 1 and

(n-i) t-a o n-j (n-i-l)
n,k (nn_---li,)k_l "-b n-l,k-1,

it follows that if (3.4) holds for 0n-l,g-1, then

(n-i) b-a (n-])
n, ]<= (b-a + (b-a

n (/’-l)!(n-1) n ]!(n-l)

-n.-](b_a)i"
l!n

Equality is achieved at an endpoint if k 1, n- 1. Therefore, since (3.4) holds when
n 2, it holds for all n.

The reader will observe that the first inequality in (3.3) is used to infer that
(-1)n-L,,k => 0 when n- k is odd and the second pertains to the case when n- k is
even. Thus some improvement is possible in the case of the second inequality in (3.3)
when n is even since suitable coefficients for lab.(t)[ in that expression may be obtained
by maximizing I’"(n-J)(t)l’gn, for even k only. Thus, for example, when n is even the
coefficient of an (t)_ may be replaced by the smaller number

4(n --2)n-2 )n(---/-i.-; (b a max {10,,(t)l" k 2, 4,. , n 2},

and the coefficient of lan-l(t)l may be replaced by

(n -2)
(n 1)!(n 1)n-1

(b a > max {16n, (t)[" k 2, 4, , n 2}.

Corollary 3.1.6 is a disconjugacy criterion of a type introduced for higher order
equations by Hartman and Levin [8], [4], [5]. It extends to higher order operators the
form of the Sturm comparison theorem which states that a second order operator L is
disconjugate on [a, b] if there exists u C2[a, b] such that u >0 and Lu <=0 on [a, b).
It is more restrictive than the best result of Hartman [5] but has a very simple proof. A
system of functions (u1,’",
Cn(I) and W(ul,.",ui)>O, f=l,...,n. Also the symbol (Ul,’’’,ti,’’’,Un)
denotes the system (ua, ui-1, ui/a,

COROLLARY 3.1.6 (Hartman, Levin). Let [q, b] be a compact interval. Suppose
there exist functions ua, .. ., un- Cn[a, b) such that

(i) (-1)n-’Lu. >_- O, j= 1,... ,n-1 on [a,b)
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(ii) (Ul, ", Un-1) and (Ul, ai,’’’, Un-1) are Markov systems on [a, b), 1 _-<

]<n-1.
Then L is discon]ugate on [a, b ].

Proof. If [a’,b’]c[a,b) choose h so that if Uo(t)=e -xt, un(t)=e then
(u0, , tTj, , u,) are Markov systems on [a’, b’] and (-1)"-JLui >-0,/"- 0,..., n
with strict inequality if ] 0, n. Let

a’, b’, t]Ok(t) bk(a’, b’; t)= /n+l(UO, ", Un)
k, n k, 1

so that 0k satisfies (3.2)and

Lk(t)= E t/’,(Uo," aj," u,
k, n-k

(-1)"-iLuj(t)>O’
]=0

a’<-t<-b ’, since the determinants Wn(Uo,..., ui,..., un k, n k
are all positive

by P61ya’s Theorem V [13]. It now follows from Corollary 3.1.3 that L is disconjugate
on [a, b). To see that b is not the first conjugate point of a observe that the functions
(Ul," , u,,-1) may be extended to an interval [c, b), c < a, and still satisfy conditions
(i), (ii) on [c, b). Thus L is disconjugate on [c, b) and hence, by Theorem 7 of Sherman
[15], L is disconjugate on [a, b].

THEOREM 3.2. Suppose H (U*) and 7 o(U) exist such that
b b p/q

where 1 <-_ p <-_ co, 1/p + 1/q 1. Then there is no nontrivial solution x ofo(L; U) such
that x >-0 on [a, b ]. Ifp or q oe, the corresponding integral in (3.5) should be replaced
by the appropriate supremum.

Proof. Suppose x is a nontrivial solution of 0(L; U) such that x -> 0. Then, from
Proposition 2.1, y r/x is a nontrivial nonnegative solution of

b

y(t)= J, y(s)L*n(t, s)rl(t)/q(s) ds, y E .p[a, b].

Therefore y(t)<-baY(S)[L*H(t, s)rl(t)/*I(s)]-ds; taking the p norm of both sides of
this expression and majorising the right-hand side by the Cauchy-Schwarz inequality
gives a contradiction to (3.5).

COROLLARY 3.2.1. Suppose G (U*) and h, 0 are real-valued functions on
[a, b] with

OeAC"-l[a,b], U*O 0.

A sufficient condition ]’or the conclusion of Theorem 3.2 to hold is
b

(3.6) sup { Ia [L*G(t, s)+ h (t)L*O(s)]- ds, a <- <- b} < 1.

This follows from the observation that if H(t, s)= G(t, s)+h(t)O(s), then H e
(U*). Corollary 3.2.1 relaxes the condition (3.1) of Theorem 3.1 since it is not
necessary to assume L*O >- 0 here. Indeed if L*0 > 0 then h (t) may be chosen so that
L*H(t,. )>0 except on a set of arbitrarily small measure. It can be seen from the
following corollary that Theorem 3.2 is a generalization of Lyapunov’s inequality [cf.
6, Theorem 5.1, p. 345].
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COROLLARY 3.2.2. Suppose there exists ACI[a, b] such that 4t(a)= if(b)= 0
and

(3.7) Ib[q+(s)(b-s)(s-a)+"(s)+tt(s)/(s)] ds<_l
b-a +

Then there is no solution of
x"+q(t)x -0, x(a)=x(b)=O

such that x > 0 on (a, b ).
Proof. Consider the Green’s function G defined by

_G(t,s)(b_a)={(b-t)(s-a), a<-s<--t,
(b-s)(t-a), t<-_s<=b.

Since -(b-s)(s-a)/(b-a)< G(t, s)<-O if s (a, b), s t, the condition (3.7) implies
that (3.6) is satisfied with A (t)=-1. The case 0 is Lyapunov’s inequality. Observe
however that, in contrast to the case 4 0, condition (3.7) need not in general imply
the disconjugacy of Ly y"+ q(t)y on [a, b] since the existence of on [a, b] does not
necessarily imply the existence of a similar function for each subinterval of [a, b].

THEOREM 3.3. Suppose H (U*) and q Vp(U) exist such that

(3.8) [L*H(t, s)rt(t)/rl(s)lq ds dt < 1,

1 <-_ p <- c, 1/p + 1/q 1. Then Green’s function exists for the problem (L; U). Ifp or
q =c the corresponding integral in (3.8) should be replaced by the appropriate
supremum.

Proof. The condition (3.8) ensures that the map -: p[a, b]- ,Wo[a, b] given by
b

(3-y)(t) | y(s)L*n(t, s)rl(t)/rl(s) ds

is a contraction and so y 0 is the only fixed point. But if x is any solution of
0(L; U), then y x is a fixed point of - by Proposition 2.1. Thus x 0 is the only
solution of o(L; U), and Green’s function for (L; U) exists.

COROLLARY 3.3.1. Suppose H(U*) is a Green’s function which does not
change sign on [a, bl [a, b] and

() L*H(t, )<-0 for each [a, b].
Suppose further that there exists b AC"-I[a, b] such that

(ii) U(/, 0, 1/[b[ A/’(U),
(iii) b0/4, is continuous and positive on [a, b] where

b

| H(., s)L4,(s) cls.,o

Then Green’s function G for (L; U) exists, G and H have the same sign and

Ia(t,s)l>-[n(t,s)l.

Proof. First, Green’s function G for (L; U) exists since the formula (2.1) with
x b implies

b

b(t) o(t)- Ia c(s)L*H(t, s) ds,
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and therefore from conditions (i), (ii)

0<-
49(t)

4)(s)L*H(t, s) ds <- 1 _49o(t_____)
49(t)"

Condition (iii)then gives

sup i,/,(t)l I(s)[ ]L*H(t, s)l ds, a <- t<= b < 1,

and the existence of Green’s function for (L; U) follows from Theorem 3.1 with
p ee, r/= 1/141. Now the rest of the assertions follow by solving the equation

b

(3.9) G(t, r)= H(t, z)- Ja G(s, r)L*H(t, s) ds

for G by Picard iterations. To verify the formula (3.9) consider h =H(t,. ), g
G(., r)so that

b b

-IagL*h=I(hLg-gL*h)
[hg](b)-[hg](z+)+[hg](--)-[hg](t+)+[hg](t-)-[hg](a), by (1.1)

-[hg](z+)+ [hg](-)-[hg](t+)+ [hg](t-), by (1.2),

-h (z){g(n-1)(’+) g(n-1)(r-)} + g(t)(- 1)"{h n-x)(t+)- h"-1)(t-)}
=-h(-)+g(t).

Remark. If instead of H(U*) it is assumed that H(t,s)=K(s, t) where
(- 1)"K (U) and

(i)’ LH(., s)<-O for each s [a, b], then it should be assumed that there exists a
function AC"-I[a, b] such that

(ii)’ U*4,=0, 1/II(U*),
(iii)’ 40/ is continuous and positive on [a, b] where

b

| H(t,. )L*g/(t)dt.60
Ja

The conclusion of Corollary 3.3.1 then holds as before.
As an application for Corollary 3.3.1 consider aplygin’s inequality which states

that if x AC"-I[a, b] and

x(a)= x’(a) x(’-X(a) O, Lx _->0,

then x -> 0 on an interval [a, y(a)]. Clearly [a, y(a)] is the largest interval on which
K(s,t)>=O, a<=s<-t<=y(a)where K is the Gauchy function for L (i.e. the Green’s
function for the problem (L; n, a, b)). It is clear that y(a) >= *1 (a), where rt (a) is the
first conjugate point of a.

COROLLARY 3.3.2. Suppose H is a Cauchy ]’unction such that
(i) H(t,s)>-O, a<=s<-t<-band
(ii) either L*H(t, )<-_ 0 for each t, a <- <- b,

or LH s)<- 0 ]or each , a <- s <- b.
Then the Cauchy function K]’or L satisfies

K(t,s)>-H(t,s)>-O, a<-s<-t<-b.
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Proof. It may be assumed that a O, b 1. Let (u1,’’’, un) be a fundamental
solution set for Lx 0 such that W(ul,..., un)> 0 on [0, 11. Consider

C(t)=o[4#n+l(Ui,..., Un+l)[0, l]n, 1

where u,/(t) eat; it will be shown that if A is large then

(3.10) (0) ("-1)(0)=0, (")(0)>0, >0 and L>0 on(0, 1],

and hence conditions (ii), (iii) of Corollary 3.3.1 are satisfied giving K(t, s)>-H(t, s) >-
0 if L*H(t,. )<= O. To prove assertion (3.10), observe that

4,(0) (n-(O)= O,

6("(0)= W(u,..., u,+)(0)

W(u,..., u,)(0)" + o( "-) (a -Also Lb= W(ua,"’, u,)(O)Lu,+ >0 for all large A and thus 4 >0 on (0, r/(0)],
where rt(0) is the first conjugate point of 0, by aplygin’s inequality. In fact b > 0 on
(0, 1] since, if 0 < r/(0)< 1, then

b(t) W(Ul,’", Un)(0) e At + O(/ n-l) (/ --> oo)

uniformly on [rt(0), 1]. In the case that LH(. ,s)<-O an appropriate function O
satisfying the conditions (ii)’, (iii)’ of the remark may be constructed in a similar
fashion.

Corollary 3.3.2 may be combined with P61ya’s Theorem V [13], cf. also [9], [10],
to give a criterion other than disconjugacy for (;aplygin’s inequality to hold. A
particular case of this theorem states that if L, is an operator which is disconjugate on
[c, d) then

f(c) f(k-a)(C)= O, 1 <-- k <- n, L,,f > 0 on [c, d)

implies L,._f>=O on [c, d] where Lc,oy =y and, if k < n, Lc,.-k is an operator of
order n- k the null set of which is {x’L.x O, x(c) x(k-X)(C) 0}. It follows
therefore that if H is the Cauchy function of L. for initial value problems at c then,
on [c, d]

Lc,n-kHc( s)>-O, k 1,. , n.

But if c<=a then Ha(.,s)=Hc(.,s) a<-s<-t<=b so if [a,b]c(c,d] and qk

C"-k (c, d], qk <- O, h 1, , n, then the function H Ha and the operator L, where

Ly Ly + qkLc,n-kY,
k=l

satisfy the conditions of Corollary 3.3.2. The restriction c < a is necessary since the
operators L,,-k are singular at c if k <n. The introduction to Levin’s paper [8]
contains a discussion of aplygin’s inequality and disconjugacy and has further
references to the literature on this subject.

COROLLARY 3.3.3. Suppose that L is disconjugate on [a, b] and that (L; k, a, b)
has Green’s function H. If q C[a, b], (--1)n-kqn--<O. Then Green’s function G for
(L + q,; k, a, b) exists and

(--1)"-kG(t,S)>--_(--1)"-kH(t,s)>--O, (t,s)e[a,b]x[a,b],
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provided there exists a function e AC"-I[a, b] having a zero of multiplicity k (exactly)
at a and n-k (exactly) at b, (-1)n-k >0 and (L + q,) >-0 on (a, b) with strict
inequality on a set ofpositive measure.

Proof. Since has a zero of multiplicity k exactly at a (i.e. (a) &(k-l)
(a)=0, ()(a)0) and multiplicity n-k exactly at b it follows that x/ is
bounded if x(a) x(-)(a) x(b) x("--a)(b) 0 and x e AC"-[a, b];
thus 1/[[ e(k; a, b). The Green’s function H is continuous, H(., s) has a zero of
multiplicity k exactly at a and n- k exactly at b and (-1)"-H( s)> 0 on (a, b),
a<s<b (cf. Coppel [3]). Therefore o/=l/bH(.,s)(L+q,)(s)ds is
continuous and positive on [a,b]. Also (L+qh)*H(t,.)=qnH(t,. )<_-0 so Corollary
3.3.3 follows from Corollary 3.3.1.

Corollary 3.3.3 should be compared with Corollary 3.1.1 where it was assumed
(-1)"-kq,, -> 0 rather than (-1)n-q, _<_ 0. Corollary 3.3.3 may be used to give another
proof of the Levin-Nehari comparison theorem (Corollary 3.1.2) for operators L + q,.
This proof has the added advantage that it establishes the fact that the Green’s
function for (L + qn; k, a, b) depends monotonically on qn.

By choosing H in Theorems 3.2, 3.3 to be specific Green’s functions restrictions
on [lallo may be found which guarantee the disconjugacy of L on [a, b]. However to
obtain any significant improvement on results already in the literature it would appear
necessary to obtain fairly good estimates on the quantities (O/Os)H(t,s), k
0,...,n. Estimates of this type on the Green’s function for the problem
(D-; k, a, b) may be found in the paper of Ostroumov [12]. It is hoped that this
question may be considered further in a later paper.

The restriction a C"-k on the coefficients in L is not very important. The
techniques adopted here may be extended to the generalized differential equations of
Nehari [11] and the formal adjoint L* of L may be discussed in this context. Many of
the results may also be extended simply by approximation of coefficients which are
continuous by functions which are smooth.
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ON THE OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF A CLASS
OF DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS*

Y. G. SFICAS? AND I. P. STAVROULAKIS:

Abstract. This paper is concerned with the oscillatory and asymptotic behavior of the solutions of the
differential equation

N

(E, 8) [r(t)x(n-1)(t)] + E Pi(t)fi(x[’l(t)],’’’, x[’m(t)]) 0
i=1

where 6 + 1. Conditions which insure that every solution of (E, 1) is oscillatory or tending monotonically
to zero are given. A classification of all solutions of (E, -1) with respect to their behavior as and to
their oscillatory character is also obtained. Finally a comparison with the oscillatory behavior of second
order equations is presented. The obtained results unify, extend and improve recent ones by Lovelady and
by the authors.

1. Introduction. This paper is concerned with the oscillatory and asymptotic
behavior of the solutions of the differential equation with deviating arguments

N

(E, 8) [r(t)x’-l(t)]’+ 8 pi(t)fi(x[’l(t)],’’’, x[%(t)])= 0, >_- to,
i=1

where 8 + 1.
In the particular case of the second order linear differential equation

(1.1) x"+p(t)x =0,

Hille [1] (see also [11, p. 45]) obtained the following result"

g*=liminftl p(s)ds and g*=limsuptlt,_, p(s)ds,

then the conditions g, <-1/4, g*<_-1 are necessary conditions and g*< 1/4 is a

sufficient condition ]or (1.1) to be nonoscillatory; g, > 1/4 is a sufficient condition for
(1.1) to be oscillatory.

This result can be applied in many cases in which other results by Kiguradze [3]
and by Sficas [7] fail.

For higher order differential equations with deviating arguments the first
attempts known to the present authors in stating analogous results were made by
Sficas [8] and Lovelady [4], [5], [6]. It must be noted that the results by Sficas can be
applied only to retarded differential equations while those by Lovelady concern only
linear differential equations (ordinary or retarded).

The purpose of the present paper is:
a) To extend the results by Lovelady in such a way that they can be applied in

cases of nonlinear differential equations and especially with deviating arguments.
b) To include differential equations which contain a damping term.
Although the method for the general case of equations which contain more than

one deviating argument is the same as for one argument, we preferred to deal with the
more general case (though we are afraid that this will be tiring for the reader) because,
as our results are given, it is clearer how each deviating argument acts upon the
oscillatory behavior of equations.

* Received by the editors August 4, 1976 and in final revised form February 14, 1977.
t Department of Mathematics, University of Ioannina, Ioannina, Greece.
$ Department of Mathematics, University of Ioannina, Ioannina, Greece. During the final preparation

of this paper this author was supported by the National Hellenic Research Foundation.
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2. Preliminaries. Consider the n th order (n > 1) differential equation (E, ). We
suppose that "cj(l" 1, 2,..., m), pi(i 1, 2,..., N), fi(i 1, 2,. ., N) and r are
continuous real-valued functions such that’

(i) -j are defined on the half-line [to, c) and

lim ri(t)= (/=1, 2,. ., m);

(ii) pi are nonnegative on [to, );
(iii) j] are defined on R’, where R is the real line

and

(Vj= 1, 2,..., m) y.>O =),f(y, y2,’", y,,)>O

(Vj= 1, 2,..., m) Yi <0 fi(yl, Y2, Y,)<0;

(iv) r is nonnegative on [to, ) and such that

dt

r(t)

The above conditions will be assumed in the sequel without further mention.
Throughout this paper, by "solution" of the differential equation (E, ) we shall

mean only solutions x which are defined on the half,line [tx, ). The oscillatory
character is considered in the usual sense, i.e. a solution is called oscillatory if it has no
last zero, otherwise it is called nonoscillatory.

To obtain our results we need the following Lemma which is easily derived from
two lemmas due to Kiguradze (cf. [2] and [9]).

LEMMA. Suppose that x is a positive (n-1)-times continuously differentiable
function on an interval [a, ) such that the function r(t)x(n-1)(t) is continuously
differentiable on [a, ), where r satisfies (iv). Furthermore consider the functions y
defined as follows:

x ), O<_i<=n-2,

Yi rx (n-l), n- 1,

[rx"-l)], i= n.

If y,, & of constant sign and not identically zero for all large t, then there exist a

tx >= a and an integer l, 0 <= <= n with n + odd for yn <-- O, n + even for yn >= O, and such
that for every >= t

and

/>0 ::} yi(t)> 0

<= n 1 (- 1)l+i y,(t) > 0

(i=0, 1,...,/-1)

(i=l,l+l,..., n- 1).

The oscillatory and asymptotic behavior of bounded solutions of the differential
equation (E, 6) is well described by the following theorem. The proof of this theorem
is omitted since it can be proved as in the case when r(t)= 1, with some appropriate
modifications.
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THEOREM 1. Let the following condition be satisfied:
(C1) For some i, 1 <= <-_ N, either

I pi(t) dt

or

tn-2 It pi(s) cts dt .
Then every bounded solution x of (E, 1) {resp. (E, 1)} is:

(a) oscillatory for n even {resp. odd},
(b) ]:or n odd {resp. even}, either oscillatory or tending monotonically to zero as

t-->, together with its first n-2 derivatives. In the latter case we also have
lim,_ r(t)x("-l)(t)= O.

3. Main results. In the following theorems we consider the functions f, ’ and T.
defined as follows"

f(Y, Y2," ", Ym)-- min Ifi(Yl, Y2," ", Ym)l,
l<iNN

r (t)= inf (min {s, rj(s)}),
sZ>t

T.(t) inf (max {s, )(s)})
st

(/= 1,2,. , m).

We remark that these functions, as they have been defined, satisfy the following
conditions:

(v) - are nondecreasing on [to, c),-(t) <= ]:or every >= to,

and

lim -(t)=
t--

(vi) T- are nondecreasing on [to,

Ti(t)et for every >= to,

and

lim T.(t)=
t---

Now we introduce the following conditions in which the functions " and T are
defined as follows"

’(t)= min ’(t) and T(t)= max T-(t).
l<=i<=m

(C2) There exist nonnegative numbers ai, ] 1, 2,. , m with ai 1 and some
/’=1
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1 <- <= N such that for every integer l, 1 <= <- n 1 with n + odd,

< l 1 pi(S) H [T(S)](1-1)i ds o, or
/=1

n--l--2I s

;"S’ Di(U) i:ll-[ ITS(b/)](/-l)a/du ds

l=n 1 => pi(u) [-I [r(u)](-’ du
j=l

(C3) There exist nonnegative numbers , ] 1, 2, , m with = 1 such that
or every integer l, 1 <- <-_ n 1 with n + odd

/< n- 1 => limsup_,oo r(t)Ir(n [s-T(t)]n-l-Zr(s) Is ,.= pi(u) i=I [-r(u)-r*(t)](-’i du ds

>(l-1)!(n-l-2)!c;

l=n-l=>limsup S. pi(u) II [-;(u)--(t)] du>(n-2)!c
t-->oo Oto (t)

where

sup supc max lim
y’ -Y2-), lim

y,--, f-Y-; ,Ym yi--,-oo
lNjNm

(C) This condition is as (C2) but the integer is such that 1 <- <- n 2 with n +

(C) This condition is as (C3) but the integer is such that 1 <= <- n 2 with n +
even.

THEOREM 2. Suppose that either condition (Ce) or condition (C3) holds. Then every
solution x o[ (E, 1) is:

(a) oscillatory, [or n even,
(b) [or n odd, either oscillatory or tending monotonically to zero as , together

with its first n- 2 derivatives. In the latter case we also have limt_. r(t)x-(t) O.
Proof. Let x be a nonoscillatory solution of (E, 1)with lim_ x(t): 0. Since the

substitution u =-x transforms (E, 1) into an equation of the same. form satisfying the
assumptions of the theorem we can suppose, without loss of generality, that x(t)>0
for every t-> to.

By (i), we can choose a tl to such that for every -> t

ri(t) -> to (/" 1, 2, ., m).

Thus, by (E, 1), in view of (ii) and (iii), for every -> tl we obtain

N

y(t) [r(t)x-(t)]’= , pi(tffi(x[’l(t)], ", x[r,,(t)]) -< 0.
i=1

We notice that since the functions p(t) (i 1, 2,..., N) are, by (Ce) and (C3), not
identically zero for all large the same holds for y,(t). Thus, applying the Lemma, we
derive that there exist a t >- tl and an integer l, 0 <= <- n with n + odd such that for
every > t

/>0:ff y(t)>0 (i=0, 1,...,/- 1),
(3.)

<= n 1 (- 1)l+iyi(t > 0 (i l, + 1,. ., n 1).
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Since the integer n + is odd, obviously =< n 1. Furthermore > 0. To prove this, we
show first that conditions (C2) and (C3) imply (Ca). That condition (C2) implies (C1) is
obvious. Now, by (C3), we have

0 < lim sup z(t)
[s T(t)] n-3

pi(u) duds
t-, (t) r(s) i=1

_-< lim sup pi(U du ds
tX - i=

< lim sup pi(u) duds,
t->o r- i=1

and therefore there exists an i, 1 -< =< N such that

lim_sup r- pi(u du ds > 0

which obviously implies (C1). Thus, by Theorem 1, the solution x is not bounded and
consequently, in view of the Lemma, > 0. Since > 0 and =< n 1 for every -> tx we
have

(3.2)
yi(t) > 0 (i O, 1, , 1),

(--1)l+iyi(t)>O (i I, + 1,..., n- 1).
If < n 1, then an integration of (E, 1) n times from to yields

I (s--t)n-l-2 Ise(-1)"--Xx(t)(t)>-
r(s)(n-l-2)!

pi(uffi(X[rl(U)],

(3.3) .., X[m(U)]) du ds, >- tx.

Since the integer n + is odd, the above inequality for every >= tx gives

x(l)(t)> I [s- T(t)]--2 fs N

2 pi(tl)fi(X[7"l(U)], X[7"m(U)]) duds

ff/ [s- r(t)]n-t-2 Is N Ni(U )fi(x[7"l(l)]’ X[Tm(l)])
X%[7"i(bl)] dudf(U)(t

;i = --- x ]=

>= inf
f(X[7"I(U)]’ X[’I’m(U)])

-%
[s-T(t)]"-’-

u>----T(t) Hj=I X i’ri(u)] (t) r(s)(n-l-2)!

2 p(u) x’[’(u)l du ds.

Hence

(3.4)

x(l)(t)> f(Y,,"", Ym) IT [S--T(t)] n-l-2
inf
l]m

pi(u) X%[7"(U)] duds.

l--2 (V W)kX (k)(
0.5) x (v) 2

w)
k=0 k!

+
(/- 2)!

Consequently, by Taylor’s formula with integral remainder

d,f, & <-w<=v.
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Because limt+oo r(t)= oo, there exists a t2 >- tx such that for every >_-t2

r(t)>=tx (/’= 1, 2,..., m)

and therefore (3.5), in view of (3.2), gives

(3.6) x [r’(u)] => x(l-1)() d:, t2 < < u.
(t) (l-2)!

Combining (3.4) and (3.6), for every _-> t2 we obtain

=> inf
yi>x[z](T(t))]

m[fr’(u)[r(U)--]’--2
i= ,*.(t) (l- 2)!

(t-a)() d du ds

f(yl,_’’,ym)I: [s-T(t)]"-l-2I N

E p,(u)ia= Y,’ O) r(s)(n -l----!

If1-I [x(l-1)[r(t)]]%
z.(u) [r(u)_]/-2

i=1 J.(t) (I- 2)t d: duds.

That is, for every t-> t2

(3.7)

x(l-1)[r(t)] /(Yx,""", Ym)X(t)(t)>= inf
(l-1)!(n-l-2)! ->_xt,*(r(o) I-Ii y.’

I( [s-- T(t)]n-l-2 Is N

E pi(u) I-I [r(U)--r(t)](1-1)% du ds,
o) r(s) i= i=1

SO

f [s- T(t)]"-’-2 Is E pi(u) H [r(U)--r](t)](l-1)’ duds < 0(3,
Jr(t) r(s) i=1 i=1

which implies the failure of (C2).
If n 1 we have

1 _, pi(u)fi(X[rl(U)],’’’, X[rm(U)])(n- 1)(t) > r--- i=1

and following the preceding procedure we obtain

(3.8)

thus

x("-2)[r(t)] /(Y,""", Ym)x("-)(t)>= inf
(n 2)! y,=>x[(r(,)) I-Ii=l y",

N1
Y pi(u) I-I [r(u)-- r(t)]"-2), du,r(t) (t) i=l

N, pi(U) I-I [r(u)-r(t)]("-2)’’ du <
(t) i=1 /=1

which implies the failure of (C2).
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Suppose now that (C2) fails. If /<n-l, then (3.7), because x()[r(t)]>-x()(t),
yields

(3.9)
[ Is- r(t)]"-’- I, ’z(t) 2 pi(u) I-I [’r(u)-’r(t)](l-1)% du ds
,r(t) r(s) i=1

<=(l-1)!(n-l-2)! Y’"Y
-t)sup [r( )]y,=>xt(r(,))l f(Y, ", Y,) x-)

It is a matter of elementary calculus to show that

x")[z(t)l _-< 1(3.10) lim sup r(t)x(l_l)[r(t)t---

On the other hand limt_. x(t)= oe and therefore

lim sup
y,l...y,.

=limsup
yl ""y <c.

,-,t ,>-t(r(,)) y. ,- /(y.’". y,.)

Combining (3.9), (3.10) and the last inequality we obtain

lim sup (t)
[s r(t)]"-- Z pi(u) [,(u)-,(t)]-1’ duds

t (t) r(s) i=1

(t-)(n-l-2)c,

which contradicts (C3).
If l= n- 1 then, by (3.8), since r[r(t)]x(-a)[(t)] r(t)x("-a)(t), we have

p(u) [r(u)-(t)l"-’du
(0 i= i=

N (n-2) sup YT y r[r(t)]x("-[(t)]
,,,( (y,..., y) x("-[,(t)l

Furthermore, because the function r(t)x("-(t) is nonincreasing, for every t we get

r[r(t)lx ("-l)[z(t )]

z(t)X(n-2)[’r(t2)] + .(t2)(1/r(s))[r(s)x(n-1)(s)] ds
r[,r(t)]x ("-l)[,r(t)]

> x("-2)[z(t2)] + r[r(t)lx("-l)[r(t)] j,(t) (ds/r(s)) ds

r[,r(t)]x(-l)[r(t)] >= r(s)"

Hence

lim sup pi(u) [r(u)-r(t)](’-2)’’ du -< (n 2)!c,
t->oo d’r(t2) aT(t)

which contradicts (C3).
We therefore conclude that every solution x of (E, 1) is either oscillatory or such

that limt_, x(t)= O. In the last case, by the mean value theorem, we get

lim x()(t)= 0 (k O, 1,. , n 2)
t->oO



A CLASS OF DIFFERENTIAL EQUATIONS 963

and, by the Lemma, 0 and therefore n is odd. Moreover, it is easily verified that
limt-oo r(t)x(-)(t) O.

THEOREM 3. Let r(t) be continuously differentiable. Suppose that there exist
nonnegative numbers , ] 1, 2,. , m with = a 1 such that

1 f(Y,’’’,Ym) f(Yl,’’’,Ym)}min 2 lim inf , lim inf m
Y’ i= Y, Y’- j=l[ Yi[i

is a positive real number. If condition (Ca) fails but either a): every solution of
#’(t)

[’(U)--’(t)]n-3 2 pi(U) du w[,(t)l 0(3.11) [r(t)w’(t)]’+
(n-3) ( =1

is oscillatory, or b): for any l, 0 < < n 1 with n + odd, every solution of

" ff [s-T(t)]"-t-3
w"(t)+

(l-1)I(n-/-3)! o r(s)
(3.12)

2p(u) [(u)-(t)l(-’duds [(t)]=O
i=1 /=1

is oscillatory, then the conclusion of Theorem 2 holds.
Proof. Consider again a nonoscillatory solution x of (E, 1)with limt x(t) O.
If/=n-1

Ym) ff N

r(t)x-(t) > inf f(Y’ Z pi(u) x’[i(u)] du

f
! p,(u)x It(u)] du
.IT(t) i=1

IT t f’r(s) [’T(U)-- ]n-3
p(u)

,) .,) (n -3)!
x"-)() d du.

Thus [6, Thm. 7] there is a continuous real-valued function w such that

p,(u) [r(u)-l"-w()ddu,(3.13) r(t)w’(t)=
(n-3)! (,) ,(,)

Now differentiation of (3.13) yields (3.11), so w is a nonoscillatory solution of (3.11).
This completes the proof if n- 1.

If < n 1, then following a procedure similar to that of the proof of Theorem 2
we obtain

x(’-l)[r(t)] I [s- T(t)]"-’-3

-xa+l)(t)>-l(l-1)!(n-l-3) (0 r(s)
N

2 p(u) [(u)-,(t)](-’ du ds, e t.
i=1 i=1

If (t)is given by

(t)=
(l- 1)(n 1- 3) ,) r(s) =

p(u)
i=

[(u)-(t)]-)’ du ds,

we get

xt+)(t)+ (t)xa-t)[(t)] O.
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Thus we have a positive solution of

v"(t)+ (t)v[’(t)] <= O, >- t2.

Now the remainder of the proof proceeds as in [6, Thm. 7].
THEOREM 4. Suppose that
(C4) there exists some i, l<-i<=N such that the function fi(Y,"’, Y.,) is

nondecreasing in every variable y 1, , y,. and for every M 0

I pi(s)fi(m[’rl(S)]n-x m[’rm(s)]n-a) ds

and either condition (C) or (C;) holds. Then every solution x of (E, -1) satisfies exactly
one of the following:

(I) x is oscillatory,
(II) x and its first n-2 derivatives tend monotonically to zero as and

moreover limt_oo r(t)x ("-1) (t)= 0;
(III) either

lim r(t)x("-l(t)= , lim x)(t) c (j=0, 1,... ,n-2)

or

lim r(t)x("-(t) -c, lim xO)(t) - (=0, 1,..., n-2).

Moreover (II) occurs only in the case of even n.

Proof. Let x be a nonoscillatory solution of (E, -1) with lim,_o x (t) # 0. As in the
proof of Theorem 2, we suppose, without loss of generality, that x(t)>0 for every

_-> to. Moreover, we can choose t -> to such that

yn(t) [r(t)x (n-x)(t)] >- 0

for every _-> tx, where y. (t) is not identically zero for all large t. Thus, by the Lemma,
there exists & ->_ tx and an integer l, 0_-< _-< n with n + even, such that for every _-> tx
the relation (3.1) holds.

Consequently we consider the following two cases:
Case 1: n. In this case we have

(3.14) yi(t)>0 for every >- tx (i=0,1,...,n-1).

Furthermore, by Taylor’s formula

(t- tx)x’(tx) (t- tx)n-Xx(n-1)(tx)
x(t)>-_x(t)+ +... +

1! (n- 1)!

and therefore there exists a constant M> 0 and t2 -> tx such that for every _-> t2,

(3.15) x (t) >>- Mt"-1.
Integrating equation (E, 1) from t3 to we obtain

r(t)x(’-ll(t) r(t)x(-(t)+ f p(sff(x[z(s)], x[’(s)]) ds
i=1

where t3 -> t2 has been chosen so that for every t-> t3

ri(t) >= t2 (j 1, 2,..., m ).
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Thus, by (3.14), (C4)and (3.15), we get

r(t)x("-l(t) >- Y p(s)I:(M[zl(S)]-i=’1
and therefore

,M[,rm(s)l"-l)ds,

lim r(t)x(n-1)(t)
t-oo

From this, it is easily shown that

lim x)(t) oe (/’=0, 1,..., n- 2).

Hence the solution x satisfies (III).
Case 2" < n- 1. In this case

yn-l(t)< 0 for every t-> tx.

.As in the proof of Theorem 2, it can be shown that > 0. Hence the relations (3.2) and
(3.3) hold. Then, following step-by-step the proof of Theorem 2 we again obtain a
contradiction.

Hence, every nonoscillatory solution x of (E, -1) satisfies (III) or limt_o x(t)= 0.
In the last case, by the mean value theorem, we get

lira x(t)= 0 (k O, 1,. , n 2)
t

and moreover limt r(t)x(-(t) O, that is, x satisfies (II). Hence, every solution x
of (E, -1) satisfies exactly one of the properties (I), (II), (III). Finally, by the Lemma,
we conclude that (II) occurs only in the case of even n.

TnonzM 5. Suppose that is as in Theorem 3. If condition (C;) fails but either a):
every solution of

E p(u) H [(u)-(t)]"-’ du s wig(t)] 0w"(t)+
(n -4) ,) i=

is oscillatory, or b): [or any l, 0</<n-2 with n+l even, every solution of (3.12) is
oscillatory, then every solution x o[ (E, -1) which does not satis[y (III) o[ Theorem 4 is"

(a) oscillatory [or n odd,
(b) [or n even, either oscillatory or tending monotonically to zero as , together

with its first n-2 derivatives, and lim, r(t)x"-a)(t) O.
Pro@ Let x be a nonoscillatory solution of (E, -1) with lim, x(t) O, which

does not satisfy (III) of Theorem 4. Here n + is even and < n, hence n -2.
If l=n-2

--X’n-2)(t) > inf
f(Yl,""", Ym) ; f?,l p(u) H x’[(u)] du v

gX(n-4)[T(t)] ff l ff, ,(t)](n_4)ai du dv"

If (t)is given by

we get

x(-(t) + (t)x(-41[r(t)] N O.



966 Y. G. SFICAS AND I. P. STAVROULAKIS

Thus we have a positive solution of

v"(t)+ q(t)v[r(t)] <- O.

Now the proof proceeds as in [6, Thm. 7].
If < n- 2 then the proof is so similar to the last part of the proof of Theorem 3

that we omit it.
Remark. One can draw corollaries from Theorems 2-5 concerning the retarded

differential equation

xn)(t)+ 6p(t)f(x[g(t)])= O, >= to,

which extend recent results due to Lovelady [4], [5], [6]. Also, if r(t)=- 1 Theorems 2
and 4 yield recent results due to Stavroulakis [10].
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ON A NONSELF ADJOINT EIGENFUNCTION EXPANSION*

D. NAYLOR

Abstract. This paper constructs a formula of inversion of an integral transform similar to that
associated with the names of Kontorovich and Lebedev but involving a truncated infinite interval. The
transform in question is useful in the solution of certain exterior boundary value problems involving a
complex boundary condition and the damped wave equation and is of some independent interest in that,
despite the singular nonself adjoint nature of the underlying expansion problem and the complex nature of
the eigenvalues, the formula of inversion can be expressed as an eigenfunction expansion which does not
require a summability factor but which is convergent in the ordinary sense.

1. Introduction. In this paper a formula of inversion is constructed for the
integral transform defined by the equation

(1) F(u)= fa f(r)Ku(kr)dr’r
Here k, a are positive constants and K,(kr) denotes the MacDonald type Bessel
function, the notation being that of Watson [10]. The transform in question arises
from a consideration of ’the differential equation

(2) r2yrr + ryr (k2r2 + u2)y O, a <= r < c,

together with the boundary condition

(3) hy(a)+ay’(a)=O,

where h h + ih2 denotes a complex constant. The eigenfunctions are the Bessel
functions Ku,(kr) where ul, u2," are the zeros of the function g(u) defined by the
equation

(4) g(u)= hK,(ka)+ kag (ka)

regarded as a function of u.
If the constant h is real the expansion problem though singular is self adjoint and

the possible values of u 2 are real. It is shown in [3] that when h is real the function
g(u) possesses an infinite number of pairs of imaginary zeros +un and at most one pair
+u0 of real zeros. In the self adjoint case the corresponding theory of such expansions
as outlined in [9] justifies the existence of the expansion

u[hL,(ka)+ kaI’ (ka)]K(kr)F(u)(5) f(r) -2
=,,, g’(u)

where the summation includes all the zeros u, located on the positive imaginary axis
and, if present, the real positive zero u0.

In this paper it will be proved that a formula of the type (5) is still valid even when
the constant h is complex. Although the boundary problem (2), (3) that generates the
expansion is, for complex h, both singular and nonself adjoint, the resulting series
requires no summability factor to render it convergent. This situation is in contrast to
that which prevails in the related singular and nonself adjoint expansion problem in
which the kernel of the transform (1) is taken to be the Hankel function H (kr)
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968 D. NAYLOR

rather than the Bessel function K, (kr), where k is real. This alternative choice leads to
the transform

G(u)= f,, H (kr)f(r)dr’r
The formula of inversion of this transform cannot in general be expressed as a simple
convergent series as in (5) but must be represented either as a contour integral or a
series both of which involve a summability factor of one kind or another to render
them convergent. The Hankel function series expansion was discussed in [1], [8]
where it is pointed out that the resulting series is usually divergent and the problem of
inverting the transform G(u) was considered in detail in the author’s papers [4], [5],
[6], [7] where various alternative formulas of inversion are developed.

To discuss the validity or otherwise of an expansion like (5) in the nonself adjoint
case it is necessary first of all to investigate the zeros of the function g(u) when the
constant h is complex. We shall prove that, for he : 0, the zeros are neither real nor
purely imaginary. If he > 0 the zeros are located in the first and third quadrants of the
complex u-plane whilst if he<0 they lie in the second and fourth quadrants. An
asymptotic formula is also obtained from which it is shown that the zeros approach the
imaginary axis as un oo. Figure 1 illustrates the disposition of the zeros in the case
h2>0.

2. The dslrbfin lhe egenvles. The following classical type argument,
similar to that used in [2], can be followed to investigate the zeros in question. We
write y--K,(kr) and multiply the equation (2) by r-a)7 where 37 denotes the complex
conjugate. Upon integrating the resulting equation we find that

(6) u2I, ly[2dz=-Iar
[k21yl2+lYrl2]rdr-ay(a)y’(a)’

the last term being obtained after an integration by parts. If we set u s +it, h
hi+ ih2 and separate the real and imaginary parts we find on using the condition (3)
that

I dr(7) (s2-t2) Ia lY r
[k2lyl2+lyrl2]rdr+hlly(a)12’

h21y (a)12"(8) 2st [Y
r

It follows immediately from (8) that if h2 0 there are no real zeros and no
imaginary zeros. If h2 > 0 the product st must also be positive which implies that the
zeros are located in the first and third quadrants of the complex u-plane. However if
h2 < 0 the zeros must lie in the second and fourth quadrants.

Further information can be deduced as follows. The equation (7) implies the
inequality

(9)

(s2-t2) Ya lyl2dr-<-k2r Ia ly[2r dr + hlly(a)l2

<=-k2a2 fa ly]2dr--+hly(a)l
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since r >-aZ/r. If the integral surviving in (8), (9) is now eliminated we find that
2 2 2a2s +k <-2st sinhA,

that is

(10) (t + s e)(t-s e-h) >- k2a 2

where we have set hi h2 sinhA, where is real. If equality is taken in (10) the
resulting equation represents a hyperbola in the (s, t) plane whose asymptotes are the
lines s-t ea= 0 and s + te-a= 0. The two branches C1 and C2 of this curve are
illustrated in Fig. 1 and the inequality (10) implies that the zeros of the function g(u)
must be located above C1 and below C2. If h2 > 0 the zeros are of necessity situated in
the first and third quadrants and so in this case they must lie in the regions shown in
Fig. 1. Since Ku(kr) is an even function of u then to every zero un there corresponds
another zero -u,,, which gives rise to the same eigenfunction. This is illustrated in the
figure. The hyperbolas intersect the imaginary axis where t- +ka so it is noted that,
when h2 > 0, all the zeros are such that IIm (u)[-> ka.

The asymptotic distribution of the zeros for large u can be obtained with the aid
of the formulas

(11) Ku(x) [I_ (x)-I (x)],
2 sin uzr

I

/I/
I/x
]11 x

I x

x
x
x
x
/

I
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I
I
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where
2(x/2)---- 1++O(u(12) I(x)

r(1 + u) 4(1 + u)

Formula (12) is valid for fixed x and large u bounded away from the negative integers.
Upon inserting (11), (12) into (4) it can be shown after some reduction that the large
zeros of (4) satisfy the equation

(13) (ka/2)2,_ r(l+u)
1-

a +4h -2)-F(l-u) 2u
+O(u

The asymptotic behavior of the F-functions appearing in the preceding equation may
be estimated with the aid of Stirling’s formula

[ 1 -2)]+O(u(14) F(u) (2r/u)1/2 e log 1 +
12u

which applies as u --> co in the domain [arg u < r.
For definiteness we shall now assume that h2 > 0. The relevant zeros now occur in

the first quadrant and for them Im (u)--> +oo so that sin ur.--(i/2)e-’’ as u--> co. It
then follows from (14) in conjunction with the identity F(u)F(1 u)= r cosec ur that

1 -2)(15) log
F(1 + u)_ 2u log (u/e)-iuTr+i+-u+O(uF(1- u)

as u--> oo in the first quadrant. Upon taking the logarithm of each side of (13) and
inserting the expression (15) it follows that

[ /7r] (1) -2)(16) u log (2u/(kae))- O+ n + ir + O(u

where O (3kaa2+ 12h- 1)/12 and n is a large positive integer.
To solve the equation (16) we set u Re where 0 _-< 0 -< r/2 and equate real and

imaginary parts. This leads to the equations

(17) R cos 0 log (2R/(kae))+R(rr/2-O)sin 0 --O1 COS O+h2 sin Ont. O(R_2)
R

(18) R sin 0 log (2R/(kae))-R(Tr/2-O)cos 0
h2 cos 0 Q1 sin 0

R
+ (n + 1/4) + O(R-)

where Q1 (3k2a 2 4- 12hl- 1)/12. Since 0=< 0 <= r/2 both of the terms appearing on
the left hand side of equation (17) are positive or zero whilst the expression on the
right hand side tends to zero as R--> oo. Thus 0--> rr/2 as R--> oo. We can therefore
obtain an asymptotic estimate of the solution by setting 0 rr/2-e where e is small
and solving for e. This leads to the asymptotic formula

" h2(19) 0
2 R 2 log (2R/(ka))

O[R-4(lg R)-2],

where R is given by the equation

(20) R log(2R/(kae))=(n+1/4),rr -ox-+O(R-2).
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It follows from these equations that the real and imaginary parts of u are such that

(21) s=Re(u)=R cos0=
hE [l+O{g_E(logg)_l}],

R log (2g/(ka))

(22) Im (u) R sin 0 R[ 1 + o{g-4(log R)-2}]
as R c. It is noted that Re (u) 0 as R so that the zeros move closer and closer
to the imaginary axis as R c.

3. The Green’s tunefion. The main result established in this paper can be stated
as follows"

TX-IEOREM. Suppose that f(r) is twice continuously differentiable ]’or r >- a, r-/Zf(r)
-1/2,and r tr l+rfi-krZf)L2(a, o), where k >O. Then, if Im (h)O,

[hL,(ka)+ kaI (ka)lK,(kr)uF(u)
f(r) -2 Y’, r > a

u=u. (O/Ou)[hKu(ka)+ kaK’ (ka)]

where the summation includes all those zeros of the function hKu(ka) + kaK’ (ka) that
lie in the halfplane Re (u) > 0 and

F(u)= I f(r)K’(kr)dro
A proof of the above theorem can be obtained by following the method used in

[5], [7] to derive a related expansion theorem. Let ]’(r), the function to be expanded,
satisfy the conditions of the theorem and define

(23) r2fi + rfi (k 2rZ + v2)] O, r _-> a,

where v > 0. The equation (23) is regarded as a nonhomogeneous equation for f(r)
which will be inverted by means of a suitable Green’s function G(r, p). The appro-
priate Green’s function, which must satisfy the condition (3) at r a, is given by the
formulas

[g(v )I,, (kr)- gl (v )K,, (kr)]Ko (kp )
g(v)

(24) G(r, 0)=
[g(v)I(ko)-g(v)g.(ko)lK.(kr)

g(v)

ar

a -<_p <_-r,

where

(25) gl(v) hlv(ka)+ kaI’(ka).

Upon inverting (23) with the aid of the above Green’s function and using the result
(A.2) established in the Appendix to this paper it is found that

(26) f(r)= I,, O(P)G(r’p)dP+[af’(a)+hf(a)]K"(kr---)
p g(v)

To obtain the expansion formula the Green’s function will now be represented as a
contour integral, which will be inserted in (26). The representation in question is given
by the formula

(27) G(r, p)=
1 f [g(u )I. (kr)- gl(U )K. (kr)]K. (ko )u du
r (u- v)g(u
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In this formula, which is valid for all r, p _>- a, the path L denotes a line (c i, c + i)
parallel to the imaginary axis positioned so that all the zeros of g(u) lie to the left of it.
The constant c is necessarily positive. The parameter v is chosen so that v > c so as to
ensure that the pole at u v lies to the right of L. The equivalence of (24) and (27)
may be proved by means of the calculus of residues in which the contour is closed on
the right by means of a suitable sequence of semicircles which recede to infinity. In the
domain Re (u)>-c the integrand appearing in (27) is an analytic function of u except
for a simple pole at the point u- v. When p _-> r the integral around the semicircle
vanishes in the limit as its radius tends to infinity, so that in this case the integral along
L can be evaluated by computing the residue at the pole v. When this procedure is
carried out the first of the expressions quoted in (24) is obtained. To justify the above
argument it is necessary to verify that the contribution from the added semicircle does
vanish as the radius tends to infinity and this requires an investigation of the behavior
of the integrand as u o. With this in view the K type Bessel functions will be
expressed in terms of the I type functions by means of the relation (11). This shows
that

(28)
I (kr)K, (ka)-I(ka)Ku (kr)

2 sin uzr
[L, (kr)I_, (ka)- L, (ka)I_, (kr)]

1
2u
--[(r/a) -(air)U][1 + O(u-1)].

The equation (28) applies as u- and is obtained after substituting from (12) and
using the identity F(1 + u)F(1-u)sin ur ur. Similarly it is found that

(29) L,(kr)K(ka)-I(ka)K,(kr)=--a + [1 + O(u-1)]

as u -oo. On bearing in mind the definitions (4), (25) of the functions g(u), gl(u) it is
found on combining the above estimates (28), (29) that

(30)
1 [() (_) u]g(u)I(kr)-gl(u)K,(kr)=-- + [1 + O(u-1)]

as u.
Next an estimate for the function g(u) will be obtained. We first employ the

equation (12) to form the equation

hL,(ka)+ kaI’ (ka)=
(ka/2)u [h + u + (h + u + 2)k2a 2

]
F(u + 1---- L 4(u + 1)

+ O(u-)J"
If this equation be subtracted from that obtained by changing the sign of u wherever it
appears we find from (4) and (11) that

7r [(ka/2) (ka/2)-u](31) g(u)=-2 sin ur I_ (- r(-u)
[1 + O(u-)]

as u oo. Finally on employing Stirling’s formula (14) to estimate the F-functions we
find the formulas

g(u) 2/U e0/2)iu+(1/4)i

(32) sinh[u lOg(kee) iurr
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K,(ko) /2rr/u e

(33) cosh[ulog(p) iurr i] [l+O(ul-)]
The formulas (32), (33) apply as u +oo in the sector 0<6 <_-arg u =<rr/2 and have been
derived from (31) and (11) after using the relation sin urr---(i/2)e -iu’r. If u +oo in the

+iursector -r/2 -<_ arg u -<_ -6 < 0 we use sin urr --(i/2) e and find the alternative
formulas

(34)
g(u )= 2X/-U e -(1/2)iur-(1/4)irr

sinh [u log (eaUe) +
Ku(ko) x/27r/u e -(1/2)iurr-(1/4)irr

iu’n"
+ i_][ 1+O (ul-) ]2

on the stated segments.

(38) IK"(kP)l 0[-- e -R cos0 log(o/a)]g(u)

(37)

so that, by (36), (37),

Now Icosh (A +iB)l<--coshA <=e I1 and Isinh (A +iB)[>=lsinhAl>=1/4 e I1

whenever A,B are real and IAl_->1/21og2 so that from (32), (33) and (34), (35) it
follows that

g(kp)
< 1 + 0(39)

g(u) =e
as Rm in the half plane Re (u)c >0. Upon combining the estimates (30) and (38)
or (39) as the case may be we find that the integrand appearing in (27) is

O[R-2 e- o o

which tends to zero as R m in the stated half plane provided that O r.
If O < r the equality of the contour integral (27) with the second of the expressions

quoted in (24) for the Green’s function cannot be established by an argument similar
to that just used since in this case the integral over the semicircle does not tend to zero

The behavior of g(u) as u -+oo in the sector larg ul<-6 can still be obtained from (31)
provided.that u is kept bounded away from the integers. It is convenient therefore to
close the contour by means of a path which is made up of the two circular arcs
u Ro e i, a --< 101 < rr/2, connected by the straight segment u n +1/2+ it for 101 < a,
The radius Ro is chosen so that Ro cos 6 n + 1/2 which ensures that a continuous path
is formed, and n is taken to be a positive integer which tends to infinity. On the
straight segment Re (u)= n +1/2 and it follows that [sin urrl cosh (R sin 0) which is
bounded away from zero. The formula (31) can be applied to show that

(36) g(u)= -47ru/2 e lg(2u/kae)[1 + O(U-1)].
This applies as u m on the sequence of straight lines Re (u)= n +1/2, larg u I--< 6 as
n c. Similarly from (11) it follows, as u m on the same sequence of segments, that

Ku(kp ) /rr/2u e lg (2u/ke)[1 "Jr- O(/g-1)]

(35) cosh[ulog()4 + [1+0(-)].
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as the radius tends to infinity. The validity of (27) when p <r can however be
established by the following alternative method which shows that the expression (27)
proposed for the Green’s function is indeed a symmetric function of the variables p, r.
Upon interchanging the variables r, p in the equation (27) and subtracting it follows
that

(40) G(r, p)-G(p, r)=
1 f [L, (kr)K,,(kp)- L, (kp)K, (kr)]u du

:2 :2
17r .]L U --V

It follows from (28), by analogy, that the cross product of Besscl functions
appearing in the preceding formula is an even function of u and that

1 u] O()],u(kr)K,(kp)-Iu(kp)K,(kr)=u[()-() [1+
as u oo. The integrand appearing in (40) is O(u -2) as u oo in the strip 0 <_- Re (u) _-< c
and is a regular function of u there since v > c. The path L may therefore be deformed
parallel to itself until it coincides with the imaginary axis whereupon it is seen that the
value of the integral is zero since the integrand is an odd function of u. Hence
G(r, p)= G(p, r) for all values of r and p _>-a. Therefore the value of the integral
appearing in (27) when p < r can be obtained by interchanging r and p and evaluating
the integral as before by taking the residue at the pole, a procedure which yields the
second of the expressions appearing on the right hand side of equation (24).

4. The inlegral lheorem. When the expression (27) for the Green’s function is
inserted into the equation (26) and the order of integration in the repeated integral
reversed we find the formula

1 [g(u)L,(kr)-gl(u)K,(kr)](u)u du
f(r)=

r J (u-v)g(u)
(41)

g(r)
+[af(a)+h[(a)]

g(v)
where

(42) ,(u)= I. O()K"(k)a"
p

To justify the above interchange of the orders of integration it is necessary to

obtain a bound on the quotient (u)/g(u) valid on L. A bound on the function (u)
can be found on applying the Schwarz inequality to (42), which gives the inequality

(43) I*(u)l--< {I. [O(O)[dP ]K.(kp)lzdp /2

o
The Bessel function integral appearing here can be obtained by setting y K.(kr) in
equation (6) and taking the imaginary part. This yields the formula

(44) 2st ]g"(kr)lzdr=r -Im [kaK.(ka)K(ka)].

If the expression (33) or (35), as the case may be, is substituted into (44) it is found
that

(45) a Ig"(kr)12dr---- e-’lR sin0]

r 2R z sin 0 cos 0
[sin 0 sinh 2A + cos 0 sin 2B] 1 + O
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where A + iB denotes the argument in the hyperbolic functions appearing in (33) and
(35). Thus on setting u R e i and separating real and imaginary parts it is found that

A=Rcos0 log(2R/(kae))+(r/2-O)R sin 0, 0<6 <=0<- r/2,
(46)

R cos 0 log (2R/(kae))-(r/2 + O)R sin 0, -r/2-<0- 6 < 0,

JR sin 0 log(2R/(kae))-(/2-O)R cos0-/4, 0<60/2,
(47) B= /R sin 0 log (2R/(kae))+ (/2 + O)R cos 0 + /4, -/2 N 0 N -6 < 0.

The behavior of g(u) can be deduced from (32) and (34) which show that

]g()l=Re-’/a)lnsinl(cosha A-cosa(48)

as R in 0<60N/2.
On the path L, R whilst R cos0=c, a constant. Therefore 0=

(/2-c/R)+O(R -3) so that the quantity A defined by (46) is such that A
c log (2R/kae)+ c which tends to infinity with R. It follows from (43), (45) that

e-(/2)lR sin 01
(sinh 2A)/2]O[ IR sin 011/2 "(49) (u)=

Since sinh 2A/(cosh2 A-cos2 B) 2 as A - m then (u)/g(u)= O(u-) as u - on
L and therefore by (30) the integrand appearing in (41) is O(u -2) as u- on L.
Hence the integral along L is absolutely convergent and so the interchange in the
order of integration is justified.

To complete the derivation of the expansion formula quoted in the theorem of 3
it is now necessary to express the transform (u) in terms of the basic transform F(u)
defined by (1). To do this the equation (23) is multiplied by r-K,(kr) and integrated
for a N r < m, the term involving (r2fi + rf) being integrated twice by parts. If the
resulting term involving the limit as r be eliminated by appealing to equation
(A.1), established in the Appendix to this paper, it is found that

(50) (u)= (u2-v2)F(u)-[af’(a)+ hf(a)]K,(ka)+ g(u)f(a).

Upon inserting this result in (41) we find the equation

1 c[g(u)L(kr)-g(u)K,(kr)]F(u)u du
g(u)

+Bf(a)-A[af’(a)+ hf(a)]
where

K,(kr) 1 f [g(u)I,(kr)-gl(U)K,(kr)]K,(ka)u du
g(v) iTr JL (u72-v2)g(u)

1 IL [g(u)I(kr)-gl(U)K(kr)lu dulTr u 13

It will now be shown that A B 0.
First we note that the integral appearing in the expression for A is the same as

that appearing in (27) with O set equal to a therein and it is therefore equal to G(r, a).
On calculating G(r, a) by setting O a in the second of the expressions given in (24)
and utilizing the Wronskian identity Iu(x)K’(x)-Ku(x)I’(x)=-x -1 it follows that
G(r, a)= Kv(kr)/g(v) so that A 0 as required. To show that B 0 we first observe
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that the combination of Bessel functions present in the integral for B reduces to an
even function of the variable u, as can readily be verified on expressing K. in terms of
I,, and I_. by means of (11). We also note by (30) that the path L may be deformed
onto the imaginary axis whereupon it is seen that the integral is equal to zero since the
integrand is an odd function of u. The equation (51) then reduces to the integral
formula

(52) /(r) 1--- I [g(u)I.(kr)-ga(u)Ku(kr)]F(u)u du
r g(u)

This formula, in which the path L is situated so that all of the zeros of g(u) lie to
the left of it, is actually the formula of inversion associated with the integral transform
defined by the equation (1), and for some purposes it is preferable to the actual
expansion in eigenfunctions stated in the theorem of 3. To obtain the series form of
the expansion the path L appearing in (52) is deformed onto the imaginary axis. Since
the functions g(u) and F(u) are, like K, itself, even in u and, as noted above, the
remaining Bessel function terms also form an even function of u consequently the
integrand in (52) is an odd function of u so that the value of the integral when taken
along the entire imaginary axis is zero. Upon evaluating the residues at the poles
situated between L and the imaginary axis we find the formula

uga(u)K(kr)F(u)
(5 3) [(r) -2 ,

,,=,,. g’(u)

On recalling the definition (25) of g(u) it is seen that the above series is the same as
that stated in the theorem.

To justify (53) it is necessary to apply Cauchy’s theorem to a sequence of
rectangles formed by connecting L to the imaginary axis by means of the two straight
lines Im (u)= -et,, 0 =< Re (u)-< c. The ordinate t,, is chosen so that the top and bottom
sides of the rectangle pass midway between the zeros of the function g(u). By (20) this
will be achieved if we select t, log (2t,/(kae))=(n +1/4)Tr, since Im (u)= R +O(R-) as

u-->oe in the strip 0 -<_ Re (u ) -< c. Also as u-->oe in this strip, cos O=O(R-) and
7r/2-[0[ O(R-) so that the angle B defined by (46), (47) can be written as

It[ log [2t/(kae)l-(zr/2-lOl)R cos 0-7r/4 (n +1/2)zr + O(R-a).

It follows that cos B O(R -1) and therefore, by (48),

(54) Ig(u)l 42R e-(’/2)IR sin 01 (cosh A)[1 + O(R-a)]

valid on the lines 0-<_ Re (u)<-_ , Im (u)= +t,.
A bound on the function F(u) valid in the strip can be obtained from equation

(50), the asymptotic behavior of the function (u) being deduced from (43) and (45).
In applying the formula (45) care must be taken in the vicinity of the imaginary axis
since the factor cos 0 is zero on that axis. This difficulty can be overcome by noting
that zr/2-[0[-< (zr/2)cos 0 for 101 -< zr/2 so that the quantity a defined in (46), (47)is
such that

0_-<A -<R cos 0[log (2R/(kae))+(Tr/2)[sin OI].

Now sinh bx <= b sinh x whenever 0 =< b -< 1 and x -> 0 so that

sinh 2A =<R cos 0 sinh [2 log (2R/(kae))+zrlsin 01]
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provided that IR cos 0l -< 1. It follows from (43), (45) and the above inequality that

(55)
*(u)=O[IR sin Ol-1/2e-/2)tRsi"l{l+sinh (210g (ae)+’rr)} 1/2]

R 1/2

O[[sin 0
e -(=/2’1" si" l]

as u in the strip 0-<Re (u)-< 1. On combining (54) and (55) it follows that Xp/g is
O(sech A) which is bounded as u - c on the sequence of sides Im (u)= +t,.

If c > 1 it is also necessary to consider the additional region 1-<Re (u)-<c,
however since now R cos 0 _-> 1 this presents no difficulty. The quantity A now tends to
infinity as R and it is clear from the formulas (43), (45) that the bound (49) holds.
Since (54) is also valid it follows that /g O(u-) as u m on the sequence of sides
Im (u)= +t,, in the strip 1 -<Re (u)-<c.

The behavior of the quotient F(u)/g(u) can now be deduced from that of Xp/g by
dividing the equation (50) by g(u), since K,(ka)= O(R c-1/2 e -(=/2)) as u c on the
stated sequence of lines tn. The cross product of Bessel functions appearing in (52) is
by (30) bounded as u- c in the strip, since Re (u) is bounded there, so that the
integrand appearing in (52) is O(u-). This verifies that the integrals along the sides
Im (u)= +/-tn tend to zero in the limit as uc so that the formula (53) is established.

Appendix. In this Appendix the conditions on [(r) imposed in the expansion
theorem are used to derive an asymptotic bound on the derivative f’(r). The bound in
question, which is necessary to complete the derivation of equations (26) and (50), can
be obtained by forming the equations

Rf’(R)- af’(a)= J,, (rf + f,) dr

R R

fa -1/2, 2e Ia (r-1/2f)t.3/2 dt.r ,r J’rr -Jr- rfr- k 2rZf)r-1/2 dr + k 2

Ia(R) + k2h(R ).

Now on applying the Schwarz inequality to I1 and 12 and using the integrability
conditions stated in the theorem it is found that

dr. r3 d O(R2),

[ial < ir-,/2[ 2r f + rf- k2r2f]12 dr. r- d =O[(logR)l/2I.

It follows from these results that f’(R)= O(R) and therefore by integration that
f(R) O(R 2) as R . Since K,(kr) and K (kr) are O(r-/2 e -’r) as r c then

(A.1) lim r[f’(r)Ku(kr)- kf(r)K (kr)] 0

and therefore, by the second expression of (24),

(A.2) lim r[f’(r)G(r, p)-f(r)Gr(r, 19)] 0.
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A MULTI-TIME SCALE METHOD IN ALMOST-PERIODIC STABILITY
PROBLEMS*

JON H. DAVIS?

Abstract. This paper considers the problem of stability of a class of almost-periodic ordinary differential
equations. Necessary and sufficient stability conditions are derived by use of a method of "multiple time
scales" suggested by similar techniques in perturbation theory. The conditions obtained involve a spectral
analysis of a compact operator determined by the original system coefficients, and in principle are computable
to any desired degree of accuracy by finite dimensional methods.

1. Introduction. This paper is concerned with differential equations of the form

(1) p(D)x(t)+ k(t)q(D)x(t)= u(t), >-_0,

arising in the study of the stability properties of feedback control systems, it is known
(see [5], for example) that the input-output stability of (1) in the L2(0, oe) sense is
equivalent to the invertibility of the so-called minimal operator associated with (1)on
L2(0, OO).

There exists a considerable amount of literature devoted to the derivation of
sufficient conditions for either stability (invertibility)or instability (noninvertability)of
the system (1) under various hypotheses on the character of the "time-varying gain"
function k(. ). (The articles [1], [2], [3], [4], [5] contain various references to problems
of this sort). The problem of obtaining necessary and sufficient conditions for stability
of course still remains--in fact it is of interest to ask for which classes of systems is it
possible to give conditions which are computable in terms of the given system
parameters. In the control theoretic context, the case of constant coefficients is readily
handled by the Nyquist criterion. The use of Floquet’s Theorem for the case of
periodic coefficients permits progress in obtaining computable conditions; one ap-
proach is through calculation of the characteristic exponents of the system. A method
much more closely related to the results of this paper is in [5], where a generalization
of the Nyquist criterion to the case of periodic systems was obtained by use of what is
essentially a vector-valued transform technique.

This paper reports an "extension" of the above method to the case of a class of
differential equations with almost-periodic coefficients. The fact that there exists no
complete analog of Floquet’s result for the case of almost-periodic coefficients (in the
sense that it is not in general true that an almost-periodic system may be reduced to a
constant-coefficient system by means of an almost-periodic Lyapunov transformation,
see [9], [10], for example), guarantees that the almost-periodic problem will be more
complicated than the periodic case. However, it is possible to combine a method of
multiple time scales related to certain perturbation-theoretic methods [8] with the
transform method of [5] in order to derive necessary and sufficient conditions for the
stability of system (1). These results reduce the question of invertibility of the given
differential operator on a half-axis to that of the invertibility of a related partial
differential operator on a half-space. The spectrum of the partial differential operator
may be calculated in terms of the locus of the spectrum of a compact operator
depending on a "transform variable". This compact operator may be explicitly
determined from the parameters of the system (1), and so in principle the stability

* Received by the editors, May 13, 1976, and in final revised form January 31, 1977.
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criterion obtained below is computable to any desired degree of accuracy by finite
dimensional methods.

The basic methods used here and the results obtained are relatively simple to
state, and are contained in 2 below.

Proofs of these results are reserved for 3.

2. An outline ot the method and results. The results of this paper arose out of an
attempt to extend known methods of spectral computation for the singular integral
equation

(2) e(t)+ k(t) g(t-s)e(s) ds u(t), >-O,

beyond the cases of constant and periodic k (.). In those cases the known results have
an interpretation as a factoring" of the spectrum of the operator through a transform
variable (dual to the additive semi-group associated with the original half-axis prob-
lem). This identifies the spectrum of the operator in (2) as the range of the Laplace
transform in the case that k(. ) is constant, and essentially as the range of the
spectrum of an associated compact operator involving a transform variable in the case
of periodic k (.) [5]. The work in this paper was motivated by a desire to obtain results
having a similar degree of computational potential for the case of an almost periodic
gain k(. ). This paper assumes that the function g(. ) in (2) has a rational Laplace
transform

{g(" )}(s) q(s)/p(s).

With this assumption, (2) has an interpretation as the integral equation for the "return
difference" of a feedback control system governed by a system of ordinary differential
equations. If [A, b, c’] is a minimal realization of the transfer function

q(s)/p(s) c’(Is A)-llJ,
then the feedback control system under consideration is governed by

i= Ax+b(u(t)-k(t)’x).

With the return difference function defined by

e(t)= u(t)- k(t)c’x(t)

the equation (2) follows easily in the case of zero initial conditions for the ordinary
differential equation. Assuming without loss of generality that the realization [A,
is in standard controllable form, the vector differential equation reduces to (in the
usual notation)

(3) p(D)x(t)+ k(t)q(D)x(t)= u(t), O,

with the boundary conditions x(0)= Dx(O)= D(deg P-lx(0) 0.
The equivalence of the two system descriptions from the point of view of input-

output stability follows readily in the case of a stable A matrix. In the case of an
unstable A, stability equivalence relies on uniform observability of the system with
feedback.

More detailed descriptions of the relationship of the two system models (2) and
(3) may be found, for example, in [4, 15-19, 33-35], and [6, Chap. 6]. We also
restrict attention to the case in which k(. contains only finitely many "fundamental
frequencies", that is

k(t)= ki(o)it),
i=1
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with ki(t)= ki(t + 1), and {(.0i}= linearly independent over the rationals. In fact, we
shall write the formulae and present arguments below for the case n 2--the case
n > 2 essentially requires only more complicated notation, and no changes in the basic
methods or arguments involved.

If one attempts formally to find Floquet-type solutions (i.e. solutions of the form
of an almost-periodic function multiplied by an exponential function) to the homo-
geneous equation (3) (assuming now, of course, nonzero initial conditions), then it
soon becomes apparent that a major source of difficulty in carrying out the formal
calculation is the denseness of the set of points {jO) + kto2}j,kZ in R 1.

We avoid this problem by "decoupling" the effects of the separate feedback
frequencies. This is accomplished by introducing additional independent variables
into the problem. Our methods are suggested by the method of "multiple time scales"
in perturbation theory, ([8], for example) in that we seek to avoid difficulties caused by
the presences of the two "natural" times scales (1/tox and 1/to2) in the differential
equation

p +{kl(wlt)+k2(w2t)}q
d

x(t)= u(t), t>-O,

by introducing two time scales r wit and r w2t. In terms of these new variables the
problem formally becomes

[p(ooo--+o- +{k(r)+ k(o-)}q or+oa-- 2(’, o’)
L \

(4)
a(r, r), r, r-> 0.

This formal procedure finds some success in perturbation problems arising in certain
applied mathematical contexts in which the forcing function u(. is explicitly known,
and a specific solution x(. is sought. In the general problem, it seems difficult to find
a suitable mapping from the space of original forcing functions {u(. )} to the two
variable functions {ti(. ,. )} since the formal requirement t(O)l/, o)2t) U(t) is far from
a condition uniquely determining t;(., ). Of course, in a specific problem with given
u(. ), this ambiguity may be exploited in order to facilitate computations. A survey of
multiple time scale methods in perturbation problems appears in [15].

In the present problem, however, our interest is essentially in the solvability of (3)
for arbitrary u(. ) L2[0, oe). Specifically, we wish to establish connections between
invertibility of the original ordinary ditterentential operator, and invertibility of the
partial differential operator defined by the formal expression (4) obtained above.

Because of what seem to us to be inherent difficulties involved in attempting to
formalize the process of obtaining the mapping u(. ) t(r, o-), we avoid these con-
siderations entirely. Instead, we justify consideration of the formal differential opera-
tor (4) by use of the following devices. We imbed the original differential operator

(5) L p(D)+{kl(O)lt)+ kz(o2t)}q(O)

acting in the space L2(R) in the family of operators

(6) Ls=p(D)+{kl(wat+o)2s)+k2(oo2t+ws)}q(D)
depending on the parameter s, acting in the original space L2(R.-).

We show then that L has a bounded inverse if and only if L has an inverse,
bounded uniformly in s, and further, that this is so if and only if the partial differential
operator
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acting in the space L2 of a suitably chosen half-space of R 2 has a bounded inverse.
By a change of independent variable this is equivalent to the invertibility of

(8) (ent-K()---p O)l--T-}-o.)2 -3r-{kl(T)q-k2(o-)}q O.)l---Tq-o)2

on L2(R-). Since this last operator has periodic coefficients, it may be analyzed by a
transform method; however, it is not the case that the resulting "transformed opera-
tor" has a compact resolvent, as is desired from a computational point of view. The
intuitive reason for this is that the partial differential operator has no "dispersion" in
the direction of the "artificial" additional variable s.

We introduce a factor of an operator r(O/Os), and consider instead the operator

p

(9)
q o--r+o2--

The original operator (4) is invertible if and only if (8) is invertible on L2(R-).
Further, a transform reduces the question of the invertibility of (8) to that of an
operator depending on the transform variable, and having a compact resolvent. This
result may be stated as:

THEOREM 1. Let k(t)= kl(cOlt)+ k2(ozt), ki(t + 1)= ki(t)E C[0, oo), and con-
sider the minimal differential operator L on L2[0, oo) defined by the expression

Lx(t)= p + k(t)q - x(t)

on its domain. Let r(. be an arbitrary polynomial whose zeroes all have negative real
part. Then the differential operator defined by the expression

R (P + KO)(s, s2). 0", r)

p

q- {kl(T) q" k2(o’)}q ,Ol q- O)2Gq- O)IS1 q- 0)2S2 )(’F, O’),

subject to the boundary conditions

has a compact resolvent

2( + 1, (r)= 2(, (r + 1)= (, r),

Y( R (P +KO)(s 1, $2)),

for Re s l, Re S2 sufficiently large; further, the operator L has a bounded inverse on
L2(0, oo) ifand only if(0; R(P+KO)(sl, s2)) is analytic for all Re sl, Re s2=>0.

The above result appears to involve a multi-dimensional transform variable--
however, in view of the fact that the "additional" variables were somewhat arbitrarily
introduced into the problem, it might be suspected that the "extra" transform vari-
ables are superfluous.. This is in fact the case.
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THEOREM 2. Consider the operator L and polynomial r(. as in Theorem 1, and
the differential operator defined on its domain L2[(0, 1) (0, 1)] by

R(P+KQ)(s)O’,tr)=r to2--+to p t01--+0200
+{kl(,)+k()}q ml+m+s

subject to boundary conditions

(, + 1, (,, + 1= (, .
Then [R(P+KO)(s)]- exists and is compact or suciently large Re s; L has a
bounded inverse on L(O, ) iand only i [R (P + KO)(s)]- exists or all Re s O, i.e.
the locus o the eigenvalues oR (P + KO)(s) [or Re s 0 remains bounded away rom
the origin.

3. Pr resl. We consider the differential operator L of degree n,
defined on the domain (L)={x(.)x(.), dx/dt(.),..., (&(-)/(dt(-)(.)
all absolutely continuous, (dx/dt)( ) L(O, ), x(0)= (dx/dt)(O)
(dx(-/dt(-)(O)= 0}c La(0, ) by

(10) Lx(t)= p +{k(t)+k(t)}q x(t),

under the assumptions that
(i) deg p n > deg q.
(ii) k(. ) C[0, ), and k(t + 1)= k(t).
(iii) {m, a} are independent over the rationals.

That is, we condsider the minimal closed operator associated with the formal
differential expression (10) [7].

In addition to the operator L defined above, we consider the family of operators
L defined by the conditions (L)= (L), and

(11) Lx(t) p +[k(mt+as)+k(t+s)]q
d

LEMMA 1. L has a bounded inverse on L(O, ) i and only iL is invertible on
L(O, ) or all s eR , and IlL2IM, uniformly in s.

Pro@ Clearly the existence of L2Vs implies L- exist simply by setting s 0. To
show that the existence of L- implies that of L2, consider the differential equation
Lx(t)= u(t), i.e.

p +{k(t)+k(t)}q x(t)= u(t),

and restrict the forcing function u(. ) to be zero almost everywhere on [0, T). Then
defining T , ur() u( + T), xr(r)= x(r + r) for r 0, we have

x()
(la)

ur(r), re0,

and by the hypothesis of the existence of L-, we see that IILII IIL-II, since
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Using the hypothesis that k(. are periodic of period 1, and the observation that
the mapping

q" T - (mod 1),
(.02

is dense in [0, 1] x [0, 1] for o/wa irrational we conclude that with

Lax(r)= [p()+{kl(OOlt+a )+ ka(27 + fl)}q()
we have

for a dense set of (a,/3) [0, 1] [0, 1].
Perturbing Lcq to

[P + + )+ k2(2 + )}q x(7),La,ex(r)= L }

we note that the hypotheses on p, q and kg(. ensure that LaB, e is a relatively-
bounded perturbation of La. Using standard perturbation arguments (e.g. [7, Thm.
V.3.6]) shows that there exists M such that

for all e sufficiently small. This makes LaB uniformly invertible for (a,)
[0, 1]x [0, 1], and the conclusion of the lemma now follows immediately.

Coocv. We note that the above argument shows that L exists, with
uniformly bounded in s g and only gL exists for at least one So R.

We denote by the subset of R 2,

= {(t, s)lt +2s0 and w2t +ws 0},

and denote by E the boundary of . E {(t, s)l(t, s) O, xt +2S 0 or wat + ws
0}. (See Fig. 1).

s

tot -Fo2s 0

t

FIG.
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We let denote the linear partial differential operator defined on L2(") by the
conditions @()={x(.,. )EL2() such that the distributional derivatives Ox/Ot,
oZx/ot2, O"x/Ot" L2(f), and xl. Ox/Otl O"-lx/Ot"-ll= 0}, and

Lx(t,s) p +{kl(tOlt+to2s)+k2(to2t+tols)}q
0

x(t,s).

From the above definition of it follows that is a closed operator, and that the
fundamental solution (Green’s function) associated with the partial differential equa-
tion

is given by

x(t, s)= u(t, s), (t, s)6

g(t, r; s)6(s

with g(" ," s) the solution of the ordinary differential equation

p +{k(wlt+w2s)+k2(w2t+wis)}c g(t,’;s)=6(t-r),

subject to the boundary conditions

dg d
g 0.

With this notation, the unique solution to th6 partial differential equation

x(t, s)= u(t, s), (t, s) ,
subject to the boundary conditions included in the definition of , and for u(.;. )
Cf(O) is given by

x(t, s)= g(t, ; s)u(, s)dr.

In the above integral, represents the t-intercept of the boundary of the region .
From Fig. 1, we see that -(/)s for s 0, and = -(/)s for s <0. (The
indicated axis orientation corresponds to the case of m>).

LEMMA 2. Let the operator L be defined as in Lemma 1. Then L has a bounded
inverse on L(O, ) i and only i has a bounded inverse on L().

Pro@ Suppose first that L- exists. Then if u(.,. )eL(), define (for almost
all s)

x(t, s)= Jg(t, r; s)u(, s)dr.

From Lemma 1 it follows that

with M independent of s. Hence

I ’x(t, s)’2 dt dsMlu(’, s)’ 2 d" ds

and it follows that II-lM.
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If, on the other hand, [I-ll]M’, consider the result of applying -1 to a
separable u(.,. ):

u(t, s)= u(z) v(s), t, s >-_ 0,

0 otherwise,

with u(. ), v(. ) L2(0, c). Since

g(t, 7; s)u(z, s)d7 dt ds <-M’ lu(7, s)[2 d7 ds

we have for all u(. )of compact support, say supp u(. )-[0, N],

[v2[ (s) g(t, z; s) u(z) dz dt ds <-M’ [v(s)[2 ds ]u(’) 2 dz.

Now, rather than a fixed function v(. in the above, take a sequence {vn(" )} such
that ]vn(" )[2 approaches as a distribution a 8-function at So. Since g(t, z;. is
continuous, we conclude that

g(t, z; So) u(z) dz dt <- M’ [u(z)l2 dz,

and hence that

g(t, 7; So) u(z) dz dt <- I]u( )[[2.

This shows Lso has a bounded inverse, IlLs-o[[ <_- (M’)1/2, and by the corollary to Lemma
1 it follows that L-1 exists.

With Lemma 2 above, we have established the equivalence of the invertibility of
our original operator L with almost-periodic coefficients to the invertibility of the
partial differential operator 5 with multiply-periodic coefficients. While the transform
method of Lemma 5 below may be applied directly to the operator , the results so
obtained do not appear computationally useful. For this reason, we further modify
as follows.

Let r(. ) be a polynomial of degree m with the property that all the roots of r(. )
have strictly negative real parts. We define the partial differential operator by the
conditions that the domain of is @(5)={x(.,. )L2(D.) such that the dis-
tributional derivatives (Oi/i/(OtiOsi))x(., ) L2(D,), for 0<_-i _-<n, 0-<_/’_-< m, and
(Ox/Ot)]E (on-Xx/otn-X)[E O, XlE (O/OS)X[, (om-lx/Osm-1)[,
0}, while is defined on its domain by

5x(t, s)= r p + {ki(tolt -[-" o.)2s)"b k2(to2t + tOxS)}q x(t, s).

Under the above definition is a closed operator, and if F(s, r; t) denotes the
Green’s function associated with the differential equation

r(-s)X(t, s)= u(t, s),

subject to the boundary conditions x[=.. =(O’-lx/Os(’-l))]= 0, then the
fundamental solution associated with the operator y&o is just the composition of g(.
with F(. ).
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LEMMA 3. Let L be defined as in Lemma 1. Then L has a bounded inverse on
L2(0, oo) if and only if has a bounded inverse on Lz(D).

Proof. If L has a bounded inverse, then w-l-1 is an inverse for Y, and -1 is
bounded by the assumption on the roots of r(. ).

Conversely, if has a bounded inverse, then again choosing u(t, s)= u(t) v(s)
as in Lemma 2 we obtain the inequality

g(t, ’; s) u(r) dr q(s-tr) v(tr) dtr ds dt

The fact that the Green’s function associated with appears with argument (s- o-) is
a consequence of the assumption that v(. vanishes for negative values of its
argument.

Choosing a v(. )such that

q,(s -,) v() d > o

almost everywhere and applying Fubini’s Theorem, we conclude that

g(t, z; s) u(z) dz dt <

for almost all s. This does not complete the proof, however, as the set of measure zero
in question might depend on the choice of u(. ).

This difficulty is circumvented by noting that the control system described by the
ordinary differential equation (3) together with the "output" x(t) is both uniformly
controllable and uniformly observable by [12].

This means that there exist a finite set of controls {u l(" )’" u,(. )} driving the
system from the origin to an n-dimensional set of vectors at time 1. Combing this with
the above we have

g(t, z; s) ui(z) dz dt <

for almost all s, and all i, 1 N N n, and hence

2 g(t, Z; S) ui(z)dz dt < .
By uniform observability, we have

1 ff0X ]2 flE g(t, ; s) (,) t l(t, 1; s)ll t
i=

where (t, 1; s) denotes the transition matrix associated with the "parametrized"
differential equation

P +{/l(l/+2S)+/2(2t+lS)}q
d

x(/) =0.

Using the relation between the above equation and the "translated" version of
(3) as in Lemma 1, we conclude that with (t, t0) the transition matrix associated with
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(3) we have

It I[q(t’ t)ll dt <M

for almost all to first, then for all to by continuity. By [4, p. 190], this implies
exponential stability for (3) from which the existence of L-1 readily follows.

We next reduce the problem to one of the invertibility of a partial differential
operator on a quarter-plane.

The change of variables

r wit + (.o2s

o- w2t + (.O1S

naturally introduces a linear operator

T: (a)-z;(+ {, __> 0})

with a bounded inverse; also we have the formal relations

TO T_I 0 0
(.01 -’[-(.02--

O -z Oct

TOT_I c3 c3
-002 -" (.o

Os 00"

We define the operator R (P + KO) as T(YtS)T-1. Obviously we have

R(P+KQ)x(’r, r)= r o)T-[-(.Ol-

q-O)2G +{kl(’r)+k2(o’)}q O)lTq-(.02G 3(T, O’),

and the description of the domain of R (P +KO) follows readily from that of o.
LEMMA 4. Let L be as in Lemma 1, and R (P +KQ) as described above. Then L

has a bounded inverse on L2(O, oo) if and only if R(P +KO) has a bounded inverse on
L2(zr+).

We next introduce what is essentially a Fourier-Laplace transform operator in
order to reduce the problem of analysis of R(P+KO) on L2(r+) to an equivalent
problem in the L2 space of a compact domain.

The basic methods are essentially similar to those in [5].
Given a function x(.,. ) L20r+), we define a transform according to

2(7", O’; Z1, Z2) Z x(z+n, r+m)zl nz
n,m=

This expression may be regarded as the Laplace transform of an L2([-1,012)
valued function defined on Z+xZ+ by associating to the point (n, m) the restric-
tion of the function x(., to the square In 1, n] x [m 1, m] c R.

The problem which remains is to describe the action of the operator R (P +KO)
in terms of the action induced on the transform function 2(., zl, z2). This may most
easily be described in terms of the "conventional" Laplace transform on L2(’rr+). In



ALMOST-PERIODIC STABILITY PROBLEMS 989

fact,

(13)

o 0

e e z1 "rz2 (7", O"; Z1, Z2) dT" do-

)2(27rik + Log Zl, 2ril + Log z2),

with ’( , ) the usual Laplace transform of x(.,. ) L2(Tr+), Because of the fact that
the operator R (P +KQ) has essentially been constructed as a composition of minimal
ordinary differential operators, the action of R (P + KQ) is readily described in terms
of the transform functions 2.

If we let H denote the linear mapping H" x2 described above, and further
define

T(z , z2) HR (P +K()H-1

(T(Zl, z2): L2([- l, 0]z)-* L2([- I, 0])),
then from the observation that a minimal constant coefficient ordinary differential
operator on a half-line is diagonalized by the Laplace transform we conclude that

(i) (T(Zl, z2))=H@(R(P+KO)),
(ii) zzHQx Ol(Z1, Z2)Z-’Z’Hx,

where O1(Zl, Z2) acting in L2([-1, 0]) is diagonalized by the Fourier transform
(series)"

[)I(Z1, z2)e -2=i’e -2=il= g(wl (2 zrik + Log zl)+ w2(2zril + Log z2))e -2=i" e -2=it,

(14) (iii) z’z’HPx P(z, z2)z?’zHx,
zz HRx RI(ZI, z2)z-z’rHx,

with Ra, Pa defined in a manner analogous to Oa above.
From the definition of the operator H it follows that K acts on Hx (and also on

z-(’z’Hx) as simple multiplications by the function K(. ,. ): K(z, o-)= ka(T)+ k2(o’).
Because of the relatively simple description of the operators R a, O1, P1 and K

given above, it is convenient below to deal with the operator

TI(Z, z2): T L2([-- 1, 0]2)--> L2([- 1, 0]2)
defined by

T1 (z I, z2) R l(Z i, z2)(Pl(Z I, z2) -- K(I(z 1, Z2)).

LEMMA 5. For a fixed (Z l, Z2), rl(Zl, z2) has a bounded inverse if and only if
r(zx, z2) has a bounded inverse.

Proof. This follows immediately from the preceding definitions.
Remark. For fixed (z l, z2), Tx(Zl, z2) may be identified with the operator arising

from the imposition of periodic boundary conditions in connection with the formal
partial differential operator

r(wa(+Log Zl)-1 (.O (ff-[" Log zz))

+ K(’r, o’)q(e.Ol (--+ LOg Zl) +Oo2(--+ Log z2)) ].
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With the abbreviations 0o (0)1, 0)2), oo’= (0)2, 0)1), Log z (Log zl, Log Z2) the
above may be written as

r(o’ (V + Log z))[p(o (V + Log z))+ K0-, cr)q(o (V + Log z))]

LEMMA 6. There exists R >0 such that V[Zl], ]z21> R, the operator Tl(Z)considered
as an operator on L2([- 1, 0]2) has a bounded inverse.

Proof. Rearrange R (P +KQ (z) as

r(’. (’ + Log .))o 1 +g0", o" (. (’ + Log ))
P

op(o (’ + Log z))

and note that
(i) r(oo’ (r + Log z)) is invertible VlZl], Iz2[ > 1,
(ii) p(o. (V + Log z)) is invertible for Re oa. Log z greater than the real part of

any zero of the polynomial p(. ), and
(iii) Ilq/p(o" + Log z))ll- 0 as Re to. Log z oo, so that the middle factor is

invertible for Izll, Iz21 > R sufficiently large.
Invertibility of R(P + KQ) (z) then follows for [Zll, Iz21 > R.
Remark. The intuitive content of Lemma 6 is simply that the Laplace transform

of the solution x (.,.) to the equation

R(P+KO)x(z, o’)= u(z, o’)

exists for values of the transform variables having sufficiently large real part.
LEMMA 7. Let z be such that Tl(Z) has a bounded inverse on L2([-1,012). Then

T is a compact operator; in fact T1- l(z) is of Hilbert-Schmidt type.

Proof. Using the fact that it suffices to prove that (Tl(Z)-A)-1 is compact
(Hilbert-Schmidt) for one value of A ([13, p. 210]), and the fact that for large ]A] we
have IIRKQ(RP-A)-111 small, we see that it is sufficient to establish the result with
K=0.

With K =0, the operator RIPI(Z) is diagonalized by the standard orthonormal
basis, so that an explicit formula for the Hilbert-Schmidt norm of (RIPI(Z))-1 may be
written simply by summing the squares of the eigenvalues of (R1 P1 (z))-1. In the case
that Log z and the zeroes of r(. ), p(. are all real, the explicit formula for (the
candidate for) the square of the Hilbert-Schmidt norm is just

1
E .2 2

i,=o [-Ii,m(A+47r2(0)2k +0)11) )(Bm+47r2(0)1 k + 0)2f)2)

where {A} and {B,,,} are given by the zeroes of p(. ) and r(. ) plus Log Zl and Log Z2
respectively.

The above sum may be readily estimated in terms of a convergent double
integral, showing that Tl(z)-1 is Hilbert-Schmidt. In the case that either a zero of p(. )
or r(. ), or the term Log z has a nonzero imaginary part the above formula becomes
somewhat more complicated; however, no essential complication is introduced.

LEMMA 8. If T (l) exists, for some z, Iz o1, Iz] >---- 1, then T-l(z) is analytic in a
neighborhood of z.

Proof. Identify TI(Z) with the differential operator

r(oo’ (V + Log z))[p(o0 (V + Log z))+ k0-, cr)q(o (V + Log z))],
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subject to periodic boundary conditions, and split the operator as A + B, with

A r(’. ’ + 1)p(to 7 + 1),

B TI(z)-A.

Then the "perturbation" B is A-bounded, B is analytic, and I +BA-1 is analytic and
bounded. It then follows [15, Sect. VII. 6] that T-l(z) is analytic.

From Lemmas 6, 7 and 8 we conclude that the multiply-periodic partial differen-
tial equation

R (P + KO) x (z, tr) u (’, 0"), r, o" _-> 0,

subject to the boundary conditions noted above may be solved in terms of the
"H-transforms" defined above to give (first for [Zl[, [z21>R) (since R(P+KG) is
readily seen to be 1- 1 by construction) the unique solution

2(’, tr; z, z2) (R(P + gO)(z))-t(-, or; Zl,

To ensure that 2(. ,. z, Z2) SO determined actually is the "H-transform" of a
function in L2(rr+), we must invoke an operator-valued version of the Paley-Wiener
Theorem ([11, Thm. 2]). This gives the following result.

THEOREM 1. Let L be as in Lemma 1, and Ta(z) as in Lemma 8. Then T-l(z)
exists as an analytic operator valued function of Hilbert-Schmidt class ]:or all Iz 11, Iz2l
sufficiently large. Further, the operator L has a bounded inverse on L2(0, o0) if and only
tf T-(z) has an analytic extension over all Izal, Iz21--> 1.

Proof. The fact that Tl-l(z) is analytic and of Hilbert-Schmidt type wherever it
exists was shown above.

Next, the operator R(P+KO) originally defined on L2(rr+) naturally extends
(again because of its definition in terms of the corresponding minimal ordinary
differential operators) to an operator on L2(R2). Because of the uniqueness of solu-
tions to the equation

R(P+KQ)x(’r, o’)= u(’, o’)

for functions u(., of compact support, the methods of [3] are readily adapted to the
situation under study. Essentially the only modification required is to replace the
functions supported on intervals in [3] by functions supported on rectangles.

We then conclude (cf. [3, Thm. 4.1 ]) that the operator R (P + KO) has a bounded
inverse on L2(Tr+) if and only if the "natural extension" of R(P+KO) to L2(R2)
described above has a causal bounded inverse.

Viewing Lz(R2) (and Lz(’n’+)) as spaces of L2([-1, 0]2)-valued functions defined
on ZZ (Z+Z+) and using the Laplace transform operator H, the causality
condition may be replaced by an equivalent analyticity requirement. It follows from
the vector-valued version of the Paley-Weiner Theorem given in [11, Thm. 2] that
R(P +KO) has a causal inverse if and only if T-a(z) has a bounded analytic extension
over the region IZll, IZzl 1.

To complete the proof, we must show that the analyticity condition may be
restated in terms of the operator TI(Z); that is, that T-l(z) has an analytic extension if
and only if the same holds true for T1-l(z).

First, if T-(z)exists and is analytic, then by Lemma 5 Tl-l(z)exists; by Lemma 7
T-1 (z) is analytic in a neighborhood of z.

On the other hand, if TI-I(z) has an analytic extension for Izal, Iz21 > 1, bounded
for IZll, Iz21>--1, then from (12) and the definition of Tl(Z)it follows that the
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conventional) Laplace transform of the function x(.,. )

x(t, s)= [z{zH-1T-Izz;H]u(t, s)

is analytic over the dual of the cone rr+cR 2. Further, this transform has square
integrable boundary values; by the (scalar-valued) Paley-Weiner theorem x(.,. )
L2(rr+). Hence R (P + KQ) has a causal bounded inverse, and so T-l(z) must possess a
bounded analytic extension.

Theorem 1 essentially reduces the question of invertibility of the operator L to
that of the location of the locus of the spectrum of the two-parameter family of
operators Tx(z), where for each fixed z, Tx(z) has a compact resolvent.

From a practical or computational point of view it would be useful, if possible, to
reduce the dimensionality of this parametrization. The idea that such a reduction
might be possible is intuitively due to the fact that the dimensionality of the problem
has been "artificially" increased by the introduction of the variable "s" whose only
real function is to render the problem computationally more tractable. In order to
state conveniently Theorem 2 below, it is useful to introduce yet another partial
differential operator. T2(s) is defined in analogy to Tx(z) as

r(to’ V)[p(to V + s)+ K(z, tr) q(to. V + s)]

acting in L2([- 1, 0]2) and subject to periodic boundary conditions.
THEOREM 2. Let L be as in Lemma 1, and the family of operators T2(s) as defined

above. Then L has a bounded inverse on L2(0, oo) if and only if 0 r(T2(s)), Re (s) => 0.
Proof. By Theorem 1 and Lemma 8, L has a bounded inverse if and only if Tl(Z)

has an inverse for all ]Zl], ]z2[ => 1. By Lemma 6, we see that in fact the invertibility of
Tx(z) need only be verified for the compact set 1 -< ]z1], [z2[ R, for some R > 1.

Consider the operators

M(z) r(m’. V)[r(to’ (V + Log z))]-It(to’ (V + Log z))]-r(to’. V)
--[RI(Z)]-I[RI(1, 1)].

By the standing assumption on r(. ), M(z) exists for [ZI[, [Z2[ 1; if z is restricted to
15-[z], ]z2] 5- R, we have also the result that M-l(z) is uniformly bounded:

I[M-l(z)]] N <

It then follows that rl(" ) is invertible at the point z if and only if M(z) rl(" ) is
invertible at z. This last operator may be interpreted as the closure of

(15) r(to’. V)[p(to (V + Log z))+ K(z, tr) q(to. (V + Log z))]

subject to periodic boundary conditions; to complete the proof it remains only to
justify the replacement of the term to. Log z with the single variable s.

Consider the collection of unitary operators Uki; L2([- 1,012) L2([- 1, 0]-)

Introduction of the operator Ukj as a similarity has the effect of replacing the
operator (15) by (the closure of)

r(to’. V + 2rrikto2 + 2rri/’tOl) [p + k(r, tr)q]

(to" V+to12rrij+to22rrik +to" Logz)

(subject to periodic boundary conditions).
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Since (.01 and 0)2 are irrationally related, {ooaj +o)2k} is dense in R, and so

I,.J s (2"rri(o)lk + o)2j)+ Log z)
k,Llzl>=l

is just the half-plane Re (s)>-0.
Since the presence of the "imaginary shift in the argument of r(. ) has no effect on

the invertibility of the product (essentially the same argument as above), the conclusion
follows.

The versions of these results given above in 1 differ from these essentially in
that complex variables S and s2 of nonnegative real part replace the Log z and
Log z2 appearing above, while L2([0, 1]2) replaces L2([-1, 0]2) as the space under
consideration. The possibility of eliminating the logarithms in the statement of
Theorem 1 follows from the density argument employed in the proof of Theorem 2.
The replacement of L2([-1, 0]2) by L2([0, 1]2) follows from the observation that, with
doubly periodic coefficients and boundary conditions, the problem is essentially posed
on the 2-torus (or more simply by the change of variables r’= -+ 1, r’= o-+ 1).

4. An example ot the results. In this section we apply the results obtained above
to a typical example.

Consider the system described by the integral equation

e(t)+{sin (27rt)+ sin (27r’,/t)}

J0 e-(1/2)(’-’)sin(t-r)e(r)dr=u(t)’ t>=O"

This represents a second order system with an almost-periodic feedback gain given by
k(t)= sin (2rrt)+ sin (27r’,/t).

The equivalent differential equation representation of the above system is just

[D2+D ++{sin (27rt)+sin (27r4-t)}]x(t)=u(t), t>-O

together with the initial conditions x(0)= Dx(0)= 0. This identifies the polynomials
and parameters of the problem as

q(D)= 1,

0)2 q/.

The polynomial r(D) is arbitrary (subject to the stability constraint), and may be taken
as

r(D ) D + 1.

The explicit form of the differential expression corresponding to the operator
T2(s) of Theorem 2 is

r(’. V)[p(to V + s)+ K(’, cr)q(to V + s)] x(’, r)

jO+__+ 1
0" 0o"

+

+{sin 27r" +sin 2r}| x(,, ).
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According to Theorem 2, stability of the original system is determined by the
location of the spectrum of T2(s) as s ranges over Re (s)>_-0.

We remark that the proof of Lemma 6 shows that only a subset of the region
Re (s)->0 need be checked in this regard, since T2(s) is invertible for Re(s)
sufficiently large. The location of this critical region of the s-plane may be determined
by an application of a slight extension of the so-called circle criterion (see for example,
[4, pp. 218-227]). Applying this to the example under consideration, we deduce that
T2(s) is invertible for all s such that

sup )2 < 1.,, (ioo+s +(ioo+s)+
The above expresion may be easily manipulated to yield the "safe" region for s.

Similar considerations show that in connection with the use of Theorem 1, only ), z2
such that

sup < 1
,,R (ito + Log Z1 +4 Log z2)+ (iw + Log za + x) Log z2)+ 1/4

need be considered. This reduces consideration to a compact region of C2, which is a
computational necessity for practical use of these results.

5. Conclusions. The results of Theorem 1 and 3 show that it is indeed possible to
obtain necessary andsufficient condions for invertibility of certain almost-periodic
differential operators in terms of the locus of the spectra of a parametrized family of
related operators having a compact resolvent.

The methods employed are conceptually simple, being based on the two ideas of
multiple time scales and vector-valued Laplace transforms. The complications which
emerge when these simple ideas are applied, on the other hand, seem to us somewhat
messy. We suspect strongly that this may be an inherent aspect of the problem.

The work reported above raises several questions, among which we mention the
following.

In attempting to approximate the resolvent Tz-l(s) by finite dimensional opera-
tors the questions of rates of convergence and error estimates are relevant. Since the
polynomial r(. ) is largely arbitrary, is it possible to exploit this to accelerate con-
vergence?

The above derivations have been carried out in terms of two independent
frequencies, but the corresponding results of any finite number of frequencies follow
readily from a modification of the methods given above. It is clear, however, that the
amount of computation required to make approximate stability calculations increases
geometrically with the number of frequencies. Is it possible to choose the arbitrary
(analog of) r(. in such a way the numerical burden is reduced?

This work was undertaken partly in the hope that a Fredholm index theory
somehow analogous to the results in [5] would emerge in the process. We suspect that
the condition that Tz(s) be invertible for all Re s 0 is a form of the condition that L
be Fredholm, although we have made no attempt to verify this. Constant coefficient
examples show that the index in that case is not simply related to the Fredholm
determinant of T[(iw), which might be regarded as a candidate for a function
providing a winding number.

Acknowledgment. The author would like to thank the referees for their careful
and useful comments on an earlier version of this paper.
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ANALYTIC REPRESENTATIONS AND FOURIER TRANSFORMS OF
ANALYTIC FUNCTIONALS IN Z’ CARRIED BY THE REAL SPACE*

J. W. DE ROEVERf

Abstract. In the space Z’, the Fourier transform of the space ’ of Schwartz-distributions, the notion
of carrier is introduced. A characterization is given of all distributions in ’, the Fourier transform of which
is carried by R ’. Both, such distributions and the analytic functionals in Z’ carried by R’, are represented as
sum of boundary values of holomorphic functions. This extends the case of tempered distributions which,
regarded as elements of Z’, are obviously carried by I ’.

1. Introduction. In Vladimirov [11, 26.3 and 26.4, Thm. 2] theorems are derived
concerning Fourier transforms of tempered distributions in S’ with support in a
certain, unbounded, convex set. These Fourier transforms can be represented as
boundary values in S’ of holomorphic functions in a tubular, radial domain. This yields
an analytic representation of distributions in S’, i.e., a sum of distributional boundary
values of certain holomorphic functions. In this paper these notions are generalized
such that the boundary values are no longer attained in $’ but in the space Z’, which is
the Fourier transform of the space @’ of Schwartz-distributions. These boundary
values are analytic functionals in Z’ carried by R and their inverse Fourier transforms
are distributions in @’. Moreover, a characterization is obtained of those distributions
in @’ such that their Fourier transforms are all analytic functionals carried by n. Then
analytic representations of such functionals and distributions are given. This extends
the case of tempered distributions which, regarded as elements of Z’, are obviously
carried by R". Finally, the spaces of functions, holomorphic in tubular radial domains
of exponential type in Im z and of polynomial growth in Re z, and the spaces of their
inverse Fourier transforms are provided with topologies such that Fourier trans-
formation is a topological isomorphism.

2. Notations and definitions. We will denote vectors in C by z (z 1, , z,)=
x + iy and by r : + it/, where x, y, :, r/are vectors in [n. The norm in " and C" will
be denoted as II" ]1. For t, w s I or Cn, t. w will stand for tl Wx +" + tnw,. Let a be an
n-tuple nonnegative integers’, then D=D1... D"n where Di=O/Oxj, and E3x
(O/Oxl,... ,/Sxn); when no confusion arises the subscript x will be omitted.
Similarly, for ts" or C is defined. Furthermore, lal=al+"’+an and
a a an !. For b s , b will denote the vector (b, , b) s R".

We recall the testfunction spaces g’, @ (cf. [9], Y{ in [4]), S and Z and their duals
denoted by ’, which also refers to the strong topology. The action of an element f s W’
on functions s W will be denoted by (f, ) or (f, )w’. Sometimes we will write fe
and & (:), if W consists of functions of :. In that case W’, W and (., will be denoted
by W[, We and (.,.)e, too. We mention explicitly the action of a function f, regarded
as an element of @’, to a testfunction in "
(2.) (f, )= J. f(:)()d.

The Fourier transform of an Ll-function is given by

’[](x) [&(:)](x) In" (:) e

* Received by the editors November 26, 1975, and in revised form February 9, 1977.

" Department of Applied Mathematics, Mathematisch Centrum, Amsterdam, the Netherlands.
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Then @ is the Fourier transform of Z and @(a) of Z(a), where 59 (a) is the space of
C-functions with support in {:[ I1:[[ <-- a }. Z(a) consists of entire functions g, such that
for all rn

(2.2) I111
dee

sup (1 + Ilz[I) e g(z)l <
zC

The Fourier transform of a distribution f @’ is defined as that element [f] of Z’ for
which

(.3) ([f], 4,), (L [4,]),, 4, z;
cf. Schwartz [9].

Elements / of Z’(a)can be written as (/x, tp)=jf(x)d/(x)dx for some entire
function f; see Gel’land and Shilov [4, III, 2.3]. Hence/x is a functional on the space
of restrictions to. R" of functions in Z(a). In general, this is no longer true when
/x e Z’. We say that/x e Z’ is carried by the closed set f c C", if for every e-neighbor-
hood f(e) of f tx is already a functional on the space Z[a( of restrictions to fZ(e)
of functions in Z, where Zla() carries the topology induced by Z, i.e., in
(2.2) the supremum should be taken over all z eft(e). According to Ehrenpreis
[2, Thm. 5.13"] a fundamental system of neighborhoods of zero in Z is
given by V(k,o)={g,Zllg,(z)l<=ak(z)}, where a>O and k is a positive
continuous function of the following form: let {ai} be a strictly increasing sequence
of integers with a0=al=a2=O, ai+>2ai, and let be a positive
integer; set k(z)= (1 /l[xll)-’(l/lly[I)-/exp ((/-2)llyll) for a(l+log (1

(1 + log (1 +llxll)); the definition of k is completed by requiring that k is a function2ai+
of Ilxll, llyll which is continuous anO such that, for nxed
/[log (1 +[[xll)+log (1 +[[YlI)] is linear in Ilyll in the regions in which it is not already
defined above. Then a fundamental system of neighborhoods of zero in Z[n( is
obtained by {4’ Z[n(,] [4,(z )[ <= ak (z ), z f(e)}. Now the Hahn-Banach theorem and
Riesz’ representation theorem imply that for every e >0 an analytic functional
carried by D, can be represented as a measure/x, on D,(e).satisfying

Ic k(zlldp’(z)l<-K

where k is a function as described above depending on e.
In this paper we will be concerned with closed sets f which are bounded in the

imaginary direction; i.e., f is contained in a set of the form {zl ][y =< b}, b =< O. Then, if
Z(a) denotes the normed space of functions in Z(a) provided with the norm (2.2),
the spaces

ZF proj lim ind lim Z(a), and Z ind lim proj lim Z(a),
moO a-oo aoo moo

induce the same topology on ZinCed. Indeed, according to Ehrenpreis [2, Thm. 5.10] a
fundamental system of neighborhoods of zero in ZF is given by V(k’, a), where now
k’(z)=(l+l]xll)-"k(y) with rn->0 and with k a positive, continuous, function

Since also Z is the Fourier transform of @, a similar definition gives the Fourier transform of analytic
functionals tz Z’. Then, if for t Z’ fi, is defined by (/2o 4’(st)) (27r)-"(tzo g(()), 4’ Z, g [/z] implies
[g] t2. Therefore, the theorems of 4 of this paper dealing with inverse Fourier transforms g of elements
/x Z’ may just as well have been formulated with g [tz], hence with Fourier transforms of analytic
functionals instead of inverse Fourier transforms; cf. the title of this paper.
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dominating every exp a Ilyl[, a > 0. ZF is the Fourier transform of the space @F, the test
space for the finite order distributions. Hence the (inverse) Fourier transforms of all
elements/x in Z’ carried by f are finite order distributions and, moreover, for every
e > 0 these x satisfy

sup (1
z()

with K and m(e) depending on e and ix. The above representation yields that for
every e > 0 z can be represented as a measure/x on f(e)satisfying

(2.4) f ]d(z)l < K.

In particular, we Will be concerned with analytic functionals in Z’ carried by
The support of a distribution f W’, where W is a space of Coo-functions on ", is

defined as the smallest closed set U such that any so U has an open neighborhood
Vo with (f, &)= 0 for every b W with b(sc) 0 if sc V0. In 5 we will show that for
certain sets U, in particular for convex sets, f can be represented as sum of weak
derivatives of measures on U.

Finally, C will denote an open cone in " (i.e., t C =),at C, a >0), ch(C)its
convex hull, pr C {y CI Ilyll-- 1} and C’ C means that C’ is a relatively compact
subcone of C, i.e., pr C’c pr C. The function

/xc(’) sup -y. :
ypr C

is the indicatrix of C. C* denotes the closed cone {sCly ’>=0, y
and C. N"\C* {sc[tzc(sC)> 0}. Furthermore

Pc sup (.c.()(’)/.(’)).

We will consider hotomorphic functions f in the tubular radial domain Tc " + iC if
C is connected, or in the tubular radial set Tc if C is not connected. In the former
case we say that f(z) has a boundary value f* in Z’ or S’ as y + 0, y e C or y C’ C,
respectively, if for all 4 e Z or S the limit

(2.5) (f’*, b)= lim f f(x + iy)&(x) dx
yO .]

yCorC’

exists. The boundary value in S’ is said to be attained on the distinguished boundary of
Tc, i.e., on the set {zlz Tc, Im z 0}. However, if the limit exists in Z’, it is less clear
a "boundary value on the distinguished boundary," as we will see in 3.

3. Boundary values in Z’ and $’. This section is concerned with results obtained
in de Roever [6, 8]. Here, these results will be given in more detail and their
consequences will be examined more closely.

We consider functions f holomorphic in the tube domain T I" + iB, where B
is a domain in R". For any y B f(z) f(x + iy) is a C-function in x, i.e., f(z) gx. We
regard as the strong dual of g", the space of distributions with compact support. By
the Paley-Wiener-Schwartz theorem the Fourier transform of g’ is known as the
space H of entire functions of exponential type in Im sr and of polynomial growth in
Re (, provided with the topology such that the Fourier transformation is a topological
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isomorphism between ’ and H. Then is the Fourier transform of the dual H’ of H.
With these definitions we have the following lemma (cf. de Roever [6, Lemma 8.1]).

LZMMA 3.1. Let f be a holomorphic function in T with B a domain in and let
yo B. Then for all y with y + yo 6 B

f(x + iy + iy0)= [e-Y’r/- (y0)c](X)

where

/x (Yo)= -[f(x + iyo)] H’.

Proof. Since this lemma is shown already in [6, Lemma 8.1] we will not give all
the details.

With the aid of Cauchy’s formula it can be shown that for fly[[ suciently small

(iy. DxE )f(x + iyo)= f(x + iy + iyo)
k=O k

converges in . For x ’ let (()= [](() H. Then we have

(, f(x + iy + iyo))g’ k20 (Y0), )k()

lim (Yo)c, 6(()
N k 0 H’"

Hence the weak limit for N exists in H’. Since H is a Montel space the strong limit
exists and equals

E (-Y" ) -caa(yo)=e (yo).
k=O k

Thus

f(x + iy + iyo) ff[e-Yc/x (yo)c](x)

for y with IlY[[ sufficiently small. By analytic continuation this formula holds for every y
withy+yoB. 71

Since @ is dense in ’, Z is dense in H. Hence for f g the Fourier transform
[f] is also determined by (2.3). The space of restrictions to R of functions in Z is
dense in S, so that if, moreover, f belongs to S’ then (2.3) implies

([f], 6)s, (f,

Thus we have obtained the following corollary.
COROLLARY 3.2. If f(Z), holomorphic in TB, ]:or each y B belongs to S’, then

with yo B and with g(yo)= -l[f(x + iy0)] S’

e-Y’g(yo) S
for y such that y + yo B and

f(z + iyo) [e-g(yo)](x).

From this corollary one derives as in Vladimirov [11, Thm. 26.1] that f(z)
belongs to S’ for each y s B if and only if it satisfies

(3.1) If(z)l _-< M(K)(1 + Ilxll) y s KB
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for all compact sets K in B, where M(K) and re(K) depend on these sets K.
Moreover, Corollary 3.2 and Vladimirov 11, 26.2] yield that, if f(z) belongs to S’ for
each y B, it necessarily satisfies, for every a,

(3.2) ID’f(z)l <_- M’(K)(1 + Ilxll) y e K (C) ch(B),

for all compact sets K in the convex hull ch(B) of B, where M’(K) and m’(K) depend
on K and a. Hence f(z) belongs to S’ for each y B means that (2.1) holds for 4 $.

Clearly, in that case for each y B f(z) belongs to Z’ under definition (2.1), too.
Next we consider a function f(z), holomorphic in TB, which for each y B as a

function of x belongs to Z’. This means that f(z) is a continuous linear functional on
the space of restrictions to R of functions in Z, where this space carries the topology
of S. Its closure is S, hence f(z) belongs to S’ for each y e B. Thus f(x + iy) S is
equivalent to f(x + iy) Z’ and this should be interpreted in the sense of definition
(2.1) for S or Z.

Let us now consider the limit in Z’ as y tends to zero. From (3.1) it follows that
for any y B and y0 such that y + y0 B

(f(z), (x))= IR,,f(z + iyo)(x + iyo)dx,

Therefore, the limit f* as y - 0 of f(x + iy) exists in Z’ and it is given by

(3.3) (f*, ) lim f(x + iy + iyo)6(x + iyo) dx f(x + iyo)P(x + iyo) dx
y-O

for all Z and yo B. This limit is independent of y0 B. Note, that when 0B
f* can never exist in S’. If 0/, 0B, we may call f* the boundary value in Z’
according to (2.5) and this boundary value is independent of the path y 0 in B. Still

f* might not belong to S’ nor satisfy definition (2.1). For example, take B {YlY > 0}
in []1 and f(z)= exp 1/z. This function satisfies (3.1), but [exp (1/x)]b(x)dx, Z,
does not exist. In general, it follows from (3.1) and (3.3) that f* is an element of Z’
carried by " (see 2 for the definition of carrier in Z’).

The inverse Fourier transform g -l[f.] is an element of @’. For and
yo B from (3.3) we derive

(g, ), (f*, d/)z, (f(x + iy0), (x + iy0))z’

(g(Yo)e, eYe()) (e Yeg(Yo)e, ())’,
where ff-1[] and g(yo)= c’-l[f(X -[- iyo)]. Hence

(3.4) ge eY’eg(y)e, y B,

is independent of y and we have obtained (as in Corollary 3.2)

(3.5) e-Y’ge S, y B,

and

(3.6) /(z)= [e-"eg](x).
Conversely, for a distribution g ’ satisfying (3.5) the function (3.6) satisfies (3.1),
hence also (3.2) (see Vladimirov [11, Thm. 26.2]). Conditions (3.5) and (3.6) then also
hold for y ch(B).
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The distribution g ’ can be obtained as follows: for y K
-iz

(3.7) ge=e"t;-[[(x +iy)]t=(A(K)-l. ),,,(: 1.__(2r), (A(K)+f(x+ iy).e.z,z)"(dx’
where m’(K)>-5(m(K)+ n + 1) and where A(K) is so large that for y e K

IA(K)+ z z] >-_ 1 + x x.

The integral is independent of y. Hence for every K(C)B there are constants
m(K),Mo,(K) and continuous functions g,K on R ", ]cl_-<m(K), such that g can be
represented as

(3.8)
Il--<m(K)

Igo,,K()l<=Mo,(K)e ’,

In that case g also satisfies (3.8) for every K (C)ch(B). Conversely, if a distribution
g ’ satisfies (3.8) then (3.5) holds.

Next we consider the case that the limit [* exists in S’. Let C be an open
connected cone in R" and let for each C’(C) C R (C’) be a positive number depending
on C’. Let B be a domain in Nn containing each set {YlY e -7, 0<IlylI<=R(C,)}" Let f
be a holomorphic function in T which satisfies a stronger condition than (3.1),
namely

(3.9) If(z)l<=M(C’)(1 "-[[Xll)m(C’)(1 -[" lly [[--k ), y C’, Ilyll<-R(c’)

for each compact subcone C’ of C and for some k and m(C’) depending on C’. We
may let k depend on C’, too, but in Lemma 3.3 it will be shown that (3.9) is satisfied
for a fixed k anyhow. Then the limit

/* lim f(x + iy)
y0
yC’

exists in Sx’ and it is independent of C’ and the path y- 0 in C’; see Vladimirov [11,
Thm. 26.3]. Here the most general case arises if R (C’) tends to zero as C’ approaches
C. Now f* is called the boundary value of f(z) in $’ on the distinguished boundary.
Clearly/* is attained in Z’, too, but if the limit exists in Z’ only, (3.3) shows that the
boundary value in Z’ may be concentrated on other sets than the distinguished
boundary as well.

Let g "--I[F], where f* is the boundary value in S’ of a function f(z) satisfying
(3.9); then g belongs to S’. The representation (3.7) now holds for y -7, 0< IlYlI--<
R(C’) and for m’(K)>=(m(C’)+ n + 1)and A(K)>=R(C’)2+ 1. Also here the integral
is independent of y. Therefore, for any :n we can choose a suitable y Ye. For
: C’* and I11] -> 1/R(C’) we choose y C’ with I[Ye[[ 1/[[:[I. Then y. =< 1 and
0 < y. : for all y C’, []y][ < R (C’). For : C’, we have minyprc, y. sc<0 Let the
minimum be attained for y}; then we take ye R(C’)y} and we have

ye. : y. :, Vy C’, IlyIIR(C’).

Now we take y ye in the integral in (3.7) and we find that for every C’ there are a
positive integer m(C’), constants M,(C’) and continuous functions go,.c, on ", la[ <-
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m(C’), such that g can be represented as

(3.10)
g y’. D’g,,c,(),

Il=<m(C’)

Ig,c,(OlM(C’)(l+llll)e ’e, Vy C’, [lyllR(C’).

If R(C’)<-R for all C’ (C) C and if in (3.9) m is independent of C’, then in (3.10) m(C’)
and the functions g,c’ can be chosen independent of C’.

The following lemma shows that f(z) satisfying (3.9) for C’(C) C satisfies (3.9) also
for C’ (C)ch(C), hence that g S’ satisfying (3.10) satisfies (3.10) also for C’ (C) ch(C).

LF.MMA 3.3. Let C be an open connected cone in R", let for each compact subcone
C’ of C R (C’) be a positive number and let B be a domain in containing every set

{YIY 6 C’, 0<[lYll<_-R(C’)}. Ill(z) is a holomorphic function in TB that satisfies (3.1)
such that the limitf* in Z’ as y --> 0 belongs to S’, then f(z) attains this limit already in S’
as y --> O, y C’ (C) ch(C) and, moreover, f satisfies (3.9) ]’or each C’ (C) ch(C) and R (C’)
.such that

(3.11) {YlY C---7, O<llYll<----R(C’)}cch(B)

If in (3.1) m(K) does not depend on K, then m(C’) in (3.9) does not depend on C’.
Proof. Fix C’ (C) ch(C) and choose C" and C’" with C’ (C) C" (C) C’" ch(C). Fix

R (C"’) such that (3.11) holds for C’= C’". Let Uo be an open e-neighborhood of C"*;
then there is a 6 > 0 such that for y C’, -y : -<_ -61lyl[ [[:ll if : U0 outside a compact
set. Finally choose finitely many vectors yj pr C"’ and positive numbers 6. < 1 such
that the open sets

U,. {’ly; ’ < -,s;[l:ll} {’l-y < 2,;11’[1, y pr C’},

j 1,..., p, cover C. Let {A.}’=0 be a partition of unity subordinate to the covering

i=o U of such that Ai is a multiplier in S’ for every ]. Now for all y C, I[yll_-<
1/4R (C’") the functions

Ai() e a(c’’)y’t-y’t, j 0,. P, Yo O,

belong to S. In Lemma 5.2 it will be shown that the Fourier transforms of
Aj() e-Yege, ] O, , p, where g e $’ satisfies (3.5), are equal to

(e-R(C"’)Y"ego Ai() eR(C’")Y"e+iz’)S,, ] O, 1," p,

respectively. Hence if g -’[f*], we obtain for y C’, Ilyll 1/4R (C’")

If(z)[ I[e-"egell ,() e -y

p

I(ge, Ao() eiZe)l + E [(e-R(C’")Y"ege, Ai(:) e
/=1

R(C’")yi.+iz.)

_-<MI(1 + Ilzll) sup (1 + t)ke
t__>0

<= M(C’)(1 +[Ixl[)m(c’)(1 / Ilyll-)
for some M1, m and k depending on g and some M2(C"’) depending on M(K) in (3.1)
and m’(C"’)depending on m(K)in (3.1), where K-{yIyC’",[IyII--R(C’")}.
Together with (3.1) this yields (3.9) for C’ (C) ch(C).
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Furthermore, it now follows that g can be represented as in (3.10), hence that the
set {e-Yegely e C’,Ily[[<-R(C’)} is bounded in S’, where R(C’) is such that (3.11)
holds. Since the limit as y-->0 of e-Yege exists in ’, this limit exists in S’ as
y ->0, y e C’. Hence f(x + iy)->f* in S’ as y -->0, y

Altogether we have obtained the following theorem.
THEORFM 3.4. Letf be a holomorphic function in TB satisfying (3.1), where B is a

domain in Nn. Then it satisfies (3.2), too. The limitf* off(z)as y ->0 exists in Z’ and its
inverse Fourier transform g satisfies (3.8) for every K (C) ch(B). Conversely, a distribution
g @’ satisfying (3.8) forKB satisfies (3..8) for K ch(B), too, and then the function
(3.6), which is defined because (3.5) holds, satisfies (3.2). Moreover, if (3.11) holds, a

function f holomorphic in T has a boundary value f* in S’, provided that f satisfies
(3.9), which then is satisfied for C’ (C) ch(C), too. Then the inverse Fourier transform g of
f* satisfies (3.10) for every C’ (C)ch(C). Conversely, a distribution g S’ satisfying
(3.10) ]:or C’ (C) C satisfies (3.10) for C’ (C) ch(C), too, and then the ]’unction (3.6), which
is defined because (3.5) holds, satisfies (3.9) ]’or C’ ch(C). There is no mixture of these
cases, i.e., a holomorphic [unction f in T, B such that (3.11) holds, satisfying (3.1) and
having a boundary value f* in Z’, which is an element of S’, already satisfies (3.9).

We conclude this section with an example of a function f that satisfies (3.1). Let
B {y lY > 0} c and let

f(z

For some positive constants A and B

If(z)l _-< M(y)(1 /lxl)A/si"h/ oh

<- M(r, R )(1 + Ixl)A/r+" coh , O<r<_y<-R.

Let m (r, R) be an integer larger than A/r +B cosh R + 2; then for all r <- y <- R
//cos +cos --ize

m(r,R
Z

ge eY’e-l[f(x + iY)]e (iDe)’’(’R)
27r

(Dxmtr R)
) g,,().

The continuous function gr,R() satisfies, for all r_-< y -<R,

Igr,R()l <- M’(r, R) e’,

Igr,R()l <=M’(r, R) e re > 0

[gr,R()] <- M’(r, R) e -RIll < 0

4. Analytic representations of real carried analytic functionals and of their
Fourier transforms. In 3 we have discussed the behavior of a function f(z) for I[Yll
small and we have seen that it does not change if we deal with a domain T or its
convex hull Tch(B). In this section we will discuss it for IlY]I large, namely we will
consider holomorphic functions f(z) in Tc of exponential type in [lyll. Then f(z) will
not satisfy the same estimates for y s C or for y s ch(C), but they differ by a factor pc
in the exponent. The support of the inverse Fourier transform g of the boundary value

f* of such functions f is contained in a certain, convex, set. We will obtain represen-
tations of analytic functionals/ in Z’, which are carried by n, as boundary values of
holomorphic functions, and also characterizations and analytic representations of the
inverse Fourier transforms g s ’ of/. In particular this yields the case that/ and
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g both are tempered distributions, which case is treated in Vladimirov [11, 26.4,
Thm. 2].

Let f be a holomorphic function in Tc, where C is an open connected cone in ".
It is shown in Vladimirov [11, 26.6], that, if f satisfies for every o-> 0

If(z)[ <- P(C’, r)(1 + Ilzl[)’(1 / Ily[I-) exp [(b + cr)[lyll], y c’

for some m, k and b _>-0, then the distribution g S’ in (3.6) has its support in the set

(4.1) {:[-y : _-< b, y e pr C}= {:[/zc(:)_-< b}.

The proof does not depend on the behavior of f for [lY[[ small, nor on the fact that m is
independent of C’; cf. (3.9). Hence the same proof as in Vladimirov [11, 26.6]
combined with a proof as in obtaining (3.6) shows that the following theorem is true.

THEOREM 4.1. Let C be an open and connected cone and let the holomorphic
function f in Tc satisfy, for every r > O, cr > 0 and C’ (C) C,

(4.2) [f(z)[ <- P(C’, r, r)(1 + [Izl[)’’(c’’) exp [(b + or)fly[f], y C’, [[y[[ _-> r,

for some m(C’, r) depending on C’ and r, some b >-0 and some constant P(C’, r, o’)
depending on C’, r and r. Then f(z)= [e-ege](x and limy_,0 f(x + iy)= [g] in Z’
for some g fig’ with support in the set (4.1).

The converse of this theorem follows from Theorem 3.4 and the proof Of [11,
26.4, Thm. 2]. We consider distributions g in @’, which are represented as sum of
weak derivatives of measures satisfying a condition like (3.8). That any distribution in
@’, satisfying (3.5) with B C and with support in a convex set, can be represented in
this way, will be shown in the next section. The advantage of writing g as sum of
derivatives of measures is that it enables us to let the o" vanish in (4.2), if C is convex.

THEOREM 4.2. Let C be an open and connected cone and let g be a distribution in
’, such that for each C’ (C) C and r > 0 g can be represented as

g ,
[alm(C’,r)

where the measures IX,,,C’,r depending on a, C’ and r have their support in the set (4.1)
and satisfy

(4.3) Io e-’ldz,C,,r()l <- M(C’, r), Vy C’, Ilyll--r,

for some positive integers rn (C’, r) depending on C’ and r and ]’or some positive constants
M(C’,r) depending on a, C’ and r. Then for ych(C) the ]:unction f(z)=
[e-Y’eg](x) is holomorphic in Th(c and satisfies, for each C’ (C) ch(C) and r > O,

(4.4) If(z)l <- P(C’, r)(1 + tlzlt)’’ C exp (ocbllyll), y e c’, Ilyll--> r,

]’or some positive integers N(C’, r) and constants P(C’, r) both depending on C’ and r.
Moreover, lim,--,.o fix + iy)= ._.[g] in Z’ and if m(C’, r) is independent of C’ and r, then
N(C’, r), too.

Since the distribution g in Theorem 4.1 satisfies the conditions of Theorem 4.2
(cf. 3 and the next section) and since pc 1 if C is convex, we obtain the following
corollary.

COROLLhRY 4.3. Let the cone C be convex; then a function f that satisfies (4.2)
satisfies (4.4) with pc 1; i.e., in (4.2) P is actually independent of r.

We now give a characterization of all distributions g ’ whose Fourier trans-
forms/x Z’ are carried by I" (see 2). We have already seen that if/x s Z’ is the
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boundary value of a holomorphic function, it is carried by [". Hence it remains to
characterize those g @’ whose Fourier transforms admit an analytic representation
and to show that for every /z Z’ which is carried by " --[tz] satisfies this
characterization. Moreover, this yields an analytic representation of elements in Z’
carried by [".

If a closed, convex, cone C* in [" is the dual of an open cone C in [", it does not
contain a straight line. We divide " into such cones so that the following properties
hold:

(4.5) N"= U Ci*,
/’=1

(4.6) int C/* Iq int C* , ] k,

where each C* is a closed, convex, cone not containing a straight line, while the union
of any two cones C* contains a straight line. The last property restricts the number p
of cones used, n + 1 <-p-< 2n, and furthermore it states that in some sense the cones

C are as large as possible. Let C* be the dual of the open convex cone Ci; then
C=U

,
i=l Cj is an open cone. Such a cone C can also be obtained directly as follows

let r open half spaces Vk (Vk {y Isc y > 0} for some ’ R n, I1  11 1) be given such
that ln\{0} U

__
V, while "\{0} is not covered by the union of any r- 1 half spaces

Vk; hence n + 1 <- r <_- 2n. Then each Ci is the intersection of n half spaces V, i.e.,

C U{V,,oN.’’ N V,,,_},

where the union is taken over all n-tuples {k0," ", k,_l} taken from {1, 2,. , r}. For
example, if n 2 we may take

where b tan (Y2/Y), or

C {yl0<b<Tr}U{y b< }U{ylTr<b<Tr}

If we write C’(C) C, we mean C’= U ’i=x C/with C] (C) Ci. Furthermore, let Ai be the
characteristic function of the set C/*.

Let g @’ be such that for any C’ C and any e > 0 g can be represented as

where the continuous functions go,.c,, satisfy

(4.7) ’, e)e C/,

cf. (4.3). Assume that g can be written as

p

(4.8) g= E gi,
/=1

where gi has its support in C/* and can be represented as in Theorem 4.2. Then it
follows from this theorem that [g] is the sum of boundary values in Z’ of functions
holomorphic in T%, satisfying for all C/(C) Ci and e > 0

If,.(z)l<-P(C/, s)(1 +llzll) y c;, Ilyll>_- ,

for/" 1,. , p, respectively. Hence [g] is an element of Z’ carried by .
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Since for any C’ C there is a positive number 6(C’)< 1 such that for y C/and
C,j=l,. .,p,

(4.9) (C’)lly[[ [[sl[-<- y" s <- [[YI,I IIsll,
condition (4.7) is equivalent to: for every e > 0 g can be written as

ge E D’go,,(),
lal_-<m()

where the continuous functions g, on R" depend on e and satisfy

(4.10) ]g, (:)l--< M,, (e) e "".
In order to derive (4.8) we introduce the following spaces. Let V be a closed set

in N", let E,(V) be the Fr6chet space of functions which are C functions in the
interior of V and all of whose derivatives are continuous on V such that the following
norms are finite:

sup
V

m=0, 1,2,...,

and furthermore, let

E(V) ind lim E (V).
e0

Since by (4.5) it is obvious that the continuous restriction map I from E(R") into

I-I.= 1E(Cff) is injective and has closed image, I is an open mapping according to the

open mapping theorem. Hence, it follows from the representation of an open set in an

inductive limit space (Floret and Wloka [3, 23, 3.14]) that also the restriction map
from E(R") into H=I E(C) is injective, continuous and open.

In virtue of Treves [10, Prop. 35.4 and Lemma 37.7] the transposed map between
the dual spaces is surjective. In particular, the above given g e N’ actually belongs to

E(N)’; cf. 5 and Floret and Wloka [3, 26, 1.2 and 1.6], and therefore, (4.8) holds

with gi E(Cff)’. This means, exactly, that gi can be represented as in Theorem 4.2

(cf. 5).
Next consider an element/x of Z’ carried by N. As in 2, for any e > 0/_ can be

represented as a measure/x on an e-neighborhood l’(e)of N" in C" satisfying (2.4).
Let/x be the Fourier transform of a distribution g e ’. Then for any positive e < 1

and @

Ia 1 I -iz’(g, 4’)= (27r),
e () d dt(z)

(e)

1

)"
(:)(1 -De"/)e)"() e -’z’e ds (1. z)"(( (2rr

-iz.

{(1-/: /e)"()()} (2rr)"(1 + z" z

hence ge (1-/3 /3)"()g (), where g is a continuous function on R" which satisfies

1 12),,, ()K e[g ()1-<-
(27r)" (1 e

i.e., g satisfies (4.10).
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In the following theorem not only [g] but also g is represented as sum of
boundary values of holomorphic functions.

THEOREM 4.4. The following four conditions for a distribution g6’ are
equivalent:

1) ;[g] Z’ is carried by .
2) For any e >0 g can be represented as ge=ll<__)Dg.(), where.g, are

continuous functions on satisfying

]g, ()l M(e) e.
3) [g] is the sum of boundary values in Z’ of functions [i holomorphic in Tq

satisfying for any Ci’ . and any e > 0

l(z)ln(c/,)(l+llz[I)N(c;’), yc/, Ily[l

for ] 1,..., p, respectively, where Ci, ] 1,..., p, are any cones satisfying
(4.5) and (4.6) and where P(C/, e) and N(C/, e) are constants depending on

C/ and e.
4) g is the sum of boundary values in ’ of holomorphic functions hk in Tc

satisfying for any k and any e > 0

}hk(()] M(, e)(1 + }}}}-()) e tlell, W

for k 1,..., , respectively, where k, k 1,..., , are any cones satisfying
(4.5) and (4.6), where M(Ck, e) depends on and e, and where re(e) depends
on e only.

Proof. We only have to prove that 4) is equivalent to one of the equivalent
conditions 1), 2) or 3). First, assume that 4) holds. For k 1,..., fi choose fixed
vectors k pr for some k. AS in Vladimirov [11, proof of Thm. 26.3] for
any e > 0 the absolute values of the functions

h( + #one) &o &l &, k 1,. , ,
are bounded by

M(C, e) (1 + r0 dro drl dr

and if a re(e), this can be estimated by a constant, depending on e only, times
exp (e I111), uniformly for 0 < r 1. Then integrating another time with respect to r we
get the functions

h, (, r) h(+iron)drodr"" dr)+, k= 1,... ,fi,
m(e)+l

which converge to continuous functions H,(, 0) of as r 0. The absolute values of
these functions are bounded by a constant, depending on e, times exp (e[). Since

d
dh,( + irn, ) in, bh,( + irn ),

we get in distributional sense

,(, o)r;O k=l

Hence 2) is satisfied.

m(e)+l (--irt O) }E
j!

hk(+ilk)
i=0
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Now let g ’ satisfy 1) and let t U 0 k be a cone satisfying (4.5) and (4.6).k=l

Since we consider g as a distribution in ’,/x [g] acts, in principle, on functions in
Z. We need a decomposition of/x as sum of analytic functionals carried by -’, just
like the decomposition (4.8) of g. For that purpose we introduce the following spaces of
analytic functions. If f is a closed set in ", let f be the closed neighborhood in
given by 11 {z x + iylx f, [lyll_<- e}; then define the space Z[n by

Z] =projlimZm]
where Z,,la is the completion of the set of functions belonging to Z for the norm

and the space Z(f) by

sup (1 +llx[I)"lg,(z)l,

Z(f)= ind lim Zlae.
eO

Here, it is not important whether Z]n consists of all rapidly decreasing functions
which are holomorphic in the interior of f and continuous in 12, but we only need
that, for : e " + ik and 1) --k*, e -iz’ as a function of z belongs to Z]a for every
e > 0. This follows from the fact that exp (-6z2- iz ) tends to exp (-iz.
as S $ 0 and that the function exp (-Sz2-iz )can be approximated in Zla by
functions in Z, which can be seen by Fourier transformation. Now/x is an element in
the dual Z(")’ of Z(I"); cf. Floret and Wloka [3, 26, 1.2 and 1.6].

Next consider the continuous map

I" Z(I")-> H Z(-d)
k=l

defined by restriction. A proof as in obtaining (4.8)shows that I is an injective
homomorphism and that, therefore, the transposed map between the duals is sur-
jective. Thus/x can be decomposed as

/.L E tLk
k=l

for some k Z(-ff)’, k 1," ’,/.
For @ and r/ , the limit of Riemann sums of the integral

In" 49() e -iz’d(z)=

converges in the space Z(-’ff) and furthermore, /,,-+ 4’0 in Z(-’) as
(C) . In the following we will write ’ : + ir/ if r/ . Now it follows that for

every @

(g’ &)=
k=l" ([d’k’ (27r)-" fa- &(:)e -iz’e

k=l" rl-01im (/Xk, (2rr)-n In,,
lim [ (2rr)-"(/*k, e-iZ>(e)de.
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The function

(4.11) hk(sr) (27"r)-n(ixk, e -izc)
is holomorphic in R" + ik and for any e > 0 and ’[, (C) (?k hk satisfies

Ih()lK sup (1
z(-’l)

<g e llelt sup (1 + t)
t__>0

<- M(

for some positive numbers K, re(e) (depending on Ixk and e), 6() (depending on
’) and M(, e) (depending on and e). Hence g satisfies condition 4). I-1

COROLLARY 4.5. Any analytic functional Ix in Z’ carried by " is the sum of
boundary values in Z’ of]unctions fi satisfying 3) in Theorem 4.4.

Remark 4.6. The abovementioned analytic representations of Ix and g are in two
ways not unique. Firstly, there is an arbitrariness in the number (between n + 1 and
2") and the choice of the cones Ci,= 1,...,p, or k, k 1,...,/5, as long as they
satisfy (4.5) and (4.6), although (4.6) is not necessary. Secondly, if the cones C

i=1 Ci and are fixed, the functions f in Tc (i.e., f . in T) and h in Te are not
unique. For example, instead of (4.8) g may just as well be written as

ge gi+
k=l

where h ik are arbitrary distributions with support in Cff Cff with the restrictions
that h ik =-h ki and that for each e >0 h ik can be represented as sum of weak

ikderivatives up to order m(e) of measures Ix.(s) on Cf’IC satisfying
e-"e"ld=,()l-<_M(e). Now [h] is the boundary value of a function holomor-

phic in " + ch(Ci U Ck).
Hence f is another representation of Ix if its difference with f satisfies

p

f(z)-f’(z)= Z F,.(z), y G,
k=l

for j 1,..., p, where E’k are arbitrary functions, holomorphic in ["+ ich(Ci U Ck)
satisfying

IFik(Z) <-P(C/, C[,, e)(1 +llz[I) y ch(C/U C), Ilyll e,

such that Fik --Fik. Or,
{f,o...k,-1 represent the same Ix if

when C U { Vko N N Vkn_l}, {fko...kn_l and

where -i denotes that the index ki is omitted, for arbitrary functions F...i,_2
holomorphic in N" + i{ Vi 1. V_2} satisfying estimates as above, provided that f,

f’ and F are antisymmetric in their indices. Here Ix is represented by the (r)functions
{fko’"kn-1} {ko,’",kn-1}{ 1," .,r}
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if the order ko" kn-1 in the n-tuples {k0,’’’, kn-1} is such that

n-1

Y Y (-1)i[ko /i’" kn-1]-O
{ko,’",kn-1}{1,’",r}

where [i0"" in-2] denotes the rearrangement i;... i’n-2 of io in-z, such that
i <... < i-2, preceded by the sign of the permutation io’" i,,-2 i... i’,-2. For
example, if r n + 1

n+l

Ix-" 2 (--1)i+lf*l’"T’"n+l
j=l

and if r 2", C1..." i= {Y [eiYi > O} where ei + 1, then

Ix Z El"’" Enfl...en;
eie{-1,1},i=l,...,n

cf. Martineau [5]. The representations equivalent to h Td are obtained similarly.
Remark 4.7. At a first glance Theorems 4.1, 4.2 and 4.4 2) and 3) (with (4.7)

instead of (4.10)) resemble Theorems 10, 11 and 12 in 6 of Carmichael [1]. There,
too, on the one hand holomorphic functions in Tc are considered satisfying a
condition similar to (4.2), namely with N constant and with P independent of r and o-
in [1, formula (34)] as well as dependent on r in [1, last formula on p. 753 and formula
(54), hence (49)] and on the other hand distributions U in @’ satisfying conditions
similar to ours (4.3) and (4.7), but with Ms independent of C’ and r in [1, formula (48)
and the last formula on p. 756] as well as dependent on C’ in [1, formula (47)].
Therefore, the functions g in [1] are bounded or even identically zero (the function g
in [1, last formula on p. 758]). In [1, Thms. 10, 11 and 12] finite Fourier transforms of
elements U e @’(A) with support in a certain, unbounded, convex set are represented
as boundary values in Z’(2zr) of certain holomorphic functions. Furthermore, the
distributions U are represented as weak derivatives of continuous functions on [", so
that also U e @’. However, the support of U as element of @’(A) is not the same as
the support of U as element of @’. According to the definition of support (see 2) any
element of @’(A) has a compact support. Actually, the (finite) Fourier transform of
any element of @’(A) is the boundary value of an entire function, which result indeed
is obtained in [1, Thm. 1], cf. [4, III, 2.3]. It turns out that the proofs of Theorems
10, 11 and 12 in [1] yield a stronger result than the statements, namely they give the
analytic representation in Z’ of the ordinary Fourier transform of U, where U is
regarded as an element of @’. In this form [1, Thms. 10, 11 and 12] resemble our
Theorems 4.1, 4.2 and 4.4 2) and 3), but although nowhere mentioned explicitly, the
boundary values in [1] are always attained in S’, too, and actually the theorems in [1,
6] are particular cases of the theorems in Vladimirov [11]. Only the one dimensional

"corollary" to Theorem 10 in [1, pp. 753-754] shows that boundary values in Z’ are
really intended. Furthermore, there is one more difference between [1, 6] and this
paper, namely, before taking the Fourier transform in [1, Thms. 11 and 12] U is
reflected to U. This is due to the fact that the definition of Fourier transformation in
[1], the one of [4], has not been "motivated by a Parseval relation." For, defining
[U] by requiring ([U],[ch])z,=(2zr)"(U,c),,ch@, one should take the
complex conjugate of f in (2.1) in order to get a Parseval relation.

Example 1. Any gS’ satisfies the conditions of Theorem 4.4. Then the
functions 1 in 3) of Theorem 4.4 satisfy

I/’}(z)l _-< P(C’)(1 + I[zll)N (1 / Ilyll-), y c/,
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for some N and k (cf. Corollary 5.4), and a similar estimate holds for the functions hk
in 4).

Example 2. /x given by

(/z, 0) q 4(z) exp 1_ dz
./ z

is an element of Z’ carried by the origin. Its analytic representation is

tz=lim{exp 1 1 }yo x-iy eXPx+iy-
which is uniqe modulo polynomials. The inverse Fourier transform

1
exp --iz dz

2r z

is a function in If", which can be continued to an entire function g with for every e > 0

Ig(()l <= M(e e lla.

Here ..--l[.L] does not belong to S’.
Example 3. represented as

tx lim {z i/csz i/cos e}
y$0

{zr}U.. and its inverse Fourieris an element of Z’ carried by (-c, 0] LJ kJ
transform is a finite order distribution g in @’, which does not belong to $’; for any
e > 0 g can be represented as in Theorem 4.4 2) (el. the example at the end of 3)or
as sum of boundary values in ’ as ,/- 0, ,/6 ’ (C) , of holomorphic functions h
given by (4.11).

5. Fourier transformation as a topological isomorphism. In this section we

topologize the space of distributions g ’ satisfying (4.3) and the space of analytic
functions [ satisfying (4.2), such that the Fourier transformation , in Theorems 4.1
and 4.2 is a topological isomorphism. We also prove a representation theorem of such
functions f and .for these functions Lemma 3.3 can be improved. Most results of this

section are treated earlier in de Roever [6, 6 and 9], but due to the more detailed
study we made in 3, Theorem 5.5 will be proved in a shorter and less elaborate way
than the corresponding theorem in [6]. For completeness, we mention two lemmas

(Lemmas 5.1 and 5.2) whose proofs can be found in [6], so that here we will not give
all details. We remark that the space of distributions g given here has a more simple
form than in [6]. In de Roever [7], [8] the theorems of this section are used to derive
the Fourier transformation between functions f of exponential type in both Ilxll and
IlYlI, holomorphic in tubular radial domains, and certain spaces of analytic functionals
with unbounded, convex, carrier. In general, these functions do not have dis-
tributional boundary values on the distinguished boundary, but as a particular case the
analytic representation is obtained of distributions in @’ being the Fourier transform
of elements in Z’ carried by certain, unbounded, convex sets in C". In this form the
theorems of [7, Thm. 6.1] and [8, III] are opposite to the theorems of this section.

First we remark that the correspondence between the exponential type b[lyll of f
in Theorem 4.1 and the set (4.1) {:I-Y" st-<b, y epr C} can be generalized to

exponential types varying with the direction of y and arbitrary convex sets. Let b be a
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convex function of y C homogeneous of degree one, where C is an open convex
cone in R n. This means that b(y) is determined by its value on pr C"

The convex open cone C and the convex homogeneous function b on C determine a
closed convex set U U(b, C) in [n by

def

(5.1) U(b, C) -{l-y : =< b(y), y C}.

If b can be continuously continued to pr C, then C and C determine the same convex
set U(b, C).

Conversely, each closed convex set U in " determines an open (possibly in some
linear subspace of "), convex cone C in 1" and a convex, homogeneous function b
on C by" let for y " and for some real number a H(y, a) be the affine half space in

H(y, a)= (:[-y -<_a};

then C is the interior (possibly in some linear subspace of I") of the set of all y s n
such that U c H(y, a) for a real number a depending on y and

(5.2) b(y)= sup- y. :.
C is open in " (hence, C is not contained in a proper linear subspace) if and only if U
does not contain a straight line. Note that b (y) might not be positive for all y s pr C, in
which case U determined by (5.1) does not contain the origin.

Secondly we discuss representations of distributions g with support in a closed set
U as sum of weak derivatives of measures. For arbitrary sets U such a representation
is not always possible, because U has to satisfy certain properties, see Whitney [13]
and more generally Schwartz [9] or Vladimirov [11], [12]. Here we only need that it is
sufficient if U is the closure of a convex, open set. It is shown in Whitney [14] that a
C-function on the closed convex set U (see Whitney [13]), whose derivatives are
uniformly continuous and bounded on U, can be extended to a C-function on an
e-neighborhood of U, which is bounded there. Hence can be extended to a
C-function on " which, together with its derivatives, is bounded. Moreover, it
follows from the construction of 4 in [14] that, if D’(tS)0 as’ in U (hence
then D’ is uniformly continuous in U), this also holds for 4 as " oo in ".

Let a (m) and fl (m) be two nondecreasing sequences, where for every m at least
one of the inequalities a (m + 1) > a (m) or/(m + 1) >/(m) holds and let Mm(:) be a
positive C-function on R" which outside the unit ball equals

(1 + II ll) e (’’)llell.

For any closed set V the norms

sup IDM,.(s)(s)l and sup
e V eV

are equivalent, and also it is equivalent to assert

lim DaMm )b() O,
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or

lim M,,,()D"cb()= O, loci <= m.
6V

Let us denote by Wo(M; V) the Banach space of C"-functions b on the closure V
of an open, convex set (in the sense of Whitney [13]) with the norm

and with

116 Jim sup M(s)ID’6 (s)l
:V

lim M,,(:)D"6 (’) 0, [al <- m,
v

(cf. Wloka [15]) and by W(V) the Fr6chet space

W(V) proj lim Wg’,o(M,,; V).

Then the restriction map I from W(") into W(U) is surjective; cf. Vladimirov [12]
in case (m)= 0. According to Treves [10, Thm. 37.2] the transposed map I’ from the
dual W(U)’ of W(U) into the dual W(")’ of W(") is injective and has weakly
closed range. Therefore, W(U)’ can be identified (by means of I’) with the subspace
Wb of W(I") consisting of the elements with support in U. Indeed, Wb, by the
definition of support (see 2) vanishing on the space of all W(") with support in
U, also vanishes on the closure of this space, which is just Ker I. Then according to
Treves [10, Prop. 35.4] W is the weak closure of Im I’, and since this is already
weakly closed, I’(W(U)’)= W’u.

Furthermore, we may conclude that W(U)’ is a closed linear subspace of W(")’.
For it follows from Wloka [15] that the identity map from W,om+(Mm+l," ") into
Wg’,o(M,,; ") is compact, hence that W(") is an FS-space; see Floret and Wloka [3]
(W(") is even a nuclear FS-space). Hence W(") can be written as inductive limit
(LS-space) and it is reflexive. Therefore, Im I’ is even strongly closed. Now the
following natural embedding maps are bijective and continuous:

I’
ind lim W0(M,,; U)’- W(U)’-, Wbc W(")’.

By a property of LS-spaces (Floret and Wloka [3, 25.1]) the closed sets of the first
space are closed in Wb, where Wb Im I’ is regarded as a closed subspace of W(")’.
Therefore, the three spaces are equal also as topological spaces. Thus W(U)’ is an
LS-space, hence W(U) is an FS-space, and W(U)’ is a closed linear subspace of

Finally, by Riesz’ representation theorem distributions g e W(U)’ can be
represented as sum of weak derivatives of measures on U such that

=<,. u M(:)

where m and k depend on g. For this reason we required that M,,.,()D"cb()-+O as

’-+oo in U, for, in that case the measures /x, according to Riesz’ theorem being
defined on a compactification of U, are still .concentrated on U.
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We now describe the space of the distributions g of Theorem 4.2. In the remain-
ing C will be an open, convex, cone in ". Theorem 4.2 holds for convex homo-
geneous functions b(y) instead of bllyll as well. Let

(5.3)
def

Sk(b, C) proj lim Wo0((1 +llsll) exp ((1//)11:1[); U(b, C)),

where U(b, C) is given by (5.1). For p > k the identity map maps Sk(b, C) continu-
ously into St’(b, C), hence the strong dual S(b, C)’ of S(b, C) into Sk (b, C)’. Now
define the space

def

$*(b, C)’ proj lim Sk (b, C)’.
k

Deleting (1 /11 11) from the weight functions in (5.3) would yield the same space
S*(b, C)’, but Sk(b, C) in the form (5.3) is an Fq-space. We choose an increasing
sequence {Ck}=l of convex subcones of C exhausting C, such that, when 6k > 0 is a
number with for y Ck and sc s Cff/x

(5.4) Y" --> llyll I111 (cf. (4.9)),

then {1/k6k}= is a decreasing sequence of positive numbers. In view of the fact that
for any k the set (Cff/l)C U(b, C) is compact (see the proof of Lemma 5.1) the
distributions g in S*(b, C)’ are just the g @’ of Theorem 4.2.

LEMMA 5.1. For all k there is a p > k such that ]:or any z x + iy with y Ck and
I[Y > 1/k

iz. St,e (b, C)e.

Proof. See de Roever [6, Lemma 9.1]. In [6, Lemma 6.3] it is shown that
: (Cff/x)C f) U(b, C)satisfies I1:[[_-< & for some positive number dk depending on k.

Now let p > k/Sk; then using (5.4) and (5.2) we find for y Ck, Ilyll> 1/k and
every m

sup
5 U(b,C)

+SUPllm (l + dk)’lzl exp (dk + b(y))
_-<M(1 +[[zll)eb) sup (l + t)" exp (k ;)to

The lemma follows from the fact that for all => 0
(1 +t)" exp-6t<-K,l/6

for some constant K,, depending on m. !-1
As an element of S’ the Fourier transform of e-Yege with g S*(b, C)’ is known.

We can now formulate a simple representation of this Fourier transform.
LEMMA 5.2. For any y C and g S*(b, C)’

(5.5) [e-Yege](x) (g, eiZ’).
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Proof. See de Roever [6, Lemma 9.2]. Let us first assume that moreover g S’.
Let a be a C-function with support in U(b + 1, C), equal to 1 in U(b, C), such that
is a multiplier in S’ (here (b + 1)(y) b(y)/llYll). Then a() e -y’e S for every y C.
Essentially by a change of order of integration it is shown in [6, Lemma 6.4] that

[e-Yeg](x) (ge, () eiZ’e)s’.
Now we take g S*(b, C)’ and y C. Let y0 C be such that y yo C and let p

be such that for " in U(b, C) outside a compact set -y0" <- (-1/p)llll. Then multi-
plication by exp-y0" : and restriction to U(b, C) is a continuous map from S into
S (b, C), so its transpose is continuous from $" (b, C)’ into S’. Hence e-Yege S’ and
according to the above

-[e -(y-y)’e e-Yeg](x) (e-Yege, a($) ei(Z-iY)’e)s
(ge, e-Y’ea() ei(Z-iY)’[U(b,C))S(b,C) (go eiZ)

Theorem 4.1 also holds for convex homogeneous functions b(y) instead of bl[Yl[, if
C is convex. Therefore, we get a representation of the function f of Theorem 4.1 (cf.
Carmichael [1, Thin. 13]). Let f be holomorphic in Tc and satisfy

(5.6) If(z)l<=P(C ’, r, or)(1 +llzll)(c’’ exp {b(y)-t--o’]lyll}, z Tc’, llYllr,

for all C’ (C) C, r > 0 and tr > 0.
COROLLARY 5.3. For any function f that satisfies (5.6) them is a distribution

g S*(b, C)’ such that

(5.7) f(z)= (ge, eZ’e).
With this representation Lemma 3.3 can be improved so that m(C’) in (3.8) no

longer depends on C’.
COROLLARY 5.4. Let the boundary value f* in Z’ of a function f satisfying (5.6)

belong to S’. Then f attains this boundary value already in S’ as y O, y C’ and f
satisfies the stronger condition

(5.8) If(z)[<--P(C’)(1 + IIz[[)"(1 + Ilyl[-k) exp b(y), y C’,

for every C’ (C) C and some m and k.
Proof. In view of (5.7) it is sufficient to represent g -----l[f:] as sum of weak

derivatives of measures in U(b, C) and to estimate

sup
eU(b,C)

(1 + I]:ll) ]D eiZ’[

as in the proof of Lemma 5.1.
We now define a topology on the space H*(b, C) of functions f satisfying (5.6) by

(5.9) H*(b, C) proj lim ind lim Aoo(exp" b(Y). Rn + iC(k)+llzll)

where Aoo(M(z); f) denotes the Banach space of holomorphic functions in f with

finite sup norm SUpz, M(z)lf(z)l and where C(k)= Ck {yl [lyll> l/k}. Here the
continuous maps from

def (exp- b(y). )H =A R"+iC(p)
\ (1 + IIz II)"



1016 J.W. DE ROEVER

into Hk, _-> m, p _>- k, are the natural injections. By changing this representation of the
space tt*(b, C)somewhat, one can see that H*(b, C), just as S*(b, C)’, is the pro-
jective limit of nuclear LS-spaces" let for each k (Ck/l/,=l be a decreasing
sequence of convex, relatively compact subcones of Ck/I with intersection Ck\(O and
let C(k + 1/m)=Ck+I/m O{Yl Ilyl[> k + 1/m}. Then also

H*(b, C)= proj lim ind limH+1/’’

k:--o3 m--o

and from the compact embedding theorems between A-spaces in Wloka [15, Thm. 2,
4.2, where the condition d(S,, CSn/I)>0 may be replaced by S,c G1] follows the

abovementioned property.
The following theorem gives the Fourier transformation in Theorems 4.1 and 4.2

as an isomorphism (cf. de Roever [6, Thm. 9.1]).
THEOREM 5.5. The Fourier transformation : S*(b, C)’ o H*(b, C) given by

(g)(z) (ge, eiZ) ]’or g S*(b, C)’ is a topological isomorphism.
Proof. In the proof of Lemma 5.2 it is shown that for g S*(b, C)’ and yo

C, e-Yeg indeed belongs to S’, so that the Fourier transformation (5.5) is 1-1. Hence
is an injective map from S*(b, C)’ into H*(b, C) according to Theorem 4.2.

Theorem 4.1 says that this map is moreover surjective. In order to prove the
continuity of it is sufficient to show that for each k there is a p such that . is a
bounded map from S (b, C)’ into

def
Hk (b, C) ind lim H,,k,

because as an LS-space S(b, C)’ is bornologic; see Floret and Wloka [3]. So, let B be
a bounded set in So (b, C)’ where p is still to be chosen. This means that for some m

W,o(M,,; U(b,C)), where M(’)=B is bounded in the strong dual of o

(1 +list[I) exp ((1/p )ll:ll). Hence there is a K such that for all b W,o(M U(b, C))
and g B

I(g, 4)1 =< K sup
U(b,C)

Now we choose p > k as in Lemma 5.1 and replacing b(:) by exp (iz ) in the above
estimate yields for the images f (g)

If(z)lgM,,(l/llzl[)e(, yfk, IlYll>l/k.

Hence (B) is bounded in H,,k, thus bounded in Hk (b, C).
Next we prove the continuity of -. Again it would be sufficient to show that for

each k there is a p such that - is a bounded map from the LS-space
ind,_,lim HOrn+l/m into Sk(b, C)’. So, let us start with a bounded set in H+1/’’ for
some m. This set is certainly bounded in H. However, the elements of a bounded set
A in H are holomorphic in R" +iC(p), so that we cannot expect that -X(A)c
Sk (b, C)’.

Let p > k and let y0 Co be such that

1 1

p =k"
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Then f(z + iyo) is holomorphic in R + iC, if f A, and it satisfies there

[f(z + iyo)[_<- M(1 + [Izl[)" exp b(y + yo) =< M’(1 + Ilzll) exp b(y),

because b(y) is homogeneous and convex: 1/2b(y +yo) b(1/2y +1/2yo)-<1/2b(y)+b(yo).
Hence the set B’={g’[g’= -l[f(x +iyo)], leA} is a bounded set in S’ and every
g’eB’ has its support in the set U(b, C). Since yo" -<(1/k)111[, multiplication by
exp (yo" ) maps B’ into a bounded set B in Sk(b, Co)’. According to Corollary 3.2
and (5.5), for f e A and for all y e {y ]y + yo C(p)} with exp [i (z + iyo)" :] Sk (b, Co),
we have

(5.10) f(z + iyo) [e-Y’g] [e -(y+y)’ eYg] (g, e i(z+i)),

for some g B. As in (3.4) g is independent of yo, so that --l(f)__ g. Hence -I(A) is
bounded in Sk (b, Co)’. If f also belongs to Hf for a larger p, l-> m, then still we would
have found the same g. Therefore, -1 is a continuous map from H*(b, C) into
Sk (b, Co)’ for any p with the same image in every space sk (b, Co)’, p 1, 2," ". Thus
,_--1 is continuous from H*(b, C) into projo_,lim Sk(b, Co) which equals Sk(b, C)’
because Sk (b, Cp+)’ is a closed linear subspace of Sk (b, C,)’. Hence ,-1 is continuous
from H*(b, C) into Sk(b, C)’ for all k, and since in (5.10) g is also independent of k, it
follows that ,-1 is a continuous map from H*(b, C) into S*(b, C)’. [3

Similarly, when the boundary values of the functions f exist in S’, we can
topologize the spaces of these functions and of their inverse Fourier transforms, so
that the Fourier transformation is a topological isomorphism. For that purpose, let

def

S(b, C) proj lim W.o((1 +11:11)"; g(b, C))

and let

def ( exp [-b(y)] )It(b, C) ind lim proj limA ), " + iCk

S(b, C) is an FS-space and as a consequence of the following theorem H(b, C) is an
LS-space. Also here for any z Tc exp (iz. ) S(b, C)e and Lemma 5.2 holds for
g S(b, C)’. Similarly to Theorem 5.5 with the aid of Vladimirov [11, Thm. 26.3 and
26.4, Thm. 2] one can prove the following theorem, which gives the Fourier trans-
formation of [11, 26.4, Thm. 2] as a topological isomorphism (cf. de Roever [6, Thm.
6.1]).

THEOREM 5.6. The Fourier transformation ;: S(b, C)’ H(b, C) given by (g)
(z)= (g, e’) for g S(b, C)’ is a topological isomorphism.

Remark 5.7. At the beginning of this section it is shown that S(b, C)’ is a closed
linear subspace of $’. However, S*(b, C)’ as a subset of ’ carries a finer topology
than the one induced by ’. For, let n 1, C {YlY > 0} and b 0, then the function
0(’)e e belongs to ’, but not to S*(b, C)’, because 0()e(1-Y) S’ if 0< y < 1 (here

u (1/k ).k belongs to0(:)= 1 if so>0 and 0(so)=0 if so<0). Furthermore 0(:)Yk=0
S*(b, C)’ for every N and the limit for N o converges in ’ to 0(:)e e, hence it does
not converge in S*(b, C)’, which as projective limit of complete spaces is itself
complete.

We end this paper with a last striking property of functions in H*(b, c) or
H(b, C), when the function b is moreover uniformly continuous in C. Let w pr C;
then w pr C’ for some C’ (C) C. Since for C’ (C) C"(C) C U(b, C)(q C’ is bounded and
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since for : C"*

for some 6>0, in (5.3) the weight functions exp((1/k)llll) in the definition of
S*(b, C)’ may be replaced by exp ((1/k)w ). Then a function fH*(b, C) satisfies
for each e > 0 and z [n + i(ew + C

[f(z)l --< [(ge, eiZ’e)l

=< K(1 + [[z II) sup
je U(b,C)

=<K’(1 +[Izl[)’’() sup exp (ew. :-y. )_<-K’(1 +llz[[)’’() exp b(y-ew)
eU(b,C)

-<K (1 + IIz II) e b(y),

because b is uniformly continuous in C. Since this property for functions f H*(b, C)
is not true for general convex homogeneous functions b, we see that it was right to
divide C into LI k=l C(k)instead of >0 {ew +C} in the definition (5.9)of H*(b, C).
A similar property holds for functions f in H(b, C).

For example, we may take b constant on pr C, i.e., b(y)= bllyl] where now b is a
number. Then we have obtained the following corollary.

COROLLARY 5.8. If a holomorphic function f in Tc, C open and convex, satisfies
(4.2), then it also satisfies, for every e > O,

If(z)l <_- P(e)(1 + [[zll)v() exp (bl[yll), y ew + C,

for some fixed w pr C. Iff satisfies (5.8), where b(y)= b[[yl[ for some number b, then f
also satisfies for some m’>-_ m and every e > 0

[f(z)[ =< P(s)(1 / Ilzll)’ exp (blly[I), y e ew / C.
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ON THE SOLUTIONS OF A CLASS OF NONLINEAR
STURM-LIOUVILLE PROBLEMS*

P. DE MOTTONI" AND A. TESEI"

Abstract. A class of Sturm-Liouville problems with monomial nonlinearities is studied in a constructive
way by explicit integration. Results are obtained concerning the existence and uniqueness of the solutions
with a prescribed number of nodes, the location of the nodes, the behavior of the maximum norm of the
solutions as functions of a distinguished parameter (bifurcation parameter).

1. Introduction. We want to study the nonlinear Sturm-Liouville problem

u"+a.u-u’=0 in(0, T)
(1)

u(O)=u(T)=O

where T 6 +, k , k > 2", namely we are interested in finding the values A 6 [ such
that the problem (1) admits a real nontrivial solution u, and, in particular, the values
giving rise to a solution with m intermediate zeros (nodes). We shall be concerned as
well with a finer analysis of the location in (0, T) of the nodes, and with the relation-
ship between the parameter 3, (the "eigenvalue") and the (supremum) norm of the
corresponding solutions.

Corresponding results will also be given for

U"+Iu+uk--o in (0, T)
(1’)

u(O)=u(T)=O

whose investigation can be reduced to that of (1) by simple arguments.
As it is well known, nonlinear problems of Sturm-Liouville type have been often

considered in the framework of bifurcation theory as an application of general
theorems [1], [2]. In the present paper we stipulate to follow a constructive approach,
which only involves elementary techniques. Although this procedure cannot be used
for a wide class of problems,2 performing explicit calculations in a nontrivial instance
not only gives a concrete illustration of the general results, but also shows very neatly
the structure of the bifurcated solutions, and provides a deeper insight into their
properties.

The paper is organized as follows: After a summary of the results ( 2), we shall
perform a phase plane analysis of (1), by which a first characterization of the
appearence of solutions will be obtained ( 3). The proofs are contained in 4.

2. Summary of the results. Let us denote by x,, the eigenvalues of the linear
problem associated with (1), namely x,,, ((m + 1). r/T)2 (m --> 0). In the sequel we
shall prove the following results"

THEOREM 1. When k is odd, a unique couple (u, -u) of solutions of (1) with m
nodes exists if A > x,, (m >-0). If A <= x,,, no solution with m nodes exists.

THEOREM 2. When k is even, the following situation prevails"
(i) A unique positive solution exists if and only if A < x0; a unique negative

solution exists if and only if A > xo;

* Received by the editors February 25, 1976, and in revised form March 8, 1977.
? Istituto per le Applicazioni del Calcolo (IAC), "Mauro Picone", Rome, Italy.
Notice that any weak solution of (1) is a classical one: hence we may confine ourselves to consider

smooth solutions.
See, however, reference [3].
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(ii) A unique couple of solutions (u’(0)<>0) with 2m + 1 nodes exist if A >
tx2,,+l(m >=0). IrA </x2,,+1, no solution with 2m + 1 nodes exists.

(iii) A unique solution with 2m nodes such that u’(0)>0 exists if and only if
A >/z2 (m -> 1);

(iv) As for the solutions with 2m nodes and u’(0)<0, (m >-1), there exists a
decreasing positive sequence {z,,,} such that: no solution of this kind exists for
A < tx,,,- z; one solution exists for tz2- z,. and for > tz2,,,; two solu-
tions exist.for (12,. r.,, tx2. ).

Additional results, concerning the behavior of the supremum norm of the solu-
tions as a function of A are summarized in the following propositions:

PROPOSrroN 1. The supremum norm of any solution of (1) is for large I1 an
increasing function of Ih I, which behaves as Ix [1/o,-). The above monotonicity property
holds for any A in the case k odd and, in the case k even, for the solutions ofitems (i), (ii),
(iii) of Theorem 2.

PROPOSITION 2. For k odd, the supremum norm of any solution of (1), viewed as a

function ofA, has an infinite right derivative at A lz,, (m >- 0). For k 2, the supremum
norm of the positive solution has a finite right derivative at A txo, which coincides with
the left derivative of the norm of the negative solution. For k even and different from 2,
such derivatives are infinite.

Due to the above results, we can draw the bifurcation diagrams for our problem,
which are depicted in Figs. 1, 2.

As for the problem (1’), in the case k even, it is reduced to (1) via the trans-
formation u --> -u: thus the bifurcation diagram is obtained from Fig. 2 by reflection
with respect to the A-axis. In the case k odd, we shall prove that the bifurcation
diagram is as in Fig. 3.

It will become transparent in the following that, in the case k odd, the nodes of
any solution of (1) are equally spaced in [0, T]. The same is no longer true when k is
even. A precise result is expressed by the following proposition:

PROPOSITION 3. Consider, for k even, a solution u of (1) with 2m + 1 nodes
(m >-_ 0). Then the length of the subintervals of [0, T] where u is positive is strictly larger

FIG. 1. Bifurcation diagram for eq. (1), k odd.
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FIG. 2. Bifurcation diagram for eq. (1), k even.

FIG. 3. Bifurcation diagram for eq. (1’), k odd.

than that of the subintervals where it is negative; moreover, it increases monotonically
with A (for A >/z2,,,+1). The same result holds true [or solutions with 2m nodes and
u’(0)>0 (m => 1).
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3. Phase plane analysis. Let us rewrite equation (1) as a first order system:

Ut=V
()

I.)’----AU -" U k.
It is easily seen that the quantity

(3) E= v2+ Au2-(2/(k + 1))u k+l

is constant along the solutions of (2); for any fixed A e R, equation (3) gives all the
trajectories of the system in the phase plane (u, v) as the energy E varies in R. Notice
that such trajectories are symmetric with respect to the u-axis, and, if k is odd, with
respect to the v-axis as well.

As for the critical points of (2), we have the following situation: when k is odd, if
A <0, the only critical point (0,0) is a saddle; if A >0, (0,0) is a center and
(+ A I/(k-a), 0) are saddle points; on the other hand, when k is even, there are two critical

--1),points, (0, 0) and (A 1/k-X), 0), for any A " if A < 0, (0, 0) is a saddle and (A 1/k 0) is
a center; the reverse situation holds when A > 0.

Due to the boundary conditions, we are actually interested just in trajectories
which cross the v-axis at least twice (possibly at their endpoints), and the u-axis at
least once; clearly, this requirement rules out the case k odd, A < 0. In the remaining
cases, a straightforward analysis gives, for any fixed A, the trajectories depicted in Figs.
4-6.

An immediate consequence is that, when k is even and A <0, the only tra-
jectories of the type required lie in the left half plane. In particular, in such case no
positive solutions exist, nor solutions with nodes.

FIG. 4. Phase plane trajectories for eq. (1); k odd, A > O.
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I
%
%

FIG. 5. Phase plane trajectories ]:or eq. (1); k even, A > O.

u

FIG. 6. Phase plane trajectories for eq. (1); k even, A < O.
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The boundary conditions exclude as well: i) when k is odd, trajectories whose
energy is larger than E. =((k-1)/(k + 1)). (k/l)/(k-1) (that is, the energy of the
degenerate orbits (+/-, 1/(k-1), 0); ii)when k is even and < 0, trajectories with energy
less than zero; iii) when k is even and > 0, trajectories with energy greater than E.,
lying in the right half plane.

A most important requirement must now be imposed on the remaining tra-
jectories" in fact, in order that a trajectory corresponds to a solution of the problem
(1), it must be covered in the prescribed time T. As we shall see, for any solution with
a fixed number of nodes, this condition can be written as a (transcendental) equation
for E; the occurrence of solutions for such equations will be successively characterized
in terms of . It is again convenient to distrnguish two cases, according to the parity of
k:

Case (a): k odd. Let us call r/(E, A) the smallest positive root of the polynomial

u P(E, A, u)= E-hu2+ (2/(k + 1))u k+l

(where A e N+): namely, for any A, r+(E, A) is the abscissa of the intersection of the
orbit having energy E with the positive u axis. Then, if a solution of (1) having no
nodes exists, the following relation must hold

-=T f+(a’) du f+’’) du(P(E, A, u))-/2.(4)
2 .,o -U-7 .,o

In fact, due to the u-axis symmetry, the integral at the right-hand side of (4) ex-
presses half the time needed for a trajectory starting from (0, ",/-) to attain the point
(0,-x/---E), having crossed the u-axis just once. Notice that the v-axis symmetry
guarantees that this time is in fact the same both for positive and negative solutions. It is
also easy to see that the condition (4) is not only necessary, but also sufficient for the
existence of solutions without nodes" in fact, if a solution of (4) exists, integrating the
equation u’= (P(, h, u))/2 provides a solution of this kind.

The characterization of solutions with m nodes (m _-> 1) is obtained in a similar
way" in fact, due to the u-, v-symmetries, a necessary and sufficient condition for the
existence of a couple of solutions with m nodes is

T
(m + 1) du (P(E, A, u

as the corresponding trajectory crosses the u-axis (m + 1) times.
Case (b): k even. This case is more involved, essentially due to the lack of the

v-axis symmetry. Let us define r/(E, h), r_(E, h) as the smallest (in absolute value)
strictly positive, respectively negative root of the polynomial P(E, A, ),3 where h R.

A necessary and sufficient condition for the existence of a positive solution of (1)
(that is, no nodes, and u’(0)> 0)is then

(6+) -=2 .,o
du (P(E, A, u))-a/2",

on the other hand, a negative solution of (1) exists if and only if

(6_)
T I du (P(E, h, u))-/2
2 _(,,)

In the Case (a), the role of r_ is played by -r/.
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As to the solutions with nodes, we shall distinguish between the cases of an even
and of an odd number of nodes.

In fact, to a solution of (1) possessing 2m + 1 nodes, there corresponds a closed
trajectory in the (u, v)-plane, which is covered rn + 1 times: as a consequence, such
trajectories are covered in the same time, both if they are initiated at (0, x/--E), and at

(0, -x/--E): hence the (necessary and sufficient) condition for the existence of solutions
with u’(0)> 0 and u’(0)< 0 is the same, namely

r+(E,A)T
(m + 1) du (P(E, A, u))-1/2(7) ’: -(,a)

If there are 2m nodes, a further distinction, namely between solutions with
u’(0)>0 and u’(0)< 0, is needed. In the first case, a closed trajectory in the phase
plane is covered m times, and its part lying in the right half plane is covered once
more" thus we get the following necessary and sufficient condition

(8+)
Z fr+(E,A) ))_l/2{r+(E,A)-= m du (P(E, A, u + du (P(E, A, u))-1/2.

ar_(E,X aO

In the case u’(0) < 0, on the other hand, the closed trajectory is covered again m times,
but it is its part lying in the left half plane which is now covered once more; hence we
arrive at the (necessary and sufficient)condition

(8_) T_ o

du (P(E, h, u))-1/2 + du (P(E, , u
_(E,X)

Proving Theorems 1 and 2 amounts to finding necessary and sufficient conditions
on , in order that the equations for E (4), (5), (6+), (7), (8+) have solutions. This will
be done in the following section, by establishing monotonicity properties of the
right hand sides of these equations.

4. ProoI of the results. Let us prove Theorem 2.4 To this end, we shall present a
lemma concerning some useful properties of the roots r+, r_. Notice that r+, as a
function of (E,A), is defined only on Q+={(E,A)(0, E,)x+, E,=((k-1)
+(k+l))A(k/l)/(k-1)}; as for r_, we shall be dealing only with its restriction to
Q_=+x.

LEMMA 1. The following properties are valid:

(i) 0< r+(E, A)<A (1/(k-1)

(ii) r_(E, )< 0
r_(E, A)< A 1/(k-l) < 0
0

(iii) -r+(E, A 0

for all (E, A Q+;
for all E + and h -, and
for all E + and h -;
for all (E, A) Q+;

o
(iv) r_(E, A)< 0

0/
for all (E, A) Q_.

Proof. Items (i), (ii) follow from an elementary analysis of the polynomial
P(E, h, ); as for (iii), (iv), suffice it to make use of (i), (ii) and of the relation

k-l(E, A))}-IO
r+(E, A)= {2r+/-(E, A)(A r+

0E
4 The proof of Theorem will be omitted, as the arguments needed are of the same typeand much

simpler: in fact, due to the v-symmetry, only the integral +t.x) du(P(E, h, u))-a/2 is involved.
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which is obtained by differentiating with respect to E the identity P(E, A, r+(E, A ))= O.
Let us now consider the following functions

+r+/-(E,A

I" Q+/- - U+, (E, A )- I+/-(E, A +/- du ((P(E, A, u))-1/2;
ao

I: Q+-+, (E,A)-I(E,A) I+(E,A)+I_(E,A);

Z,,: Q+-+, (E,A)-Z,,,(E,A) mI(E,A)+I_(E,A) (m N).

Notice that I_ (resp. I+, L Z,,)can be defined for all A e N (resp., A N+).
LEMMA 2.
(i) I+(’, is strictly increasing on (0, E, ), for all N+;
(ii) I_(., is strictly decreasing on +, for all A ;
(iii) I(., ) is strictly increasing on (0, E.), for all N+;
(iv) limE_,o+ I+(E, A )= r/(2v); limE_,zI+(E, A )= +o for all A N+;
(v) lim_o+ I_(E, )= r/(2x/) (for all +), and limE-+oo I_(E, ) 0 for all
A.

Proof. As for (i), (ii), observe that, subtracting in the expression under square root
in the definition of I+/- the quantity P(E, , r:)=0 and performing the change of
integration variable u r/t, we arrive at the following expression

I+/-(E, A )= [ dt{(1 t)[A (1 + t)-(2/(k + 1))rk, -1 (E, A)(1 + +’. "tk)]}-1/2
Oo

whence the monotonicity properties of/+, I_ follow from Lemma 1. As for (iii), we
shall limit ourselves, for the sake of simplicity, to the case k 2. Denote by r3(E, A)
the third root of the polynomial P(E, , ), which is real for E (0, E,) and larger than
A (A +); using Cardano’s formulae we obtain the explicit representation:

r+(E, A)= 1/2A + A cos ((q + 47r)/3),

r_(E, A)= 1/2A + A cos ((q + 27r)/3),

r3(E, A)= 1/2A + A cos (q/3),

where q arc cos ((E,-2E)/E,)varies between 0 and zr as E varies between 0 and
E,. On the other hand, putting the complete elliptic integral I(E, ) in the Legendre
canonical form and differentiating with respect to E, we get

Observe now that

and

c3
(r+ r_) (//) cos (q/3)> 0, V (0, r),

c3q9
(r3-- r-) (A/x/) cos ((q9 4- 4zr)/3) < 0, V (r/2, r),
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so that I(., A) is strictly increasing on the subinterval (E,/2, E,). As to the subin-
terval (0, E,/2), use is made of the estimate

0 ()[( A) r_)_3/2 ]O--I(E,A) >- r3-- (r3-- +(2r+--A). (r3--r+)-3/2 (E,A).

In fact, it is easy to show that the above lower bound is strictly positive for E
(0, E,/2), which completes the proof of (iii). The proofs of (iv) and (v) are straight-
forward and will be omitted.

LEMMA 3. The function E- Z,,(E, A) is decreasing in a right neighborhood of
zero; moreover, there exists a positive decreasing sequence {e,,,} such that Z,,(., A) is
increasingfor E> e,,, and limE_._* Z,,,(E, A)=+ (m N, A R+).

The proof follows from a lengthy calculation, similar to that of Lemma 2 part (iii),
and the recurrence relation Z,,, Z,,,-1 /I. Pursuing the analytical investigation of
further properties of Z,,, is extremely involved; thus numerical computations5 were
performed to establish the following result"

For any rn N, A R+, Z,,(., A) possesses a unique minimum point ,,,, where
is a rnbnotonic sequence, decreasing to zero, and {Z,(sr,,,, A )} is increasing.

Proof o]’ Theorem 2. We just sketch the proof of (i), the other cases being similar.
According to Lemma 2, I/(. ,A) is strictly increasing, and limE-.o/ I+(E,A)=
7r/(2x/), so that a unique solution of (6+) exists if and only if T/2 > 7r/(2x/), i.e., if and
only if A >

Proof ofProposition 1. Let us first investigate the case k odd: the supremum norm
of the nontrivial solution with rn nodes is precisely r/(E, A), where, for any A, E is
determined by the equation (5) above. Using the same procedure as in the proof of
Lemma 2, we may rewrite (5) as follows"

(9)

0 A -1/2 Io dt ((1 t)[(1 + t)--(2rk+-l/(k + 1)A)

(1 +t+... +tk)]}-/2- T/(2(m + 1))

It is easily seen that (9) defines r/ as an implicit function of A, whose derivative is
k-2k+l r/

k-1 2

Io dt (1-t)-l/Z(l +t)[ (l +t)
k-12 r+

k+l A

Io dt (1- t)-a/2(1 + t+"" "+ tk)[(1 + t)

(1 + +. + tk)] -3/2
1:-1 -3/2;2 r+ (l+t+...+tk)]k+l A

d

(10)

hence r+ increases with A. According to Lemma 1, as A goes to infinity, r+ cannot
diverge faster than A a/(k.-a)., in fact, it diverges exactly as A a/(k-1)’, namely, otherwise it

h-112would follow from (9) that T/(2(rn + 1)) <- (r/2) lim_,+ 0, which is absurd.

It was found convenient to choose as independent variable the following (strictly increasing) function

of A:

0 arc sin {2(R2-1)l/X/(x/+(R 2-1)1/2)}1/2, where R 2A/(A 2r3).

The computations, performed on a computer PDP 11/40, provided evidence of the following facts: (i) I
is a convex function of 0; (ii) there is a m’N such that Zm, is a convex function of O. Due to the recurrence

formula for Z, it follows that, for m >-m’, Z has at most one--and therefore exactly one--minimum. As
to the Z,,’s with m < m’, a direct calculation shows that they have a unique minimum as well.
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Let us now turn to the case k even. For solutions without nodes, the procedure is
the same as in the case k odd; for solutions with an odd number of nodes, or with an
even number of nodes and u’(0)> 0, consider the following functions:

{1/2(m+I)I(E,A)-1/2TY,,,(E, A )=
rnI(E, X)+ I.(E, A)-1/2T

if m is odd;
if m is even.

It is possible to think of E as a function of A, E(A), implicitly defined through the
equation Y,,(E, h)= 0; now, the maximum norm of the solutions under consideration
is r+(E(A),A) (in fact r+_->[r_[ on Q/), and a direct calculation shows that
(d/dA)r+(E(Z), A)> 0. The claims on the asymptotic behavior follow as in the case k
odd.

Proof of Proposition 2. It is an easy consequence of (10) in the case k odd and in
the case k even, solutions without nodes. The remaining cases are similar.

Proof ofProposition 3. According to Lemma 2, I+(E, h )> I_(E, h ) on Q+. On the
other hand, the time needed to cover the part of the trajectory lying in the right (resp.
left) half plane is 2I/ (resp. 2I_), whence the first claim is proven. To complete the
proof, suffice it to compute (d/dh)I+(E(A), h), which turns out to be positive.

Acknowledgment. We are indebted to the referee, who suggested several
improvements of the original manuscript.
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ON THE ASYMPTOTIC SOLUTION OF A
PARTIAL DIFFERENTIAL EQUATION WITH AN

EXPONENTIAL NONLINEARITY*
V. H. WESTON

Abstract. The asymptotic behavior of a large norm (maximum) solution of the Dirichlet problem
associated with the equation

-Au h e

for a bounded simply-connected domain in 2 is investigated for the case of the positive parameter h
tending to zero. By means of a conformal transformation function f(z), the problem is transformed to one
involving the unit disc. For a class of domains which are described by implicit conditions for f(z), a first and
higher asymptotic expressions are developed for the large norm solution characterized by a single maximum
proportional to In (1/,). It is shown that for sufficiently small, an exact solution can be generated by the
modified Newton iteration scheme, if the asymptotic solution of appropriate order is used for the initial
step.

1. Introduction. We will consider the nonlinear problem (P) in I2

-Au h e , y D
(p)

u=0, yBD

where y =(YI, Y2), A is the Laplacian operator, D is a compact simply-connected
domain with smooth boundary 8D, and the parameter h is such

h>0.

Some general results on the solutions of the system (P) have been given in the
literature [1], [2], [3], [4]. There exist multiple solutions for 0<A <A*, where A* is a
bifurcation point. There is a low norm or "minimal" solution which tends to zero as
A 0. All solutions are pointwise nonnegative. For A > A* there is no solution.

It is the purpose of this paper to obtain an asymptotic approximation for the large
norm [1] solution as A 0, with emphasis on the solution that has a single maximum.
This will be achieved by utilizing the Liouville form of the solution of the differential
equation given by [5], [6].

81 ’(w)l
(1.1) ,eu=

[1 + [F(w)12]2

where F(w) is a function of w yx + iy:. This result is obtained by transforming the
partial differential to Liouville’s form

ue.:-e
where

Yl + iy2, r/= yl iy2.

Upon differentiating the Liouville form of the equation with respect to the variable :,
and then eliminating the exponential term, one obtains a differential equation which

* Received by the editors May 24, 1976, and in final revised form March 28, 1977.
t Division of Mathematical Sciences, Purdue University, West Lafayette, Indiana 47907.
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can be directly integrated to yield
2u-u B(),

where BI(:) is an analytic function. Similarly one obtains

u,, 1/2u 2, B2(rt ),

where B2(rt) is an anti-analytic function.
Upon integration one obtains the general solution

8
e a [(:)0(n)+ II"

With

p() F(yl + iy2), 0(r/) F(yl + iy2),

the right-hand side of the above equation is real and positive, and yields results (1.1).
The restriction upon the function F is found by noting that

(F"’ IF’’’z
B1(:) \--] (--)

must be an analytic function. It can be shown from this that for the domain under
consideration, F must have the following properties

(i) apart from simple poles F is analytic,
(ii) the zeros of F must be simple,
(iii) F’ must have no zeros in the domain.
Thus it is seen that F is a meromorphic function with simple zeros and poles.
To simplify analysis it will be convenient to transform the domain D to a unit disc

by the use of a conformal transformation.
DEFINITION. Let w f(z), z x + ix2 be the conformal mapping that transforms

the interior of D into the unit disc lz] < 1.
Problem (P) now reduces to the following problem (P’)

-au=alf’(z)12e ",
(P’)

=0, lz= 1.

In terms of the Liouville representation, the solution of the differential equation
associated with problem (P’) is given by

8lf’(z)l-lG’(z)l
(1.:) ae=

[1 + [G(z
where G(z)= F[f(z)]. The meromorphic function G(z) is chosen so that

( ) al/’(z)l2- 81O’(z)l2

[ +lO(z)2]’ fo Iz 1.

For the special case where D is the unit disc, hence f’(z) 1, the solutions are
given by

G(z) cz or cz-’,
where c is a constant, determined by the boundary condition. The large norm solution
is given explicitly by

(1.4) G(z)=/2z
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with

-41 h (-A) 1/2]
Note that as h - 0,/3 8/h and

G(z)--- z as a 0.

Thus the large norm solution has the property that [G(z)[ >> 1 everywhere in the unit
disc except in the neighborhood of z 0. The generalization of this result will be the
basis for the construction of the large norm solution for a general class of domains D.
In particular we will consider those domains D such that their transformation function
f(z) which maps D into the unit disc [z[< 1, has the property given below.

We will assume that there exists a 6, [61 < 1, such that

(1.6) g= 1/2(1 -18[2) f"(8)f()"
The general question of existence and uniqueness of the solution to Equation

(1.6), and the corresponding conditions on f’(z), will not be considered here, and
remains to be pursued. However we need to demonstrate that the class of functions
f’(z) for which 8 exists is not vacuous.

If f"(z) has a zero at the origin, then we can take 8 =0; otherwise rewrite
Equation (1.6)in the form

(1 7) 8f"(8_.__.) 216[2

f’(a)

The problem then reduces to finding a nonzero 6, lying on the curve

(1.8) Im zf’(z--------=.O, Iz[ < 1,
f(z)

such that its real part is given by the right-hand side of (1.7). If if(z) has no zeros in
[z I< 1, then it can be shown that the curve (1.8) goes through the origin and intersects
the unit circle Iz[ 1 in two points. Since the right-hand side of (1.7) varies between
zero and as 16[ varies between zero and one, it is obvious that Equation (1.7) will
have a solution. The solution is unique if the curve (1.8) is not tangent to the circles
[z[ =constant.

If more than one 8 exists, we will not specify, initially, which one to take. (Note
that there exists the possibility that multiple values of 8 will lead to solutions with
multiple maxima. Since in this analysis we are interested in solutions with a single
large maximum, we will leave this question to future effort.)

In 2 we will obtain the first order, then the higher order asymptotic approxima-
tions to the solution of problem (P’) that has a single maximum. In obtaining the
higher approximations, additional implicit constraints are placed upon the trans-
formation function/’(z), and choice of 8, if more than one exists. In 3, we will
consider the conditions for which a Newton-type iteration scheme can be used to
generate the exact solution. We transform the problem (P’) to an integral form, and in
the iteration process use the previously developed asymptotic approximations as the
initial approximation. It is shown that as h 0, the first order approximation is not
good enough for the iteration process to converge.
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2. Construction of asymptotic approximation.
2.1. First order solution. To obtain a first order asymptotic approximation to the

large norm solution for problem (P’) for - 0, we will use Liouville’s form given by
(1.2) and set

O(z, A )- A-1/2Go(z),
where Go(z) is independent of A. Equation (1.3) for the boundary condition reduces
to

It’(z)l= 8,,i,6o(,z)l[a + o( 11

for [z[ 1. We shall neglect the term O(A), in which case we have

d
(2.1) --z [O0(z)]-’ A(z)f’(z), Izl 1,

where ]a(z)] 1 for Izl 1.
We shall choose A(z)so that Equation (2.1) holds in the closed disc Iz[-<-1, and

such that apart from possible simple poles, Go(z) is analytic in the disc and has one
zero. Set

(2.2) A(z)=

Because of assumption on 6 given by (1.6), it follows that Equation (2.1), now valid
for the unit disc, can be integrated to yield

"f[Go(z)]-’ Po(z )/ (z 6) + Co,(2.3)
where

(2.4)

with

Po(z -(1 -[6I)f ()+ (z )o(z) (z )3(g)f’()
(z )f()(g?

O(z)= [f’()-f’(6)-(-6)f"(6)]A() d

and Co is an arbitrary constant. For future use we need the following quantities

Po(8) -(1 -I6 Iz)f (6),
(2.5)

P(6) -6(,)2f (6) +f’"(6)(1 -1612)2

The constant Co will be uniquely determined when we come to construct higher
order solutions. However for the first order solution given below we will take Co to be
zero. Hence we take u, to be the first order solution given by

which simplifies to

(2.6)

81 f’ (z)I-=IG5 (z)I=
[, + IGo(z)l]

[ ]-2leo(z)l-e "’ I1 zgl’ Iz 1=+
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It is interesting to note that at z 6, this solution has the value

UI() --2 In [A If-’6)12].
The results can be summarized as follows

THEOREM. The first order solution Ul given by (2.6) satisfies the equation

(2.7) -Au, A [f’(z)[2 e u’, Izl < 1,

and the boundary condition

/gl O(),

asymptotically as O. Furthermore,

max  ull A0.

2.2. Second and higher order solutions. To obtain an explicit expression for the
higher order approximation, we will set

G(z) =-’/2 E A"G.(z)
n=0

in the Liouville expression where G.(z) are independent of A. As in the previous
section Go(z) will satisfy the equation

(2.8) ,f-lG’o(Z)] IGo(z)121f’(z)l, Iz] 1,

and its solution will be given by Equation (2.3) with the constant Co to be specified.
For the first order approximation we took Co to be zero, but for the higher order
approximation it will have to be chosen in a specific way.

The boundary condition (1.3)with Izl 1, becomes

(2.9) [f’(z)l2 a + 2 a"O.(z) =8 2 a.a(z)
n=0

For simplification of analysis set. =.(z)/o(z),
and

Then we have

B’ G’ (z )/ G’o (Z ),

12A"G.(z) =lGo(z)l2 Y
=0 =0

By equating coefficients of A" in (2.9) and using (2.8) we obtain for Izl 1,

(2.10) 2 b.+ tlp iG012 ln-p
.=o iG;i b,,_p + 6 b’

where 6 is the Kronecker delta. Expressed in terms of G., (2.10) reduces to the
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general form

(2.11)

where

(2.12)

(2.13)

and for n => 3,

h.(z) Real [
(2.14)

Real
\ G;

2oo h, (z),

hi(z) 1/IGo(z)l,
10112 1[I a]2

h(z)= oo -L mo-o]

an-lG1] a,,-1) Real(G’l+2 i)i +2 Real( Go \G’o] +m’(z)

where m,,(z) is a function of lower order terms G,-2, Gn-3,’’" etc. Its explicit form
will not be given here.

The problem reduces to finding G,,(z), n 1, 2, 3... satisfying (2.11), such that
G,,/Go and G’,,/G’o are analytic in the unit disc, and to determine the constant Co
associated with Go(z).

Let/-/, (z) be the function which is analytic on the unit disc, and such that its real
part on [z[ 1 is given by h,,(z). Apart from an arbitrary imaginary constant, H(z) is
uniquely determined. It will not be shown here, but such arbitrary constants combine
to give an exponential factor with purely imaginary exponent in the expression for
G(z), and hence can be ignored. Thus H,,(z) is given by

2r

H.(z)=_l
2, h,,(eiO,) 1

r (z e i’) e dO’---- h,,(e io’) dO’.

Equation (2.11) now can be written in the form

(2 15) G_@_2 G,
Oo oo H(z)’ Iz[l,

which can be solved to yield

(2.16)
Go

H’,, ()
d$ + CGo(z ),=-H.(z)+ao(Z)

6o()

where C, is an arbitrary constant. Since Go() has a simple zero at 8, and we want
an analytic solution, we shall place the following restriction on H,

(2.17) H’ (8) O.

It will be shown that this yields a condition for determining the unknown constant
C,_1. We will consider the case n 1 first.

From (2.3) and (2.12) we have

11 Po(z) 12hi(z)= (z =i+ Co Izl-- 1.

Using the following result valid for Izl 1,

1 zCoeo( )1Real [ (z_8) j
Real [ -j
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one can place the above result in the form

ha(z)= Real {IC12+ [Po(z)-Po(3)]0+ zCoP-o(6) 11 Po(z)128

It follows that

Hi(z) ICol2 q--1 [Po(z)-Po(6)] o+-1 zCofio(6)_
8 4 (z-6) 4 (1 -z6)

(2.18)
l lZo"[Po(ei’)12{e 1}8zr [:-i z e iO’ -[- - dO’.

Thus (2.17) reduces to the form for n 1

where

+ z

(2.19) Z(S)=- iz,_612(z-_6)2 dz’,

with the contour being the unit circle. Provided that the determinant D(6) is not zero,
where

(2.20) D(S)=

the above equation can be solved for C0 giving

-1
(2.21) Co

With Co specified by (2.21), Ha(z) has the property that H (6)= 0, and the
integral in the following for Gl(Z)

(2 22)
G z) I, H ,____) dtj + Ca}Go(z)- -Hx(z)+ Go(z)

Go()

describes an analytic function. However we require that G1/Go and G’o/G’o be
analytic in the unit disc. In this connection, a problem occurs if

(2.23) P(z ) Po(z + (z 6)Co,

which is the denominator in the expression for G0(z), has a zero there. However, if
P(z) has only one zero, then the constant C1 can be chosen so that the term in the
square brackets in expression (2.22) vanishes at this zero. If P(z) has no zero, then C1
remains an arbitrary constant independent of A, at least as far as the second order
solution is concerned.

For the two cases where the analytic function P(z) has no zero, or just one zero
on the closed unit disc, we can define the second order solution u2 as follows:

(2.24) 11- zg[411 + 2A(G1/Go)+ AHll2

exp u2 {(A/8)lp(z)lZ + Iz sl=ll + A (G1/Go)IZ}’
where Ga/Go, Ha, P(z) are given by (2.22), (2.18) and (2.23) respectively. The
constant Ca in expression (2.23) is arbitrary except when P(z) has a single zero, in
which case it is chosen to make Ga/Go analytic.

We will summarize these intermediate results in the following manner.
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THEOREM. For those transformations f’(z), restricted by the implicit conditions
(i) D(): 0,
(ii) P(z ) has at most, one zero in the closed unit disc,

the second order solution u2 given by (2.24) satisfies the relations

-au = If’( )l Izl < a,

u2 O(a 2), Izl 1.

2.3. nth order solution (n _-> 3). We shall show how the previous construction can
be used to obtain the higher order solutions, where the following implicit restrictions
are placed on f’(z),

(i) D(6) O,
(ii) P(z) has no zeros in the unit disc.

The second condition implies that Go(z) is analytic in the unit disc.
The construction is the same as previously indicated except that the constant Ca is

chosen so that H’2 (6)--0, and in a similar manner the remaining constants C, are
chosen so that H’, (6)= 0. All that is needed is to show that no new restrictions are
placed on f’(z) in order to construct the C,’s.

To simplify analysis we will represent expression (2.16) in the general form

(2.25)
G,(z)
Go(z)

R,, (z) + C,,Go(z )- H,, (z)

where all the functions on the right-hand side are analytic in the unit disc, and the
integral function R, has the property that R’(6)= 0. From (2.15) it follows that

(2.26) G’o(Z
2R, (z) + 2C,Go(z )- H, (z ).

For n 1, substitute the expressions given by the right-hand side of (2.25) and (2.26)
into the right-hand side of (2.13). Then, on combining terms, and using the result

1
RealHl(Z)=lGo(z)12, Izl 1,

we obtain for Izl 1

h2(z) Real [C21G + 2CGoR1-2/Go]+
where tz(z) represent terms which do not contain C.

Let /-2(z) be a function which is analytic on the unit disc, such that on the
boundary

Real 2(z) kTz(Z), [z 1.

In a manner similar to that which we used to obtain the coefficient of Co in Hi(z),
it can be shown that the analytic function

(2.27) --[C1Co+Cl[Po(z)-Po(6)l/(z-6)+zC1Po(6)/(1-z3)l
has the property that its real part is equal to Real (-2’1/o) on the boundary Izl 1.

Since Go, R are analytic functions of z on the unit disc, it follows that Hz(z) is a
C1Go +2CGoR1 and expression (2.27). Hence we havelinear combination of H2(z ), 2 2

(2.28) H(6)=_-lp’(6)+ 2)7’(()C1 +x//- (t)= O.

Thus as before, this equation can be solved for C1 provided that D(6)# O.
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To find the remaining constants Cn (n >_-2), we note that in a manner similar to
that above, (2.14)can be reduced to the form

h.(z) Real [2C.-1Go(R1 +CIGo)-Z.-1/Go]+.(z)
for Iz[ 1, where/. (z) represent terms which do not contain the constant C.-1. From
this, one can show that (2,17) reduces to an equation of the form

-n-lP()+ 2f"(6)C._1 +4 "H.()= 0

which can be solved for C.-1, provided that D() 0.
We can now summarize the results as follows. Define the nth (n 3)order

solution by
n--1 n--1 ]21-zg]411+2 Em=l mGm/GO+2m=l Hm

exp u. [(A/S)]P(z)I + [z 61211 + 221A mGm/Go[2]2"

THEOREM. If the transformation function [’(z satisfies the implicit conditions
(i) D(6)# 0
(ii) P(z) has no zero in the closed unit disc,

then the nth order solution u. (n 3) given by (2.29) satisfies the equations

u. O(A"),

The restriction that

Po(z ) + (z -6)Co

where Co is given by (2.21), and Po(z) by (2.4) should have no zeros in the unit disc
places an implicit condition on the class of transformations f(z) and the root 6 of (1.6)
if there is more than one. It would be of future interest to be able to place the above
restriction in a more explicit or transparent orm. However or present purposes it is
important to note that the set of transformations for which the above holds is not
empty. This can be seen as follows. For the identity transformation where [’(z)-- 1, it
can be shown that Po(z)= -1, and Co 0. Hence it is obvious that perturbations of the
identity,

f’(z)=l+g’(z)

where e is sufficiently small, will satisfy the above restriction.

3.1. Newton process. In 2, we constructed first and higher order asymptotic
representations for the large norm (large maximum) solution to problem (P’). We want
to examine whether these could be used to generate an exact solution using an iterative
scheme like Newton’s method. To simplify analysis we will consider here the modified’s
method.

Problem (P’) will be converted to the nonlinear integral

(3.1) u(x0) A f g(x0; x)[f’(z)l 2 e () dx,

where

1 IZ-Zol
2

(3.2) g(xo; x)= --- In 1- 0z
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with z x1 q- ix2, is the Green’s function for the Dirichlet problem associated with the
unit disc. For convenience of notation, rewrite the above equation in the following
form

(3.3) u K(u),

where N[(u) is a nonlinear operator which maps the Banach space of continuous
functions into itself. Hence in the following analysis the norm

[lull max lu(x)l
Ixl_-<a

will be employed.
Let K’ be the associated Fr6chet derivative [7] of (u), in which case it is the

linear integral operator with kernel

Zg(xo;x)[f’[Ze ".

In the iteration process below we will be using ’ where Uo is the initial approxima-
tion to be used in the iteration process.

Equation (3.3) is then re-written in the following form:

u u- S(u)

where S(u) represents a nonlinear operator which maps the Banach space of
continuous functions into itself.

The modified Newton process is described by the iterative procedure

(3.4) U,+l S(u,), n O, 1, 2,. ,
starting from an initial approximation Uo. Conditions for the process to converge for a
general class of nonlinear equations are given in Vainberg [7] or Rall [8].

Let

(3.5)

and

It can then be shown that

q’(t) F(e’- 1).

IIS’(u)II ’(t), for [lu uo[I--- t,

IIS(uo)- uoll
hence the operator S(u) is majorized by q(t) where

o(t) q(0) + F(e’- 1 t).

From Vainberg [7], the Newton process (3.4)will converge to u* if the equation

(3.6) q(t)=

has a positive solution, and []u*- Uoll-< t* where t* is the smallest positive root of (3.6).
It can be shown that Equation (3.6) has a positive root t* if

l+q(0)<(l+F)ln(,!+r)F
where
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We can summarize the results as follows
THEOREM. If

(3.7) [lUo_ [(Uo)[i < in (1 F -(1 +F)-I

where F is the upper bound in inequality (3.5), then the Newton process (3.4) will
converge to a unique solution u* such that

Ilu0- u*[[-<_ln

In order to make use of the above theorem to findout whether the first or higher
order approximations generated in 2, can lead to the exact solution by use of the
Newton process, we need to obtain estimates of the various quantities in inequality
(3.7).

3.2. Estimate for [[Uo-N(Uo)]]. As a first step we will obtain an estimate for
Iluo- (uo)ll, From the differential equation (2.7) and the properties of the Green’s
function, it can be shown that

(3.8) U0 [](U0)

Since -Og/On is positive and

it follows that

Og
Uo ds.

On

Og
ds -1

yl On

(3.9) luo- (uo)l--< max luo(x)l.

Then if for u0 we employ either the first, second or nth (n >_-3) order asymptotic
approximation to u given by (2.6), (2.24), and (2.29) respectively, it follows from (3.9)
and the properties of the solutions on the unit circle that

(3.10) [luo- (uo)ll-<_ "M(a ),

where M(A) stands for a function bounded in A for finite A >_-O, and n refers to the
order of the asymptotic expansion.

3.3. Estimate for F. An asymptotic estimate of I1(I -1-Nuo) Nuoll for A 0 will be
derived next. The operator IN, has the symmetrizable kernel

(3.11) k(xo, x)= g(xo, x)p(x)

where g(xo, x), the Green’s function associated with the Dirichlet problem for the unit
disc centered at the origin, is positive and symmetric, and 0(x) is given by

(3.12) p(x)= If’(z)l:’ e u).

Here Uo(X) is the initial approximation in the Newton process, and is given by (2.6) or
(2.24) or (2.29), as is indicated above.

As a first step we will obtain an estimate for [IW,,ol I. Since the dominant contribu-
tion of the kernel comes from the neighborhood of the point z Xl + ix2 6, it will be
convenient to decompose the unit disc into two parts D1 and O2 as follows. Define"

D1, a disc with center 8 and small but nonzero radius e independent of A.
O2, the complement of D1 with respect to Ix < 1.
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It follows from Appendix A that for x D1,

t9 (X) Jg0(X )[ 1 + O( 1/2)],
where

(3.13) Oo(X)

and

A
(3.14) /x lPo(6)]2,

and for x 6 D2,

iO (X) A If’(Z )12
Z I

1 ,+ 0 (A)1.

From this, it follows that for A sufficiently small

(3.15) [k(xo, x)[-<_ g(xo, X)Oo(x)M, x e O1,

(3.16) [k(xo, x)[<=g(xo, x)hM2, x D2,

where M and M2 are appropriate constants. With these, we can show the following
LEMMA 1. For h sufficiently small,

II’ ll<constantln ()
Proof. From (3.15) and (3.16) it follows that

D [k (xo, )1 dx constantX

(3.17) [ Ik(Xo, X)[ dx ’1 [ g(XO, X)Oo(X dx
D dU

NM -ln IZ-Zol+M 

where the singular part is separated out of the expression for the Green’s function
given by (3.2) and M is a bound on the remainder. The above expression can be
reduced by using local polar coordinates (r, 0) centered at 3. Since po(x) is indepen-
dent of 0, the right-hand side of the above inequality reduces to

-M1 In (r>)por dr + 27rMIM3 por dr

where r> is the max (r, to). It thus can be ,shown that

(318) ID lk(xo, x)ldx<{M’M-2 In (r0 +),
where M is a suitable constant depending on e. Since

it follows that

for Xo D2,
for Xo D1,

max Io Ik (xo, x)l dx,
Ixol<l l+D2

Q.E.D.
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We now want an estimate for the norm of the inverse of the operator D-,o. As
will be seen this operator will become singular as A - 0; hence the analysis will not be
straightforward. To obtain an estimate for the norm of the inverse operator, we will
decompose the equation

(3.19) (I-o)v=w
into two equations, so that we can make use of the fact that the dominant contribution
of the kernel comes from the neighborhood of the point z- 6. To do so, define the
following quantities

/)i (X)
0

k(xo, x),
kii(Xo, x): O,

X Di,
otherwise

for x0 Di, x Dj,
otherwise

where i, ] take on the values 1 and 2. Thus we have

2

V Vl+ V2, k(xo, x) E kii(Xo, x).
i,!

Let [ij be the integral operator associated with kernel kii. Thus ii maps the
Banach space of continuous functions defined on Di, into the Banach space of
continuous functions Di. The norm of the operator Nij will be defined appropriately

IIil[- sup [[i2vl]

where

IIvll--max Iv;(x)l, IIn,;v;ll max
D XoD

It follows from inequality’ (3.17), that for A sufficiently small

1122[1 M22A, K 1211 M12A,

and from inequality (3.18)

where M are appropriate constants.
Equation (3.19) can now be decomposed into the two equations

(3.20a) Vl []11/)1 12/)2 W1,

(3.20b) V2-- []22V2-- 21Vl W2.

For A sufficiently small (I--22)-1 exists as a Neumann series; hence (3.20b) can
be inverted to yield

(3.2 a) v: (I ::)-w: + (I ::)-11Vl.
This combined with (3.20a) yields

(3.21b) vx-va Wl +a2(I- 22)-aw2
where the operator ,
(3.22) 11 + 12(I- 22)-12,
maps the Banach space of continuous functions defined on D, into, itself.
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We are now in a position to obtain the following intermediate result.
LMMA 2. For sufficiently small,

I1(I-’.o)-ll-< max [mll(t- )-11, m2 + m3ll(I- )-l]]
where ml, m2 and m3 are appropriate constants.

Proof. From the decomposition of continuous functions v(x)defined on Ix] < 1,
into parts vl and v2, it follows that

Ilvll max Ivl max
Ixl<l

Then it follows that for the functions wi used in (3.21a) and (3.21b)

Using this last result, and the fact that

II(ir e)-111 _-< (1 ;lM)-I
it follows from (3.21b) that

Ilvlll-<-11(I i)-’ll{1 + AM12(1 ,M22)-’}llw II,
and (3.2 la) that

Thus one obtains

211 --< 1 AM22)- ’[11 w + M2111Vl Ill"

Ilvll max [mill(I-)-’11, m2 + mll(z- )-’ll]llwll,
where the constants mi are chosen so that for/l sufficiently small,

m >_- 1 + M12(1 M22)-1, m2 -> (1 -/lM22)-, m3>=M2(1-/iM22)-ml.

From the relationship between v and w given by (3.19) the result for
follows. O.E.D.

The problem now reduces to finding an estimate for the norm of (I_[)-1. To
obtain this we will introduce a new integral operator No whose eigenvalues and
eigenfunctions can be determined asymptotically and which, as will be shown,
approximates the operator [Kll. The operator 0 will have kernel ko(xo, x) given by

(3.23) ko(xo, x Go(xo, x )po(x ), x, Xo e D1,

where

1 tz-z0l
2

ao=-ln 1_11
Since [K0 is a symmetric nonnegative operator, its eigenvalues A. are real and

nonnegative. The corresponding eigenfunctions q.,

A,,<p, oq,,,

form an orthonormal set in the Hilbert space with measure po(X)dx

ID .o(X) dx
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The asymptotic behavior as A 0 of A, and 0, are given in Appendix B. In
particular it is shown that the largest eigenvalue A1 is given by

AI--- 4 In

and A, A and A4 approach unity as A-0. The remaining eigenvalues tend to a
number less than or equal to 1/3 as I 0.

Next we want to investigate the closeness of the approximation of o to N and
hence . Recall that N is just the operator o restricted to functions defined on D,
hence has kernel k (x0, x), given by (3.11) where for x

p(x)po(x)[1 + O(A x/z)].
For further convenience we shall define the integral operator 1, with kernel

kl(xo, x) defined on D xD1, given by

1
(3.24) kl(Xo, x)=ln[l-ZoZ[/(1-1612)lpo(X).
It then follows from (3.11), (3.23) and (3.24) together with the above comments, that

(3.25) (-o)V
0o

Using techniques similar to that in the proof of Lemma 1, one can show that for the
operator with kernel ko(xo, x )(O/Oo- 1)

]10(-1)1 O(A 1/2 lnh).

To obtain the estimate for the norm of , split its kernel into two parts

1 1 ore(3.26)

It can be shown that on expanding the second term, and using the result that

f roo(x) x 0( /),

then

[1 111 max In po(X) dx + 0(
Xo-D1 1 -112

[ lal ] +o(1/)_<-4 In 1-(1_181----_.
Thus for A sufficiently small, we can choose e small enough so that l[a[l<< 1, with the
result that

{111  0ll << 1.

However this result can be made stronger if one considers the second iterate. Since

In Oo(X)l dx 0(
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it can be shown that the norm of the second iterate of 1 is the order of , 1/2, and it
follows that

(3.27) I[(Xl- o)21[-<_ O(/ 1/2 In A).

We are now in a position to consider (I-)-1. The operator given by (3.22) will
be placed in the form

4; E A;q(Xo)(., ;)o +- +,
i=2

where

(3.29)

4

i=2

(00) 0 2(i []22)_121=o p-1 +a+
Oo

and Ai, i are the eigenvalues and eigenfunctions of o, and

(u, v )o [ uffpo(X dx.
aD

Since the eigenvalues of are bounded from unity as A 0, the inverse of (I-)
exists as a bounded operator for A sufficiently small. We can now use Schmidt’s
method [9] for finding (I-)-. The equation.

(-)v=w
can be placed in the form

4

(3.30) (I-(-)-t)v 2 a(t-)-(v, )o +(t-)-w.
i=2

Since K12 is the order of A, the third term in expression (3.29) for L is small. From
inequality (3.27) it then follows that

It can be shown in a similar manner that

where

(z-)-.
Thus the inverse of (I-)exists as a Neumann series, and hence equation (3.30)
reduces to

4

(3.3a) v E a(-)-(v, )0 +(-)-(-)-w,
i=2

where use is made of the fact that (I- )-1i i, for 2, 3, 4. The coefficients

(3.3 lb)

are found from the systems of equations

4

(3.32) aoci =-wi, i= 2, 3, 4,
i=2



1046 v.H. WESTON

where
a,; ((-)-;, ,) ,;/A,, w; ((-)-0r-)-w, ;).

The problem of estimating I1(I-)-1][ is reduced to finding the asymptotic solu-
tion of the linear system of equations (3.32). This requires evaluation of the terms

((I- A])-I/,
Since these terms involve an inner product defined on the Hilbert space of square
integrable functions with measure po(X)dx on the domain D, we can use the appro-
priate Hilbert space norm of the operators to obtain the required order estimate. In
particular, it can be shown that the Hilbert space norm of , namely 11  ll2 is the
order of A /2, hence 11 ll2 is the order of A / In A at most. Thus we obtain the result

((I- )--lj, @i)o (j, @i)o +(@j, i)0 +(j, i)+ 0( 1/2 In A)3

where use is made of the result

where belong to the set {2, 3, 4}.
In the following we shall neglect terms of order A In A or higher when either 4

or ] 4 or both. When both i, ] belong to the set {2, 3}, we will require terms of order A
and neglect terms of order A/ln A. With these requirements on the order of the desired
approximation, it can be shown that when we substitute expression (3.29) for into
(i, i)o we can neglect the components arising from the third term on the right-hand
side of (3.29). Hence for i, ] belonging to the set {2, 3, 4}, we find

(/, i)p (K1 p-@j, ( ( )@j, i)i:o+EOp 1
Po

For further reduction we require the following expansion for 0/00 given in
Appendix A,

0/00 1+++ ,
where , the term of order I / is given explicitly by

4r
-( + r)q cos (0 + 2q),

with Co/Po()=q e, and gives rise to terms of order I or I In I.
In light of the above discussion on the required order of approximation, we find

that when i, ] belong to the set {2, 3}, the required approximation is given by

However when either 4 or ] 4 or both, then we can neglect the last two terms on
the right-hand side of the above expression.

When i, ] belong to the set {2,3} the evaluation of the additional term ([M, )o
to order I is required. For this, the operator [ may be approximated by +o, in
which case

(N +on, (I-N)-NI)o +A(N+No, (I N)-n)o.
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It can be shown that this may be further simplified to

(3.33) (-Mqi, qpi)o -(T/lqp], qpl)o(q91 lqpi-[- 7Ql@i)o -[- 0( In A ).

We are now in a position to evaluate a0, when either 4 or j 4 or both. aii is
given by

(3.34) a0 (1- 1/Ai)6,] + (q, 1)o + Ai(q., rlq)o.

Using the results of Appendix C, it can be shown that

a24 a34 a42 a43 O(A 1/Z/ln A)

and

3 1
a44 (1 1 /A4)

2 In z’
where/x is given in terms of , by (3.14). When i,/" belong to the set {2,3}, expression
(3.34) for aq must include the sum of the additional terms (rtqi, Nlq)o, (TePi, qi)o and
the terms given by the right-hand side of (3.33). From this it can be shown (see
remark at end of Appendix C)

[3(1_1612)2 7]a22"-- a---tz +-iq
2 + O(a/ln a),

[- e ’% 1 ’.] O(A/ln,),a23 a32 --/- P - q e +

where ao, aq are defined by Equations (A.2) and (A.3).
Hence it can be seen, that except for the pathological case where

(3.35) a22a33 a23a32 O(a/ln )2
the system of equations (3.32) yield solutions c, such that

Icil <= constant h-ll[wll, 1, 2, 3.

We now have the intermediate result
LEMMA 3. For h sufficiently small

11(I )-111_-< constant (1/A).

Proof. This follows directly from (3.31), the estimates on the Ic[, and the fact that
are bounded.
Finally we can now combine all the intermediate results, namely Lemma’s 1, 2

and 3, to obtain
THZORZM. For h sufficiently small

F I1(I --NtUo)--l[}o[] constant [1/h In (1/, )].

3.4. Convergence of the Newton process. We are now in a position to check
inequality (3.7) to see if and when the Newton process generates the exact solution for
A sufficiently small.

For F large, inequality (3.7) can be written in the form

1
(3.36) Iluo-IK(uo)ll--<

r(1 + r)
From the above estimates, it is seen that the right-hand side of inequality (3.36) is the
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order of (A/In/.)2 for A sufficiently small. Hence from the estimate given by inequality
(3.10), it follows that inequality (3.7) will be satisfied when the nth order (n >_-3)
approximation is used for u0.

The results can be summarized as follows:
THEOREM. If the transformation function f’(z) and 8 satisfy the implicit conditions
(i) D(8)# 0
(ii) P(z)= Po(z)+ Co(z-3) has no zeros on the unit disc where Co is given by

(2.21),
then in general for a sufficiently small, the modified Newton iteration scheme con-
verges to an exact solution of problem (P’), when the nth order (n >-3) asymptotic
approximation given by (2.29) is used for the initial step.

Conclusion. A prescription for the asymptotic expansion of the large norm
solution (with single maximum) of Liouville’s nonlinear differential equation has been
given in terms of the parameter A, which tends to zero. It is shown that under suitable
conditions, the asymptotic expansion to at least the third order generates the exact
solution through the application of the modified Newton process.

There still remains a considerable amount to be investigated, such as obtaining an
explicit representation of the conditions (i) and (ii)of the Theorem in Section 3.4, in
terms of the transformation function f(z). It would also be useful to find out when
large norm solutions of multiple maxima occur, since the deformation of the boundary
from a circle could result in a shift or change from a large single maximum to a
multiple maximum. Other questions to be considered are pointed out in 1.

Appendix A. We want the asymptotic behavior of p/po in the neighborhood of
the point z 8, expressed in local polar coordinates (r, 0). We want only those terms
that, when integrated from r 0 to r e, with measure po(r)r dr, yield expressions up
to order A. In the expression for p(x) given by

we will use the general nth order result for u given by (2.29).
Note that the expansion about the point z 8,

yields
G1/Go" Gl(8)/Go(8)+ O(r)----H,(8)+ O(r),

I1 + 2AG1/Go + AH1 + "12’" I1 +/11/1o q-,. "12’" 1 2A Real

hence the expression for p reduces to

(A.1) p T1/T2,

where Tl=AIf’(z)(1--zg)212[l+2A Real H1(8)],
1 + 2A Real H1(8)]]2. if we set

and T2 [r2 + A/81P(z)I2

(A.2) P’(8)/Po(8)= p e ’%

and use (1.6), it can be shown that

a If’(z)(1 zg)2l2--- 8/x {1 rZp cos (20 + ap)},

where Ix is given by (3.14).

Note for the pathological case where the coefficients aii are such that Equation (3.35) holds, then an
asymptotic approximation of order n > 3 will have to be used for the initial step.
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If we set

(A.3)

it can be shown that

Co/Po(6 q e i%,

G]e(z)]z-- p.{1 + 2rq cos (0 4- aq)-+- r2p cos (20 + a,)+ r2q 2 4- "}.

Insert this into the expression for T2, then rewrite it in the form

T2 (/z 4- r2)2[ 1 + T]2

with the appropriate expression for T. With the expansion
1- 2 T + 3 T24- ’’’, the expression for p can be reduced to

p/po 1 @ T]I 4- 7Q2 4-

where

(1 + T)-2=

4lxrq
cos (0 +a),rtl=-(rZ+u )

2

r2=- 2 2aReaIHl(8)+rq
.+ (r-7)2 (r+)

[ 2"2] 6"2r2q2
--p cOS (20 + o)r2 1 +

+ r 3
+
( + r2) cos (20 + 2),

where p0 is given by (3.13).

Appendix B. Here, the eigenvalues and eigenfunctions of the operator o are
derived with emphasis placed upon their asymptotic behavior as A 0.

With the use of local polar coordinates (r, 0) centered at 3, the region D becomes
the disc 0 r e, 0 0 2, and the kernel of operator o, given by (3.23) becomes
upon expanding the logarithmic term

82)2+
1 (1--12) (,<n }ko=(. In +

cos (0-0o)

where r< min (r, to) and r> max (r, to). Since it is obvious that the eigenfunctions
will have the separable form

e*i==(r),
the eigenvalue equation A o reduces to the following

A=(r)= ml (4)2+r r<
=(r)rdr, m 1, 2, 3,

IoA(r)
(. +

The explicit results for the radial part of the eigenfunctions are obtained by differen-
tiating the above equation twice to obtain a second order ordinary differential equa-
tion. Before proceeding in this manner it is best to first change the variable r to
where

2

(.1) =. -r

N+r2"
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Since

41,r dr
d- (/.t, + r2)2’

the above integral equation for ,, becomes

(B.2) Am(:o)
1 I (1-:>)m/2(11+:<t ’’/2

xI (:) d:,
m 1+:> -:<

I [ (1 [al2)2(1 + :<)](B.3) Ao(:o) In 0(ff) d:,
>(1 -<)

where is the value of corresponding to r e.
The corresponding second order ordinary differential equation for ,, in the

variable is now obtained in the manner indicated above. The resulting equation is
recognizable as the associated Legendre equation. With the boundary condition that
at : 1 (r 0) ,, must be finite, it follows that

2
(B.4) xp,, (:) 7(:), A

v(v+ 1)’
where (:) is the associated Legendre function of the first kind.

To determine the value of v, the boundary condition at : is required. This is
obtained by substituting back into (B.2) and (B.3) expression (B.4) for , and then
using the following integrals"

v(v+ 1) + d

d]

On equating both sides of the resulting equation, one ends with the results

(B.5) m()- (1 )d 0,

(B.6) (G) In (1-1) d(1-) =0.

These expressions are the required boundary conditions at and hence will
yield the appropriate values of v.

We want the asymptotic values of v and A as 0. Since
2

&
-e 22-1+...+e

we see that -1 as a O. Thus we need to use the following asymptotic form for
the Legendre function as +- 1,

(f)cos (v)(l+ f /2F(v + m + 1)
1+ .1+ f _sin

i X 2 C(-m+l) m+ 2 (1+)=/2

sin () ]() cos (p)-[ln -2,-20(p + 1),

where 0 is the logarithmic derivative of the gamma function and is Euler’s constant.
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These results for -->- 1 follows directly from the relation

7(:) (-1)"7(-:) cos (Try)---2 (-1)’ 7 (-:) sin (zrv)

between the associated Legendre functions of the first and second kinds, and their
asymptotic behavior as their arguments approach unity, given in [10].

It can thus be shown that boundary conditions yield the following asymptotic
values of v"

(B.7) v=n+()+(n+m)! n(n+l)
(n-m)! (m + 1)lint’

m 1, 2, 3, ,

]-2y-2p(n +1) m =0,

where n takes on the values, m, m + 1, m + 2, .
We want to normalize the eigenfunction so that

2r

(d, dp)o Io Io l*12P(r)rdrdO 1.

Set for m 1, 2, 3,..

(B 9) ’+ =a""(:) e

where u u(n, m)is given by (B.7), and for rn 0,

(B.IO) (I),

where u u(n) is given by (B.8).
Thus we obtain for m =0, 1, 2,. .,

-1/2

(B.11) a 47r d

which fias the following asymptotic behavior as A 0"

(a )2 (n + 1/2)(n rn)!
47r(n + rn)!

For the main body of the paper we want to order the eigenvalues in decreasing
size, A=> A2> A3_> .... With this convention we shall let the corresponding eigen-
function be o’, q2, etc. It follows that the four largest eigenvalues (as A 0) and
corresponding eigenfunctions are given by
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Appendix C. We want to evaluate the coefficients (@i, NI@i)o and (@., ’01@)O where
i, j are in the set {1, 2, 3, 4}. First note that the only nonzero terms of the first set of
coefficients are given by

(@k, [1@2)o (@k, []1@3)O (@’/92, tl@k)o (@3, l@k)o,

where k 1 or 4, and

(@2, []1@2)0 (@3, 1@3)0.

Thus we need to compute only the three terms (@k, Nl@2)o for k 1, 2, and 4.
Since the kernel of operator IN1 can be expanded in the form

11-o 1 (2orei]"}po(X)ka(xo, x)= In
1 1612

y" --Real
,.=1 rn 1 2 61 2rr

it follows that

1@2----/d,
1-Zo6 1 +: a(:)d:’

where a 1,, is the normalization constant associated with 2, and v is given by (B.7)with
n 1. From the integral relation in the Appendix B and the eigenvalue equation (B.5)
it follows

12 __1/2( Z0’ (1 --e) 1/2 1/2( Z0
1-z0g}aA2 1-e l(e) 1-ZOO

With the expansion

Zo(1-Zog)-1 6(1-1612)-a +re’(1-lal=)-=+
it follows immediately that (@3, [K1@2)o 0, and

(@2, [ 1@2)0 " (1 1612)- 1 + : 1 (se)

(1-1612)2.

In a similar manner it can be shown that

6

g 3,//2
(’)’(l-Ila ln--"

The only nonzero components of (@, a@). are

(, n,), (, n,) (, ,,) (, ,1),

where k takes on the values 1 and 4. These are given explicitly by

vq e @v(:)@ ., (:)/1 d:,

(@1, ra@2)o k/t* q e i%, (@4, r1@2)o O(A/ln A).
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Remark. In the calculation of coefficients of the type (qj, 2i)0 where i, j belong
to the set {2, 3}, one can use the following asymptotic approximation of q2 and q3:

3 (,/92 41 e
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A VARIATIONAL APPROACH TO MULTI-PARAMETER EIGENVALUE
PROBLEMS IN HILBERT SPACE*

PAUL BINDINGf AND PATRICK J. BROWNE

Abstract. Let Tr and Vrs be self-adjoint linear operators on Hilbert spaces Hr, <- =< k. Assuming that

T have compact resolvents and Vs are bounded, we use standard variational characterizations of eigen-
AsVrs)x 0, =< =< k. In particular we establish existencevalues to treat the multiparameter case (T + s--1

of a "purely point spectrum" satisfying cone monotonicity conditions in Rk. We prove continuous, mono-
tonic and Lipschitz parametric dependence theorems, and we examine lk-valued generalized Rayleigh
quotients. In particular, we interpret the (not necessarily closed) convex hull of the spectrum as the
"vectorial range" of these quotients.

1, Introduction. Atkinson’s paper [3] which appeared in 1968 provided a stimu-
lus for renewed interest in multiparameter spectral theory. This theory is now being
investigated in abstract settings by several authors and has as its prime motivating
examples eigenfunction expansions associated with linked systems of second order
ordinary differential equations. These systems arise from the separation of variables
for partial differential equations. Such problems have a long history and arise for
example in considerations of the oscillations of circular and elliptic membranes.
Mathieu functions are naturally connected with these problems. We mention but one
reference, viz. [1]. Arscott’s work [2] involving a single second order differential
equation with several parameters is another interesting aspect of this theory. The
survey book [1] mentioned above outlines further applications of multiparameter
theory and has an extensive bibliography.

Our earlier work [7] discussed multiparameter problems for matrices, but with
the differential equation applications in mind, it becomes necessary to investigate the
theory in an infinite dimensional setting. The results presented here are so framed as
to be directly applicable to multiparameter problems involving linked systems of
ordinary differential equations over finite intervals.

We propose investigating certain classes of multi-parameter eigenvalue problems
involving self-adjoint operators in general complex Hilbert spaces. This will extend
our earlier finite dimensional results and it will be helpful to be familiar with at least
the introduction of [7]. The conditions placed on our operators are of three types, two
of which are most easily seen when k 1; the problem then being to solve

(T+AV)x =0

for A R and x in our Hilbert space H.
Our first assumption on this problem is that V is Hermitian and strongly negative

definite in the sense that there is a constant a > 0 such that

(Vy, y) -cllyll, Vy H.
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Secondly, we assume that T is self-adjoint with compact resolvent and is bounded
below in the sense that there is a constant M such that

(Tx, x) ->_M[Ixll2, Vx (T).

The upshot of these conditions, as we shall show, is that for each/x R, T +/xV has a
spectrum consisting entirely of eigenvalues of which at most a finite number are
negative. Further, the lower eigenvalues of T +/x V are positive (negative) as /x

-eo(+oo). These somewhat weaker statements could have been used in lieu of the
assumptions listed above.

These hypotheses apply to a wide range of differential eigenvalue problems as
well as to the matrix case treated in [7]. In particular, they lead to the existence of an
increasing sequence A of eigenvalues accumulating at no finite point. Also A depends
continuously on a parameter v if V does as well. Such statements are standard for the
one parameter problem and are contained in [7] for the matrix multi-parameter Case.

The third assumption involves the multi-parameter structure and may be
compared with the definiteness condition used in [7]. We delay a discussion of the
condition until the problem is posed more precisely. However, it suffices to say that we
shall investigate the lattice structure of the eigenvalues k k under the coordinate-
wise partial order.

The paper is organized as follows. The abstract problem is posed in 2 and the
existence of eigenvalues established in 3. In 4 the lattice structure of the spectrum
is investigated while in 5 we extend the results of [7] concerning the vectorial range.
In 6 we investigate the situation in which the operators involved are allowed to
depend on a parameter and we close with some examples.

2. The abstract problem and preliminary transformations. We are given Hilbert
spaces Hr with unit spheres

s {u n Ilull }, 1 <- r -< k.

Self-adjoint operators in each space Hr are also given as follows:
(i) Vrs: Hr Hr is bounded, 1 <= s <_ k,
(ii) T: (T) Hr H, has compact resolvent and is bounded below; i.e. there is

a constant a, such that

(r,u, u) >= a,llu[[z,
We shall find it convenient, for ur S, 1 <_-r <- k, to use the notation v,s(u)=

(V,su, u,) to define n x n matrices

(1) gn(u) [Vrs(U)]rn,s=l, 1 <= n <-- k.

It is customary in multi-parameter theory to make a definiteness assumption on the
V,s" in our notation we assume

(2) 3’ inf {det Vk (u)l ur S} > O.

Our object is to find eigenvalues k e Rk and eigenvectors xr e S, f’)(T,) for the
multi-parameter problem

k

W,(k)x 0 where W(k) Tr + , AV, 1 <- r <-_ k.
s=l

The first step in the analysis is to produce a linear transformation A on Nk so that
k . A-lk and Vs I7" y,.jk__ V,jai and so that the resulting matrices I7 (u) have
determinants of fixed sign.
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THEOREM 1 There is a nons[ngular linear transformation A" kk SO

that if =A-’IK and lrrs=.=aVriajs then Wr(k)=Tr+=l,Slrrs and
inf {(- 1)" det

Proof. Fix yr S, 1 _-< r<= k, and define the (r, s)element of A-x by

[A-1]rs Vrs(Y)

using the notation of (1), so A-1 is invertible by (2) and also

s(y) -.
Now choose u arbitrarily from S if 1 _<- r -<_ n and ur Yr if n < r <-- k to give

(- 1)n det I7’" (u) (- 1)k det I7"k (u)
(- 1)k det Vk (u) det A

det Vk (u)/det Vk (y).

The result now follows directly from (2).
We conclude this section with some terminology and notation to be used at

various subsequent points. If A is a linear operator.on a Hilbert space H with identity
map I then A > 0 means that A is positive definite on H. A is strongly positive definite
(A >> 0) if A BI > 0 for some real/3 > 0 and if A A(A) depends on a real parameter
A then A is strongly increasing in A if for some real/3 > 0

A(A)- A(/.t)
-31>0

whenever

3. Existence of the spectrum. We assume for this section that the transformation
of Theorem 1 has been carried out and for convenience we shall drop the tildas. The
first task is to show that our operators Wr(k) obey the minimax principle for eigen-
values.

LEMMA 1. Let A and B be linear operators on a Hilbert space H with A -x compact
and B bounded. Then if (A + B )-X is bounded, it is compact.

Proof. Let y, H converge weakly to zero, so if z, (A + B)-Xy, then zn also
converges weakly to zero. Further we have z, A-Xy,-A-XBz,. This shows that z
converges strongly to zero and so completes the proof.

COROLLARY. For each k k, Wr(k) has compact resolvent.
Proof. Note that by hypothesis T has compact resolvent. Now apply the lemma.
We see now that for k k, each W(k) is a self-adjoint operator bounded below

and with compact resolvent. As such, W(k) has a spectrum consisting entirely of
eigenvalues

0 2

each of finite multiplicity and accumulating at no finite point. The minimax principle
[8, p. 24] gives

(3) p(k)=max{min{(W,(k)ur, u,)lurS,f’)@(T,), (u,, yj)=0}[y.H,, l <=j<=i}.

We now present our principal existence theorem.
THEOREM 2. Corresponding to each multi-index (ix,’", ik) where each ir >= 0

is an integer, there is an eigenvalue h and eigenvector x ir, 1 =<r < k, so that p (hi) 0

and Wr(kl)x 0, 1 <= r <= k.
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Proof. We shall argue by induction and prove slightly more than is stated. We
assume that each Tr is replaced by Tr+Or(u)where Or is bounded and depends
continuously (in norm)on a Euclidean parameter v and shall prove continuous
dependence of t on v as well.

Starting with k 1, and suppressing subscripts, we are given

W(A, v)= T + A V + O(v)

and V<< 0 for each v so W(A, v), and hence 0i(A, v) (by the minimax principle),
strongly decrease in A for each v. Thus there is A i(v) for which 0 i(A i(v), v)= b0 and it

remains to establish continuity of A i(v) in v.

Let v]--> v, and restrict attention to a compact set of v values G containing the v.
and v,. By continuity of Q in v, there is/3 > 0 independent of v E G so that

Setting A i(vi)= I etc., we obtain

iv]
-Ip (A V,)-- O (A,, ,, v)l-->0 asj-->oe

since p is continuous in v by the minimax principle. It follows that A i-->A, as
required.

We turn now to the inductive step from k-1 to k, so for each Ak we assume
the existence of A r, 1 -<r < k, continuously dependent on v and A,. (Technically we
have enlarged the parameter space but the proof above is obviously dimension-free.)

For two different values A and A, we write A(A)=r Ar, A i(A)-’r Air and set

/xr=Ar-A’r. For l<-r<k let yr be the minimizer of (Wr()Ur, Ur) over urES and
orthogonal to the first ir eigenvectors of Wr(’). From the minimax principle we obtain

(Wr(k)yr, yr)O(Wr(}k’)yr, Yr), l <-r<k.

Likewise if zr is the minimizer of (Wr(k’)y, Yr) over u Sr and orthogonal to the first ir
eigenvectors of Wr(k) then

(W(k’)z, Zr)<--O <- (Wr(k)Zr, Zr), 1 <--__ r < k.

So far, then, we have in the notation of (1)
k k

xsvr,(Y)-<-0--< 2 txsvr(z), 1-<-r<.k.
s--1 s=l

It follows that there is w s S (w being arbitrary) so that

k

Z IJbs)rs(W) --0, l<-r<k.
s=l

Now set

k

Z .sV s(W)= p
s=l

and eliminate tXl," , k-1 to obtain

tx det V (w)
det V-l(w) p"
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From Theorem 1 and the boundedness of Vrs we see that p strongly decreases as
a function of/Xk, and is continuous in v. Therefore, since wk is arbitrary in Sk, Wk(k)
strongly decreases in ,k (the At, 1 =< r < k, still being functions of Ak) and is continuous
in v. As a result there is h k so that p (k) O, and we simply pick x k as a correspond-
ing eigenvector for Wk (ki).

This completes the existence part of the induction step. The continuous depen-
dence part is almost identical to that for k 1.

THEOREM 3. The eigenvalues h have the property that h increases with it, 1 <

r<=k.
Proof. That h k increases with ik is a straightforward consequence of the strong

decreasing behavior of Wk(k) in hk established in the proof of Theorem 2, together
with the fact that O k increases with/--see (3).

Now the construction used in Theorem 1 is symmetric in each r, so all nth order
principal minors of Vk(u) have sign (-1)n. In other words, we may reorder the
eigenvalue equations, putting the rth last, and repeat the arguments of Theorem 2 and
the previous paragraph to obtain the desired monotonicity. This completes the proof.

The monotonicity observed in Theorem 3 may not be strict because of the
possibility of multiple eigenvalues. For points xr e Hr, yr Hr, 1 -<_ r =< k, we write

[x, y] =det (V,.sXr,

We further define the resolvent set for the multi-parameter problem to be the set of
k e Nk where at least one Wr(k) has a bounded inverse. The spectrum is then the
complement in Nk of the resolvent set. The multiplicity of an eigenvalue k is defined as

k

1-[ dim Ker Wr(k).
r=l

THEOREM 4. (i) If Xl, Xk’ Yl, Yk are eigenvectors corresponding to distinct
eigenvalues, then [x, y] 0.

(ii) The spectrum consists entirely of eigenvalues.
(iii) Eigenvalues have finite multiplicities.
(iv) If k is an eigenvalue of multiplicity p then there exist p eigenvectors x

l<r<k,l<i< psothat x,x =6ii.
(v) Eigenvalues accumulate at no finite point o[ Nk.
Pro@ (i) This is an easy calculation, cf. [5, Theorem 1 or 4].
(ii) Wr(k) fails to have a bounded inverse only if zero is an eigenvalue of

In fact it will be the Lth eigenvalue of Wr(k) for some ir < oo. This follows from the fact
that Wr(k) has compact resolvent. Then we have k k and so the spectrum as defined
above is precisely the set of eigenvalues.

(iii) When zero is an eigenvalue of Wr(k) it can have but finite multiplicity since
Wr(k) has compact resolvent.

(iv) Let k be an eigenvalue and consider the finite dimensional spaces Gr
Ker Wr(k)c Hr. Let P, be the orthogonal projection of Hr onto Gr and consider in the
spaces Gr, the multi-parameter array of operators

[PrTrPr PrVrsPr]rk,s=l.
The multi-parameter problem when posed in the spaces Or has only one eigenvalue,
namely k. Our earlier finite dimensional work [7] or that of Atkinson [4, Chap. 7,
pp. 115-135] shows that we may find eigenvectors x satisfying the claim of this part of
our theorem.

(v) The argument is easy, cf. [6, Thm. 8].
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4. Geometry of the spectrum. We shall show in this section that the eigenvalues
k form a lattice partially ordered by a certain cone C Rk. It will also be seen that
when ir 0 for some r, k belongs to the boundary of a certain convex set contained in
the resolvent set, so that in this sense, k is on the "outside" of the spectrum. The
reader may wish to refer to 7 for examples of the various sets constructed below. We
shall use a_-< b for a, b [l k to denote ar -< br, r 1, 2, , k.

From now on, we shall suppress the superscript k from the notation Vk (u)msee
(1). We introduce the set C [k as

C {a k V(u)a<-O for some ur Sr, l <=r<-k}.

It is easily seen that if a e C then pa C, V O => O; that is C is a cone. Finally we define
sets P, Z, N as the sets of points k Rk for which the ith eigenvalue of Wr(k) is
positive, zero or negative respectively, 1 <_- r <_- k, >_- 0. Obviously for each r, p0 lies in
the resolvent set; Pgr, Ngr are open and disjoint with common boundary Zi.

We further claim that the set pO is convex, for if k, Ix pO then the equation

w(x+( -))=.w(x)+ ( )w(), 0_--< a _--< l,

oshows that in terms of the minimum eigenvalue 0r (k),

o 0 0o ( + (1 )) >_-o (x)+ (1 )o ().

Thus pO is convex.
THEOREM 5. (i) If >---- then k ki + C. In particular, the spectrum r k + C.

k k

(ii) {ki) rl z, _c n N;,___-g
hi+C.

r=l r=l

Proof. (i) Let yi (0 _-<rj /" < it) be linearly independent eigenvectors corresponding
to the first i eigenvalues of Wr(ki). Then since 0 is the (L + 1)th eigenvalue for Wr(ki),
for any ur S such that (ur, yir])=O, O<=j<ir, we have (Wr(k|)Ur, Ur)O. Now let ur
minimize the expression (W(kJ)Vr, V) subject to v & and (vr, yir.) O, 0 -</" < i. Since
]r >= it, the minimax principle yields

Wr(X)Ur, Ur O Wr(i )Ur, Ur ).

This shows that V(u)(X-Xi)-<0 and so establishes the claim.
(ii) The first two relations are obvious and the third follows from an argument

similar to that used for (i).
COROLLARY 1.

k

rN (’1 -o_koNr +C.
r=l

Proof. This is an easy consequence of the nesting property

We shall discuss further properties of the set N in the next section.
When dim H 1 + dr < oo more structure can be deduced. We state a result for

the case d < oo.
COROLLARY 2. Suppose dim HI 1 + d < oo. Then

o-c__.N n/51al
_
(k+ C)N (k’+ C)
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where a= (dl, 0,. 0) and C is the cone defined by

C {.1 1 Ur e Sr, 1 <-_ r <- k, such that (V(u).)l 0, (V(u)k)r O, 2 <- r <- k}.

Proof. Let ki o-. Then as in the proof of the theorem, we can find ur Sr such
that

Wr(|)Ur, Ur) 0 Wr(.a)Ur, Ur), 2<_r<_k.

For the case r 1, note that W1 (k*) has 0 as its last eigenvalue so that (Wa(k")u 1, Ul)
0, V U $1. In particular, we take u to be the eigenvector corresponding to the zero
eigenvalue of Wx(ki). Then we obtain

(Wl(.i)ul, Ul)--0 (Wl(.a)Ul, Ul).

This shows that ki-]kaC1. A like argument establishes that if k6/5dl then k
C -dlk"+C The inclusion o- P is obvious.

If dr <oe for all r, then 2k cones can be produced in this manner. For each
"extreme" index where ir is either 0 or dr we generate a cone as in Corollary 2. We
then have the obvious generalizations of Corollary 2.

5. Vectorial ranges. In [7] we defined and investigated a vectorial range for
multi-parameter eigenvalue problems. In this section we present the corresponding
theory for our Hilbert space setting.

Let H (R)=a Hr denote the tensor product of the spaces/-L. D H will denote
decomposable tensors u u (R). (R) uk where each ur (Tr), 1 _-< r <_- k. For such a
point u we may define Tu ul @ @ ur-1 @ Trur @ Ur+l @ @ uk and similarly
for Vr*s. We can then extend T by linearity and in the case of Vr*s by linearity and
continuity. This introduces the possibility of defining operators A0,..., Ak in H by
means of the formal determinantal expansion

k

as As det
s=0

tO 1 k

TI V]l Vlk

Tk V*k Vkk

Ao may be defined on all of H while we have A 1,""" Ak defined on the algebraic
tensor product of the domains (Tr), 1 <_-r_<-k, which we now denote by E. In line
with our earlier notation we write [u,v]=(AoU, V) for u, v6H and S=
{uHl[u,u]=l}.

The vectorial range for our multi-parameter problem may now be defined as the
set of vectors in Nk with rth component & (Aru, u) for u S Y)E, such a vector being
denoted by 8(u). In the finite dimensional setting [7] we showed that g(S Yl E) is the
closed convex hull of o-. Here we shall examine the sets g(S D) and 8(S 21 F) where F
is the space of all finite linear combinations of eigenvectors (R)rk__l u

THEOREM 6. I[ each space Hr is of infinite dimension then the decomposable
vectorial range 8(S VID) is the set N of Theorem 5, Corollary 1 and is thus the
complement of the union of k open convex sets in Nk.
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Proof. By virtue of Cramer’s rule we see that k 8(S N D) if and only if there
exists ur G such that

k

(T,u,, u,)+ 2 a,(V,,u,, u,)= 0,
s=l

l<-_r<__k.

This is equivalent to the statement k N--recall that in the case dim Hr , Wr(k)
has eigenvalues accumulating only at +.

THEOREM 7. If dim Hr 1 + dr < for each r then 8(S 0 D) is the complement of
2k open convex sets in Ek. Explicitly

k

8(S N D) N n -"Pr,)=NnP.
r=l

Proof. The relation 8(S N D) N (/o N -apr) is established as in Theorem 6.r=l
Further we have

n n p,.,)=.--. U(PnN
r=l r=l

We showed earlier that pO is convex. A similar argument establishes the convexity of
Nr.

We turn now to nondecomposable tensors.
THEOREM 8. The eigen-vectorial range g(S N F) is the convex hull co o- of the

spectrum.

Proof. If k e co o" then by Carath6odory’s theorem we can find k + 1 eigenvalues
k k ik’J and nonnegative constants a., 0-j k, so that . a. 1 and It . cejk. Then

k l=U l=t1/2 i.setting u Yv=o ci u, (where the egenvectors u, are normahzed so as to belong to S
and are [. ,. orthogonal) we obtain [u, u 1 and i (ArU U) SO that k 8(S N F).

Conversely, if u H is expressible as a finite sum u /3iu ij then u S if and only
if Y [fli[2 1 and further we have

(Aru, u) E I/3ilzA’/
whence k e co o’.

In the case dim H, < , we have F H so that our last result is sufficient to
characterize the vectorial range and we obtain o" c N 0 P co o-, co (N 0 P) co o-. In
infinite dimensions some caution should be exercised since it is not clear that H is a
Hilbert space under [.,. as inner product. This situation can be achieved by
assuming A0 >> 0 on H, in which case it is known that F H [6, Thm. 10].

6. Parametric dependence. In this section we shall allow the operators in our
multi-parameter problem to depend on a parameter u, which for simplicity will be
taken from a Euclidean space. For our first result the Vrs and the domains (T) are to
be independent of u.

THEOREM 9. Let T increase with ; that is for ,’>= , we have T(’)-Tr(u) is
positive semi-definite on (Tr). Then Ai(,’)6 Air(,)+ Cfor each and r.

Proof. Let v’>_- v, and set A (/) /r, / ir(//t) A tr, Wr(l i(/),/) Wr etc. Now let yq,
O<-/’<L be linearly independent eigenvectors of W and letur minimize (W’w, v)
subject to v S and (v, y,i)= O, 0 <- j < i to give

WrUr, Ur)<O(Wrur, Ur).
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Then

((7;(’)- 7"())u, u,)+ (V(u )(X’- )) <= o

so nonnegativity of the first term gives the desired conclusion.
For the next result we allow the Vrs to vary with u, but the Tr are assumed

independent of u.
THEOREM 10. Let the operators Vs depend continuously on ,. Then so does the

spectrum, in the following sense. If as uj- ,, a sequence of eigenvalues k(,j), (not
necessarily o]’ fixed index) accumulates at , then It is an eigenvalue of the limiting
problem. Conversely, every eigenvalue ]’or , is the limit o]’ some sequence of eigenvaluesk
of . Further i]’ u(ui)=(R)_ u(uj) is a corresponding seque.nce of eigenvectors with
Ilu()ll- 1, then each sequence u(uj) has a limit ur and u (R)=1 u is an eigenvector of
the limiting problem corresponding to

Pro@ Continuity of i follows from the arguments used for the inductive step in
Theorem 2. Conversely, any for the limiting problem has an index, say k-(,).
Then (ui),/’ 1, 2,.,. is a suitable sequence.

For the final part of the theorem we have for any nonreal number 0

k

(Tr %- OI)Ur(Pi)%- 2 s(Pl)grs(Pi)Ur(pi)’- OUr(Pj),
s=l

k

u(,)+ 2 a()(r + oz)- v()u() 0(r + o)-u,().
s=l

Since Ilu()[[- 1 we can assume (by taking a subsequence if necessary) that u(u.) has
a weak limit u. We now appeal to the compactness of (T + 01)-1 and the continuous
dependence of Vr upon u. From (5) we see that u(ui) converges in norm to u, so that
we have, from (5),

k

u, + 2 a,(T, + OX)- V,,()u, O(T, + OX)-u,.
s=l

We may now claim that u @(Tr) and so obtain

k

Tu + 2 ,,V(u)u 0
s=l

to establish the result.
Our final result of this section concerns the situation in which each V is allowed

to depend in a Lipschitz manner on a parameter u.
THEOREM 11. Let u range over a compact set and let ymthe constant of the

definiteness condition (2)robe independent of . If the operators Vr, are Lipschitz in
then so are the eigenvalues k.

Proof. The transformation of Theorem 1 now provides determinant bounds
which are independent of u. As a result the bound/3 in (4) remains independent of
and the subsequent argument easily extends to show that h i(u) is Lipschitz in u for
k 1. The inductive step in Theorem 2 generalizes this to the vector eigenvalue

7. Examples. We present here two examples designed to illustrate the geometric
properties of the spectrum discussed in earlier sections.
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FIG. 1. Cross sections of Wl, V2, W at x 5.

(2a)

(2b)

(la)

(lb)

(3b)

13a)

FIG. 2. Cross sections ofP and N at A C > O.
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(2b)

/

(2a) (3a)

FIG. 3. Cross sections ofN and P at A O.

(lb)
(3b)

(la)

Example 1. Take H H2 H3 (I2 with operators Tr, Vrs given by the array

-5 0] -I0 -51
5 -1

Notice that all principal minors of order n do have sign (-1)", so no extra
transformation (per Theorem 1) is needed. This is obvious by inspection for n 1 and
2, while for n =3 we observe that ul=u2=u3=(O, 1)gives det V(u)=-5. To show
that det V(u) has constant sign for all u we examine the cones V1, V2 and V3
generated by

Vr {(VrsUr, Ltr)[ Ur E Hr} 3.
Using points uEH of unit norm we see that the points in Vr are of the form
(-5, y, z) as displayed in Fig. 1.

It is now geometrically clear that the conditions of [4, Thm. 9.6.1, p. 152] hold so
that we can claim the definiteness condition to be satisfied. Alternatively we could
have calculated a rather cumbersome 3 x 3 determinant.

With each Tr 0, it is obvious that the spectrum for this problem consists of only
one eigenvalue, zero, which has multiplicity eight.
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5c

(2b)

5c

,(3b)

(la)

(2a) (lb) (3a)

FIG. 4. Cross-sections ofN and P at , c < O.

For k e R3 the operators Wr(k) have eigenvalues as follows:

Wx(k): 5hl +Xa+5h3 (la), -5l+h2+h3 (lb);

W2(k):-5A1-Sh2+h3 (2a), -Shx-h2+Sh3 (2b);

W3(k): 5A- 5A-A3 (3a), -5A-A-A3 (3b).

The labels (la), , (3b) are cross-referenced in Figs. 2-4 which display cross sections
of the sets N and P for A > 0, A 0 and A < 0. Note that neither N nor P is convex.
In this case N P coincides with the spectrum. We could, by slight perturbations of
the T,, split the multiple eigenvalue 0 into eight simple eigenvalues.

Example 2. Let Hx Le[0, /2] (Lebesgue measure)with T given by

(T) L2[0, /2]]df/dx is absolutely continuous,

(dZf/dx2)_f e Lz[O, /2], f(O) f’(/2) 0},

Let H2 Ca and consider the multiparameter array

for f e (TI), Txf --x2-f.
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R

FIG. 5. Spectral diagram for Example 2.

Note that Vll, V22 << 0 and (2) is satisfied, so again all principal minors of order n have
sign (- 1)".

Solving Wl(k)f=O we obtain h1-h2+1=l,3,5,..., so that hi-h2=
0, 2, 4, . Solving W2(k)x 0 we obtain (2A + A 2)(h "1" 2h2) 1 as the eigenvalue
condition. Eigenvalues occur then at the intersections of the straight lines A A 2 2n,
n 0, 1,... and the hyperbola above. These are marked on Fig. 5. We make the
following identifications:

can be obtained by solving the inequalities

[(2a, + a2)(a + 2a2)< 1]

or

[(2A + h2)(hl + 2A2)< 1 and h,+h2>O].
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This gives the region above the lower branch of the hyperbola. These calculations are
elementary exercises and lead to the conclusion that N is closed unbounded noncon-
vex region bounded by RAM, while ko+ C is the set bounded by RAJ. We also see
that P2 is the set below the upper branch of the hyperbola so that

8(S f")D)= GBAM N P.
We have labeled the eigenvalues so as to display the monotonicity in the indices

as discussed in Theorem 3. Finally we note that co cr is not closed in this example. In
fact this set will be given by the convex region enclosed by JABK, the open boun-
daries AJ and BK not being included.
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REPRESENTATION OF SPECIAL FUNCTIONS BY
DIFFERINTEGRAL AND HYPERDIFFERENTIAL OPERATORS*

DO TAN SI

Abslrlo The use of differintegral operators D with D=d/dz and u eC and hyperdifferential
operators, together with some operational calculus manipulations leads to new formulae of representation
of usual special functions. These formulae are useful for obtaining generating functions and differential
recurrence relations of orthogonal polynomials.

1. Inldmzfin. The main purpose of this work is first to put the hypergeometric
functions into concise form with differintegral operators D where D =d/dz and
u e C [9]. Second, it is to show that usual orthogonal polynomials are related to
monomials C,,z" in some transformations realizable by hyperdifferential operators.
The latter are defined as differential operators of infinite order with variable
coefficients"

(1.1) F(z, D)= Z aiz Di.
i,j=O

To this end, we discuss--in 2-- the mathematical background of the method used in
this work. This method consists chiefly in the definition of the operator D in such a
way that it may be used to obtain the most general solution of a linear differential
equation. In this context, the equation D"y 0, for example, leads to y D-"0=
F(D)z"/n! with arbitrary analytic function F(z) satisfying F(0)=0. On the other
hand, we use hereafter hyperdifferenttal operators without discussing further its
theory and algebra. To our knowledge, one may find a rigorous definition of
hyperdifferential operators in the works of Treves [12], Miller and Steinberg [8], etc.
Besides, the algebra developed about the Baker-Campbell-Hausdorff relation seems
well covered in the work of Wilcox [13]. In the above works, one finds many appli-
cations of hyperdifferential calculus either in quantum mechanical problems [8], 13] or

in the integration of partial differential equations [13], etc. We note also the recent

work of Wolf [14], [15] where canonical and integral transforms are realized through
hyperdifferential operators.

In 3, we derive the results on hypergeometric functions and orthogonal poly-
nomials, using operators D and hyperdifferential ones. The formulae obtained are
very suitable for practical calculations of these special functions. They are also useful
in the derivation of differential recurrence relations and generating functions of
orthogonal polynomials.

2. Background of the method.
2.1. In dealing with differintegral operators or fractional integrals we start from

the following definition of Riemann [9]:

(2.1) D,z. F(u+ 1)
F(u_/z + 1)z u, tz C.

We note that many other definitions are known [3], [4], [9] and perhaps are more
suitable for other problems.

* Received by the editors December 11, 1975, and in final revised form May 2, 1977.
t Facult6 des Sciences, Universit6 de l’Etat ?a Mons, B-7000 Mons, Belgium.
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From (2.1) one derives the equation

(2.2) D"zV/F(v + 1)= 1.

If now F(z) is an arbitrary analytic function, then applying the operator F(D) on both
sides of (2.2), one gets:.

DF(D)zV/F(v + 1)= F(D) 1 c

so that

(2.3) D-c F(D)z"/r( + 1); c F(0).

In the current literature, one usually chooses F(z)= c in order to insure the linearity
of the operator D and the unicity of the inverse operator D-. Nevertheless we think
that in a problem where these conditions may be omitted, onemay assume F(z) to be
an arbitrary function with F(0)= c. Only at the end will F(z) be determined from
subsidiary conditions, as in the case of a differential equation for which a solution
corresponding to some boundary conditions is deduced from the general one.

In conclusion, we propose to replace the definition (2.1) by:

F(v + 1) , F(D)z-"
(2.4) D’z =D(z +0)

F(v_ tz + 1)z +
F(1-)

with F(D)= 0 if we want D to be linear, or only F(0)= 0 if we do not need the
linearity of D in a closed loop of the calculations.

The determination of F(z) in each problem is essentially a matter of identification
of coefficients. For example, if a set of polynomials Pn (z) may be put into the form

(2.5) P,(z) F(D)z"
m=0

then

(2.6)

and

P.(0) n !.

(2.7) F(D)= Y P,(O)D"/n!

It is well known that functions f(z) which are linear combinations of exponentials
have the property 13]

(2.8) [z, f(D)] ---f(D) -f’(D).

In the case where f(D)-- D v, using (2.4) and the fact that

(2.9) (z 1)D0 vD"-lo-- vF(D)zl-"/F(2 v)

one gets the equation

(2.10) [z,D"]z"=- vl-’(l+/z) zu._,,+l+(z_l)D,,O=_vD,,_lzu.
F(2+- v)

which shows that (2.8)still holds for D.
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2.2. Also, when dealing with the operational calculus in this work, we often use
the following identity, easy to prove:

(2.11) a(z)D + b(z)= a(z) e-U(Z)D e u(z)

where u(z)is a primitive of the function b(z)/a(z). Equation (2.11) leads directly to
the inversion formula

(2.12)

and the following:

(2.13)

[a(z)D + b(z)]-" e-"()D e

a (z).f(D)a-(z) f(D + In’ a (z)),

u(z)a-l(z

Vf analytic

which are very useful in the studies of orthogonal polynomials.

3. Contribution to the studies of special functions.
3.1. Hypergeometric, confluent hypergeometric functions. First, we consider the

differential equation:

(3.1) Ay---[(mz2+nz +p)DE+(qz +r)D+s]y =0
which was resolved by Liouville [6], [9] and Holmgren [5] more than a century ago,
utilizing fractional integrals. The main part of the method of Liouville may be
described in a concise manner as follows.

We have from (2.8)the relations

(3.2) D-"zD Z- vD-1,
(3.3) O-"zZO Z2- 2vzD-1 + (v2 + v)D-2

which lead to"

(3.4)
D-AD (mz 2 + nz +p)D2 + (qz + r 2mvz nv)D

+ (my2 + (m q)v + s) I(z)D2 + J(z)D + K.

Now, if the parameter u satisfies the equation

(3.5) K -= my2 + (m q)v + s 0

one gets from (3.1) and (3.4) the first order linear differential equation in D1-y:

(3.6) D-ADD-y (ID + j)Dl-y D-0.

Using (2.3) and (2.12) one can then write

(3.7) y =D"-1 e -"(z) [ eU(Z)(mzE+mz +p)-IF(D)z"/F(1 + v)

where F(0)- 0 and u(z)= J(z)I-X(z).
Putting now Y-I =D-I0 and labeling the solutions (3.7) corresponding to

F(D) 0 and F(D) D, k > 0, by yo and y respectively, we see that:
(i) if u --0, 1, -2,. ., then y-x and yo are two independent solutions, all the

y being equal to yo;
(ii) if v 1, 2, , then Y-I O, Y0 Yv+I Y,,+2 but yo # Yk with k <_- v so

that one has at least two solutions;
(iii) if v # O, +/- 1, + 2,. , then y_x does not satisfy (3.6) nor afortiori (3.1) but

Y0 # Yk, Vk.
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It then remains for us to justify that whenever yk # y0, they are proportional to
yl; i.e. for any value of v and any choice of F(D), one gets two and only two
independent solutions for (3.1), as it must be.

To this end, we remark that, when applied on z, Dk with k > 1 is proportional to
zD’/1 or z2Dk/2. Thus there exists a linear combination (1.c.) of D and D+1 such
that 1.c. (D k, Dk+a) J(z)Dk+l. Noting that u’(z)= I-l (z )J(z ), the same 1.c. between
Yk and Yk+l gives rise to

(3.8) 1.c. (Yk, Yk+l) D"-e I e’I-jDk+Iz"/F(1 + u)

(3.9) D"+kz"/F(1 + ,)-Dv-1 e-" [ e’Dk+z"/F(1 + ,)

(3.10) -D"- e-’ I e’I-a(mz2+nz +P)D’+z"/F(1 + ’)"

As in the equation (3.10), z2O k+l is proportional to Dk- and zDk+l to O k, its right
hand side is a 1.c. (yk-1, y, yk/) if p 0 or a 1.c. (yk-, yk) if p 0. The latter case may
always be realized by a suitable change of variable. Thus the proof of the pro-
portionality between the y’s which differ from yo is found.

Second, for the concrete case of hypergeometric equations:

(3.11 z (z 1)y" + ((a + b + 1 )z c )y’ + aby O,

we get t, a (or b) and u (z) In (1 z)b+-cz c-a.
This leads to the result that hypergeometric functions may be put into the general

form:

(3.12) 2Fx(a,b; c; z)=CD-l(1-z-b-Xz J (1-z)t’-z-k-/F(a-k + 1)

where k is a suitable positive integer (giving yk) and where the constant C and the
constant of integration (giving y0) are both determined by the properties
2F(a, b; c; 0) 1, 2F] (a, b; c; 0) ab/. Similarly, for confluent hypergeometric
functions we get

(3.13) Fl(a; b; z)=CD’- eZz a-b f e-Zz’-k-1/F(a-k + 1).

3.2. l-lermite polynomials. The representation of Hermite polynomials by
hyperdifferential operators derived by Wolf [14] may also be obtained in the Barg-
man space [2] or in any other space provided the operators z and D in this space are
Hermitian conjugates"

(3.14) z+=O.
In fact, from (3.14) and (2.11) one has successively:

(3.15) -(D-z)=(D-z)+,
e z2/2D e-Z2 e-D 2/2Z e D2/2

(3.16) e z2/2( D)" e -z2/2 e- 2/2, e D2/2.
Hermite polynomials, defined by the Rodrigues formula, arise from the application of
both sides of (3.16) on a constant, followed by a change of variable z - z x/2:

(3.17) Hn(z) e-Da/4(2Z)n.
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Furthermore, since the operator in the left hand side of (3.13) is nothing but (z-
D)"= 2"/:a /" where a / describes the creation operator of a harmonic oscillator
quantum, we have

H,,(z/’)= a /’. 1(3.18)

and

(3.19) (a+)" e -22/2 2- ,/2 e-Z2/2H,(z).
From the formula (3.17), one gets the general generating function

g(z, t)= Y’. a,H.+(z)t" e-2/4(2z)f(2zt)
rt=0

where obviously

(3.21) f(z)= E a,z".
rl=0

Using (3.16), we can also write
mZ2(3.22) g(z, t)= (-) eD e e-/4f(2zt).

The calculation of the transform by exp (-D2/4) of f(2zt) is particularly simple when
f(z) is an eigenfunction of the operator D2. When [(z) is a Gaussian, its transform by
exp (-D2/4) may also be easily calculated. As ea satisfies the differential equation
(D 2az)y 0, its transform by eb2 must satisfy the equation

eb2(D-2az)e-by =0, i.e. {(1-4ab)D-2az}y =0.

That implies the relation

(3.23) eb ez2 (1-4ab)-1/2 e a(1-nab)-’z2" 4az < 1

Equations (3.23) give rise to the bilinear generating function

E H,(x)H,+k(Y)t"/n!= e-/4-/4(2y)k e4Xy’
=0

(3.24) e-/4(2y)k e -(2yt)+4xyt

(1-4t2) 2exp y-
(y 2xt)2 y 2xt

1-4/2 }Hk{
which has been derived by the Weisner method [7].

3.3. Laguerre polynomials. We define the Laguerre polynomials by means of the
series 1

(3.25) L(z)= (-)"
(l+a), z

,.=o (1 +a),. (n-rn)!m!"

Replacing z"/rn by D"-"z"/n and (1 + a),/(1 + a)m by (-)"-" (- n a),_,, in
(3.25), one gets:

L.(z)__
(-)"(-n-a),,-mD"-" z"

.,=o (n-m)! n!
(3.26)

=(-)n(1-D)n+azn/n!.
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The representation (3.26) is very useful for the derivation of differential recurrence
relations of Laguerre polynomials. By similar manipulations, one obtains the follow-
ing formulae, which are more suitable than (3.26) for the calculation of generating
functions:

z’,L’() (l+a)n oF1(-; l+a;-D)z’,/n!(3.27)

i.e.

(3.28) L’(z)=(l+a),,z"oFl(-; l+a;z:D)z-’,/n!.
More generally, we have

(3.29)
-1z’, iF,(-n,a a,’bl,’" bq z )=oFq(a,..’ ap, bl,’" b,-D)z’,p+ 17

3.4. Gegenbauer polynomials. Let us calculate the polynomials which satisfy the
following recurrence relation"

(3.30) [(1 z:)D + nz]y’, (n +

Using the factorization formula (2.11), one can write instead of (3.30)

(3.31) (1-zE)’,/2+D(1-z:)-"/y,, =(n +a)Yn-1.

Iterating (3.31) n times and putting yo- 1, one gets

(3.32) [(1-z:)3/V]’,(1-z2)-’/:y,, (1 +re),,.

Writing now

(3.33) u z(1- z:)-1/ and I =- d/du (1 z:)3/:D,
we have after some calculations

(3.34) y’,=(l+u2)-’,/21-n(l+a)’,=(l+a)n(l+u2)-’/2F(l))u’/n!,
where, according to (2.3), F(z) is an arbitrary analytic function satisfying F(0)- 1.

From (2.13), one can put (3.34) into the form

yn=(l +a),,F

i.e.

(3.35)

where

(3.36) a (1- z2)3/2D -b nz(1- z2)1/2.
But, from (2.11) one can write

Ak (1 Z 2)"/2(1 zE)3/2Dk (1 Z 2)-"/2
SO that

(3.37) A kZ’, (1 zE)"/EIku (1 Z 2)k/EDkz’,.
Introducing now the set of operators

(3.38) Bk (1 zE)k/ED k
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we have Akz n-- BkZ although Bk does not depend on n. That property allows us to
put (3.35) into the form of a symbolic relation [10]

(3.39) y, - (1 + a),F(B)z’/n!

where the undefined symbols B k in the expansion of F(B) must be replaced by the
well defined operators Bk. Equation (3.39) is the most general solution of (3.30). It
clearly shows that the expansion coefficients of F(B) are related to the set yn(0) by the
relation

(3.40) F,, (1 + c)lyn(0)

so that

(3.41) F(B)= F, (l+a)21y,,(0)B,.
n=0

The Jacobi polynomials P(2’’’)(z) [4] satisfy (3.30). For these polynomials one gets:

(3.42) F(B)+2FI(-; 1 +a; -B2/4).

This leads to the following representation of Gegenbauer polynomials"

(3.43) C,(z)=’. (2A), 0Fl(- A + 1/2; -BZ/4)z"/n!.

3.5. Sheffer polynomials. The polynomials of Sheffer A-type zero [10] are a

simple set of polynomials having the property

(3.44) J(D)P,,(z)=P,-(z)

where J(z)is an entire function satisfying J(0)= 0, i.e. J(z)= zf(z)with ](0)# 0.
From (3.44)we obtain

(3.45) J" (D)P, (z Po(z ) C

so that from Eq. (2.11):

P,(z)=J-"(D)C

=]-"(D)D-"C

(3.46) F(D)]-’ (D)z"/n !; F(0) C.

Equation (3.46) is the general representation of polynomials of Sheffer A-type zero.
We note that this equation may also be obtained from the Rodrigues formula for
polynomials of binomial types derived by Rota et al. 11].

5. Conclusions and acknowledgments. We think that the results obtained in this

work are interesting chiefly from the viewpoint of methodology. These results show
for instance that in the domain of special functions, long series manipulations may be
replaced by the synthetical method of differintegral hyperdifferential operators. We
hope that there will be more studies on these operators in order to calculate more

expressions F(z, D)f(z). This will surely facilitate the utilizations of special functions.
The author is indebted to Professor M. Demeur, Professor R. Dagonnier and Dr.

G. Reidemeister for numerous remarks and discussions.
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A METHOD OF GLOBAL BLOCKDIAGONALIZATION
FOR MATRIX-VALUED FUNCTIONS*

H. GINGOLD

Abstract. Let A(x) be an n x n analytic matrix function of the vector variable x. Let the eigenvalues of
A(x) belong to two disjoint sets for every fixed x. Then there exists an invertible analytic matrix function
M(x) which takes A(x) by a similarity transformation into a blockdiagonal form. Similar theorems for A(x)
being smooth are also proved.

1. Introduction. Every constant n x n matrix with entries in the field of complex
numbers and having more than one distinct eigenvalue is similar, in that field, to a
blockdiagonal matrix of two diagonal blocks that have no common eigenvalues. If that
matrix, A A(x), is a function of x, where x is in a domain D of R" or C’, this is still
true for every x D, provided the eigenvalues can be labeled so that the numbers
h l(X), , hk (x) are distinct from hk/ (X), /n (X) for all x D. Thus, there exists
an identity of the form

(1.1) M-l(x)A(x)M(x)=Al(X)(A2(x), x D,

where A (x), A2(x) are k x k and (n k) x (n k) matrices, respectively.
The purpose of this investigation is to replace the trivial result (1.1) by a more

precise one which tells how "smooth" M(x) can be taken when A(x) has some known
smoothness properties, such as being in C"(D)or holomorphic.

A method of solution of the above problem is provided by Sibuya [10] and Hsieh
and Sibuya [6]. A closely related problem to the above is solved in Wasow [12].

Our approach to characterize M(x) hinges on the idea of making M(x) a solution
of an ordinary linear homogeneous matrix differential equation. Thanks to that, the
existence and "smoothness" of M(x) and M-(x) is taken care of simultaneously in
the whole domain of interest.

To achieve this we link our problem to the special case of projection matrices. See
Coppel [2] for a similar approach in the case that x is one-dimensional variable.

The possibility of finding a smooth M(x) in (1.1) plays a vital role in the process
of simplification of linear singular differential systems. For example, see Wasow [13,
p. 1381.

2. Preliminaries.
Notation 2.1. We denote by x an r-dimensional vector variable x (Xl, Xr),

1 _<-r in a set D to be defined. We denote by Ix a norm on x.
Notation 2.2. We have D [a, b]’ or D-Kr, where K is a finite simply connec-

ted domain in the complex plane.
Notation 2.3. By A(x) C"(D), m >-0 we mean A(x) C"([a, b]’) or A(x) is

analytic in K r.
Notation 2.4. We set Pk --diag (1,. ., 1, 0,. , 0), k times 1 and n- k times 0.
Notation 2.5. "Blockdiagonal" shall mean a decomposition such as in (1.1) with

fixed k, independent of x.
For the sake of simplicity we will sometimes suppress the variable x in the matrix

notation.

* Received by the editors September 9, 1976, and in final revised form May 13, 1977.
5" Department of Mathematics, University of Utah, Salt Lake City, Utah. 84112.
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We list some facts which will be needed in the sequel. Since they are so simple,
their proofs will not be elaborated on here.

(I) M is blockdiagonal iffMPk PkM.
(II) If M and N are blockdiagonal and N is invertible, then N-1MN is

blockdiagonal.
(III) IfP P(x ) is differentiable in D, D R or D C, and p2= p, then

(pZ), p,= p,p + pp,,

(IV) PP’P O.
(V) IfM is invertible then MPkM-1 is a pro]ection.
(VI) Every projection matrix is similar to a diagonal projection matrix.
(VII) M-IAM is blockdiagonal iffA commutes with P: MPkM-1.
Property (VII) reduces the blockdiagonalization problem for A(x) to one for

projection matrices.
Hypothesis H1. Let (x, A ) det (A hi). Then (x, A ) (I)1 (x, h )(I)2(x,/ ), where

1 and (I)2 are relatively prime monic polynomials in h of constant degrees k and
n- k, respectively, for all x D, with coefficients having the same regularity prop-
erties as A (x) (namely belonging to C" (D)).

Notice that Hypothesis H1 means that the eigenvalues of A(x) may be labeled so
that the eigenvalues hi(x), Ak(X) are distinct from the eigenvalues
/.k+l(X),""" ,n (X ).

From now on we identify the spectra of 1 and z with the eigenvalues
h l(X), , h(x) and hk+l(X), , h,(x) correspondingly.

3. A iemma.
LEMMA 3.1. Let A (x) C (D) and let Hypothesis H1 hold. Then for every x there

exist in the A-plane a finite set of rectifiable closed Jordan curves which will be denoted by
Fx. This set F,, contains the spectra of 1 in its interior and has the spectra of (2 in its
exterior.

The matrix function P(x ) defined by

(3.1) P(x)=- [hI-A(x)1-1 dh

belongs to C (D). Moreover P(x ) is a projection which commutes with A(x ).
Proof. Observe that;
i) If A(x) is a continuous matrix function of x, hi(x) is also continuous in x for

every i, 1, 2,..., n. Therefore:
ii)

(3.2) inf [Ai(x)- Ai(x)l 6 > 0
xD
l_ik

k<j_n

and there exists h0, such that

(3.3) Imxl-lx-l<ho implies

(We denote Ax =- (AXl, IXn),) Also denote

for i-- 1, 2,..., n.
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Eo

Qx

A(x) .A,(x +Ax)

X,(x) X,(x + zXx)

’A,,(x) .’A (x + ax)

FIG. 1. The two disjoint sets of eigenvalues in the A-plane at the "time" x and at the "time" x + Ax.

Eo={AllAl<max IA,(x)l+26, 1,..., n, x eD},
i,x

F,,=UFx,
/=k+l

i=k

Qx-U Oix,
i=1

F/,, ={AI [,-,(x)[<-26/5},

Obviously" Fx fq Q,, (, (Eo\F,,) is open, Ox is closed, and O,, Eo\F,,. (See Fig. 1.)
By 11 we are guaranteed that if Q,, is closed and (Eo\F,,) is open and bounded in

the complex A-plane, Q,, (Eo\Fx), then there exists a Cauchy domain Rx, such that
Qx Rx and R,, (Eo\F,,), (Rx is the closure of Rx), and therefore there exists a finite
positive number of rectifiable Jordan closed curves which will have in their interior the
domain Q, and since F, f’) Q,, F,, fq (Eo\Fx hk+ (X ), An (X will be
outside of them. For any x D, choose F in (3.1) to be identical with OR.

Recall" R is a Cauchy domain if:
i) R is bounded and open;
ii) R has a finite number of components the intersection of two of which is

disjoint;
iii) the boundary OR, is composed of a finite number of closed rectifiable Jordan

curves, no two of which intersect.
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If we consider the same domains in the A-plane for thepoint x + Ax, with ]Ax] < ho,
and examine the location of A l(X + Ax), , Ak (x + Ax), Ak+l(X + Ax),. , A, (x +
Ax), then I+/-xl<h0, where h0 was chosen in (3.3), implies that every point Ai(x),

1, 2, , n, has a distance greater than 6/5 from Fx+ax, and every point Ai(x + A,),
1, 2,. , n, has a distance from Fx greater than 6/5. Therefore

(3.4)
P.(x) / [AI-A(x)]-1 dA

[AI-A(x)l-ldh =i [AI-A(x)] dA
+AX

for every F which is a set of rectifiable Jordan closed curves encircling in its interior,
hi(x),’’’ ,hk(x), and in its exterior, Xk+l(X),’." ,h,(x). This is true by Cauchy’s
integral formula. In the forthcoming formulas (3.5), (3.6), (3.7) when computing
partial derivatives we will assume Ax (0,..., O, Axi, 0,..., 0).

We have for every i--- 1,..., r,
(3.5)

[ ]1P(x+Ax)-P(x)_ 1
[AI-A(x+x)]- dA- [AI-A(x)]- dA xAXi 2i x+a

= {[hI-A(x + ax)l-l-[AI-A(x)]-1} dA
(3.6)

2i xi

This implies

(3.7) P’(x)=--.P(x)=- dA [AI-A(x)]-1.

Moreover, for lAx I< h0,

1 r O
[hI-A(x +Ax)]-1P’(x + Ax)-P’(x)= dho(x +

ldhO2i
(3.8)

1 r da
o

[a-A(x +ax)]-’ 0

2 O(x +axl -g[a,-a(xl]-1.

is proves that if A(x)eC(D) then P(x)eC(D). By applying an induction
argument we obtain A(x) e C (D) implies P(x) e C (D). The fact that P(x) is a
projection follows from [8, p. 419].

From now on in this paper P(x) will stand for the projection defined in Lemma
3.1 and given by (3.1).

4. The one-dimensional case. We assume throughout this section that our
domain D is one-dimensional or r 1.

LEMMA 4.1. Let P P(x ) be a projection matrix, and P C"(D), m > O. IfP(x ) is
similar to Pk at one point Xo D, it is similar to Pk in all of D, and among the matrices

W(x) such that W-I(x)P(x)W(x)=P, x D, there is one which is a solution of the
differential equation

(4.1) W’ (P’P PP’) W,

with W(x)e C"(D).
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Proof. For any invertible solution of (4.1)one has

(4.2) W’W-1 P’P PP’

and therefore, using properties (III) and (IV),

(4.3) (W’W-1)P-P(W’W-1) P’;

by left and right multiplication with W-1 and W, respectively, this becomes

(4.4) W-1W’ W-IPW + W-XP’W + W-XPW O,

ioeo

d
(4.5) -x W-lew)-- O.

By assumption, there is a constant matrix W0 such that WP(xo)Wo=Pk. Let
W W(x) be the unique fundamental solution of (4.1) characterized by the initial
condition W(xo) W0. Then W-(xo)P(xo)W(xo)=Pk and since w-l(x)P(x)W(x)is
constant, by (4.5)

(4.6) WI(x)P(x)W(x) Pk, for all x D.

As a solution of a linear differential equation with coefficients in C"-I(D), the matrix
function W(x) is in C"(D), as was to be proved. The above lemma leads us to the next
theorem.

THEOREM 4.1. Let A(x ) C"(D and Hypothesis H be satisfied. Then:
i) There exists an invertible matrix ]’unction M(x), M(x) C’(D) such that

(4.7) M-l(x)A(x)M(x) A(x)Az(x).

The eigenvalues of AI(X) and A2(x) are the roots of l(x,A) and O2(X,/) cor-
respondingly.

ii) Moreover, if A(x) is periodic with period ’, (4.7) may be satisfied with a
periodic M(x with period ’.

Proof. By Lemma 4.1 we find an invertible W(x), W(x) C’(D) such that (4.6)
holds.

i) We choose M(x)= W(x). Use property (I) to find out that (4.7) is satisfied.
Moreover, to the projection P defined by (3.1) there corresponds a unique de-
composition of the vector space on which A(x)operates into a direct sum of two
disjoint subspaces. Therefore, the eigenvalues of A and A2 are the roots of1 and (I)2
correspondingly.

ii) By (3.1), P’(x) and P(x) are also periodic with period " whenever A(x) is such.
In addition to (4.6)we also have

(4.8) W-(x +z)P(x)W(x + ’) Pk.

Eliminate P(x) from (4.6) and (4.8) to obtain

(4.9) w-l(x)W(x +’)Pk PW-I(x)W(x +’).

This means that w-l(x)W(x +z) is blockdiagonal.
Since W(x), W(x +z) are solutions of the same differential equation (4.1),

(4.10) W(x +z)= W(x)C

where C is a constant invertible matrix and C was shown in (4.9) to be blockdiagonal.
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We are looking for a matrix N(x) such that

(4.11) W(x +r)N(x +r)= W(x)N(x).

By (4.10) it follows that

(4.12) CN(x +)= N(x).

Many matrices satisfy (4.12) and consequently (4.11). For example,

(4.13) N(x)=exp [-X lg C]
Now choose N(x) as in (4.13) and M(x)= W(x)N(x) to obtain the desired trans-
formation.

Remark. The differential equation (4.1) appears in Kato’s paper [7] with "no
justification." We can easily show how (4.1) may. be derived in a natural way by the
blockdiagonalization problem. By property (VII) our problem was reduced to finding
an invertible matrix W C’(D)such that W-1PW =Pk. We go in inverse order
through the steps (4.3), (4.4), (4..5) to find out that W’W-1 must satisfy (4.3). In order
to pass from (4.3) to (4.2) we can easily verify that if E, F, L are n n matrices such
that E2= E, F2= F, LE +FL L, then a particular solution to the matrix equation
YE-FY L is given by Y LE-FL. See also Rosenblum [9].

5. The r-dimensional case.
THEOREM 5.1. Assume A(x ) C"(D), rn => 2, and let Hypothesis H1 be satisfied.

Then there exists an invertible matrix M(x) C’-I(D) such that

M-(x)A(x)M(x) Al(x)A2(x).

The eigenvalues of A l(X) and A2(x) are the roots of l(x,A) and 2(x,Z) cor-
respondingly.

Proof. We first adopt a couple of notations.
Notation 5.1. i) Define Dv to be the restriction of the set D to the variables

xl, ,xv, v= 1, 2,..., r. D =(Xl,’’’ ,x)lx D}.
ii) Denote

eo P(x),
P,,=P(xx, x2, ’x"’x

o o
v+l, X ), v 1, r,

(5.1) P,=P(x),

P’

iii) Define the sequence W, u O, 1,..., r, as follows" Wo is the matrix satis-
fying

(5.2) weoWo ek

and Wv is the unique solution of the equation

(5.3) w’ (PP PP)W, W’v
OXv

satisfying

(5.4) Wv Wv(Xl, x2, , xv-1, xv, xv, Wv-1)
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where" Xl, Xv-1, are considered as parameters, x. is the independent variable, and
W. takes the "initial value" W.-1 at the point x, and W.-1 itself depends on the
parameters x 1, , x._ 1.

We proceed now by induction to show that: There exist W. which are invertible
and such that

(5.5) W-dlP.W. Pk, v 1, 2," r.

For u 0 it is true by taking P0 into its Jordan canonical form. Assume W.-1 to satisfy
induction hypothesis, and proceed to W,. For any fixed point (Xx,’’ ", X.-1)ED.-1,
W, must be an invertible matrix function for all x, since we chose it to be invertible at
x0. This is true by [1, p. 28].

For the smoothness properties of W, we notice that W, E C’(J0) for every fixed
(Xx,’’" ,xv-1)V.-x, where J0 is the domain of variation of x,. By [5, Chap. 3],
W. cm-l(V,_l) since the coefficient matrix in (5.3) and the "initial value" belongto
cm-l(V._l). Therefore W, C"-I(D,) for u= 1,..., r. We choose M(x)= Wr(X)
and the result follows.

Remark. It is impossible to extend part ii) of Theorem 4.1 to the case, r > 1. This
was pointed out in [6] by Hsieh and Sibuya.

Remark. The properties of continuity and differentiability inherited from P’,P,-
PP’, by W,(x) can be easily deduced by writing down a fundamental solution of (5.3)
in terms of the resolvent series.

Remark. In the case that x is a scalar we obtained M(x)e C’(D). In the case
r> 1 we obtained M(x)EC’n-I(D). The difference stems from the fact that the
solution of a differential equation depending on parameters in the coefficients is
usually not smoother with respect to the parameters than are the given coefficients.
The theorems in [6] by Hsieh and Sibuya are stronger in the sense that A(x) C"(D)
implies the existence of M(x) C’(D) for m _->0.

Acknowledgment. I hereby wish to thank Professor W. A. Harris Jr. for his
encouragement and enthusiasm.
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THE GENERALIZED INVERSE OF AN UNBOUNDED LINEAR
OPERATOR WITH UNBOUNDED CONSTRAINTS*

W. F. LANGFORD?

Abstract. The concept of best least squares solution is used to define a generalized inverse of an
unbounded linear operator between two inner product spaces, subject to unbounded linear functional
constraints. The nullspace of the operator is assumed finite dimensional. A necessary and sufficient
condition for the existence of this generalized inverse is established. When the condition holds, the
calculation of the best least squares solution is reduced to an explicit algebraic formula. The theory is
illustrated by application to a general linear two-point boundary value problem, for which a new proof of
the existence and uniqueness of the best least squares solution is obtained, without the use of Green’s
functions.

1. Introduction. Motivated by applications to boundary value problems, let us
consider the following situation. A linear mapping L takes an inner product space X
onto an inner product space Y. The spaces X and Y need not be complete, and L
need not be bounded, but L is assumed to have a finite dimensional nullspace N(L).
The algebraic duals of X and Y are denoted X* and Y*; these are spaces of all linear
functionals, not necessarily bounded, on X and Y respectively. A subset {fl," , f,}
of X* and an element y of Y together define an interesting problem: among all x in X
satisfying the constraints

(1) fi(x) 0, i=l,...,m,

find the best least squares of the equation

(2) Lx =y.

A precise definition of best least squares solution is given in the next section.
Henceforth it is abbreviated to BLSS and denoted by x*.

It is not surprising that in some cases problem (1) (2) has no exact solution. In
fact, it can happen that problem (1) (2) does not have even a BLSS. Let us define the
functionals fl," , f, to be admissible constraints ]’or L if and only if problem (1) (2)
has a BLSS for any y in Y. In 3 and 5 we give necessary and sufficient conditions for
a set of functionals to be admissible constraints for L.

Let F=--[fl,...,f,] be the subspace of X* spanned by fl,’’’,fm, and let
Fo {x XI f(x) 0 for all f F} be the annihilator of F in X. Then F0 is a subspace of
X consisting precisely of those x satisfying (1). Now define LIFo, the restriction of
L to F0. In case the BLSS x* exists and is unique for each y Y, there is defined a
unique mapping from Y to F0, called the generalized inverse of L and denoted
that is ’*y=x*. Thus, finding the BLSS of problem (1) (2) for every y Y is
equivalent to calculating the generalized inverse

Many other generalized inverses can be defined [2], but it is claimed that the type
of inverse considered here has great practical importance. This * is the analogue of
the Moore-Penrose generalized inverse of linear algebra. Besides the obvious rele-
vance to least squares approximation problems, our generalized inverse arises
naturally in bifurcation theory. Very briefly" bifurcation is the branching of solutions
to a problem. The classical inverse function theorem guarantees local uniqueness.

* Received by the editors October 23, 1975, and in revised form September 20, 1976.
Department of Mathematics, McGill University, Montreal, Canada H3A 2K6.
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Therefore bifurcation can occur only when the inverse function theorem fails to apply,
and so bifurcation theory can be thought of as a study of "generalized inverse function
theorems." The generalized inverse studied here is most appropriate for many bifur-
cation problems; see [6], [7], [12].

The next section contains basic definitions necessary for the study of problem (1)
(2). Section 3 presents the main result of this paper, an existence and uniqueness
theorem for the BLSS of problem (1) (2). In 4, this theory is applied to the general
linear two-point boundary value problem

(3) d--+Ax y(t), (a, b),

(4) Mx(a)+ Nx(b O,

where x X Cin [a, b], y Y C,,[a, b], and M and N are rn x n matrices with
0-< rn _-< 2n. Previous studies [1], [8], [11] of this problem used a cumbersome process
of completion to the Hilbert space L2[a, b], eventually followed by the proof of
regularity results using generalized Green’s functions. Here we are able to show
directly that there exists a unique BLSS x* in C1/4 [a, b].

Section 5 presents useful explicit formulae which characterize the set of admis-
sible constraints, and facilitate the calculation of the BLSS. Finally, the Appendix
gathers together certain identities which are used in proving the main theorems.

2. Definitions. All scalars are assumed real for convenience; the extension to
complex inner product spaces is straightforward. The assumption that L maps onto Y
is not a limitation in applications. Since Y need not be complete, it can be defined to
be the range R (L) of the unconstrained mapping L.

The two inner products in X and Y are both denoted by the same symbol (u, v)
without confusion, and the two resulting norms are indicated by the usual notation
tlul[, The operation of a functional f in X* on x in X is represented by the notations
(x, f) f(x), and similarly for Y* and Y. The spaces of bounded linear functionals on
X and Y (in the topology induced by the inner product norms) are denoted X’ and Y’
respectively, and called here the norrned duals of X and Y. Most recent works on best
least squares solutions and generalized inverses employ only the normed dual spaces,
or in particular Hilbert space (which is its own normed dual), see [2], [9], [10].
Although algebraic duals are very simple in structure, they have important properties
which differ subtly from the familiar properties of normed duals. These properties are
reviewed in the Appendix.

First we give a precise definition of BLSS (best least squares solution). The set of
least squares solutions (LSS) of problem (1) (2) for a given y in Y is

(6)

(7)

(8)

S {u Fo lltu YII [Itx yl[ Vx Fo}.

Then a BLSS x* of (1) (2) (if it exists) is a minimum norm element of Sy, that is

IIx*ll <--Ilull Vx s.
The adjoint L* of L is the mapping of Y* into X* defined in the usual way by

(x, L’y*) (Lx, y*) Vx X, y* Y*.

The adjoint * of is defined similarly by

(x,*y*) (x, y*) Vx e Fo, y* Y*.
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The inner product spaces X and Y can be embedded in X* and Y* respectively
in a natural way, that is given z X, there is a unique z* X* defined by

(9) (x, z*) (x, z) Vx X,

and similarly for Y and Y*. It is often convenient to identify such z and z* and
write

(10) (x, z) (x, z), x, z X.

Note that this identification mapping is one-to-one. The notation SIx is used to
indicate that a subset SX has been embedded in X*. Sometimes we do not
distinguish between a subset of X and its embedded image in X*, and write for
example X c X*.

The orthogonal complement of a subset S of an inner product space X is defined
by

(11) S {x Xl(s, x 0 Vs S}.

If S and F are subsets of X and X* respectively, then the annihilators of S and F
are defined to be

So {x* X*l(s, x*) 0 Vs S},
(12)

Fo {x Xl<x, f> 0 /f F}.

Note that SO and F0 are subspaces but are not closed in general. Annihilators are
related to complements by

S
_

x* S_ =SO-(sl )o, x* c x,

3. Existence theory.
LEMMA 1. Problem (1) (2) has a unique BLSS for each y Y if and only if the

annihilator of the range of lies in Y, i.e.

(13) (LF0) (LFo)+/- Y.

Proof. For convenience write Z (LEo). Note Z is finite dimensional since F is
and L is onto. First assume (13) is true. Then Z is orthogonally complemented in Y by
the corollary to the projection theorem in the Appendix, i.e. Y ZZ-. But Z+/-=
[(LFo)-]+/-= [(LFo)]o LEo, by Lemma 5 in the Appendix. Hence

(14) Y Z q3R ().

Now, by the projection theorem, every y
is nonempty. Finally, Sy has a unique minimum norm element x* since N(A) is finite
dimensional, using another application of the projection theorem.

For the converse, suppose there exists a unique BLSS for every y Y. Then, by
the projection theorem again, for any y
(LEo)- such that y y + y2; therefore

15 ) Y LFo (LFo).
Suppose (13) is false, then there exists Z1Z with Z11 (LEo)+/-. Since (LEo)+/- is finite
dimensional, it has an orthonormal basis {Ux,’’’, up}. Define z2 Z by

p

(16) (y, Z2)=(y, ZI)
k=l
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for all y e Y. Then

(17) (v, z2) 0, k 1,. , p,

but also z2(LFo)--O, so by (15), z2-=0. But then (16) implies

(18) Zl 6 (LFo)+/-,

which completes the proof.
LEMMA 2. For any F and L as defined in the introduction

(19) L*(LFo)=F N(L).
Proof. Note L*(LFo)= L*Z {x* 6 X*lx*(x) zLx, z Z}. If x N(L) then

zLx 0 for all z Z, so L*Z
_
N(L). If x F0, then zLx 0 by definition of Z, so

L*Z
_

(Fo) F, using Lemma 6 in the Appendix. Hence L*Z
_
F CI N(L). For the

converse, we use N(L)= R(L*)= L’Y* from Lemma 8 in the Appendix. Suppose
x* F (3 N(L), then x* L’y* for some y* Y*, and furthermore for all x Fo,
0 x*(x) y*Lx. Hence y* Z and x* L*Z.

THEOREM 1. Problem (1) (2) has a unique BLSSfor every y Y iff each constraint
in F which annihilates N(L) is of the form f(x)= (Lx, y) for some y Y, i.e.

(20) FfqN(L)L*Y.

Proof. This follows immediately from Lemmas 1 and 2, using the fact that L* is
one-to-one (since L is onto).

A weakened form of Theorem 1, which may be easier to use in applications,
follows.

COROLLARY 1. A sufficient condition for problem (1) (2) to have a unique BLSS
for each y Y is that the constraints (1) satisfy

(21) f 6N(L)IX*L*Y, i= 1,..., m.

If Y is finite dimensional, we get the following verification of the well-known fact
that the Moore-Penrose inverse of any finite matrix exists and is unique.

COROLLARY 2. If Y is finite dimensional, the BLSS of the problem x y exists
and is unique for each y Y.

Proof. For finite dimensional Y, y]V* Y*, or more crudely, Y- Y* There-
fore, Corollary 5 in the Appendix shows that (21) is always satisfied.

Recall that functionals f,..., f,,, in X* were defined in the Introduction to be
admissible constraints for L if and only if problem (1) (2) has a BLSS for every y in Y.
Theorem 1 then states that fl,""", fm are admissible constraints for L iff they satisfy
(20). A more explicit characterization is given in 5.

We now turn to a characterization of the generalized inverse * of 5f, as defined
in the Introduction.

COROLLARY 3. The generalized inverse * exists if and only if the constraints (1)
satisfy condition (20) of Theorem 1. In this case, * has the following properties.

(a) L* is linear.
(b) D(*) Y, N(*) Z.

(22)
(c) R (*)= N()+/- CI Fo.
(d) tff qO, tQpt t.
(e) .t is the orthogonal projector O[Fo onto N()+/-.
(f) .L* is the orthogonal profector of Y onto R (L).

The proofs are all immediate.
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4. Application. In this section, we apply Theorem 1 to the. general two-point
boundary value problem

dx
(23) Lx =--+ a(t)x y,

(24) Mx(a + Nx (b O,

where

x y

x y A (aii),

the functions aij are assumed continuous on [a, b], and M and N are tn n matrices
with 0-< m-< 2n. We take

(25) xeX=Cl,,[a,b], and yeY=C,[a,b].

By well-known theorems, L defined by (23) maps onto Y. The problem (23) (24) does
not have a solution in general; we ask whether it has a best least squares solution with
respect to the usual L2 norm

b

(26) }lu[I (u, b/)1/2, where (u, v)= Ia v*(t)u(t)dt.

Here v*(t) denotes the transpose of the vector v(t). The boundary conditions (24) are
to be thought of as linear functionals on X. Any such boundary conditions are just
linear combinations of the 2n linear functionals defined by

(27)
fi(x xi(a ), 1,’’’, n,

fn+i(X)’-- xi(b), i= 1,’’’, n.

Note that the functionals (27) are unbounded in the topology induced by the norm
(26). Clearly X and Y are not complete, and the mapping L in (23) is unbounded.
These features are no obstacle to the application of Theorem 1. Previous studies [1],
[8] and [11] of this problem have proceeded by completing Y to the Hilbert space
L2[a, b] and extending X to the space of absolutely continuous functions with deriva-
tives in L2[a, b]. It is easy to show that the BLSS exists and is unique. However, in
applications it is important to know the smoothness of a solution. An elaborate
construction involving a generalized Green’s matrix shows that if y Cn[a, b] then
x Cn[a, b]. The present more general theory achieves this result directly.

According to Corollary 1, it is sufficient to show that 1,’",f2, satisfy (21).
However it is clear that we could reorder the xi’s and interchange a and b, so that it
suffices to consider fl of (27). In fact we establish in Lemma 3 a stronger result than
(21). Note that in this example, X can be considered a subspace of Y, which as before
is a subspace of Y*.

LEMMA 3. In example (23)-(26) the boundary functionals (27) satisfy

(28) f,. N(L)Ix*L*X, 1,..., 2n.

Proof. By symmetry it suffices to consider fl. Let (t) denote the principal matrix
solution defined by

(29)
d--A(t) 0, (a) L
dt
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Then the columns of are a basis for N(L); write them (I)(1), (I)(n). The Gram
matrix is

b

G Ia *(t)(t) dt, i.e. Gii (alp(i),

Now for any x s X,

(30) fl(X) ((I), fl)G-I(x, dp)+ hi(x),

where hi sN(L)= R (L*), and

(1, O, , 0),

(31)

Hence,

(x, (:I:)) b*(t)x(t) dt.

(32)

=xl(a)-- al,

where a is the first coefficient in the expansion

X Ogilff(i) "+" U,
i=1

Now we seek z s X such that

Xx(a)-- o1 (X, hi) (x, L’z)

b

hi(x)-" xl(a) (1, 0,..., O)G-’ Ia *(t)x(t) dt

(Lx, z)

u N(L)I.

(33) z*(t) --+ Ax dt

Z*Xlb+ --+A*z x(t) dt,

where we have integrated by parts, assuming z s X. But (33) holds if z satisfies

0

(34) z(b)= .v z(a)=-:o and

(35)
dz

---+A*z -(t)G-1

dt
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The general solution of (35) by the variation of parameters formula is, for arbitrary
3’R,

z(t)=*-a(t)

1

I rb*(s)rb(s) ds G-a

Clearly the choice

satisfies both of the conditions in (34) simultaneously, hence ha L*z where

1

-*-a(t) I *(s)(s) ds G-a X.

From this lemma and Corollary 1 we immediately obtain
THEOREM 2. The general two-point boundary value problem (23)-(26) has a

unique BLSS x*6 Ca,[a, b] ]’or any y Cn[a, b] and any boundary conditions of the
form (24).

The applicability of this theory to more general boundary value problems is
indicated, but will not be pursued here. Instances in which problems of the form (1) (2)
arise are described in [6] and [12].

5. Explicit formulae. This section presents explicit formulae (in Theorems 3 and
4) which replace certain calculations involving with calculations involving L and
some matrix operations. The assumption is that it is easier to work with the uncon-
strained operator L than with the constrained operator . In the case of differential
equations, this amounts to the observation that initial value problems are easier to
solve than boundary value problems.

Let {bl," ", 4,,} be any basis for N(L). (For ordinary differential equations,
these are solutions of n initial value problems.) It is not assumed that these solutions
have any special minimization or orthogonality properties. We use the same symbols
bi to denote their images in N(L)Ix*, and write

(x, i) =(x, bi)= i(x), x eX, i= 1,..., n.

Define the Gram matrix G as usual by

Gii ()i, (j), i, j 1,. , n;

and use the given constraint functionals to define the m x n matrix A (aii) by

ai=f(4) =(4,fi), i=l,...,m, j=l,...,n.

It follows from Corollary 5 in the Appendix that there exist unique constants bi R
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and functionals hi R (L*) such that

(36) fi Y’, biicki + hi, 1,. ., m.
/=1

Direct calculation shows that the matrices G, A and B (b0) are related by

B =AG-1.(37)

Introducing the notation

fl
(38) f= b and h=

we can write (36) as

(39) f AG-ld+h.

hi

Let A* denote the transpose of the matrix A and N(A), R(A) denote the usual
nullspace and range of A in R" and R respectively. Suppose that the rank of A is r.
Then we define an n (n- r) matrix C (cii) such that the columns of C are a basis
for the nullspace of A. Similarly define the m (m- r) matrix E =(eij), of which the
columns are a basis for N(A*), and write

(i)(40/ e Iei 11 i-1,...,m-r.

It is convenient to extend the vector notation (38) further with the conventions

(41) a *+ Ogii, where a e R",
i=1

(42) f(x)=(x,f}= and E’f-=

(x, f,,,)l

e(X)*f 1
e (m

LEMMA 4. The space F f) N(L)=L*Z ofLemma 2 is spanned by the components
of E*f. The space Z (LFo) is spanned by the components of the solution =(//1,""", m ): Of
(43 L* E*f.

If the given constraints fl, f, are linearly independent, then the components of E*f
and are bases of their respective spans.

Proof. Clearly each component of E*f is in F and annihilates every i. Con-
versely, suppose g F N(L). Then

g= aifi=a and for j=l,.., n,
i=1

0 g(&)= a*f(&i)= a*A(i),

which implies a N(A*)= span (E), and so g span (E*). The remaining assertions
follow from Lemma 2 and the facts that L* is one-to-one and E* has full row rank.
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In view of this lemma, the basic existence Theorem 1 can .be rephrased as" The
constraints (1) are admissible if and only if.each component of E*[ lies in L*Y. From
this one easily obtains the following explicit characterization of a general set of
admissible constraints.

THEOREM 3. Given any positive integer m, any m x n real matrix A, any g=
(gl,"’,gn)* with gleN(L), and any x=(xl,...,x,)* with xieX, define f=
(fl,’" ",fro)* by

(44) f AG-ltb + Ag + L*Lx.
Then f,..., fm are admissible constraints for L. Furthermore, any set of admissible
constraints for L can be written in this form (44).

Henceforth we assume that the constraints (1) are admissible, and weconsider
the problem of actually calculating the BLSS of problem (1) (2). One approach is to
use the "normal equation" which is well known in a Hilbert space context, see [2], [8],
[9] and [10]. That is, x F0 is a least squares solution (i.e. minimizes Ilx-Yll) if and
only if x satisfies

(45) *x *y.

If one is able to solve the normal equation (45) for x, it is then an easy matter to
project x onto N()+/- and thus obtain x*. However, there are computational draw-
backs associated with (45); the determination of *[v may be difficult and the product

* is often ill-conditioned. Instead we proceed now to reduce the calculation of the
BLSS to calculations involving finite matrices and the unconstrained operators L and
L*. Without any loss of generality we can assume that the constraints (1) are linearly
independent.

THEOREM 4. Suppose the constraints (1) are admissible and linearly independent.
Then the BLSS x* of problem (1) (2) ]:or any y Y is given by the following sequence of
calculations"

(a) ) y-**H-a(y,
(b) xv is any solution of Lxv (not necessarily in Fo),

(46) (c) a -PT,sA*(x, i)--Ps,TG-(xp, dO),
(d) x* *OI. -t-Xp.

The new symbols introduced in these formulae are defined as follows"
H (Og, Oi),
G (bg, 4)) (G and H are Gram matrices),
A* Moore-Penrose inverse o[ matrix A,
Pr,s n x n idempotent matrix (pro]ector) with range T and nullspace S,
Ps,r I -Pr,s (I n x n identity matrix),
T range of matrix G- A*,
S nullspace of A.
Remarks. (i) The O’s are defined by

(47) L*t[ti e(i)*f 1, ", m r;

see (40) through (43). Equations (47) are not as formidable as they might at first
appear; L* is often very similar in form to L, and Theorem 1 guarantees that the Og’s
are not general functionals in Y* but actually lie in the more familiar space Y. Thus
(47) may be no harder to solve than (2). (See 4.)

(ii) The invertibility of/4 follows from the assumed linear independence of the
constraints, and Lemma 4.
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(iii) It is not necessary to use the Moore-Penrose inverse A* in (c), in fact, in the
notation of [2], any {1}-inverse will do, that is any matrix A(1) satisfying the first
Penrose condition

(48) AA(IA =A.

Recent advances in numerical linear algebra (e.g. [4]) make the computation of A* or
A (1) a routine matter.

Proof of Theorem 4. The preceding theorems guarantee that any y e Y has a
unique projection on R()= LFo, and it is given by (46a). Now the BLSS of problem
(1) (2) is the same as the minimum norm solution of problem (1) (46b). This must
certainly be of the form (46d) for some a, so it remains only to derive (46c).

Apply the constraints (1) to (d) and find that a satisfies

(49) Aa -(x,, f),

where the right hand side is automatically in the range of A. Define

(50) : -A*(xp, f);

then the general solution of (49) is

(51) a :+ , N(A).

Let C be an n x (n r) matrix whose columns form a basis of N(A). Then rt Ctr for
some tr e Rn-r, and a basis for N() is given by the components of C*+. Now r/ is
determined by the condition that x* N()z, i.e.

0 (+*c + x., C*+)

C*G+ C*GCtr + C*(x,, d).

Hence, since C*GC is nonsingular

(52)
-C(C*GC)-Ic*[G "[- (Xp, +)].

Since G is positive definite and Hermitian, it has a unique positive definite Hermitian
square root K. Employing the reverse order property established by Greville [5], we
can write

(C*OC)-l (C*KKC)-1-- (KC)*(C*K)*.
Therefore

(53)

C(C*GC)-IC*G C(KC)*(C*K)*C*KK
K-1KC(KC)*PRKc)K
K-1pu(Kc)K

where PR(r,C)is the orthogonal projector on the range of KC. Substituting (50), (52)
and (53) into (51) gives (46c).

Theorem 4 has been applied in [7] to construct a shooting algorithm for the BLSS
of the general linear two-point boundary value problem in 4.

Appendix. A basic tool in this paper is the projection theorem for a pre-Hilbert
space, which we use in the following form, only slightly modified from that in [9] or
[13].
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THEOREM 5 (Projection Theorem). Let Vbe an inner product space and letMbe a
subspace of V. Given any v V, a necessary and sufficient condition that mo M be a
unique minimizing vector satisfying

I[v moil <- [Iv m for all rn M,

is that v- mo be orthogonal to M, that is

(v- too, m)= 0 for all rn s M.

If mo exists, it is unique. IfM is complete, mo exists.
An important consequence of the projection theorem is"
COROLLARY 4. IfM is a complete subspace of an inner product space V, then

V=MM+/-.

Proof. See [9].
LEMMA 5. If S is a subset of a linear space X, then

(54) IS] (S)o.
For a proof based on Zorn’s lemma, see Theorem 1.9A in [13]. Note that if

consideration is restricted to bounded linear functionals and we denote the normed
annihilator of S by

then (54) becomes

SO’ SO X’,

Is] (s’)o Is-q,
where the bar indicates closure [13].

LEMMA 6. ffF is a finite dimensional subspace of a dual space X*, then

(5 5) F (Fo).
Proof. Clearly F (Fo). For the reverse inclusion, construct a basis {fx,. f,}

of F and a set {x,..., x,} in X satisfying

(Xi, L’)-- ij, i, j 1,..., m.

This can be done using a double Gram-Schmidt procedure, by Theorem 1.71B of
[13]. Any x s X can be written

x x(x, L> + x E x(x, L
]=1

from which it easily follows that

X= [x, x]Fo.

Now suppose f* (Fo). Then for any x s X,

f* x- x(x, L.) =0,

SO

if(x)= E f*(x)f,.(x),
j=l

which shows f* F.
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For a general subspace F of X*, equation (55) must be weakened to

F
___

(F0).
This is true even if the functionals are restricted to X’.

LEMMA 7.

(a) R (o)o N(*),(56) (b) R()= N(Sf*)o.

Proof. Part (a) follows directly from (8), the definition of *. Part (b) is a
consequence of Lemma 5.

Note that N(*) is precisely the subspace Z of 3 and 5. For the normed dual,
(b) is no longer valid.

LEMMA 8.

(a) N(L)= R (L*)o,(57)
(b) N(L) R (L*).

Proof. Part (a) follows from (7), the definition of L*, (see Theorem 1.91D of
[13]). In part (b), R(L’)_ N(L) follows from (7), but the reverse inclusion is false for
general L. However, in our case, N(L) is finite dimensional, so by the corollary to the
projection theorem,

(58) X=N(L)@N(L)+/-,

i.e. for any xX there exist unique xoN(L) and x N(L)+/- such that

(59) X Xo-["X1.

Now the restriction of mapping L to N(L)z is one-to-one and onto; for any y Y
there exists a unique Xl N(L)

+/- such that Lxl y. To show N(L) c_R(L*), take any
x* N(L). Define a corresponding y* e Y* by

where xl is the unique solution in N(L)+/- of Lxl-y. Now for any x X,

<x, L’y*> <Lx, y*> <LXl, y*> <x
where Xl is as defined in (59). But x* N(L) implies (x, x*) (Xl, x*) for all x X, so
we conclude x* L*y *.

COROLLARY 5.

X* N(L)[X*@R (L*).
This follows from Lemma 8 by an argument similar to that in the proof of Lemma

6.
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ANALYTIC CONTINUATION VIA HADAMARD’S PRODUCT*

BARBARA FROMM CHAMBERSt

Abstract. This paper presents an operational procedure derived from Hadamard’s convolution product
which is used to construct continuations of analytic functions in the form of integral functional represen-
tations. These representations are more useful in the study of analytic properties than the underlying
Taylor’s series, and the method extends the previously well-established continuation results of Borel and
Mittag-Leflter.

1. Introduction. The purpose of this research note is to develop a generalized
procedure for constructing continuations of analytic functions which may exist beyond
any of the Taylor series’ circles of convergence. The method is based on Hadamard’s
product and includes, as special cases, the established results of Borel [3, p. 122] and
Mittag-Leffler [9, pp. 431-438].

To begin, consider a function, f(z), analytic in a region R. This function, as an
abstract equivalence class of mappings, is characterized by its representations, i.e.,
mathematical expressions which coincide with f(z) in their individual regions of
analyticity. Typical representations are tables, graphs, figures, Taylor series, Laurent
series, Weierstrass factorizations, Mittag-Leflter expansions, Laplace transforms,
differential equation, integral formulae, etc. The properties of any such function can
then be investigated by means of these representations, and these properties can then
be extended to as large a subset of R as permitted by analytic continuation.

Of course, f(z) can be represented by a Taylor series in the neighborhood of
every point in R, and f(z) can be completely characterized by the collection of Taylor
series whose circles of convergence cover R. However, this is usually a large and
unwieldy collection from which it is difficult to derive functional properties. The
following problem is posed in this paper: Given one of the Taylor series in this
collection, which may be taken to be about the origin, construct a single represen-
tation of f(z) which contains the given series’ circle ofconvergence and also points in
other circles of convergence of Taylor series which may continue the chosen one.

The procedure for solving this problem involves expanding radially through arcs
of the circle of convergence which do not contain barrier points. Thus the continuation
will be confined to the principal star, i.e. the largest open subset, P, of R such that if a
point p P then the radius segment op P. (P does not necessarily coincide with R.)
Any such continuation would necessarily exist in a subset of P, and is called a radial
continuation. Finally, the techniques developed in this paper have also been used by
the author [4, pp. 77-80], to study the genus, order and singularities of products and
continuations, and [5] to generate a transform calculus which is used to study stress
system applications.

2. The continuation. First, consider Hadamard’s product.
DEFINITION. Let

f(Z)’- anzn, IZ[< R1,

g(z)=Eb,,z", Izl<R2;

then the series h(z)= a,,b,,z" is called the Hadamard product and the function h is
denoted f.g. Hadamard’s theorem [4, p. 75] states that this series converges for

* Received by the editors November 18, 1975, and in final revised form April 11, 1977.
5" Department of Mathematics, George Mason University, Fairfax, Virginia 22030.
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Izl<R, where R is at least equal to the product R1R2. Also, for [zI<RIR2,
RIIZ/] < R2 it is well known that

h(z)=/ f()g(z/) d/,

where is a simple contour encircling the origin. This form displays the convolution
quality of the product, and indeed provides a possible continuation of h(z) by
deforming . Further details about this particular result are presented in [4].

The next. step in the continuation of the given function f(z) is the selection of an
integral function, g(z), to be used as a test weighting function to represent f(z) over
the entire complex plane. It is based on the following lemma concerning the
Hadamard product of an analytic function and an integral function.

LEMMA. Letf(z)=Y, az", ]z[ <R, and g(z) be integral, i.e., g(z)= b,,z n, for all
z then h (z) f,g(z) Y anb,z" is an integral function.

Proof. By Hadamard’s theorem, we may assume that Y’. a,b,z" converges for
Izl<R, where R >0. Hence 1/R >-0. But it is known that

1/R lim sup [a,bn[/

-<lim sup la,,[ /" lim sup [b,,I 1/"

_--< (1/R1)lim sup Ibnl 1/.

But since g(z) is an integral function, lim sup,_, ]b,,] /" =0. Therefore, 0=< 1/R <-0,
and a,,b,,z" converges for all z.

Of course, h(z) is not an analytic continuation of f(z), but rather its weighted
average over the integral function g(z) which spreads the analytic existence of f(z)
within R over the entire complex plane. The final step is to condense h (z) (viewed as a
distorted f(z)), back into a smaller domain in such a way so as to recover f(z), in a
different form, which would represent a continuation of f(z) past any arc in [z[ R1
through which a continuation existed.

Proceeding formally, denote a test integral function by (z)= Y 0,z ", where
none of the , are zero. Then form the product integral function, ]’,(z). We now
propose to find a linear functional, , operating on the class of complex valued
functions and a parametric function, p(z), such that an analytic continuation, fc(z) of
f(z) can be expressed as follows in a continuation region Rc containing {z[ Izl < R1}:

L(z) be**(zo (’))], zRc.
Here z is held constant, and operates through the argument, sr, of the parametric
function p. Since is linear, and ]’,q is integral in its argument, we have for our
continuation, f(z):

L(z)=

Z#[E a,,g,,,z"p" (’)]

E
which must coincide with f(z)= a,,z", within the region [zl< R 1.

If such an and p exist, then necessarily they satisfy the following conditions"

c[p" (()] 1/q,,, n=0, 1,2,....
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(Note: the requirement that the test function, (z), have every term in its Maclaurin’s
series is necessary here. This is a reasonable requirement, since otherwise some
information about ]’(z) within Izl< R, i.e. some of its coefficients, would be lost in the
associated product integral function, f,gr(z), and on condensing back through and O
we would not in general be able to obtain a continuation of f(z).) We now apply this
general formulation to some specific continuations.

3. IHustrative methods.
3.1. The Borel method. Choose the test function, (z)=exp(z)=

{1/F(l+n)}z . Clearly, 1/F(l+n)0 for n=0,1,2,...,and (z) is an accept-
able test function. The basic conditions given above become:

[p(’)] F(1 + n)= Jo e-sr" dsr’ n 0, 1, 2,....

By choosing O(sr) " and [F] Jo e-F() d(, we then have

L(z)= d(] J0 e-f* exp (z() d(.

By expressing [, exp(z) in the contour integral form given in the introduction, Borel
[3, p. 122] has shown that L(z) is an analytic continuation of [(z) into a polygonal
region Rc containing {z lz < R 1}.

This well-known polygon is tangent to the original circle of convergence of [(z) at
the barrier point(s) on the circle. Depending on the number and location of the barrier
points of f(z), Rc may be a semi-infinite region, but if a principal star continuation
region exists, then R will not extend into the star beyond the polygonal edges.
Mittag-LeItter presented a refinement of Borel’s approach which extended the area of
continuation R further into the principal star. We will now consider how this
refinement is obtained from our method.

3.2. The Mittag-Leffier method. This method is based on the test function
(z)=E,(z)={1/F(l+cn)}z" which is an entire function for all a>0. Since
El(Z)= e , this method should include the Borel method as a special case. However,
note also that as a 0, E,(z) 1/(1- z). This is not an integral function, but does
have only one isolated singularity at z 1. Functionally, it is also the Cauchy
integrand for z0 1, and, as we shall see later, this is very helpful in examining
continuations into the entire principal star.

In this case, the basic conditions become:

c[p" (r)] r(1 + an)= Io e-(" d(, n=0, 1,2,...

By choosing here p(r)= sr and as in the Borel method we then have

f(z)= I0 e-f*E’(z(’) d(.

Mittag-Lettter [9, p. 434] has shown that [(z) is an analytic continuation of f(z) into a
region R which we will now examine.

Without loss of generality, we may consider one of the isolated singularities of
f(z) to be located at z 1. The principal star associated with this singularity will be a
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region in the right half plane cut from + 1 to +oo. Now, the boundary of the continua-
tion region will then depend on the value of the parameter a. For a 1, it is easy to
see from the integral for fc(z) that Rc becomes the Borel polygon. At z 1 the
boundary is a vertical line with that portion of Rc satisfying Re (z)< 1. For a > 1, this
line folds towards the origin following a parabola-like shape, and in general Re is a
curved, convex region contained in the Borel polygon. However, for a < 1, the line
folds outward around the positive real axis, with the region of convergence being to
the left. Again it is a conic-like shape, and in fact for a 1/2 it becomes exactly one
branch of the hyperbola, x2- y2= 1. These variations are shown in Fig. 1.

For other barrier points, similar outward folding curves form the boundary and
have as their axes the radial lines through the barrier points. In general, Hille [7, p. 69]
has shown that the cusp-shaped region formed by the intersection of these conic-like
edges is the region of convergence of the Mittag-Leffler method, and extends further
into the principal star than the Borel polygon. Finally, as a - 0, the arms of the cusps
fold out along the radial lines, and for a chosen small enough, any point in the interior
of the principal star can be made to lie within the Mittag-Leffler region Re. We will
now consider other new methods and examine their convergence within the principal
star.

iy

a>l

FIG. 1. Mittag-Leffer continuation

3.3. Other methods. The next method is based on the use of LeRoy’s sum as the
test function, i.e.,

(z)= R (z) Y {F(1 + an)/F(1 + n)}z".

For 0 <_-a < 1, this is an integral function, since if R is its radius of convergence, we
have that

1/R lim sup {F(1 + an )/F(1 + n)} lim sup Kn-1 O.

The basic conditions become here"

[p"]=F(l+n)/F(l+an), n =0, 1, 2,....
From Magnus and Oberhettinger [8, p. 9], we can write,

(x + y 1) f
1/2/o

1/B(x, Y) 1 er-" (1 o’)-y do"
2 rri a1/2-ioo
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where Re(x + y)> 1, and we have chosen a b 1/2 and o" 1/2 + it in the given
formula. Using the fact that

r(x)r(y)
B(x, y)=

F(x +y)’

and letting x 1 + an, y (1 a)n, x + y 1 + n, we have

F(1 + n) F((1- a)n) nl-’((1- a)n) f 1/2+ix3
-1-ctn

/ o" (1 o’)-(-’" do’.
F(l+an) B(l+an, (1-a)n) 27ri al/2--icx

But since z F(z) F(z + 1), we have

F(1 + (1-a)n) 1 [a)n) e d’.
(l-a) 1-a 0

Combining, we finally obtain for the LeRoy coefficients,

F(l+n) 1 I?fl/2+i[,r(X-a)]ndoF(1 +an)-2zri(1 a)
dr e

"1/2-ioo o" (1 r)(x-)J o"

By choosing p(’)= r and

1 I0 f
/=+ .bz’r(x-a) Jdo"[F]

2zri(1 a)
d" e-"

.q/2- loo o" (1 or)(l-a) O"

we have for the continuation

1 I? f1/2+i [ ZT"(1-a) ]do/(z)
27ri(1 a)

dr
.1/2-io

e-f*R’
o"’ (1 o’)(-} o"

To demonstrate that this actually is an analytic continuation, we observe that for
finite z, tr,f*R has a uniformly convergent series expansion in z, clearly given by

F(1 +an)
f*R,(z ) Y a,,z".

F(l+n)

By choosing 0-< " <- ’o, to0-< I, (tr) =< too, we can interchange summation and
integration over this rectangle. Setting Izl < R, to obtain uniform convergence in z0
and too and then letting these bounds become infinite, we finally obtain fc(z)= f(z) for
[z]<R1. Of course, this demonstrates only that theoretically fc(z) is an analytic
continuation. If f(z) can be continued beyond its circle of convergence, this result
provides no further information. We would now like to examine the behavior of fc(Z)
in the principal star.

First note that for a 0, Ro(z)= e z, which generated the Borel method. Thus we
should obtain continuations at least into the Borel polygon outside of the circle of
convergence. Next, because of the functional linearity of these methods and the
synthesizing structure of the Cauchy integral formula, Hille [7, p. 69] has shown that
in general it is sufficient to examine the extent of continuation obtained by using the
geometric series

f(z)= 1/(1-z)=Ez", [z[< 1.

Clearly the only barrier point is z- 1, and a- 1, n 0, 1, 2.... The principal star
for f(z) is the complex plane cut from +1 to +c. Because [1/(1 -z)]*R,(z)= R,(z),
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we have

f(z)=
2ri(1 a)

dr e-’R, o.,.,1/:z-i (1 o’)(1-)J
To determine the region of convergence of this linear transform, we consider first the
asymptotic behavior of Ro,(z). Barnes [1, p. 283] has shown that

(27r) 1/2

)1R,(z)" i:: (az /(2(1-,X))exp [(1--Ot)Ota/(1-a)zl/(1-a)],

[arg (z)1 < (1 a ,
and elsewhere tends to zero. For large values of r, the integrand in fc(z) thus behaves
like

[ Ol a/(1-t)Z1/(1-t),T ]1/2 [ ( (1
2rr(1-a)(l -V)o"(-’)/1-;) exp -r 1- r,,/(l_,,).il_r)

Because both o- and 1-r are bounded away from the origin on their path of
integration, the transform will converge in the region in which z is restricted by

-)Z(I_ a)a/(1 1/(l-a)]Re 1
r’’/’ (1 g) J

> 0,

where 1/2 -im < < 1/2 + ira.
Introducing the parameter by =1/2+i/2,-<<, letting z=re,

[O[ < (1 -a)/2, taking real parts and rearranging, we have

] 1rcos-[ 1
(0-(2-1)) cos <kl- 2(1-)-where tan-().

For the argument 0 in its permissible range, there will be a value o(0, ) for
which the lelt hand side of this relation is a maximum, which is given by

(2 1)tan
1

This then fixes a range for r within the region of convergence. Because of the
dominating effect of the -modulus factor over the -phase factor, 0 is bounded and
in general 01 < /4.

Let us determine this region explicitly for 1/2. From the above we have

0 0, 01 < /4, and the boundary becomes

r cosl/2(20)< 1.

The boundary of this region is the right branch of a hyperbola about the x-axis,
asymptotic to 0 +/- zr/4, and passing through z 1. This region is shown in Fig. 2 and
extends into the principal star beyond the Borel polygon.

Finally, the asymptotic expansion chosen above is not particularly convenient for
studying the behavior of the continuation as a - 0 or a -- 1. We know that as a - O,
R,(z)- e, uniformly in z and as a - 1, R, (z)- 1 / (1 z). By choosing asymptotic
expansions for R,(z) compatible with these elementary functional limits it is possible
to show first that as a- O, the continuation region becomes the Borel polygon, and
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iy

FIG. 2 LeRoy continuation.

second that as a 1 the region extends as far into the principal star as desired. This
latter property will be presented in more detail in the last example below.

For a general function, similar regions exist for each barrier point and, as noted
by Hille [7, p. 69], the total continuation region is the intersection of all of them. If
there are a finite number of barrier points, the continuation region Rc will be a
cusp-shaped figure extending from the edges of the Borel polygon and filling out into
the principal star as a 1.

For the next example, choose from Bateman [2, p. 211]. the integral function

1
G(z; , E (n + )F(n + 1)

z ", larg (n + 0)1 < rr,

/ a nonnegative integer, and not zero or a negative integer. By using the relation
z F(z) F(z + 1) recursively, we can write

(n + h )o F(n + 1)= Jo e-C("P ((’ ) d(

where Po (sr, h ) is a polynomial in r of degree/3. If we denote Po (sr, )= o ak (sr, )srk,
then the coefficients a are given by

ao(0, A)= 1,

a0(1, h)=(X-1), al(1, h)=1,

a0(2, h)=(h-1)2, al(2, h)=(2h-3), a2(2, h)=1,

a0(p, h )= (h 1)0, at(p, h )= (h r- 1)ar(p 1, h)+ a_(p 1, h ),

r= 1,2,... ,p-l, ao(p, h)= 1.

From the obvious choice of p and L we obtain the continuation as

/,

fc(Z) Jo e-CP ((’ h )f’Go (zsr; dr.

To examine the region of convergence, set f(z)= 1/(l-z). Then Barnes [1, p. 265]
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has shown that for Re (z)> 0 and [zl large

Gt(z , )--. eZ/z t

and elsewhere tends to zero. Thus the integrand of fc(z) behaves like

exp sr(1 z )]
z

and for Re(1- z)> 0, the integral will converge and the continuation will exist. This

reion is the half plane left of the vertical line passing through z 1, and is just the
Borel polygon for 1/(1- z). Similar convergence would exist at other singularities of a

eneral function f(z), and this formula would yield continuations into the Borel
polygon only.

For the final example, again choose from Bateman [2, p. 211] the integral
function,

1
E(z;h,)=(n+h)OF(l+an)Z, 0<a<2,

a nonnegative integer, and h not zero or a negative integer.
By slight rearrangement of the relationships in the last example, we may write

(n + I )F(1 +n ) e-(Po ((, ) d(

where P is the polynomial of degree B given earlier. The method produces the
following continuation formula,

(z)= e-0(, g*(z(; a, ) (.

Barnes [1, p. 291] has given the following asymptotic expansion,
B-1

N (z ;I, B) (z)0/ e

in the region larg (z)l < /2, with the function tending to zero elsewhere. By choos-
ing [(z)= 1/(1-z), we see as earlier that the integral formula will converge when z
satisfies

Re (1-z/)< 0.

In polar coordinates, this corresponds to

r cos (0/)< 1,

and for < 1, this is a hyperbola-shaped region folding around the principal star cut
from + 1 to +m having asymptotes 0 /2. In fact, for any given z near this edge
of the principal star (i.e. r large, 0 small), there will be a small value of which makes
0/ close enough to /2 so that the above condition is satisfied and the continua-
tion formula converges. Similar results hold for functions with other barrier points.

In conclusion, we note that in another paper to appear shortly [5] the Hadamard
product on which the continuations here are based is used as a Plancherel-type
formula to generate a transform calculus. The transform is used to study two dimen-
sional, irregularly shaped semi-infinite stress systems. The results presented here are
used to compute transform inversions in the continued regions by using asymptotic
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representations. This is similar to the approach used here to establish convergence of
the various continuations.
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ASYMPTOTIC BEHAVIOR FOR SEMILINEAR DIFFERENTIAL
EQUATIONS IN BANACH SPACES*

R, H. MARTIN, JR.’

Abstract. Suppose that X is a Banach space and consider the integral equation

(1) u(t)= T(t, a)(z -a(a))+a(t)+ Ia T(t, r)B(r, u(r)) dr, >-a >=0,

where {T(t,s): t>-_s>-O} is a linear evolution system on X, a: [0,)X is continuous, E cX, and
B: [0, c) E X is continuous. In this paper we develop methods for studying the behavior as c of
solutions u to (1). These results are based on Lyapunov-like methods and the proofs use standard
techniques. The abstract theorems are presented in the first section and some examples indicating the
applicability of these ideas are indicated in the second section. In particular, these methods are used to study
the behavior of solutions to systems to sernilinear parabolic equations.

1. Abstract methods. Let X be a Banach space over the real or complex field and
let l" denote the norm on X. In this section, the following notations and assumptions
are used.

(C1) T={T(t,s): t>-s>=O} is a family of bounded linear maps from X into X
such that T(t, t) I, T(t, s)T(s, r) T(t, r) for _>- s -> r -> 0, and the map
(t, s) T(t, s)x is continuous from {(t, s): s -> 0} into X for each x X.

(C2) EcX and B: [0, c)E-X is continuous and bounded on bounded
subsets of [0, c) E.

(C3) a is a continuous function from [0, o) into X.
Define the family S,, {S (t, s): -> s -> 0} of bounded affine mappings on X by

(1.1) S(t,s)x=T(t,s)(x-a(s))+a(t) fort->s->O and xX.

Now consider the semilinear equation

(1.2) u(t)=S(t,a)z+ T(t,r)B(r,u(r))dr for t_->a->0,

where z E. In this section it is assumed that

(C4) a [0, c), z E, and u: [a, c)E is continuous and satisfies (1.2) for all
--a.

Conditions on T and B insuring that (C4) is satisfied may be found in [5] and [11], for
example.

Our method for studying the asymptotic behavior of the solution u to (1.2) is
based on standard Lyapunov-like techniques; so it is also assumed that

(C5) V:[0, o)X[0, c) is continuous and for each R>0 there is a
continuous, nondecreasing function LR: [0, c) [0, o) such that IV[t, x]
V[t, y]l<=LR(t)lx--y[ for all t->0 and x, yX with Ix[,

As a comparison equation, it is supposed that tz: [0, ) I R is continuous and that
(C6) for each po -> 0 the maximal solution p(., po) to the initial value problem

y’ =/x(t, y), y(a)=po, t>=a, exists on [a, ).

* Received by the editors January 13, 1977, and in revised form July 1, 1977.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607. This
work was supported in part by the U.S. Army Research Office, Research Triangle Park, North Carolina.
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We have the following basic result for the growth of V[t, u(t)] as .
THEOREM 1. Irl addition to conditions (C1)-(C6) suppose that

lim inf- h-l(v[t h, u(t- h)]- V[t, S(t, t- h)u(t- h)/ hB(t- h, u(t- h))])
h-O

(1.3)
<- (t, v[t, u(t)l)

]:or all t>a. Then V[t, u(t)]<=p(t; V[a,z]) for all t<-a.
Proof. Note first that if t, h, t- h > 0 then

(1.4) u(t)=S(t,t-h)u(t-h)+ T(t,r)B(r,u(r))dr.
-h

Using the continuity of T, B and u it follows that

T(t,r)B(r,u(r))dr=hB(t-h,u(t-h))+ol(h)
-h

where [h-lo l(h)l - 0 as h 0+. Therefore, by (C5),

V[t, u(t)] V[t, S(t, t-h)u(t-h)+hB(t-h, u(t-h))l+o2(h),

where [h-lo2(h)l - 0 as h - 0+. Consequently, if p(s)= V[s, u(s)] for all s _>-O, then

D_p(t)= lim inf- h-l(p(t h )-p(t))

lim inf-h-l(v[t-h, u(t-h)]- V[t, u(t)l)
h-.O

<_- u(t, v[t, u(t)]) (t, p(t))

for all > a by (1.3). Solving this differential inequality (see, e.g., [8]), we see that
p(t) <-_ p(t, p(a)) for all _-> a and the proof of this theorem is complete.

Sometimes it is more convenient to place conditions on S and B separately to
estimate the behavior of V[t, u(t)] as - m. For this purpose define the directional
Dini derivative

(1.5) D_V[t, x]y lim inf-h-l(v[t, x -hy]- V[t, x])
h--}O

for all x, y e X and > O. As a consequence of Theorem 1 we have
COROLLARY 1. In addition to (C1)-(C6), suppose that 6" [0, c) is continuous,

that

(1.6) V[t,S(t,s)x] <- V[s,x]exp\( 6(r)d fort>-_s>-a and x X,

and that

(1.7) D_V[t, u(t)]B(t, u(t))<=l(t, V[t, u(t)])-6(t)V[t, u(t)]

for all t>a. Then V[t, u(t)]<-p(t; V[a,z]) for all t>-a.
Proof. Using (1.4) in the proof of Theorem 1 we obtain that

S,(t, t-h)u(t-h)= u(t)-hB(t, u(t))+Ol(h)
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where h-llol(h)l 0 as h - 0+. Therefore, by (1.6),

V[t-h,u(t-h)] >- V[t,S(t,t-h)u(t-h)]exp(- 6(r)d
-h

V[t, u(t)- hB(t, u(t))] exp (- 6(r) d + o2(h)
-h

0+where h-llo2(h)l - 0 as h - Consequently, since

u(t) S(t, t- h )u(t- h )+ hB(t- h, u(t- h ))+ 03(h ),

we see that

-h-a(V[t h, u(t- h )]- V[t, S(t, t- h )u(t- h)+ hB(t- h, u(t- h))])

<= -h-l(g[t, u(t)- hB(t, u(t))] exp (- 6(r) d V[t, u(t)]
-h

<-_-h-l(V[t, u(t)-hB(t, u (t))]- V[t, u(t)])+ h-lo4(h

+ V[t, u(t)- hB(t, u (t))]k 1 -exp (,, 6(r) /h
-h

--, D_ V[t, u(t)]B(t, u(t))+ V[t, u(t)]6(t)

0+"as h - The corollary now follows from Theorem 1 and (1.7).
Remark 1. Note that (1.3) in Theorem 1 is certainly satisfied if

+h-lo4(h)

lim inf h-(V[t- h, x] V[t, S(t, t- h)x + hB(t- h, x)])<= lx(t, V[t, x])
h -O

for all > a and x E. Similarly, (1.7) in Corollary 1 holds if

D_V[t, xlB(t,x)<-tx(t, V[t, xl)-6(t)V[t,x]

for allt>a andxE.
Sometimes it is convenient to study the manner in which small changes in the

initial conditions affect the asymptotic behavior of solutions to (1.2). So, in addition to
(C1)-(C6), suppose that w E and that v" [a, oe)-. E is continuous and

v(t)= &,(t, a)w + I, T(t, r)B(r, v(r)) dr for all -> a

that is, v is a solution to (1.2) on [a, oe) with z replaced by w.
THEOREM 2. Suppose that the conditions enumerated in the preceding paragraph

are fulfilled and also that

(1.8)

lim inf -h-l{v[t-h, u(t-h)-v(t-h)]

-V[t, T(t, t-h)(u(t-h)-v(t-h))+h(B(t-h, u(t-h))

-B(t-h, v(t-h)))]}<-tx(t, V[t, u(t)-v(t)])

]or all t>a. Then V[t, u(t)-v(t)]<-p(t; V[a,z-wl) for all t>_a.
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Indication of Proof. Define p(t)= V[t, u(t)-v(t)] for all >_-a. For the proof of
this theorem it suffices to show that

D_p(t)=- lim inf h-X(p(t- h)-p(t))<-_ tx(t, p(t)) forall > a.
hO

As in the proof of Theorem 1 we have that

u(t)= S,,(t, t-h)u(t-h)+hB(t-h, u(t-h))+Ol(h),

v(t)- S(t, t- h )v(t- h )+ hB(t- h, u(t- h ))/ o2(h ),

and hence that

u(t)-v(t)= T(t, t-h)(u(t-h)-v(t-h))

/h(B(t-h, u(t-h))-B(t-h, v(t-h)))/oa(h).

Therefore,

p(t)= V[t, T(t, t-h)(u(t-h)-v(t-h))

+h(B(t-h, u(t-h))-B(t-h, v(t-h)))]+o4(h),

and it follows from (1.8) that D_p(t)<= I(t, p(t)) for > a, and the proof indication of
Theorem 2 is complete.

COROLLARY 2. Suppose that the conditions enumerated in the paragraph
preceding Theorem 2 are fulfilled and also that 6: [0,)I is a continuous function
such that

(1.9) V[t,T(t,s)x]<-V[s,x]exp(. 6(r) fort>=s>-a andxX
\

and

(1.10)
D-V[t, u(t)-v(t)](B(t, u(t))-B(t, v(t)))

<-(t, V[t, u(t)-v(t)l)-6(t)V[t, u(t)-v(t)]

]’or all > a. Then V[t, u(t)-v(t)]<-_p(t; Via, z w]) for all >-a.
This corollary follows from Theorem 2 in a manner analogous to the way

Corollary 1 follows from Theorem 1.
Remark 2. Note that (1.8) in Theorem 2 is satisfied if

lim inf- h-l{ V[t- h, x y]- V[t, T(t, t- h)(x y)+ h(B(t- h, x)-B(t- h, y))]}
hO

Nix(t, V[t, x y])

for all > a and x, y e E. Also, (1.10) in Corollary 2 is satisfied if

D_V[t,x-y](B(t,x)-B(t, y))_-</x(/, V[t,x-y])-6(t)V[t,x-y]

for all > a and x, y 6 E.
As a final abstract result, we indicate the manner in which small changes in a and

B can affect the behavior of solutions to (1.2). For this result, however, we need
several additional assumptions. In addition to (C1)-(C5)suppose that

(P1) /3" [0, )X and k" [0, c)X are continuous with

lim I(t)-a(t)l lim Ik(t)l O;
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(P2)

(P3)

So(t, s)x =- T(t, s)(x-(s))+(t) for all =>s ->0 and x sX, and v" [a, oo)
E is continuous and satisfies

v(t)= So(t, a)w + T(t, r)[B(r, v(r))+ k(r)] dr

for all >- a, where w e E;
there exists continuous functions ’1, 3’2: [0, cc)-X such that (t)-(t)=
/(t)-/2(t) for all >-_ a, u(t)-/(t), v(t)-,2(t)e E for all _-> a, and

lim [B(t, u(t))-B(t, u(t)-3,(t))l

lim IB(t, v(t))-B(t, v(t)-y2(t))] 0;

(P4) if LR" [0,) [0, ) is as in (C5) then for each R > 0 there is an MR > 0
such that LR(t)<--MR for all t_->0. Also, either sup{MR" R>0}<o or
sup {lu(t)-v(t)l" >=a}< o.

THEOREM 3. In addition to (C1)-(C5) and (P1)-(P4), suppose that 6, v" [a,)
are continuous and that

(1.11) V[t, r(t,s)xl V[s,x]exp 8(r)d

for all >-s >-a and x X, that

(1.12) D_V[t,x-y](B(t,x)-B(t, y))<=(v(t)-(t))V[t,x-y]

for all > a and x, y E, and that there are numbers N, vo > 0 such that

(1.13) exp (
\

v(r) _-<N exp (-vo(t-s))

or all >-s >=a. Then limt_, V[t, u(t)-v(t)] =0.
For the proof of Theorem 3 we use the following lemma.
LEMMA 1. Let the suppositions of Theorem 3 be [ullled and define

U(t)--Tl(t), f(t)= v(t)--3/a(t), and p(t)= V[t, if(t)-(t)] for all >-a. If

D_p(t) =-lim inf- h-l[p(t- h )-p(t)]
h0

for all > a then

D_p(t)<=(t)p(t)+D_V[t, a(t)-5(t)](B(t, u(t))-B(t, v(t))-k(t))

for all > a.

Proof. Suppose t, h, t-h > 0. From (1.4) in the proof of Theorem 1,

So(t, t-h)u(t-h)= u(t)-hB(t, u(t))+ol(h)

and, similarly,

So(t, t- h )v(t- h )= v(t)- h[B(t, v(t))+ k(t)] + 02(h ).

Therefore,

T(t, t- h )(a(t- h )- (t- h))= S,(t, t- h )u(t h )- "yl(t)- So(t, t- h )v(t- h)+ "Y2(/)

a(t)-(t)-h{B(t, u(t))-B(t, v(t))-k(t)}+o3(h)
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and it follows from (1.11) and (C5) that

V[t-h,a(t-h)-O(t-h)] >- V[t, T(t,t-h)(a(t-h)-e(t-h))]exp \-( ,(r)d
-h

V[t. a(t)-e(t)-h{B(t, u(t))

-B(t,v(t))-k(t)}]exp(- ,(r)d + o4(h).
-h

Using this inequality along with the definition of D_V (see (1.5)) it is easy to check
that

D_p(t)= lim inf -h-l(v[t-h, a(t-h)-g(t-h)]- V[t, a(t)-g(t)])
h-O

<-- V[t,a(t)-6(t)] lim -h-1/exp (- -1
h--O \ -h

+lim inf-h-l(v[t, a(t)-e(t)-h{B(t, u(t))-B(t, v(t))-k(t)}]
hO

-V[t,a(t)-O(t)])

V[t, a(t)-(t)](t)+D_V[t, a(t)-g(t)](B(t, u(t))-B(t, v(t))-k(t))

and the assertion of this lemma follows.
Proo[ o[ Theorem 3. It follows from the definition of D_V and (C5) that

D_ W[t, x]y D_ W[t, x]zl t(/)ly zl
for all >0 and x, y, z X with [x< R. Consequently, (P4) implies that there is a
number M > 0 such that

D_V[t, a(t)-O(t)](B(t, a(t))-B(t, f(t)))-D_V[t, a(t)-f(t)]

(N(t, u(t))-N(t, v(t))-k(t))l
NM{B(t, a(t))-B(t, u(t))l+lN(t, f(t))-B(t,

for all > a. Letting e(t) denote the term on the right side of this inequality, we see
from Lemma 1 that

O_p(t)N8(t)p(t)+D_V[t, a(t)-f(t)](B(t, a(t))-B(t, g(t)))+e(t)

(t)p(t)+ e(t),

where the last inequality follows from (1.12) and the fact that a(t), e(t)e E for all
> a. Solving this differential inequality we see it follows from (1.13) that

V[t, a(t)-f(t)]NNV[a, a(a)-f(a)]e-(’-"+ Ne(s)e-(- ds

for all ta. Since e(s)O as s one may easily show that V[t, a(t)-e(t)]O as. From (C5) and (P3) we have that

}v[t. u(t)-v(t)l- v[t. a(t-e(t)]l(t)l(t)-.(tll

whenever lu(t)-v(t)l, lu(t)-v(t)-(t)+(t)l < R. Using (P1)and (P4)one sees that
V[t, u(t)-v(t)] 0 as and the proof of Theorem 3 is complete.
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2. Examples. In this section we indicate the applicability of the abstract methods
in 1 to semilinear parabolic systems. For our first example it is supposed that 1) is a
smooth bounded domain in R" and that A is the Laplacian operator on . Also, m is a
positive integer and R’ is the positive cone in rn" ’- {s= (sci)’ 6 rn" si _->0 for

1,. , m}. Now suppose that ai and Ri are positive numbers for each 1,. , m
and define the class A+(a,R)of all continuous functions a (a) from [0,
into rn by

a 4+(a, R) only in case 0_-< a(t, -) <-_ Ri and

0
--ai(t, z)= aiAai(t, z) for all (t, z) (0, c)x, i= 1,...
3t

Note that each a s4+(a, R) is uniquely determined by its values on {0} fl and
[0,

Suppose that f (f)T is a continuous function from R’ into rn. We study the
asymptotic behavior of nonnegative, uniformly bounded solutions to the semilinear
parabolic system

0
--ui(t, z)= aiAu,(t, 7)+ fi(ul(t, 7"),""", Urn(t, "r))
ot

(2.2)
ui(0, r)=xi(r) and ui(t, r)= ai(t, r),

fort>0, relY, o’eOf, i=l,...,m

where we make the following basic assumptions
(A1) h’i is measurable from f into [0, R] for each 1,. , m.
(A2) a (cr)T 4+(a, R).
(A3) f has the property that if y e {1,. , m} and s (:i)T [rn with 0 <= :i <-- Ri

for each i= 1,..., rn, then s.=0 implies f.(s)->0 and sG =Rj implies
L.()<= 0.

Define I:lp=(=l IglP)1/" for all R and p[1, oo), and denote by
Xp(= "(f; [rn)) the space of all measurable functions & (&)T" f- [" such that

1/

For each subset A of [rn let

Kp(A) {& 6 Xp" (z) A for almost all z }.

Now define the operators Lp and B, on X by

(2.3)
Lp4) (a,A,)7 for all b (bi)F D(Lp) where

D(Lp) {49 Xp" 49i He’P(1-1) H’p (fl) for 1, , m}

where H2’t’() and Ha’(f) are the usual Sobolev spaces (see, e.g., [4, p. 14 and p.
33]) and

[B,](z)=f(cb(z)) forallzf and cbD(B,) where
(2.4)

D(B) { 6 Kp(N)" z -f(4(-))is in Xp}.

It is well known that Lp is the generator of a compact, analytic semigroup T,
{T,(t): ->_0} of bounded linear operators on X, (see, e.g., Friedman [4] or Pazy [12]).
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Moreover,

for all -> 0 and b 6 Xp,

where wl 0 and o. < 0 if p > 1. For each X D(B.) and a M+(a, R) consider the
integral equation

(2.6) u(t)= To(t)O(-a(O," ))+a(t," )+ To(t-r)Bou(r)dr

for >= 0. Solutions u:[0, o)Xo to (2.6) are called mild Xo-solutions to (2.2). We
have the following existence result for solutions to (2.6):

LZMMA 2. Suppose that (A1)-(A3) are satisfied, 1 <= p < o, To and Bo are as
above, and A = [0, Ri] c R. Then for each X Ko(A) and a M+(a, R) there is a
solution u u.x to (2.6) on [0, o) such that u.x(t) Ko(A for all >= O.

This lemma follows from Proposition 5.1 of [11] (see also Remarks 3.1 and 5.2 in
[11]). Our main result on the asymptotic behavior of mild Xo-solutions to (2.2) is

PROPOSITION 1. Suppose that (A1) and (A3) are satisfied, 1-<_ p <, and A
H?=I [0, Ri]. Suppose further that

(2.7) I-n-h[f()-f(n)ll.>-_l-nlo forall,qR’2 and h>0

and that a, M+(a, R) with

(2.8) lim [[a (t,.)-fl(t,. )llo =0.
t--CX3

Then lim,_, Ilu,,(/)- uo,(/)[lo 0 for each X, Ko(A).
Proof. Suppose first that 1 < p < c and define V[b] IIll for all b Xo. From

(2.5) it follows that (1.11) in Theorem 3 is satisfied with 6(r)=-oo for all r_>-0. Also,
(2.7) implies that

]b (7-) (7-) h [Bomb (7-) Bo(z)]l --> [b (z) (7-

for all h > 0, z e D., and integrating each side of this inequality over f shows that

V[--h[Bo&-Bo]]>=V[qb-] forall, eV(Bo), h>0.

Thus (1.12) is satisfied with u(t)=-o%. Since wo < 0, (1.13) is satisfied as well. Setting
:+ ([i + [i []/2)’ for each ($i)7 e " and defining

Tx(t, 7-)=-[(t, 7-)-o(t, 7-)]+ and 3,2(t, 7-)=-[a(t, 7-)-fl(t, 7-)]+
for all (t, 7-)e[0, c)f, one sees that a-fl=yx-y2, u,x(t)-yl(t," )eD(Bo)and
ut.,(t)- y2(t, ) D(Bo) for all _-> 0. Also,

lim Ilyl(t,. )11 - lim ll ’2(t," )11 - 0.

Choosing R’ sufficiently large so that

u.x(t)-yl(t," ), uo,,(t)-y2(t," )6 Ko(A’)

"" <R’}, one may easily check that each of the conditions ofwhere A’= {sc [+ []o
Theorem 3 are satisfied with E=Ko(A’). Thus [[u,x(t)-ut,(t)ll->O on t--> by
Theorem 3 and the proof of this proposition is complete for p > 1.

For p 1 we use the techniques of Kahane in [6, pp. 353-354]. Let A denote the
first eigenvalue of the problem Ab +Ab 0 in and b 0 on Ofl. Then A > 0 and
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there is a corresponding eigenfunction 1 that has positive values on f (see [7, p.
259]). Now define

In  >x(z)[o<r)lx dr for all & Xl.v[4]

Since 1 is continuous and l(r)>0 for rf and u,,.r and uo.u, are uniformly
bounded on [0, )x fl, it suffices to show that V[u,,,r(t)-uc,u,(t)]- 0 as t-, oo. From
(2.7) it follows that

dPl(’r)lc(r)- (z)- h[Bxc(z)- Bl(r)l[x
for all r D, and h > O, and hence it is easy to see that

V[-b-h(Blc-Bl)]>= V[b-] for all &, 4) ED(B1), h >0.

Therefore, D_V[&-](B1-B1) -< 0 for all d), 4) D(BI), and the assertions in this
case will follow as in the case when p > 1 once it is shown that

(2.9) W[Tx(t)c]<= V[4,] e -s for all 4) eX and t>_-0,

where 8 > 0. Now suppose &" f -> ’ is continuous and define v (t, r) T1 (t)4)](r) for
all (t, z)e [0, c)x 1. Then v(t, r)= (vi(t, z))" " and it follows that

fl,. (I) ("1")-
d

V[v(t,. )] ,1
0

d-- vi(t, ’) dr Cbl(r)aiAvi(t, r) dr.

Since 1(o’)= v(t, o’)= 0 for o" 0f and AI +,11 0 in f, it follows that

ffdi)l(r)aiAvi(t, 7")dz=a f [AdPl(r)]vi(t, 7")d,r=-Alai If dPl(’)vi(t’ "r) dr,

and hence if 8 min{h ai" 1,..., m} then 8 > 0 and

_d V[v(t, )] A lai (I)l(7")vi(t, Z) dr _--< -6V[v(t,. )].
dt i=1

Solving this differential inequality shows that (2.9) holds for all continuous b" lq I/
and hence for all b KI([’). Defining

)+(T) ([ (i (r )l -[- bi(’r)]/2)T and b_(z)=

for all 4)sXx and -s f, one sees that 4)+, )-KI(), b b+--, and V[6]=
V[b+] / V[d)-]. Thus, if d) Xl,

v[r(t)Cb] V[rx(t)4>+- T(t)4)-]_-< V[Tx(t)Cb+] + V[rx(t)_]

<= (V[4)+] + V[4)-]) e-’= V[4] e -st,
and hence (2.9) holds for all 4 X1 and -> 0. This completes the proof of Proposition
1.

Our second result for mild P-solutions to (2.2) uses the technique in [10], and is
concerned with the existence and asymptotic stability of an equilibrium solution to
(2.2) when a is time independent.

PROPOSITION 2. Suppose that (A1) and (A3) are satisfied, 1-<_p <oo, A=
H?=I [0, Ri], and , sq+(a, R) is independent of >-O. Then there is a member 4 of
Kp(A) such that u.+(t)-- 6 for all >= 0, and hence , D(L) and

aAO +f(4)= 0 a.e. on 12 for 1,. , m.
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also satisfies (2.7) in Proposition 1 then there is precisely one Ko(A such that
u,/,,(t) d/ for all >- 0 and, moreover,

lim Ilu,x(t)- 11 0

whenever X Ko(A) and a sg+(a, R) with lim,_ II(t, )- 11 0.
Proof. Define the operator Mv on Xo by D(Mv)={cbeXo: -3, eD(Lo)} and

Mv4) (aiAcbi)7 for all & D(Mv). If h >0 and 4’ e Ko(A) it follows easily from the
maximum principle that the solution e D(My) to the equation & hMv4) is also
in Ko(A). Hence (I-hMv)-l: Ko(A)- Ko(A) for each h > 0. Since (A3) implies

lim d(: + hf(sc); A)/h 0 for all " A,
h0

we have from [10, Theorem 1] that there is a b Ko(A)D(Mv) such that MvO+
BoO=O. Thus u,,(t)=-d/ for all t_->0. Since the final assertion is an immediate
consequence of Proposition 1, the proof of Proposition 2 is complete.

Remark 3. Under additional smoothness assumptions one can conclude that the
convergence of u,,.(t)-uo,,(t) to zero in Proposition 1 is uniform for " f. Suppose
that the map f is H61der continuous on each bounded subset of R’ and also that the
maps c (t, and /3 (t, are continuously differentiable from [0, oe) into Xq for
each q-> 1. Now let each of the suppositions of Proposition 1 be satisfied with (2.8)
replaced by

lim max {Ic (t, o’)-/3 (t, o)lo" o- 0n} 0.

If [lll=ess sup{l()l" n} for each essentially bounded member b of Xo, then
one can conclude that limt_, [lu,,,x(t)-uo,(t)ll- 0 for each ,t’, 0 Ko(A). We give an
indication of the proof of this assertion. Note first that (2.8)’ implies that

(2.S)" lim lice(t,. )-/3(t,.

(see [3, p. 157]), and hence the conclusions of Proposition 1 are fulfilled. Therefore, to
establish the uniform convergence of u.r(t)-uo.,(t) to zero, it suffices (by Ascoli’s
theorem) to show that the families {u.x(t): 0} and {uo,(t): 0} are uniformly
equicontinuous on , since we already have that they are uniformly bounded. Note
that u,x is a mild Xq solution to (2.2) for all q 1. Since [ (and hence Bq) is H61der
continuous it follows that

o’ Tq(t- r)Bu,x(r) dr D(Lq) for all > 0.

(See Pazy [13]). From this it follows that if < O < 1 and (-Lq) is the fractional power
of -Lq (see [4] or [12]), then

(-Lq) Tq(t- r)Bqu,r(r) dr (-Lq)Tq(t- r)Bqu,(r) dr

for all > 0. Since there is a constant Co > 0 such that

II(-Lo)To(t r)ll Co(t- r)-
for all > r 0 and e Xq (see [4, p. 160]) and since Ilnou.(r)ll, is uniformly bounded
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for r _-> 0, it follows that there is a number Mq,o > 0 such that

I](-Lq) Tq(t- r)Bqu.(r) dr]l, <- Mq,o for all t, q > 1.

The same inequality holds with u,.r replaced by uo,0. Taking q sufficiently large shows
that the families

Tq(t- r)Bqu,,.,(r) and Tq(t- r)Bquo..(r)

are uniformly equicontinuous on . Since

Tq(t)$ T.(t)$ and Bq$ B.$ if K.(N) with

and since

[ITv(t)-(O,. ))+a(t,. )-T(t)(-3(O,. ))-3(t,. 0

as it now follows easily that Ilu,(t)-uo,(t)ll 0 as and the assertion is
established.

Remark 4. Consider the m-dimensional differential system

(2.10) x’(t)=f(x(t)), tO, x(0)=6.
The condition (A3) is equivalent to requiring that for each A (==1 [0, R])
equation (2.10) has a solution x with x(t)A for t0. If a a then Pro-
positions 1 and 2 remain valid with A any compact, convex subset of with
nonempty interior. In this case condition (A3) is replaced by’ (A3)’ for each A
equation (2.10) has a solution x with x(t) A for 0. The dissipative condition (2.7)
is also related to equation (2.10). Assume that for each , (2.10) has a solution

xe" [0, m) N. Then (2.7)is equivalent to requiring that ]xe(t)-x(t)oNl-nlp for
all 0 and , N. If is C and d[() denotes the differential of at N, then
(2.7) is equivalent to

(2.7)’ [ h df()lo N 1 for all e Nand N with 1.

This provides a convenient means of checking when (2.7) is satisfied.
Propositions 1 and 2 (along with Remark 3) contain the results of Kahane [6].

Here the system

0
--ux(t, 7")= al/kUl(t, 7")-ul(t, 7")u2(t, 7"),
Ot

0
--u2(t, r)= a2Au2(t, 7.)-u(t, 7")u2(t, 7")
Ot

is studied with bounded, nonnegative initial and boundary conditions for U and u2

prescribed on {0}x[l and [0, oe)xofl (see equation (3.1)of [6]). In the preceding
equation the function f has the form f(1, 2)= (-:1:2, -q:2) for all (q, 2)e R2+; and
it is easy to see that (A3) holds for any R, R2>0. Moreover, (2.7) holds for p 1 (but
not for p > 1). One should also note that Propositions 1 and 2 (with p 1) apply to this

2
equation with nonlinear terms -uu2 replaced by y(ul, u2) where ,’R/I
is continuously differentiable, y(0, ’2)= y(q, 0)= 0, (0/(0q)),(, ’)<-0 and
(0/(02))Y(l 2)<0 for all (1, 2)[12

+. As a second illustration, define the map f
on 2+ by f(ljl,,2)=(-ljlz,-jz+2x/2). Then (A3) holds for any R1, Rz>O with
Rz>-R21/2, and (2.7) holds for p 2 (but not for p 1).
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The form of the preceding equation is analogous to an equation arising in
chemical reactions. Following Danckwerts [2], Brian, Hurley and Hasseltine [1], and
Pearson [14], we consider the system

a a2

a/x (t, 7.)= alaT.2t(t,
a a2

--at u(t, 7.)= a2 07.2 u(t, 7.)-b2lx(t, 7.)v(t, 7.), for t, 7. > 0,

(2.11)
/x (0, 7.) 0, v(0, 7.) c2, /x (t, 0) c 1,

a
--v(t, 0)=0, /x(t, oo) O, v(t, oo) c2,ar

where ai, bi, c > 0 for 1, 2. In place of this equation we consider the following more
general system:

a a2
--Ul(t, 7")= alUl(t, 7.)--3‘(ux(t, 7.), U2(t, 7.)),
at aT.2

(2.12)
--u2(t, r)= a2u2(t, r)+ 3‘(Ul(t, 7.), u2(t, r)),
at a7.2

Ul(O, 7.)--/’1(7.), u2(O, 7.)-- X2(7.), Ul(t, 0)-’- 0",

0
--u2(t, 0) 0, Ul(t, cX3)= 0, u2(t, cx3)= 0,

where al, a2>0, tr=>0, and X=(Xl, X2): [0,)R2+ is measurable and essentially
bounded. Also, 3‘" R2+. is continuously ditterentiable and there are numbers
01, 02 > 0 such that

(3’1) px ->o’,
(3‘2) if (1, )e [0, 01] x [0, 02] then 3‘(0, 2) 3‘(’1, pa)= 0,
(3‘3) (a/(a1))3‘(l, 2)_->0 and (a/(a%))3‘(1, )<- 0 if (1, 2)s [0, pl] x [0, 02].

A typical function 3‘ satisfying (3‘1)-(,/3)is 3‘(:1, ’2)= laXlp2-’la where dl, de_-> 1.
Equation (2.11)is subsumed by (2.12) by taking X1(7.) =,t,2(7.) 0 for 7.->0, o’=01
b2c, O2 bc, 3‘(:1, :)= q(02-’2) for all , :2->0, and using the change of vari-
ables

Ul(t, 7.)= b2tx(t, 7.) and u(t, 7.)= blc2-bxv(t, 7.)

for all t, 7.-> 0.
The system (2.12) is analyzed in the space (=([0, oo): N)) of all measurable

functions b (bl, b2): [0, oo)--> N such that

Define the operator L on .x by

L4, (alibi, azb) for all & (&, &2)e D(L) where
(2.13)

D(L)= { e" &, &’ are loc. abs. cont., &" e a, &l(0)= &(0)= 0}.

One should note that

(2.14) lim [b(7.)[a lim I’&)ll- 0 for all $ D(L).
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It follows that L is the generator of an analytic (Co) semigroup T {T(t): =>0} of
bounded linear operators on 1 and also that

(2.15) IIT(t)lll_-<lllll forallt=>0 and b1.
Set D {b e 1: b(7-) e [0, 01] x [0, 02] a.e. 7- e [0, o0)} and define the operator B from
D into 1 by

(2.16) [Bqb](r)=(-y(c(r)), y(b(z))) forall z>-O cbD(B)=--D.

Finally let 6e =(al, az)" [0, m)- II+ be defined by a_(t, r)=--O and al is the (unique)
bounded solution to

(9 O2
--6el(t, 7-)= al----6ex(t, 7-), 01(0, "r) 0, al(t, 0)=0", al(t, c3) 0
O 07-2

In particular, 6el(t T)" tr[1-erf (a-(/2t-/2r/2)] for all t, 7->0 where

erf (s)= 2zr-1/2 e -’2 dr for all s => 0.

In the space ’ consider the integral equation

(2.17) ux(t)= T(t)(X-6e(O, ))+6e(t, )+ T(t-r)Bux(r)dr for t-_>0.

for t, 7->0.

As before, if ux is a solution to (2.17) and (Ul(t, 7"), U2(t, 7-)) [ux(t)](7-) then (ux, u2)is
a mild !-solution to (2.12). Define the partial ordering "->" on 1 by b _-> if and
only if b1(7-)_-> x(7-) and b2(-)---_ @z(7-) for almost all 7" [0, co), and define the operator
A on f’ by Ac=(alqb’;,azc’) for all c=(Cl,z)D(A) where D(A)=
{b ’1" b, b’ are loc. abs. cont., b" , ba(0)= or, b(0)= 0}. We have the following
fundamental result for the existence and behavior of solutions to (2.17) (recall that
D {b 6" b(7") [0, pl] [0,/92] a.e. z 0}).

Pro’OSITION 3. Suppose that the conditions and notations enumerated in the
preceding three paragraphs are satisfied. Then for each g D there is a fcnique solution
ux to (2.17) on [0, o) such that ux(t)D for all t>=O. Also, if the family U=
{ U(t): -_> 0} of mappings from D into D is defined by U(t)X ux(t) for all >-0 and
g D, then U is a (Co) semigroup of nonlinear operators on D and U is nonexpansive,
order preserving, and differentiable"

(i) U(O)x X and U(t)U(s)x U(t + s)x for all X D, t, s >-_ O.
(ii) U(t)g is continuous on [0, ) ]’or each g D.
(iii) IlU(t)x U(t)ll -<-[Ix 111 for all >- O, X, V.
(iv) U(t)g >= U(t)p whenever >-_ 0 and X, D with X
(v) U(t)xD(A) and (d/(dt))U(t)x=AU(t)x+BU(t)X for all t>0

and X D.
Moreover, if cr > 0 then lim,_,oo IIu(/)x[ll c for each g D.

Indication of Proof. Since px _>-or the maximum principle implies that T(t-s)O(-
a(s,. ))+a(t,. )D whenever gD and t>-s >-0. Also, (y) and (y3) imply that

lim d(: + h(-y(tS), y(:)); [0, pl] x [0, p2])/h 0
h0

for all : [0, px] x [0,102], and since B is Lipschitz continuous we have the existence
and uniqueness of solutions to (2.17) on [0, ) by [11, Thm. 3.2] and [9, Prop. 5]. This
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shows that U satisfies (i) and (ii) and the fact that T is analytic may be used to show
that U also satisfies (v) (see Pazy [13]). Note that the Jacobian matrix df(se) of the map
f(:)-= (-V(), V(:)) has the form

for all : [0, 01] x [0, 02].

Since --(0/(0:I))’)/()"[-I(0/(0I))V()I and (Ol(Oa))y()+l-(O/(O2))y()l are zero it is
easy to see that

I-rt-h[f()-f(n)ll>-l-nl forall:, r/[0, pllX[0, p2]

(see Remark 4). Therefore

limb og h [Bd BgS]II ->-I1 11 for all b, d D;

(iii) is a consequence of (2.15) and Corollary 2 by defining V[t, ]-IIll for all
(t, d)e [0, co)x1. Also, since the off-diagonal entries in the matrix df()are non-
negative, one may easily check that

lim d(-rt + h[f()-f(rt)l; Rz+)/h 0
hO

whenever 0 =< ’/’/1 - :1 Pl and 0-<_ ’r/2 N 72 /92. From this it follows that if C+
{b 1. & _> O} then

lim d(b b + h [B. Bb 1; C+)/h 0
h0

whenever b, 4S D and b >= . Since T(t): C+ C+ for all >= 0 as well, it is also the
case that (iv) holds (see [11, Prop. 4.1 and 4.2]). Now suppose that cr >0. To establish
the final assertion it is sufficient from (iii) to show that IIu(t)ollx-c as co. Since

U(h)0 ->_ 0 for all h > 0, we have from (i) and (iv) that

U(t + h )O U(t)U(h )O >= U(t)O for all t, h _-> 0,

and so I]g(t+h)Olllellg(t)Ol[1 for all t, h _->0. Therefore M=lim,-,ollU(t)Olll exists
(where 0 -<_ M -<_ co). Suppose for contradiction, that M < co. Then b limt_,oo U(t)O
exists in 1 (see [7, p. 41])and this implies that b eD(A)f-ID and Ab +Bd 0. Note

athat if b=(dl,b2), then alb+a2c’=-O, and hence ald+ ad2 is constant.
However, alb + a2d 6 5f so d a-taad); and, in particular, d(0)= 0. But this
implies that

,;bl(O) o’, (0) 0 and

which is certainly impossible since o" > 0 and I1 has a finite integral over [0, co). Thus
M co and the proof of Proposition 3 is complete.

Remark 5. Since the solution ux to (2.17)satisfies ux(t)D for all t->0, the mild
solution (Ul, ue) to (2.12) identified with ur satisfies 0_< ul(t, ’)<=pl and 0<= ua(t, ’)<-_
pa for all > 0 and z e [0, co). in particular, if X 0 the corresponding solution (/x, u) to

(2.11) satisfies 0-</x(t, z)<=cl and 0 < u(t, z)<-_ca for all t>0 and z [0, co). Moreover,
since limt_,oo IlUo(t)[ll co, it also follows that

Io [Ix(t, r)+ca- u(t, r)] dr co as tco.
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Remark 6. Some of the results of this paper were presented at the London
Mathematical Society Symposium on Partial Differential Equations, July 1976, Dur-
ham, England.
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A RUNGE APPROXIMATION AND UNIQUE CONTINUATION
THEOREM FOR PSEUDOPARABOLIC EQUATIONS*

WILLIAM RUNDELL AND MICHAEL STECHER

Abstract. In this paper we construct an integral operator for solutions of the pseudoparabolic equation
A,,ut- A(r)ut + B(r)u f. This is then used to obtain a Runge approximation and unique continuation result
for pseudoparabolic equations.

Introduction. In this paper we shall study some properties of the solutions to the
equation

(0.1) Lu A,ut- A(r)ut + B(r)u f
where A,, denotes the n-dimensional Laplacian operator.

Such equations, usually referred to as of pseudoparabolic or Sobolev type, serve
as models in numerous physical applications. This aspect is well documented in the
literature, cf. [7], [8].

We shall show that there exists a one to one, onto map between the class of
solutions to equation (0.1) and solutions to the equation Anh g. This result was also
the subject of [1], [6] under the assumption that the coefficients A and B were analytic
functions of r2 x 2 +... + x]. The first section of this paper provides an extension to
the case when the coefficients A and B are continuously di.fferentiable functions of the
variable r. As in these previous papers the map takes the form of an integral operator,
the kernel of which is independent of the domain under consideration, depending only
on the coefficients A and B that’appear in (0.1). This property is used in later sections
of the paper; in the second section to obtain a Runge approximation property and a
unique continuation theorem, and in the final section to derive a reflection principle
for equations of type (0.1) defined in a cylindrical domain in R" R. The unique
continuation theorem is interesting since it provides a contrast to the unique continu-
ation properties of parabolic equations.

In conclusion we wish to note that all of the results in this paper also hold for
solutions of the following equation:

(0.2) [u] AnU A(r)ut + rlAnU + B(r)u f,

where rt is a constant. This follows from the fact that the change of dependent
variables v e’tu transforms equation (0.1) to (0.2).

1. An integral operator. In this section we construct an integral operator which
maps solutions of A,ht g onto solutions of

(1.1) L[u]=- Anu A(r)ut + B(r)u f,

where A,, is the n-dimensional Laplacian (n=>2), ut denotes differentiation with
respect to t, and A(r), B(r) are continuously differentiable functions of r(r2= i=1 x2)
for O<=r<=R.

We will show that solutions of (1.1) may be written in the following form:

(1.2)
u(x, t) (I + C)[h]

=h(x, t)+ Io Io 0-n-l Gt(r’ 1-’2’ t-’t’)ht(x0"2’ "r) dcr dr,

* Received by the editors July 21, 1976, and in final revised form June 6, 1977.

" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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where A,,h, g and g is given in terms of f, and u(x, 0). In a recent paper on elliptic
equations [3], Gilbert constructed a similar operator where the coefficients depended
on r2 but analyticity was not required.

Our method of presentation is to describe certain conditions which the G
function, appearing in (1.2), must satisfy. We show such a function exists and then
establish our representation (1.2).

In particular, we wish G to satisfy the following,

(1.3a)

(1.3b)

(.3c)

(1.3d)

(1.3e)

2(1 s)Grtt- G,.. + r( G,.,.tt- A(r)G. + B(r)Gt) O,

0<r<R, 0<s<l,

G(O, s, t) O, 0_-<s=<l, 0_-<t,

Gr,(r,O,t)=-rB(r), 0<r<R, 0<t,

G(r,s,O)=O, O<-r<=R, 0-<s_-< 1,

Gt(r, s, O) H(r, s), 0 < r < R, 0 < s < 1.

and 0 < t,

The function H(r, s) appearing in (1.3e) is not arbitrary. It is the solution to the
following problem:

(1.4a) 2(1-s)Hr-H+r(Hr-A(r)H)=O, 0<r<R, 0<s<l,

(1.4b) H(0, s) 0, 0 _<- s -< 1,

(1.4c) H(r, O)= ra(r),

i.e., H(r, s) is Gilbert’s G-function for equation (1.4a) cf. [4]. Thus not only is G a
solution to a singular partial differential equation, but some of its initial data is also
described as the solution to a singular Goursat problem.

It is easily seen that solutions of (1.3) and (1.4) exist for 0_-< s < 1. The difficulty
lies in obtaining bounds on G and some of its partial derivatives as s approaches one.
We first show that a continuous solution of (1.4) exists for s in the interval [0, 1].

Making the change of variables

(1.5) o rqril s, rt s,

in equation (1.4a), rewriting (1.4) as an integral equation, and then returning to the
original coordinates, we see that H(r, s) is a solution of (1.4) if and only if H satisfies
the following equation:

(1.6) H(r, s) (l-s)-’ Io fr./,,s,/(,-Z,y A(y)H(y, z) dy dz
Jo 2

r/

+(l-s)-1 J0 yA(y) dy, O<=r<---R, O<-s<l.

We define the operator T as follows,
r,/(1-s)/(1-z)

(.7) T[/](r, s)-=(-s)-’ f f -Y A(y)/(y, z) dz dz,
J0 2

where " is a continuous function defined on [0, R] x [0, 1]. From (1.6) it is clear that

(1.8) H(r, s)= . Tn[F](r, s),
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where

(1.9) F(r’s)=(1-s)- Io yA(y) dy.

Routine estimates give us the following theorem:
THEOREM 1.1 The solution H(r, s) of (1.4) is continuous on [0, R][0, 1], twice

continuously differentiable for 0 <= s < 1, and satisfies the following inequalities for some
constant c,

(1.1o)

C
IH(r, s)[ < cr, [H(r, s)l< IH(r, s)l <= cr,

IH(r, s) <c--s-- lHr(r, s)] <--_ c.

We now return to problem (1.3) and show that the solution G is bounded as in
(1.10). Using the variables (1.5) we transform (1.3) into the following equivalent
integral equation.

(1.11)

r/(1--s)/(l

G(r, s, t): F(r, s, t)+ (1- s)-’ I0 f
a0

rx/(1-s)/(1-z)

ao

where F(r, s, t) is defined by

Y A(y)G(y, z, t) dy dz
2

y
B(y)G(y, z, r) dr dy dz,

/,2 iorX/1F(r, s, t)= tH(r, s)-2(1- s)
yB(y) dy

(1 -s) o
Y-A(y)H(y,z)dydz.
2

Observing that the integral equation (1.11) is of the same form as (1.6), we have the
following theorem:

THEOREM 1.2. Let A(r) and B(r) be continuously differentiable on [0, R]. Then
there exists a solution, G(r, s, t), of (2.3) which is continuous on [0, R][0, 1], twice
continuously differentiable for 0 _-< s < 1, and for some constant C we have the following
inequalities,

(1.12)

C
IG(r, s, t)[ < Cr, IGs(r, s, t)[ <

C
IGrs(r, s, t)[ <----- IH(r, s, t)[-< C,

for O<=r<--R and O<-_s < 1.
We remark that G, also satisfies inequalities (1.12). To see this one differentiates

equation (1.11) with respect to t, and observes G, satisfies an equation of the same
form.

We now proceed to show that the operator 1 + defined by (1,2) maps solutions
of A,h, g(n _-->2) into solutions of (1.1). If we define h(x, 0) to be equal to u(x, 0) and
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then determine ht(x, t) uniquely from ut(x, t) we will have shown that (1.2) is inverti-
ble. Thus we differentiate (1.2) with respect to and obtain

ut(x, t)= ht(x, t)+ t o.,-1Gt(r, 1- o.2, 0)ht(xo.2, t) do"

(.)

+ I [ o""-lGu(r, 1-02, t-r)ht(xo.2, r)drdr.
Jo 0

Using the change of variables

2 Px=(r, 0), r =-,

where (r, 0) are the n-dimensional spherial coordinates of x, it has been shown in [1]
that (1.13) is invertible. Hence equation (1.2) is invertible.

The invertibility of (1.2) by itself is of course not significant. What is important is
the fact that h(x, t) is a solution of the simpler partial differential equation

(1.14) A,ht g(x, t),

In order to see this we will compute L[u].

f(x,t)=L[u]

h(x, 0)= u(x, 0).

(1.15)
=A,ht+B(r)h(x, 0)+ o.’+3H(r, 1-o.2)A,ht(xo.2, t) do"

+ I Io o.n+3 Gtt(, l o.2, t- -)Anht(o.2, 7-) do. d7-.

Arguing as in (1.13), we see that Anh g, where g(x, t) is the solution to the integral
equation

[(x, t)-B(r)u(x, O) g + tr, 1- e)g(xe, t) d
o

(1.16)

In conclusion, what we have established is the following. Every smooth solution u(x, t)
of (1.1) has the following representation,

1
t)= + J0 J0

where h(x, t) satisfies

A,ht g(x, t),

and g satisfies (1.16).

2. Runge approximation and unique continuation properties. It is well known
that solutions of Laplace’s equation satisfy the Runge approximation property. More
precisely, if u is a solution of Au 0 in domain D and D* is a domain such that
D = D* and

(R) the set D*/D has no component relatively compact in D*, then for every
compact set K D and e > 0 there is a solution v of Laplace’s equation in D* such
that sup: Iv(x)- u(x)[ < e.
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The following theorem shows that a similar result holds for solutions of pseudo-
parabolic equations.

TI-IEOrEM 2.1 (Runge approximation theorem). Let D and D* (D c D*) be two
open connected subsets ofR (n >-_ 2) which satisfy condition (R), and let Tbe an interval
of the real line. Let A and B be continuously differentiable ]:unctions of r in D* and
f(x, t) be continuous in D* T. Then every solution u(x, t) of
(2.1) Lu A,,u- Au, + Bu f
in D T may be approximated uniformly on compact subsets by a solution u*(x, t)
defined in the larger domain D* T.

Proof. The proof relies on the fact that the kernel of the integral operator
G(r, r, t-’) depends only on the coefficients and is independent of the domain. Thus
it is sufficient to show that the theorem holds for solutions of the simple pseudo-
parabolic equation

(2.2) A,ht g.

We note from (1.16) that g is defined and continuous on D* T. By linearity we may
assume that h(x, O)= O.

To see that (2.2) has the Runge property, one uses the Runge property for
Poisson’s equation to approximate h, at a finite number of times ti. Now connect these
approximates together in a linear manner and integrate from 0 to t.

A similar approach allows us to prove a unique continuation theorem for
solutions of the homogeneous version of (2.1), namely,

THEOREM 2.2 (Unique continuation theorem). Let D and D* be connected open
subsets of R"(n -> 2) with D D* and let T be an interval of the real line. Let

S(D* x T)= {u(x, t): Au, C(D* x T), Lu 0 and u(x, O)= O, for x D*}.

Then if u S(D* T) such that u 0 in D T then u 0 in D* T.
Proof. Denote by u the element of S(D* T) such that u 0 in D T. Then u has

the representation

(2.3) u (I + Cg)h,

where h is a solution of ht 0 with h (x, 0) 0. By the uniqueness of the representation
(2.3), h(x, t), and hence ht(x, t) must vanish identically in D T. By the unique
continuation theorem for Laplace’s equation it follows that ht(x, t) must vanish in all
of D* T, and since h(x, 0) 0 we have h(x, t) =- 0 in D* x T. The map (2.3) now gives
u(x, t)=-0 in D*x T, and the proof is complete.

We note that the above result is true for solutions of the heat equation without
the added assumption that u(x, 0)= 0. In the case of one space variable this follows
from the observation that for some Xo and 6>0 we have u(x, t)=0 in the strip
Do T {x0- 6 < x < Xo + 6, T}, and hence U(Xo, t) Ux(Xo, t) O, T. Thus by
the uniqueness to the Cauchy problem for a noncharacteristic line we have u(x, t)--0
in any connected region of R T containing Do T in which u is a solution of the
heat equation.

For the pseudoparabolic equation, however, the assumption that u(x, 0) 0 (or at
least that u(x, 0) be specified a priori) is essential to Theorem 2.2. The simplest
illustration of this is for solutions of the equation hxxt 0, for example

0 x <0,
h(x,t)=

-1/e x>-O.
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Theorems 2.1 and 2.2 are also true in the one dimensional case. This can be seen
by using the methods of [2].

3. A reflection principle. We give a further illustration of the use of the integral
operator developed in 1 by using it to obtain a reflection principle for solutions of
the equation Lu O.

Our purpose will not be to state the most general result possible but to illustrate
the technique. One can clearly generalize our result; for example to the case of time
dependent coefficients by the use of the integral operator developed in [6], to non-
homogeneous boundary conditions and analytic surfaces rather than hyperplanes.

THEOREM 3.1. Let D T be a connected cylindrical domain in the half space.
x 0 whose boundary contains a portion tr T of the hyperplane X O. Denote by D
the domain formed by reflecting D about the hyperplane X O. Suppose that A(r2),
B(r2) and u(x, O) are analytic functions of their independent variables in the domain
D o- 1). Let u (x, t) be a solution of Lu 0 in D T such that u 0 on o- T; then
u(x, t) can be uniquely continued as a solution into all of (D o- D) T.

Proof. By linearity we can assume that u(x, 0)= 0 and that u satisfies Lu jf in
D T where f L{u (x, 0)} is an analytic function defined in all of D o- D. Since the
coefficients A and B are analytic functions, so also is the kernel G(r2, 1 o-2, ’) with
respect to rz and o-. Thus there exists a function h (x, t) such that

t"

(3.1) u h + | | o"n-1G,(r2, 1 o-2, t- ’)h,(xo-2, ’) do" dr,
J0 J0

and h satisfies the equation Ah, g where g is given in terms of f and G b.y equation
(1.16). Thus since f, A and B are defined and analytic in all of D U o" U D so also is
g(x, t) as a function of x. We also have h(x, 0)=0. Since u(x, t)=0 on o" we have
h(x, t)= 0 on o- (the Volterra equation (3.1) has a unique solution).

Thus by the reflection principle for solutions of Poisson’s equation h(x,t) may be
extended as a solution of Ah,(x, t)=g with h(x, 0)=0 to all of (DUO-U D)x T. By
substituting this extension into (3.1), the proof is complete.
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ESTIMATES FOR THE GREEN’S FUNCTIONS OF ELLIPTIC OPERATORS*

CATHERINE BANDLES

Abstract. Inequalities for the Green’s functions of Lu -Au pu are derived by means of the level line
technique and bounds for linear boundary value problems are constructed.

Introduction. In this paper we study the Green’s function of the operator A +p (x)
in a bounded domain. First we derive some comparison theorems based on a maxi-
mum principle, and then we prove a differential inequality for a certain expression
involving the Green’s function. By exhibiting this inequality, we obtain estimates for
the Green’s functions which include as a special case Weinberger’s bounds [16] for
their norms. Moreover, it is possible to construct upper and lower bounds for the
solutions of boundary value problems and to generalize results of [1]. This work was
motivated by a theorem of P61ya and Szeg6 [14] concerning the warping function. If D
is a plane domain and/ its maximal conformal radius, then the theorem says that the
solution of Au + 1 =0 in D, u =0 on OD satisfies max u(x)>=12/4. Payne [13] exten-
ded this result to higher dimensions by using the Green’s function of the Laplace
operator. His arguments together with a geometrical inequality led to similar state-
ments for the problem Au + e 0 in D, u 0 on OD [3]. The question arose whether
the solutions of a more general problem of the type Au +f(u)= 0 in D, u 0 on OD
could be estimated by means of the conformal radius. A partial answer is given in this
paper for f(u)= au + 1 in the last section.

1. The Green’s function.
1.1. Definition. Let D R, N 2, 3 be a bounded domain with a smooth

boundary, and let x =(xl," ’’, Xv) denote an arbitrary point in R v. Consider the
differential operator

Lu -Au -p(x)u,

where A stands for the Laplacian and p(x) is a real analytic function in D of class
C(/). Let us introduce the function

1
log Ix Y 1-1 if N 2,

s(x,
1--- Ix y 1-1 ifN=3

which is a fundamental solution of the Laplace equation. The Green’s function g(x, y)
of L with respect to D is defined by the following requirements [5], [8].

(i) For fixed y D, h(x, y)= g(x, y)-s(x, y) is a continuous function in D.
(ii) For fixed y D, h solves Lh p(x)s(x, y) in D.
(iii) g(x, y)= 0 for x OD, y D.

According to the classical theory, g(x, y)exists and is uniquely determined whenever
the boundary value problem Lv 0 in D, v 0 on OD has only the trivial solution. We
observe that Lg(x, y)= 6y in D, 6y being the Dirac measure at the point y. The
importance of the Green’s function is that every classical solution of the problem

* Received by the editors January 28, 1977, and in revised form May 13, 1977.
5" Mathematisches Institut der Universitit Basel, Basel, Switzerland.
1This assumption has been made to avoid lengthy technical discussions which could arise in 2 in

connection with questions of regularity.
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Lu f(x) in D with u u(x) on OD has the representation

u(x)= Iog(x’ Y)f(y) dy-
19

Og(x,
u(y) ds.

Here, n is the outer normal, ds is the surface element on OD and dx dxl dX2 dXN.
In view of the particular form of the singularity of s, the operator

f
Ou Jo g(x’ y )u (y) dy

is a mapping from L2(D) into C(D). A detailed study of the Green’s function is
found in [5] (see also [7]). More specific questions such as its behavior under variation
of the domain are treated by Garabedian and Schiffer in [8].

1.2. If p(x)<= O, the maximum principle for subharmonic functions implies that
g(x, y) is positive in D. Let us now give a criterion for g(x, y) to be positive in the case
where p changes sign. We have

p(x)=p+(x)-p-(x), where p+(x)= max {:lzp(x), 0}.

Consider the eigenvalue problem

(1.1) Aq + [ixp+(x)- p-(x)]q 0 in D, q 0 on OD.

It has a countable number of eigenvalues 0<ixl<ix2<_ provided p+(x)O.
According to the Rayleigh principle

D grad2v dx +D vZP dx
Ix1 min

v=0 eqD D D2P+ dx
where v ranges among all piecewise differentiable functions. Ix1 can also be charac-
terized by 10]

(1.2) IXl sup min
-Av +p-(x)v +

xO p+(x)v vO in supp p (x)

where v ranges over all positive functions of class C2(D). The following result was
known to different authors [4], and others, and it will be repeated for the sake of
completeness.

LEMMA 1.1. The Green’s function g (x, y) is positive in D if and only if Ix > 1.
Proof. (i) Let IXl > 1. The corresponding eigenfunction ql(X) is of constant sign

and can be taken positive in D. Assume that g(x, y) is negative in a domain D-_ D.
Since g(x, y) behaves like s(x, y) near the point y, D- does not contain y. The function
g(x, y) is therefore a solution of (1.1) with D replaced by D-. The corresponding
eigenvalue is Ix 1. Since g(x, y) does not change sign in D-, Ix 1 is the smallest
eigenvalue. Because of the monotonicity of the eigenvalues with respect to the domain
D [6], it follows that Ixl(D)=<ixl(O-) 1, which contradicts our assumption. By
Hopf’s maximum principle g cannot take its minimum at an interior point. Hence,
g(x, y)>0 in D.

(ii) Let g(x, y) be positive in D. Then the solution of Lw 1 in D, w 0 on 8D is
positive in D. By (1.2) we have

Ixl > minP+(X)W + 1
> 1p+(x)w

which completes the proof of Lemma 1.1.
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As an immediate consequence we find
COROLLARY 1.1. If the Green’s function is positive in D, then every solution of

Lw >-0 in D, w >-_ 0 on OD is positive in D unless w =-O.
Next, we describe some simple properties of g(x, y), all based on Corollary 1.1.

They illustrate the behavior of g(x, y:p) as a function of p.
(A) If g(x, y: p)->_0, then g(x, y:q)>=O forallq<-_p.
Proof. Since p/ >=q/ and p-<_-q-, we conclude from the Rayleigh principle that

l(q+, q--)/ (P+, P-) ) 1. (A) follows now from Lemma 1.1.
(B) If pl(x)>-p.(x) and g(x, y :pl)_->0, then g(x, y :pl)>=g(x, y :pe).
Proof. The difference d(x)= g(x, y :pl)-g(x, y :pc) satisfies Ad +pld <-0 in D,

d 0 on OD. In view of Corollary 1.1, d(x)>-_ O.
(C) If pi(x)>-O for i=1,2, p=pl+pe and g(x,y:p)>-O, then g(x,y:pl)+

g(x, y :p2)-g(x, y :p)<-_g(x, y :0).
Proof. Consider the function d(x)= g(x, y :pl)+g(x, y :pe)-g(x, y :p). We have

Ad +pl[g(x, y :pl)-g(x, y :p)l+P2[g(x, y :p2)-g(x, y

and because of our assumptions and (B)

Ad =>-6,.

Hence,

Ad Ag(x, y O) >-- O.

The maximum principle for harmonic functions yields the desired result.
Similarly we show the next property.
(D) If pi(x)>-_O for i=1,2, p=pl-pe and g(x,y:pl)>-_O, then g(x,y:pl)/

g(x, y -pc)- g(x, y p) >- g(x, y 0).
In particular

g(x, y :p/)+g(x, y :-p-)-g(x, y :p)>=g(x, y:0).

This type of inequalities has already been established by Luttinger [12] for the
Green’s function associated with the Schr6dinger equation.

Consider a function p(x, t) which depends on x and a real variable t.
LEMMA 1.2. If p(x, t) is twice continuously differentiable in t, then g(x, y:t)--

g(x, y :p(x, t)) is a differentiable function of t. Moreover, Og/Ot =- , satisfies A+
p(x, t), +p (x, t)g 0 in D and , 0 on OD.

Proof. The difference dg= g(x, y + At)- g(x, y t) can be written in the form

dg ID g(x, z t)g(y, z "t + At)[p(z, t)At + 1/2[i(z, z)(At)e] dz

(t<--_r<-_t+At).
Hence

g(x, y’t)= lim Io g(x, z t)g(y, z + At)p(z, t) dz.
AtO

Recalling that g(y, z :t + At)= s(y, z)+ h(y, z :t + At) where h is bounded, we can
apply Lebesgue’s dominated convergence theorem, and we find

g(x, y’t)= ID g(x, z t)g(y, z t)p(Z, t) dz

which is equivalent to our assertion.
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(E) Let p(x, t) be a three times continuously differentiable function of such that
O(x, t) is of one sign and [(x, t)>=O. If g(x, y: t)>_-0 then g(x, y: t) is convex in t.

Proof. As in the proof of Lemma 1.2 we show that g(x, y:t) exists and solves
Ag +pg + 2pg + fig 0 in D, 0 on OD. According to Lemma 1.2 and Corollary 1.1,
/ig -> 0. We have therefore Lg _-> 0 and by Corollary 1.1, -> 0.

We shall add a last property observed by Garabedian and Schiffer [8] which is
readily obtained by means of Corollary 1.1.

(F) If g(x, y) and (,(x, y) are the Green’s functions in D or D, respectively, and if
1 D, then g (x, y >-_ (, (x, y) in ) provided that g (x, y >- O.

Remark. All statements (A)-(D) hold also for the solutions of Lw f in D, w u

on 0D, provided f and u are nonnegative. This follows immediately from the integral
representation of w involving the Green’s function.

2. A differential inequality for Green’s functions
2.1. In this section we shall use the following notations.

D(IX)= {x 6D" g(x, y)>ix), r(ix) oD (ix), a (ix) Io dx Ixo <- Ix <=
()

Because of the analyticity of g(x, y) in D-{y}, a(ix) is a continuous, decreasing
function with a (ixo) A and a(oe)= 0. With Ix(a)we shall denote the inverse of a(ix).
It corresponds to the value of g on the level surface enclosing a body of a volume a,
and satisfies locally a Lipschitz condition [2]. Furthermore we introduce the concept of
symmetrization.

DEFINITION. If B RN is a bounded domain, then the symmetrized domain B* is
the sphere {x: Ix I< p} with the same volume as B. (If B is compact, then we take for
B* the closed sphere.)

DEFINITION. Let u (x) be a real function in D, and B(Ix)= {x D: u (x)=> Ix }. The
symmetrized function u*" D*-R is defined as follows:

Since

u*(x) sup {IX" x 6 B*(IX)}.

(,) [grad g[’

it follows from Schwarz’s inequality that

(2.1) -(dix/da) .)
>= ds[grad

We observe that r(.)]grad gl ds ID(.)Pg dx + 1, and that according to the geometri-
cal isoperimetric inequality

d >-q(a)= 2)2/3,) (36rra if N 3.

Hence

d_._(2.2) pg dx + 1 >-_-q(a)
da()

in order to evaluate the left-hand side of this inequality we recall the rearrangement
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theorem in [9], namely

where

p(x)g(x, y) dx <-_ p*(x)g*(x, y) dx p(a’)tx(a’) da’,
() *()

p(WNIxIN)= p*(x) and

DEFINITION. H(a)= p(a’)lx(a’) da’ + 1.
Inserting the previous estimate into (2.2) we find

(2.3) q(a )-d--da + H(a >= O.

if N=2,
if N=3.

2.2. Let us first discuss the inequality (2.3) in the case where p(a)--=0, that is
p =-0. Then it becomes

Integration from a to A yields

(2.4)
(4rr)-l(log a-l-log A-1} if N 2,

/x (a)--- 32/3 -1/3 A-l/3}(309 )-l{a if N 3.

Integration from 0 to a yields

(47r)-1{log a -l-log (TrR 2)-1} if N 2,
(2.5) /x (a) _>-

32/3 )-1 -1 /3j(309 {a /3_to1 y } if N=3,

where the quantity Ry is defined by the relation

(1/(27r)) log R if N 2,
lim [g(x, y)-s(x, y)]

_(1/(3w3))R_ if N= 3

Remark. If D is simply connected and N= 2, then Rr corresponds to the
conformal radius [14]. For N 3, Rr is called the harmonic radius [11].

2.3. Let now p(a) 0 in (0, A). The derivative dlx/da can then be expressed by
(H’/p)’, and (2.3)becomes

(2.6) q(a) +H_->0 in (0, A).

In order to discuss this inequality we shall introduce the Green’s function G(x, y)
defined in the following way. For fixed y D*

AG(x, y)+p*(x)G(x, y)=-6y inD*, G(x, y)=O on0D*.

We have
PROPOSITION 2.1. If G(x, 0)>0 in D*, then G(x, y)>0 in D* for all y D*.
Proof. Since this statement is trivial for negative p*, we can concentrate on the

case where p* > 0.
According to Lemma 1.1 it suffices to prove that the smallest eigenvalue of

Aq +/x*p*q 0 in D*, q 0 on OD*, say/x l*, is greater than 1. Suppose that this is
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not true. Let ql >0 be the first eigenfunction. Then by the Green’s identity we have

f [o AG(x, 0)-ACxG(x, 0)] dx (/x* 1) f qlGp* dx-ql(0)= 0.
JD

Since the left-hand side of this identity is negative, we are led to a contradiction.
LZMM 2.1. IfpO in D, then G(x, 0:p*)>0 in D* implies g(x, y :p)>0 in D.
Proof. By Proposition 2.1 we have g > 1. Applying Schwarz’s estimate [15]

> , we deduce from Lemma 1.1 that g(x, y’p) is positive in D.
PoeosIIO 2.2. I[ G(x, O) is positive in D*, then G(x, O) is a radially symmetric

and a decreasing function of Ixl, (Its level surfaces are therefore spheres.)
Proof. The symmetry follows from the uniqueness of G(x, 0). For negative

functions p*(x), the monotony is a consequence of the maximum principle. Let p* be
positive and assume that G(x, 0) is not everywhere decreasing. Then there exist values
rl<r2 such that G(rl, 0)= G(r2, 0)=A and G(x, 0)<A in D’={x: rl<lxl<r2}. In D’
the function w G(x, 0)-A satisfies Aw +p*w 0. If we extend this function as zero
outside of D’, we obtain an admissible function for the variational characterization of. Hence

fo, grad2w dx/fo, p * w2 dx < l

On the other hand it follows from Lemma 1.1 and Proposition 2.1 that > 1, which
leads to a contradiction.

From now on all quantities related with G(x, 0) will be denoted by *, such as
H*(a) and *(a). By the same methods as in 2.1 we prove that for positive G(x, O)

(2.7) q(a) +H* 0 in (0, A).

Here, we have essentially used the fact that the level surfaces of G(x, 0) are spheres. If
G(x, 0) is positive, then

H*(A) , p*(x)G(x,O)dx+l=-o, G(x,O)dx=-o* --OGon ds>O.
H*(a) is therefore positive regardless of the sign of p*.

LZMMA 2.2. I[ G(x, O) is posi6ve, then F(a)= H*H’/p -HH*’/p is nondecreasing
in (0, a).

Proo[. We multiply (2.6) with H* (0) and (2.7) with H and subtract the two
expressions. Then

From this result we obtain the
THZOZM 2.1. If G(x, 0)0 and p(x)O, then forxed yD

0 <- g*(x, y)_-< G(x, 0).

Proof. Assume first that p(x)>0. By Lemma 2.2 we have F(a)<=F(A), and in
view of the positivity of g and G, H’(A)=H*’(A)=O. This implies F(a)<=O and
F(a)p(a)/n*(a)2= [H(a)/H*(a)]’ <-0. Hence, n(a)<=n*(a) in (0, A) and H’/O
i(a)<-_H*’/p <-l*(a ). Since t(a)[,=,olt,=g*(x, y) and *(a)l=o,lt,=G(x, O),
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the assertion is established. If p(x)-0, we apply first the inequality (2.3) in the
interval where p(a) vanishes. The other part of the proof remains the same.

Remark. If p(x)<-0, we can only conclude that

(2.8) H(a)>-H*(a).
The stronger inequality (a)_-</z*(a) does not follow from our considerations. It is
not clear whether it is true or not.

2.4. This part deals with a generalization of inequality (2.5). Besides the Green’s
function g(x, y) defined in 1.1 we shall consider the solution of

A(x, o’g)+p*(x)(x, 0"g)=-6o in{x" Ixl<g}, touR s <-A,

(x, 0"R)=0 on{x’lxI-R}.

Let (x" R) ,(x, O" R)-s(x, 0). If (x, 0" R) exists in the classical sense, then
(x’R) is continuous in {x" Ixl<R} and limx_,o(x’R)=g(O’R). As in 1.1 we
define h (x, y) to be the corresponding quantity for g(x, y). We then have

LEMMA 2.3. There exists a unique value Ry such that (, (x, O" Ry ) > 0 and such that
h (0" Ry) h (y, y), provided p (x) is of one sign.

Proof. For R sufficiently small, if(x, 0" R) is positive. This follows from Lemma
1.1 and the monotone dependence of the corresponding eigenvalue with respect to the
domain. In the interval (0, R0) where (x, 0" R) is positive, h(0" R) is a continuous,
increasing function of R. We first show that /(0" R) tends to -c as R approaches
zero. Let po=>0 be an upper bound for p*(x), and consider the boundary value
problem

Aho+po(ho+s(x,O))=O in{Ixl<e}, ho=-S(x,O) on{Ixl-e}.

We choose e small enough to obtain a positive Green’s function g(x, y "p0). Because
of (B) in 1.2 we have h(0" e)<-ho(O). Let m =sup ho, and (x, 0) to be the Green’s
function of the Laplace operator in {Ix < e}. In view of the symmetry of the problem,
m ho(0). Hence,

m (x, 0)(-Aho) dx + --s(x, O) ds <= (x, O)(m + s)po dx s(e, O)
Ixl<} Ixl=} On
2

e P0=m+c(e)-s(e,O).
2N

An explicit computation shows that lim_0 c(e)= 0. Thus, m -c if e 0. For e
sufficiently small, m <h(y, y), and 6(e)=h(y, y)-/(0"e)>0. In order to show that
6(R) takes also negative values, we distinguish two cases.

(i) Suppose that (x, 0"R) exists and is positive in the whole interval
(0, (A/wv)/v). Observing that lim_,o [H’(a)-H*’(a)] o(O)6((A/toN)1/rq) we
conclude directly from Theorem 2.1 or (2.8) that 6((A/tov)l/n) <- O.

(ii) if (x, 0" R) is not defined and positive in the whole interval (0, (A/tou)/n),
then there exists a value Ro such that limR-,Ro/(0"R)= +. In both cases 6(R) is
nonpositive for some value of R. Because of its monotonicity 6(R) vanishes exactly
once.

In the sequel we write (x, 0)for (x, 0" Ry). Lemma 2.2 leads to the following
estimate.

THEOREM 2.2. If p(x) is of one sign, then for fixed y D

O<--_,(x, O)<=g*(x, y) inDy ={x" Ixl<R}.
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Proof. Let H(a) and/2(a) be the functions corresponding to H(a) and tz(a) with
g(x, y) replaced by if(x, 0). Proceeding the same way as in the proof of Lemma 2.2 we
find that

’(a)= >--0 provided p(a)#O.
L iO iO J

From the definition of Ry it follows that

lim/(a) lim {t(a)H’(a)_H(a)l’(a)} =0.
a-o a-o p(a) p(a)

Let us first exclude the case where p(a)= 0 for some a. We deduce from/(a)-> 0, that
H(a)/I(a <= tx (a )/fi (a ).

(i) Let p(a)>0. Then ff’(a)p(a)/t(a)2=[H(a)/I(a)]’>=O and H(a)>=I(a).
This estimate together with the previous observation yields/x (a)--> d, (a). If p (a) => 0
the arguments are very similar, we have just to use (2.3) in the interval where p(a)
vanishes.

(ii) If p(a)<0, we conclude that H(a)<-I(a). The difference H-I=D(a)
satisfies

Hence,

D’(0)=0 and D(a)<=O.

tx(a)-i(a)>= q-X(b)D(b) db >-0.

The case p(x)<-0 can be treated similarly.

3. Applications.
3.1. Estimates for integrals involving the Green’s functions. Let us use the same

notations as before. Note that g(x, y) and g*(x, y) are equimeasurable and that

(3.1) yodP(g (x, y )) dx Yo (g*(x, y )) dx

for every function (t) for which the integrals in (3.1) make sense. (3.1) together with
Theorems 2.1 and 2.2 yields

THEOREM 3.1. If p(x)>=O and G(x, 0)>=0, then we have for every nondecreasing
function (t)

Io [g(x, dx <- | gP[g(x, )] dx <-_ | [G(x, 0)] dx.0)] Y
JD

Remark. For p-0 and (t)= k, the upper bound was already established by
Weinberger 16].

For negative p(x) only a weaker result holds, namely
THEOREM 3.2. If p(x)<--O, then for every nondecreasing function dp(t)

Io [(x, dx -< I_ [g(x, y)] dx.0)]

This statement is an immediate consequence of (3.1) and Theorem 2.2. An
interesting upper bound for integrals of the type considered previously, can only be
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given in the special case p(x)= const. We note the following corollary which may be
deduced from (2.8).

COROLLARY 3.1. Let (t) be a nondecreasing convex function, for which all
integrals used in the proof are well-defined, and let p(x)= a [ and G(x, 0)>-_0, then

Io[g(x, y)] dx <- [o [G(x, 0)1 dx.

Proof. By the convexity of (t),

Io, {[O(x, 0)]-[g*(x, y)]} dx

>---- Io. ’(g*(x, 0))[G- g*] dx

’(tx(a))[H*-a!a) H(a)IA l lo’ --aa
"(tz)[H*(a)-H(a)l--;- da.

Of. 0

Because of (2.8) and because (dtz/da)<=O, the whole expression is nonnegative,
provided lima-0 ’(tz(a)){H*(a)-H(a)} O.

3.2. A result on D. The aim of this section is to study Ry for the special case
where p a, a being an arbitrary real number. We denote by g(x, y) the cor-
responding Green’s function in D, and by (x, 0) the solution of Aft,, +a, =-0 in
Dy, 0 on Dy. Clearly, Dy depends on a [D Dy(a)].

LEMMA 3.1. Let a vary in the range of values (-, ) for which a positive Green’s
function g,(x, y) exists. Then Dy(a) is monotonically increasing in (-, h ).

Proof. Let ao (-, ) be any fixed number and put Go(x, 0:a) for the positive
solution of Av+av =-o in D(ao), v =0 on 0Dy(a0). In addition, let d(a)=
g (y, y)-Go(0, 0:a). Since the singularities of g and Go are of the same type, d(a) is
a continuous function with d(ao)= 0. By Lemma 1.2

d(ao) ID g,o(y, z ):Z dZ ID Go(z, O ao)Z dz.
y(ao)

Applying the integral estimates of the preceding section with (t)- 2, we deduce that
d(ao)>=O. Since the Green’s functions are increasing.with the domain, we must have
Dy(a)Dy(ao) for any a =>ao and a close to ao. Since the argument holds for all a0,

the assertion of Lemma 3.1 is established.
From this result we obtain immediately the
COROLLARY 3.2. If a >--__ O, then Dy(O) Dy(ce), Dy(0) is the domain related with

the Green’s function of the Laplace operator.
This corollary is useful especially for N 2 where Dy(0) is known for many

domains [14]. Explicit values for the corresponding quantity in three dimensions are
much more difficult to obtain. Upper bounds for the radius of Dy(0) are computed in
[11]. Lower bounds which are needed in our context seem not to be available yet.

3.3. Estimates for solutions of boundary value problems. Consider the boundary
value problems

(3.2) Au+p(x)u+q(x)=O inD, u=0 ondD.
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and

AU+p*(x)U+q*(x)=O inD*,(3.3)

g(x, y) and G(x, y) are the corresponding Green’s functions.
THEOREM 3.3. ff q(x)>--O, p(x)>--O and G(x, y)>_-0, then

U 0 on OD*.

u(x)<- sup U(x).
xD*

Proof. Because of the integral representation and the rearrangement theorem [9]

u (x) Io g (x, y )q (y) dy <_- fD* g*(X, y )q *(y) dy.

Here, g*(x, y) denotes the symmetrized function with respect to y. The assertion
follows from the symmetry of the Green’s functions and from Theorem 2.1.

This theorem generalizes a result (Theorem 1.1)of [1]. For p <_-0, we have the
weaker result

THEOREM 3.4. Ifp(x) <- 0 and q(x)= 1, then

sup u (x) --< U(0).
xD

The proof proceeds as the one of Theorem 3.3. We have only to use inequality
(2.8) instead of Theorem 2.1.

A particular case of this theorem is found in [1]. Moreover we have
THEOREM 3.5. If q 1, p(x) is of one sign and g(x, y)_>- 0,

u(y)_-> u,(0),

where Uy is the solution o[ (3.3) with D* replaced by Dy.
Proof. By Theorem 3.2 we have

We are now in a position to give an answer to our original problem,

Au+au+l=O inD, u=O onOD.

Suppose that a > 0, and that the Green’s function g(x, y a) is positive. In view of the
Rayleigh-Faber-Krahn inequality [14] and Lemma 1.1 this is certainly the case when
< [,o,,/A]/"(rq-2)/2, ]k is the first zero of the Bessel function Jk. Let / be the

maximal conformal or harmonic radius of D. Then by Lemma 3.1 and Theorem 3.5
we get

COROLLARY 3.3. Under the conditions stated above we have

Equality holds ifD is a sphere.

-1) if N=2,

-1) ifN=3.

Acknowledgment. The author would like to thank the referee for suggestions on
improving the presentation.
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AN N-DIMENSIONAL EXTENSION OF THE STURM SEPARATION
AND COMPARISON THEORY TO A CLASS OF

NONSELFADJOINT SYSTEMS*

SHAIR AHMADf AND A. C. LAZER

Abstract. Sturmian theory is extended to nonselfadjoint second order linear homogeneous systems.
Almost all the results obtained are new even in the selfadjoint case.

1. Introduction and summary. The differential equations to be considered in this
paper have the form

y"(t)+A(t)y(t)=O,

where y is a real n-dimensional vector and A(t) is a real n x n matrix continuous on
some interval. It is further assumed that the off-diagonal elements of A(t) are always
nonnegative.

For the case n 1 this equation has been studied extensively beginning with a
famous paper by Sturm [10] in 1836. More recently there have been various exten-
sions of the Sturmian theory to selfadjoint systems of second order linear differential
equations, initiated by M. Morse [6] in 1930. Further extensions were subsequently
given by Birkhoff and Hestenes [3], Reid [8], and others. For accounts of this work we
refer the reader to the books of Coppel [4], Morse [7] and Reid [9].

The selfadjoint systems of differential equations considered in the works we have
cited generally have a more complex form than the type we consider but include this
type only when the matrix A (t) is symmetric. The extensions of the Sturmian theory to
selfadjoint systems are consequences of the fact that the selfadjoint systems are the
Euler-Lagrange equations of certain quadratic functionals. The variational principles
from which these extensions have been derived seem to be of no value if A(t) is
nonsymmetric.

In this paper we give several theorems pertaining to the system given above which
are either equivalent to, or are implied by the Sturm separation and comparison
theorems when n 1. Most of these results appear to be new even in the selfadjoint
case. Namely, we prove:

TI-IEOIEM 1. LetA (t) and B (t) be continuous n x n matrices defined on [a, b] such
that if A(t)= (aii(t)) and B(t)= (bii(t)) then aii(t) >- bit(t) for 1 <- i, j <= n, [a, bl and
such that bit(t) >= 0 for j and [a, b ]. Assume that for some [a, b ], aii() > bii(),
1 <- i, ] <- n. If there exists a nontrivial solution of

x"(t) + B(t)x(t)= 0

such that x (a )= x (b)= O, then there exists a nontrivial solution

y"(t)+A(t)y(t)=O

such that y (a ) y (c 0 with a < c < b.
If n 1 this result is equivalent to the Sturm comparison theorem. Recalling that

when n 1 any two solutions with a common zero are linearly dependent, we see
that the next two results generalize the Sturm separation theorem.

* Received by the editors September 20, 1976, and in revised form March 11, 1977.
? Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74074.
Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221.
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THEOREM 2. Assume that the n n matrix B(t)=(bii(t)) is continuous on [a, b]
and that bij(t) >= 0 if , 1 <= i, f <= n. Assume that there exists a nontrivial solution of

(S) x"(t)+ B(t)x(t)= 0

with x(a)= x(b)= 0 and there exists no nontrivial solution y(t) with y(a)= y(c)= 0 if
a <c <b. If a <=tl <t2<b then there exists no nontrivial solution y(t) of (S) with
y (tl) y (t2) 0.

We recall (see [4] and [9]) that b is the first conjugate point of a relative to (S) if
there is a nontrivial solution of (S)which vanishes at a and at b, and there is no
nontrivial solution which vanishes at a and c for a < c < b. The equation (S) is said to
be disconjugate on an interval I if no nontrivial solution vanishes more than on.ce on L
For the selfadjoint case it is well-known that if b is the first conjugate point of a, then
(S) is disconjugate on [a, b). Theorem 2 shows this to be true also for the nonselfad-
joint case.

THEOREM 3. Let B(t) satisfy the same conditions as in Theorem 2. Assume that
there exists a nontrivial solution x(t) of (S) with x(a)=x(b)=O. If y(t)=
col (yl(t), , yn(t)) is any solution of (S), one of the following must hold:

(i) There exist k and [a, b] with yk() 0.
(ii) There exist k and with k < such that yk(t)yl(t)< 0 for all [a, b].
We give a simple example related to the last theorem. Let

[1 1]B=
1 1

If x(t)= col (sin 4 t, sin 4 t) then x"(t)+ Bx(t)= 0 and x(0)= x(Tr//)= 0. If y(t)=
col (t, -t) then y"(t)+B(t)y(t)=O, y(0)= 0, and y(t) 0 for t>0. Thus, for n > 1 it is
possible, in Theorem 2, that the first condition be satisfied for a solution y(t)
independent of x(t) and that no component of y(t) vanish on the open interval (a, b).
To illustrate the second alternative for the same example we observe that if
c[0, 7r/4] and z(t)=col (t-c,c-t)=col (Zl(t),z2(t)) then z"(t)+Bz(t)=O and
Zx(t)z2(t)< 0 for

As a by-product of the methods used to establish the above theorems we prove an
intermediate result which is a triviality when n 1 but seems interesting when n > 1.

THEOREM 4. Assume the hypotheses of Theorem 2, and let b be the first conjugate
point of a. There exists a nontrivial solution u(t)= col (Ul(t), u,(t)) of (S) such that
u(a)= u(b)= 0 and u(t)>=O, k 1,..., n and [a, b].

This result was established by the authors in [1] for the case when A(t) is a
symmetric matrix, using methods from the calculus of variations.

Our principal tool used in deriving the above results is an extremal charac-
terization of the smallest positive eigenvalue of a certain (nonselfadjoint) system of
linear integral equations. We would like to acknowledge the influence of R. Bellman
who gave an analogous extremal characterization of the Frobenius-Perron eigenvalue
of a strictly positive matrix. (See [2, p. 288].) Although there is a definite connection
between our preliminary lemmas and the theory of linear positive operators in
partially ordered Banach spaces due to Krein and Rutman [5], our treatment will be
simple and entirely self-contained.

2. Preliminary observations. Throughout this paper we shall make extensive use
of Green’s function for the boundary value problem x"(t)=-f(t), x(a)=x(b)=O



A CLASS OF NONSELFADJOINT SYSTEMS 1139

where a < b. Recall that

G(s,t)=

(s a )(b t)
b-a

(t-a)(b-s)

a<_s<_t<_b,

a<_t<_s<_b.

The function G is continuous on the square a -<_ s -<_ b, a -<_ <- b, and for s and in the
same range

(t-a)(b-t)
O<-G(s,t)<-G(t,t)

(b-a)

and hence

b-a
(1) G(s, t)< a < s, < b.

4

If f(t) is a continuous real valued function defined for a<-t<=b and if x(t)=
G(s, t)f(s)ds then, as is well-known (or by an easy calculation), x(t) is of class C2

on [a, b], x"(t) -f(t) and x(a) x(b)= 0. Moreover,

I ( b-s) f(s) ds(2) x’(a)
b -a

and

(3) I ( s-.a) f(s) ds.x’(b) b -a

Conversely as there is only one solution of the boundary value problem x"(t)=-f(t),
x(a) x (b)= 0, this solution must have the representation given above.

3. An extremal characterization of ao. If x =col (X 1,’’’, Xn)G--R and y
col (yl, , yn) R n, we write x _-< y iff Xk <= Yk for k 1, 2, , n, and we write x < y
iff Xk < Yk for k 1, 2,. , n. If u: [a, b] R" is continuous, we write u K if u(a)=
u (b) 0 and 0 <_- u (t) for all (a, b). Let A (t) (aii(t)) be an n n continuous matrix
defined on [a, b]. Assume aii(t)>O, 1 <= i, j <= n and [a, b], except possibly on a set
of measure zero. If u: [a, b]R is continuous, we define

(4)
b

(Tu)(t)= Ia G(s, t)A(s)u(s) ds.

It follows immediately that

(5) T(u + v)= Tu + Tv,

(6) T(cu)-- cTu, c R,

(7) u 6 K :ff Tu 6 K,

(8) uK, u(t)O=),O<(Tu)(t), t6(a,b).

For h R we write h cA if there exists u K, u0, such that u(t)<-h(Tu)(t)for
t(a,b).

LEMMA 1. A . If ho inf {h h A}, then ho > 0.
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Proof. Let u be any nontrivial member of K such that u Cl[a, b]. From (2) and
(4) we have

0< -a A(s)u(s)ds=(Tu)’(a).

Similarly, by (3)

I (s-a)A(s)u(s)ds<O.(Tu)’(b)=
b S. a

If A > 0 is sufficiently large then u’(a < A (Tu)’(a) and A (Tu)’(b) < u’(b ). As u (a)
Al(TU)(a)=O and u(b)=Al(Tu)(b)=O, there exists a number 3, O<6<(b-a)/2,
such that

(9) u(t)< A l(TU)(t), 6 (a, a + 6),

and

(10) u(t)<Al(TU)(t), t6(b-6, b).

If e [a +3, b-g], it follows by (8) that O<(Tu)(t). Consequently if/2 is sufficiently
large u(t)<Az(Tu)(t)for te[a+6, b-6]. Thus if A3=max{A1, A2}, u(t)<A3(Tu)(t)
for all e (a, b). Hence A 3 e A. To prove the second assertion, let A e A and u e K such
that u (t) 0 and

b

(11) u(t)<-,(Tu)(t)=h | G(s,t)a(s)u(s)ds, te[a,b].

Let

[[A(t)l[ max Y’. aii(t).
<=i<=n i=

Let u(t)=col(ul(t),..., u,(t)). Let l<-k<-_n and i6[a,b] be such that uk()
maxl<__j<__,, maxti,, b uj(t). From (11) it follows that

b

Uk()i Ia G(S,) ai(s)ui(s)ds
/’=1

b

<=Au() Ia G(s, ) ai(s) ds
j=l

b

au() I G(s, )llA(s)[I ds

--<AUk()
(b-a) If4 IIA(s)ll ds.

Hence

4

(b a) IIA (s)ll ds’
and

4
(12) 0=> (b -a) IIa(s)ll ds
This estimate will be useful later.
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LEMMA 2. Let T and Ao be defined as above. I1 there exists u K such that u(t) 0
and such that u(t)<-Ao(Tu)(t) ’or all (a, b) then u(t)= Ao(Tu)(t) ]’or [a, b].

Proo]’. Suppose, on the contrary, Ao(Tu)(t)- u(t) O. Let w Tu. Since AoW u
K and AoW-u0, it follows from (8) that 0< T(AoW-U)(t) for (a, b). Thus by (5)
and (6)

(13) w(t)<)to(Tw)(t), (a, b).

From (2)we have

w’(a)= (Tu)’(a)= b2a A(s)u(s) ds

(14)

Similarly by (3),

(15)

If ( b-S)A(s)w(s) ds ,o(Tw)’(a).<)to
b -a

fa(s-a))to(Tw)’(b)= -)to
b a A(s)w(s) ds

If ( s-a)A(s)u(s) ds (Tu)’(b)= w’(b).b a

According to (14) and (15) there exists )tl with 0<)t<)to such that w’(a)<
)t(Tw)’(a) and )t(Tw)’(b)< w’(b). As w(a)=)tl(TW)(a)= w(b)=)tl(Tw)(b)=O
there exists 6 with O<8<(b-a)/2 such that w(t)<)t(Tw)(t)if t(a,a+3] or
te[b-6, b). From (13) there exists )t2, 0<)t2<)t0, such that w(t)<)t2(Tw)(t) if
t[a+6, b-8]. Thus if )t 3 max {)t )t 2}, then w(t)<)t3(Tw)(t), t(a,b), which
contradicts the definition of )to. This contradiction proves that u(t)=)to(Tu)(t) for
te[a,b].

LEMMA 3. Let )to, T be as above. There exists u e K, u(t)O, such that u(t)=
)to(Tu)(t) ]:or [a, b].

Proo]’. Let {)t,,,}]o be a sequence in A and let {x,} be a sequence in K such that

(16) x,, (t) <= )t,, Tx,, )(t)

for t[a,b] with x,,,(t)O, and

(17) lim )t,,, )to.

By multiplying each x, by a suitable positive constant we may assume that

(18)
i=1’- i’.1.= aii (s)x,j (s) ds 1,

for each m, m 1, 2,. , where

(19) x,,(t) col (x,,i(t),..., x,,(t)).

For each rn >-1 define

(20) u,, (t) (Txm)(t).

According to (16),)t,,u,,-x,, eK. Hence, by (7), T(A,,u,-x,,)=A,,Tu,,-u,, K.
Hence, for e [a, b] we have

(21) u,(t)<-)t,,(Tu,,)(t), m >- 1.
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We claim that the elements of the vectors {u,(t)} are equicontinuous and uniformly
bounded on [a, b]. To see this, let u,,(t)= col (u,l(t),’.’, Umn(t)). From (20)

Ia(22) 0 =< u,,k(t) G(s, t) E aki(s)xi(s) ds.
/=1

Thus, by (1) and (18)

0<um(t)<b-af b-a
E ai(s)xi(s) ds <

4 4

which shows that {u(t)}= is a uniformly bounded sequence for k 1, 2,..., n.
Let e > 0. As G is uniformly continuous on [a, b] x [a, b] there exists 6 > 0 such that if
he[a,b], t2e[a,b] and Ih-t2l<6 then G(t,s)-G(t2, s)<e for se[a,b]. Thus, if
Ira- t2 < 6, m 1, and 1 N k N n, from (22) we have

b

i=1

ba 6(S, )--6(S, t:)[ a(s)x(s)as
/=1

< e E a(s)x(s) s e.

By Ascoli’s lemma we may assume without loss of generality that lim urn(t) u(t)
uniformly on [a, b ]. Hence, according to (21)

(23) u(t)N lim m(Tum)(t)= o(Tu)(t), e [a, b].

Suppose it were the case that u(t)=0 for all te[a,b]. From (16), O<=x,,(t) <-
X,u,,(t); hence lim,,_.oo x,,(t)= 0 uniformly on [a, b]. Therefore,

lim 2 2 aii(s )x,,i(s ds O,
rnoo

contradicting (18). This proves that u(t)O. Thus, by (23) and Lemma 2 it follows
that u(t)= &o(Tu)(t), [a, b] and the result is established.

LZMMA 4. If there exists 1 cA and w K, w(t)O, such that

(24) W(t) =, l(TW)(t) [or [a, bl,

then A1 =Ao.
Proof. Since A A,/ o. Suppose, contrary to the claim, > 0. By Lemma 3

there exists u K, u0, such that u(t)= ho(Tu)(t) for e [a, b]. Since according to (8),
(Tu)(t)>O for (a, b) we see that

(25) O<u(t)<Aa(Tu)(t), t(a,b).

Moreover, by (2),

Iab(bb-Sa) Iab(b-S)A(s)u(s)ds.(26) 0<u’(a)=o A(s)u(s)ds<A1
b-a

Similarly, using. (3), it follows that

Ia ( s-a)A(s)u(s) ds < u’(b)< O.(27) -,
b a
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Similar considerations show that

(28) 0<w’(a), w’(b)<0, w(t)>0, t(a,b).

As u(a)= w(a)= u(b)= w(b)= 0, it follows from (28) that if a >0 is sufficiently small
then

(29) 0< w’(a)-au’(a), w’(b)-au’(b)<O,

and

(30) 0< w(t)-au(t), (a, b).

If ff > 0 is the least upper bound of the numbers a such that (29) and (30) hold, then
by continuity

(31) 0<= w’(a )- ffu’(a ), w’(b)- ffu’(b <= O,

and

(32) 0<= w(t)-u(t), (a, b).

Furthermore, at least one of the following possibilities must occur: For some k with
1 =< k =< n either

w ’ (a )-u’ (a ) O,

W’k (b )-- ffU ’k (b O,

(33a)

(33b)

or

(33c) w6)-u6) 0,

for some 6 (a, b), where u col (ul,. u,,), w col (wl,. w,). Otherwise we
could find a > ff such that (31) and (32) hold. We now show that all three possibilities
are incompatible with previous inequalities. Since c7 > 0 it follows from (26) and (32)
that

w’(a )- du’(a , l(Tw )’(a )- .u’(a

1 A(s)w(s) ds- au’(a)
a

>Xl L a(s)[w(s)-au(s)] ds >-0.

Therefore, (33a) is impossible. Similarly, from (27) and (32),

w’(b) au’(b) -A1 A(s)w (s) ds au’(b )

<-,11f (7-a)a(s)[w(s)-u(s)l ds

Consequently, (33b) is impossible. Finally if 6 (a, b) it follows from (24), (25) and
(32) that

b

w()-ciu()>,l | G(s, )A(s)[w(s)-ffu(s)] ds >=0,

which rules out (33c). This contradiction shows that , ,0. A slight modification of
the proof shows that w(t) is a multiple of u(t) but this result will not be needed.
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4. Monotonicity of Ao. In this section we again assume that a and b are two
numbers with a < b. However, we let b vary. Accordingly, we let G(s, t, b)denote the
Green’s function for the interval [a, b]. The matrix A(t)=(aii(t)) is assumed to be
continuous on [a, o) with aii(t) > O, 1 <- i, ] <-_ n except at isolated points. The sets A(b),
K(b), and the number ho(b) depending on b are defined as before.

Our next lemma follows trivially.
LEMMA 5. If a < bl < b2 and (a, ba) then G(t, s, ba)< G(t, s, b2) for s (a, b].
LZMMA 6. If a < bl < b then ho(b)< ho(bl).
Proof. According to Lemma 3 there exists u sK(bl) such that u(t)O on [a, b]

and such that

1
u(t)= ho(ba) G(s, t, bl)A(s)u(s) ds.

Define t K(b2) as follows"

u(t), a<t<b
u(t)=

O, bl<-t<=b2.
If a < t-< bl then by Lemma 5

t(t) u(t)= ho(ba) G(s, t, bl)A(s)u(s) ds

< o(b) G(s, t, b2)A(s)a(s) ds

Ao(bl) G(s, t, b2)A(s)t(s) ds.

If b < b2 then
b2

t(t) 0 < ho(b) G(s,t, b2)A(s)t(s)ds.

Hence, Ao(b2) Ao(bl), by definition. The assumption of equality gives t <-Ao(b2)T(/),
where T refers to [a, b2], and Lemma2 gives t ho(b2)T(t), contrary to T(t)(bl)> 0
which was shown above.

LEMMA 7. The function h o(b is continuous on (a, ) and A o(b )- o as b a.
Proof. From the estimate

4
(12) ho(b)>=

(b a) ’abllA (S)[I ds’

we see that ho(b)--> as b --> a. To establish continuity of ho(b), fix a number b"> a. We
shall show that ho(b) is continuous from both the left and the right at b =/7. Since Ao(b)
is nonincreasing on (a, ) it follows that limb-,G/o ho(b) h exists and h -<- ho(b). Let
{b,,,}] be a sequence with/7< b,,/l < b,, and lim,_o b,,, b[ According to Lemma 3,
for each rn => 1 there exists u,,, s K(b,) with u,, 0 such that

u.,(t) ho(b.,) G(s, t, b.,)A(s)u.,(s) ds.

Hence, for ts[a.b,.], u(t)+ho(b,.)A(t)u,.(t)=O and u..(a)=u,.(b,,.)=O. By the
uniqueness theorem u’.. (a) O. so by multiplying u.. by a suitable positive constant we
may assume without loss of generality that I[u’,.(a)ll 1. where 11" denotes the usual
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Euclidean norm. By choosing a suitable subsequence of the sequence {u,, (t)}] we may
assume, without loss of generality, that lim,,,_,oo u’,,(a)=cR with Ilcll-1, If w(t)
denotes the solution of the initial value problem

(34)
w"+hlA(t)w =0,

w(a)= 0, w’(a)=cO,

then by a standard result concerning continuity of solutions of differential equations
with respect to initial conditions and with respect to parameters (see for example [9])
it follows that lim,,_,oo u,,(t)= w(t) uniformly on compact subintervals of [a, o). In
particular since u,,(t)>=O for aNt<-_b,, it follows that w(t)>=O on [a,b] and 0=
lim,,_, u,,,(b,,) w(b). Thus w eK(b), wO and according to (34)

b

w(t)= h | G(s, t)A(s)w(s) ds.
Ja

Thus, by Lemma 4, /1"-ho(b). This proves right-hand continuity of ho(b) at b. To
establish left-hand continuity at b we observe that since ho(b) is nonincreasing,
h2=limb--oho(b) exists, and a repetition of the previous argument shows that
ha ho(b). This proves the result.

LEMMA 8. Let A(t)=(aii(t)) and A(t)=(tii(t)) be n x n matrices which are
continuous on [a, b andfor 1 <- <-_ n, 1 <-_ ] <= n, 0 < air(t) <= ii(t) on (a, b ). For u K(b )
let

b

(Tu)(t)= Ia G(s, t)A(s)u(s) ds,

b

(’u)(t)= Ia G(s, tlA(slu(s) ds.

Let A be the set of numbers h such that u(t)<=h(Tu)(t), t(a,b), for some u K(b),
uO, and let , be the set of numbers h such that there exists u K(b) such that
u(t)<-h(u)(t), (a, b), for some u 6K(b), uO, If ho(b)=inf {hlh A} and Xo(b)
inf {hlh }, then o(b)=< ho(b).

Proof. According to Lemma 3 there exists u K(b)such that u =ho(b)Tu, uO.
Hence for (a, b)

b b

u(t)= ho(b) Ia G(s, t)A(s)u(s) ds =<ho(b) I G(s, t)A(s)u(s) ds.

Hence, ho(b) h and o(b)= inf {hlh h}_<- h0(b).
LEMMA 9. Let A(t)=(aii(t)), B(t)=(bii(t)) be two continuous n n matrices

defined on [a, b] such that O<=bii(t)<-aii(t), [a, b], 1 <=i <-_n, 1 <-f <=n and for some
"i(a,b), 0<=bii()<aii(), l <=i<=n, l <=]<=n. Suppose x"+B(t)x=O, x(t)O, x(a)=
x(b)=0.

ASSZ.TOy. There exists a solution of u"+A(t)u=O, u(a)=u(c)=O, u(t)O
with a < c < b, and u K(c ).

Proof. We have for 6 [a, b ],
b

x(t)= | G(s, t)B(s)x(s) ds.

If x(t)= col (Xl(t),""", xn(t)), let w(t)= col (Ix(t)l,"’, [x,(t)[). Then w K(b) and
wO.
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For k 1, , n,
b

i=l

f<-- O(s, t) b,(s)lxi(s)l ds
i=l

f G(s, t) , bki(S)Wi(S) ds.
i=l

Now by the uniqueness theorem for differential equations, the components of w(t)
cannot vanish simultaneously on any subinterval of [a, b] since x(t)O. Thus, since
bki(s ) <= aki(s ), s (a, b ), and bki() < aki(), we have

G(s, t) 2 bki(s)wi(s) ds < G(s, t) aki(S)Wi(S ) ds
i= i=1

for (a, b). Hence, we have

b

0_--< w(t)< Ja G(s, t)A(s)w(s)ds(35)

for (a, b)
Since the elements of A(t) are not strictly positive on [a, b] we cannot use our

previous results directly. For each integer m 1, 2,. , let A,,(t) (a(t)+ 1/m). As
the elements of Am are strictly positive on [a, b l, our previous results are applicable.
Clearly, for m _-> 1,

b

0<-_ w(t)< | G(s, t)A,(s)w(s) ds,(36)

for (a, b). For each rn ->_ 1 and d (a, b ], define
d

(Tdu)(t) Ja O(s, t, d)A.,(s)u(s) ds

for u6K(d); let A.,(d) be the set of numbers A such that u(t)<--A(Td.,u)(t) for
6 [a, b], and let A0,.(d) inf {A[A A.,(d)}. If m < m2 then each element of A,.(t) is

greater than the corresponding element of A,.(t), so by Lemma 8

(37) m, < m2 Ao,,(d) >_- Ao,,,:(d).
From (36) we see that 1 A,,,(b) for all m, and hence, Ao,,(b)_-< 1 for all m. As Ao,,(d)
is continuous, decreasing in d, and Ao,(d)-+c as d-a, there exists a unique
d,,, (a, ,b] such that Ao,,(d,,) 1. Moreover by (37) it follows that

(38) a < d,, -< d,,, if ml < m2.

Hence, lim,_ d,, c for some c (a, b]. By Lemma 3 there exists u,, K(d,,),
u,, 0, such that

u,,,(t) A0,(d,,) G(s, t, d,,)A,,(s)u,,,(s) ds

G(s, t, d,,,)A,,(s)u,.(s) ds.
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Hence u +A,.u., 0, u.,(a)= u.,(d.,)= 0. Without loss of generality, as in the proof
of Lemma 7, we may assume that lim.,_.oo u,(a)= k 4: 0. As A.,(t)->A(t) uniformly
on [a, oo) it follows that if u(t) is the solution of the initial value problem u"+ A(t)u
0, u(a)=0, u’(a)= k then u.,(t) u(t) uniformly on compact subintervals of [a,
Hence, u (c) lim.,_. u,,, (d,,,) 0; obviously u e K(c). To complete the proof, we
must show that c < b. Assume on the contrary that c b, so that

b

(39) u(t)= | G(s, t)A(s)u(s) ds.

Let
b

(40) v(t)= Ja G(s, )A (s)w (s ds.

Then v is of class C2 on [a, b]. According to (35), 0=< w(t)< v(t), re (a, b). Hence, by
the nonnegativity of the elements of A(s), s (a, b), the strict positivity of the
elements of A(), and the strict positivity of G(s, t) for a < s < b, a < < b, it follows
that for (a, b),

b t"b

(41) v(/)= | G(s, t)a(s)w(s) ds < | G(s, t)a(s)v(s) ds.

Similarly,

(42)

and

v’(a) b A(s)w(s) ds <
b a

(43)
s ,.a A(s)v(s) ds <-

b-

Since, by the uniqueness theorem, the components of u(t) cannot vanish simul-
taneously on any open subinterval of (a, b), the same type of reasoning shows that

(44) 0< u(t), (a, b),

If ( b -S) A(s)u(s) ds u’(a),(45) O<
b -a

Ia (s-a)A(s)u(s)ds <O.(46) u’(b) b-a
Using (44), (45) and (46) and the exact same reasoning as in the proof of Lemma 4 we
infer the existence of a number 6 > 0 such that

(47) 0<= u(t)-6v(t), (a, b),

(48) O<-u’(a)-6v’(a), u’(b)-6v’(b)<=O,

and such that for some k, 1 =< k =< n, one of the following three possibilities must hold:
If u =col (ul,"’, u,,), v =col (vl,..., vn), either

(49a)

(49b)

or

(49c)

uk ()- civ, () 0 for some , a < < b,

u ’(a )- av’(a O,

u(b)-Yzv(b)=O.
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However, as ff > 0 we see from (39), (41) and (47) that for (a, b)
b

u(t)-6v(t)> Ja G(s, t)A(s)[u(s)-v(s)] ds >-0,

hence, (49a) is impossible. Similarly, from (39), (42) and (47)

u’(a)-av’(a)>
b "a A(s)[u(s)-av(s)] ds >=0,

so (49b) is impossible. Finally by virtue of (39), (43) and (47)

0 _->
_

A (s)[u (s)- av (s)] ds > u’(b)- av’(b),

which rules out (49c). This contradiction gives the result.

5. Proois oi theorems.
Proofof Theorem 1. Assuming the hypotheses of Theorem 1, let k > 0 be so large

that every element of the matrix B(t)+k2I is nonnegative on [a, b]. Let tr be the
solution of tr’(s)=exp 2ktr(s), tr(0)=a. The function tr will be defined on some
interval [0, d) with tr(s)+ as sd. If x(t) is a nontrivial solution of
x"(t)+B(t)x(t)--O with x(a)=x(b)-O then u(s)=x(tr(s))e-k() satisfies u"(s)+
[B(tr(s))+k2I] e4k’()U(s)=O, U(0)---- u(tr-X(b)) =0. Moreover, the elements of
B(cr(s))+k2I are nonnegative on [0, tr-X(b)]. Since A(t)=(aii(t))is continuous on
[a, b] with aii(t) >- bi(t) and ai()> bi() for 1 <_- i,/" -< n, it follows that every element of
A(tr(s))+ k21 is greater than or equal to the corresponding element of B(tr(s))+ k21

X(b)]. Also, if g o’-1() then every element of A(tr(g))+k2I ison interval [0, r-
strictly greater than the corresponding element of B (tr(g))+ k21. From Lemma 9 we
infer the existence of a nontrivial solution v(s)of v"(s)+[A(tr(s))+ k2I] e4k()V(S)=
0 with v(O)-v(s*)=O, 0<s*<o’-(b). Thus, if y(t)=v(tr-x(t))e kt then y(t)0,
y"(t)+ A(t)y(t)= O, [a, b], and y(a)= y(c)= 0 where a tr-a(0) tr-X(s*) c < b.
This completes the proof of Theorem 1.

Remark. Making a change of variable to derive an equivalent system, where the
diagonal elements of the matrix are also positive, is apparently known. But we have
included it in the proof of Theorem 1 for the sake of completeness.

Proof of Theorem 3. By making use of the same device that was used to derive
Theorem 1 from Lemma 9 we may assume that if B(t)= (bi(t)) then bii(t)>-_O for
1 <-_ i,/" <-n. Assume that the hypotheses of Theorem 3 hold and that there exists a
nontrivial solution y(t) of y"(t)+ B(t)y(t)= 0 which satisfies neither condition (i) nor
condition (ii)of the assertion of this theorem. We may assume that y(t)=
col (yx(t), ", y,(t)) with yk(t)> 0 for [a, b], and 1 <_-k _-<n. Consider

[ ( (b-t t- a )](50)

Since v"(t) y"(t)=-B(t)y(t) and v(a)= v(b)= 0 it follows that
b

v(t)= | G(s, t)B(s)y(s) ds.

Therefore, as

0<[ b-t t-a )](bLa)Y(a>+(b,a)Y(b
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we have the inequality

(51)
bIa G(s, t)B(s)y(s) ds < y(t)

for [a, b].
If x(t) is a nontrivial solution of the boundary value problem x"(t)+ B(t)x(t)= 0

with x (a) x (b) 0 then
b

(52) x(t)= | G(s, t)B(s)x(s)ds.

If x(t)=col (Xl(t),""" ,Xn(t))we may assume that there exist and r[a, b] with
x(?)> 0. It follows that if a > 0 and sufficiently small then

(53) 0< y(t)-ax(t), [a, b],

while if a is sufficiently large, some component of y(t)-ax(t) must vanish somewhere
on [a, b]. Thus if c is the least upper bound of the set of numbers a such that (53)
holds everywhere on [a, b] then

(54) 0 <- y(t)-6x(t),

and

(55) 0 y(c)-x(c)

for some k, and some c (a, b). From (51), (52), (54), and the assumption that the
elements of B(t) are nonnegative we see that

b

0= yk(C)--aXk(C)> ] G(s, t) Y. bki(s)[yi(s)--aXi(S)] ds >-0.
aa j=l

This contradiction proves the theorem.
Proof of Theorem 4. By using the same device that allowed us to derive Theorem

1 from Lemma 9 we may again assume that if B(t)=(bi(t)) then bi(t)>-O for
l<-i,j<-n and t[a,b]. For each integer m 1,2,..., let Bm(t)=(bi(t)+ 1/m). Let
x(t) be a nontrivial solution of the boundary value problem x"(t)+B(t)x(t)=O,
x(a) x(b)= 0, and assume there exists no nontrivial solution of the boundary value
problem x"(t)+B(t)x(t)=O, x(a)=x(c)=O if a <c <b. As every element of Bm(t)is
strictly greater than the corresponding element of B(t), it follows from Lemma 9 that
there exists a nontrivial solution of the boundary value problem u(t)+B,.(t)u.,(t)=
0, u., (a) u. (c,.) 0, such that a < c., < b and such that Um (t) K (c.,). As

u,.(t) G(t, s, c,,,)B,(s)u.,(s) ds,

for a -< -< c,., the same argument that was used to establish the inequality (12) shows
that

4
1>=

(c,,, a)" lIB,. (s)i[ as
Thus, since IIB,.(t)ll=n/m+llB(s)ll is bounded independently of m, we infer the
existence of a number 6 > 0 such that

(56) a+6<-c,.<b, m>=l.
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As in the proof of Lemma 9 we may assume, without loss of generality, that u’,,, (a)-
k0 as m-oo and that lim,,,_,c,,,=c with a+6<=c<-b. If u"(t)+B(t)u(t)=O,
u(a)=0 and u’(a)= k then the sequence {u,,,(t)}] converges uniformly to u(t) on
[a, b] and hence u(c)=0. If c <b we would have a contradiction to the previous
assumption concerning b. If a << b then <c,, for sufficiently large m and, as
u,,, K (c,,,), 0 <_- u,, (t). Hence 0 _-< u (t), so u K (b) and the theorem is proved.

Proof of Theorem 2. The proof of Theorem 2 will follow quickly from Theorems 1
and 3 and part of the above argument. As before, we may suppose that elements of
B(t) are nonnegative on [a, b]. For each m ->_ 1, let B,,(t) have the same meaning as in
the proof of Theorem 3. Assume that x(t) is a nontrivial solution of x"(t)/ B(t)x(t)=
0, x(a)=x(b)-0 and there is no nontrivial solution of the differential equation
vanishing at a and c if a < c < b. Let a < tl ( rE( b. Referring to the proof of Theorem
4 we see that there is an r such that there exists ur(t) 0 satisfying u (t) + Br(t)u(t)
O, u(a) u(c) O, with t2 < cr < b, and such that 0-<_ u(t) for a < < c. We assert
that

(57) 0 < u(t), [tl, tz].

Indeed, this follows from the equation

u(t) G(s, t, Cr)Br(S )Ur(S as,

the strict positivity of the elements of B, and (8). Suppose contrary to the assertion of
Theorem 2 there exists y(t)0 such that y"(t)+ B(t)y(t)= 0 and y(t)= y(t2) 0. As
every element of Br(t) is greater than the corresponding element of B(t) it follows
from Theorem 1 that there exists z(t)O such that z"(t)+B,(t)z(t)=O and z(h)
z(d)= 0 where ta < d < t2. Since u,(t) satisfies the same differential equation as z(t)
and since every element of u(t) is strictly positive on [h, d], by (57), this contradicts
the statement of Theorem 3. This contradiction proves Theorem 2.

Remark. The results of this paper were announced .in the Notices Amer. Math.
Soc., 23 (1976), no. 7, 76T-B205.
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NUMERICAL APPROXIMATION OF NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH L2 INITIAL FUNCTIONS*

G. W. REDDIENf AND G. F. WEBB?

Abstract. Nonlinear operator semigroup theory is used to treat the numerical approximation of
autonomous functional differential equations with L initial functions. The consistency, stability, and
convergence of both explicit and implicit schemes are demonstrated and error estimates are established.
The stability is obtained easily as a consequence of a renorming of the underlying space.

1. Introduction. The objective of this paper is to study the numerical approxima-
tion of solutions to nonlinear autonomous functional differential equations of the form

Xo=4)Le(-r,O;R"), x(O)=hR,
(FDE)

2(t)=F(x,), t>-_O.

The notation of (FDE) means r is a fixed positive number F :L2( r, 0; Rn) R n, and
for _-> 0, x, L-( r, 0; R n) is defined by xt(O)= x(t + O) for almost all 0 [- r, 0]. It is
natural to choose Le(-r, 0; R ") as a space of initial functions for (FDE) and several
authors who have studied (FDE) in this space are listed in our references. Not only
does Le(-r, 0; R ") give a more general class of initial functions than C(-r, 0; Rn),
but its topological and algebraic structure is very advantageous for certain problems.
For example, the weak pre-compactness of bounded sets in Le(-r, 0; R ") is useful in
control theory and the simplicity of adjoint operators in Le(-r, 0; R ") is useful in
stability theory. The numerical study of the linear version of (FDE) was first under-
taken by H. T. Banks and J. A. Burns [1] and H. T. Banks and A. Manitius [2]. Our
treatment of the nonlinear version will be similar to the linear treatment in 1] and will
be based upon the existence theory for these equations developed in G. F. Webb 15].

Our method will use a nonlinear operator approach and our problem will be
studied in the setting of semigroups of nonlinear operators. The advantage of this
approach is to greatly simplify the analytical details in demonstrating the convergence
of the approximating solutions, as well as clarify error estimates in the rate of
convergence. In demonstrating the convergence of approximations to most types of
evolution equations there are two fundamental problems to be resolved. One is the
consistency of the approximating scheme, which is usually very easy. The other is the
stability of the approximating scheme, which is usually very difficult. The main
contribution of this paper is to formulate our evolution equation in a specially chosen
space so that both the consistency and stability of our approximating schemes are
easily and naturally obtained.

We set forth below some needed facts from the general theory of semigroups of
nonlinear operators in Hilbert space (see M. G. Crandall and A. Pazy [7]).

A semigroup of nonlinear operators T(t), t=>0 in a Hilbert space X is a
family of Lipschitz continuous operators in X satisfying T(0)= L T(t + s)=
T(t)T(s) for s, >-0, T(t)x is continuous from [0, ) to X for each fixed
x X, and there exists a real constant 3’ such that ]lT(t)x T(t)y]I <= e v’llx Yll
for all x, y X and _>- 0.

* Received by the editors May 24, 1976, and in final revised form July 1, 1977.
Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235.
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(1.2)

(1.3)

(1.4)

(.5)

The operator A:XX is the generator of T(t), t>-O provided lim,_,oo
(I+(t/n)A)-nx T(t)x for all xX and t_>-0.

If x D(A), then T(t)x D(A) and IIAT(t)xll<--_e’llAx[I for all t=>0.

If x D(A), then IIT(t)x- T(s)xll<-lt-sl ell’llAxll for all 0=<s -< t.

If x D(A), then d//dt T(x)- -AT(t)x for all t->0.

In addition to the facts stated above we will assume throughout this paper the results
and notation of [15].

As in [ 15] we will consider two separate classes of equations, which we describe
as the continuous case (which is easy) and the discontinuous case (which is more
difficult, but which includes the important equations of delay type). The continuous
case will be discussed in 2 and the discontinuous case in 3. For each case, we will
consider an explicit and implicit approximation scheme. In 4 we will give some
numerical examples to illustrate the computational efficacy of our development.

2. The continuous ease. In this case we treat (FDE) for F Lipschitz continuous
from L2( r, 0; R n) to R". We let/3 be the Lipschitz constant for F. From 15] we have
associated with the solutions of (FDE) a semigroup of nonlinear operators T(t), t >= 0
acting in the space X L2(- r, 0; R") R" with inner product and norm

o

({q), h}, {q, k})= / (4(0), q(O))dO+(h, k),

(2.1)
0

II{b, h}ll2= f_ Ib(0)l 2 dO +lh[2.

As in [15] we define two projections rrl and rr2 in X by rrl{b, h}- b and 7r2{b, h} h.
For any {b, h} in X the solution of (FDE) is identified with the semigroup T(t), O,
by means of the formulas

x(b, h)(t) rr2T(t){ck, hi, t>=O,
(2.2)

xt(qb, h)= TrlT(t){qb, h}, t>=O,

[15, prop. 5.9]. The generator of T(t), => 0, is A" X-X

(2.3)
D(A)= {{4, h}" b is absolutely continuous, b’ L2( r, 0; R"), b(0) h},

A{4, h}= {- 4’, -F(4,)}

[15, Props. 3.1, 3.2]. The constant y in (1.1), (1.3), and (1.4) is given by y=/3 +1/2 [15,
Prop. 3.1].

Our approximations to the solutions of (FDE) will be defined using the following
"averaging" projections" Let N be a positive integer, let X

u
=Xt-,/.-,o-/) for

1, , N, and let Xu be the subspace of X defined by

.Xu= {4,h}eX-4 Y hx,heR".
i=1

As in [1] we define PN" X Xr by

}, h (N/r) [-r,i-l,/NPN{4, h}= l, hxN, h where b(0) dO.(2.4)
i= -ri/N
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We observe that for {4, h}eXN, 11{4), h}lla=(r/N)Z,N=l Ih, la+lhla. Also, for {&, h}eX,
IIPN{4, h}ll--<lI{4, hill, so that the Pr’s are uniformly bounded in the operator norm.
For each N let Fr,r" 7rIXN R" Lipschitz continuously with Lipschitz constant/3r and
let

(2.5) sup/3N < oo
NI

(2.6) lim FN(TrPN{, h})=F(4) for all {4, h}eX.

We note that (2.6) holds uniformly on compact subsets of X by virtue of (2.5). We
define a sequence of discretized approximations to A by

D(A)=X and for{4,h}= hx,ho
i=1

(2.7)
AN{4, hi={ (N/r)(h,_,-h,)x,

i=1

Our explicit approximation result is given by
THEOREM 2.1. /f {tv}v= is a decreasing sequence of positive numbers such that

tl <- r/N, {49, h X, and >- O, then

(2.8) lim I[(I-trAu)tt/t’lPN{ck, h}-PrT(t){4), hill= 0
N--

(here [t/tr denotes the greatest integer =< ttu).
Our implicit approximation result is given by
THEOREM 2.2. If {trq}= is a decreasing sequence of positive numbers converging

to O, .such that hv < (/3N + 1/2)-1, {&, h}6X,

(2.9) lim I1(I + tNAN)--I’/*IPrq{49, hi- PNT(t){q, hill- 0,
N-oo

Before giving the proof of Theorems 2.1 and 2.2 we illustrate how one defines the
Fu’s for some examples.

Let Lip (R", R")denote the Banach space of Lipschitz continuous functions from
R" to R with norm [[filLip--If[Lip q-lf(0)l, where IflLip is the Lipschitz constant for f,
that is

IflLip sup If(x)-f(y)l/lx-y].
x,y.Rn,xy

Example 2.1. Let f, g e Lip (R n, R n) and consider the equation

Xo 4 e La( r, 0; R"), x(0)= h e R".

def -0Let F(4) g(J’_rf(rb(s)) ds) and let {fr}v=a and {gr}r=l be sequences in Lip(R", R )
converging to f and g, respectively (in 4 we give some specific examples for
f, g, fu, gu). Define FN (Y’.i_lhiXiN_N)= grq((r/N)Y,_fr(h,))._ To see that (2.5) s" satisfied’
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observe that

FN(i= hix) Fi= kix)
r N

(K )’/<= (supN>_,lgNlLip)(SUpl>=,lfNILip)r/2 r y ih k,12
i=1

To see that (2.6) is satisfied observe that for {4’, h} X such that 4’ is continuous

[FN(TrlPN{fD,

r f-r(i- )/N

-,=1
f((s)) ds)

r

3--ri/N

i= a--ri/N
(s)ds))--g(-

d-ri/N

1)IN

i= r d--ri/N i= d--ri/N

1)IN

f(ck(s)) ds)

[f-r(i-1)/Nr ([fN f[Lip 4p(s)ds< IgNILip
i=1 d--ri/N

" :

(where s e [- ri/N, r(i- 1)/N] such that (&)=
N

-ri/N

0

ck (s ) ds)

+lg --glLipr sup [f(dp(si))[ +l(g,-g)(o)[
l<=iN

N

i= a--ri/N
Ib(si)- 4,(s)l ds.

Thus, (2.6) holds for {b, h} such that 4 is continuous. Since these {4’, h} are dense in
X, F is Lipschitz continuous, and the FN’s are uniformly Lipschitz continuous in N,
(2.6) holds for all {4, h} X.

Before proving Theorems 2.1 and 2.2 we establish some lemmas. The first lemma
gives the stability of the explicit approximating scheme.
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LEMMA 2.1. For each N let 3,N =fiN+5. If O<A<--_r/N and {b, h}, {q, k}XN,
then

(2.10) I1(I-AAN){b, h}-(I-AAN){6, k}ll_-< (1 +A/N)II{b, h}-{6, k}ll.
Pro4 For {, h}, {O, k}e XN, G,Q h,x, h ho, O 2k,x, k ko, we have

={ ((1-Z)(hi-ki)+(A)(hi-,-ki-1))X, h-k+AF)-F))}l=1 f

Then, (2.10)follows with the use of the inequality

2 (h,-,-k,-,)X, ho+ FN(Ck)--ko----i=l

The next lemma establishes the stability of the implicit approximating scheme.
LFMMA 2.2. For each N let 3’N N +1/2. Then, AN + yNI is accretive in XN.

Consequently, ]’or 0 < A < 1/yN, (! + AAN)-1 exists, is everywhere defined on XN, and
satisfies for {49, h}, {, k} XN.
(2.11) II(I+AAN)-I{dp, h}-(I+AAN)-I{, k}ll_-< (-Aw)-’ll{4,, h}-{6, k}ll.

Proof. Let {4’, h}, {if, kIe XN, 4’ 2, hxN, h ho, 2N= kxN, k ko, and
u h- k, 0, 1, , N. The accretiveness of AN + )’NI is equivalent to the follow-
ing inequality:

(AN{b, h}-AN{tP, k}, {, h}-{, k}}

-(1 /1N(u,--u,)x, -F(6)+F(0) u,x, Uo
i= r =’1
N

Y (u,-1- u,, u,)-(F(6)-FN(O), Uo)
i=1

N

’, 1/21U,_l-U,12--1/21Uole+1/2lUNl2--(fN(dp)--FN(O),Uo)
i=1

-> --,/Nll{b, h}-{6, k}J/2.
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The last statement of the lemma follows from the accretiveness of AN + TNI and the
continuity of AN (see [14]).

The next lemma together with Lemma 2.4 will establish the consistency of both
explicit and implicit approximating schemes.

LEMMA 2.3. If {b, h} D(A) and >-0, then

IIPA T(t){b, h ANPNT(t){ck, h }ll

(2.12)

o
<- I_ I(rAT(t){4" h})(O)12dO

r/N

+- (rr, AT(t){ck, h})(O)-(rlAT(t){ck, h}) 0 + dO

+ IF(rrl T(t){b, h})-FN(rrlPNT(t){4, h})l 2.

Proof. Let {q, k} T(t){b, h} and for 1,..., N let

N f-r(i- 1)INvi q(s) ds, Vo k,
r -ri/N

Wi
N f--r(i--1)/N
r d-ri/N

d/’(s) ds (N/r)(q(- r(i 1)IN)- q(- ri/N)).

By (1.3), {0, k} D(A) and we have

(2.13)

Since {q, k} D(A), if(0)= k v0, so that for i= 1 we have
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For =2, , N
[q(- r(i- 1)/N)- q(- ri/N)-(vi_l-vi)l

q(-r(i-1))_ q(__)__N f-r(i-1,/N((s +)-if(s)) dslN r d-ri/N

ff(-r(i-1))_() rN(_f-’(-’)/((r(i ’(s
(O)[ff[, ’-r’i-N 2)) 0( r(i- 1

f-"-’/((...r(i.-1))+s)(,(s+)_O,(s)) ds]
-i/ N

<rN(f-r.-,,/((r(i_l))+
()1/2( [d_r;)i;-l’/N,(S)__ ’ (S+2 aS)1/2

_{i/2{f} k I
r 2r

<,AT<,){, h})<O)-<AT<t){, hi)(0 +)] dO) 1/2

d--ri/N

The conclusion (2.12) now follows.
LEMMA 2.4. If {, h D(A), then

(2.14) AT(t){, h} is continuous from [0, ) to X;

(2.15) for 0, [u[ < 8,

liT(/+ u){6, hi- T(t){6, hi+ uAT(t){6, hill

max IIAT(s){rk, hi-AT(t){4), hill;

(2.16) 2(49, h)(t) dp’(t) for a.e. e [- r, 0] and F(x,(4, h)) for _-> 0;

(2.17) AT(t){rk, ht {(x,(b, h))’, 2(q, h)(t)} ]:or t>-O.

Proof. (2.16)and (2.17)follow from (1.3), (2.2), (2.3), and Proposition 5.9 of [15].
To prove (2.14) we observe that F Lipschitz continuous from L2( r, 0; R") to R" and

x,(b, h)= 7rlT(t){4, h} continuous from [0, oo) to L2( r, 0; R") implies that
(rk, h)(t) is continuous from [0, oo) to R". The continuity of the mapping
(x,(49, h))’ from [0, oo) to L2(-r, 0; R n) then follows from the fact that (x,(4, h))’(0)
2(rk, h)(t+O), k’ eL2( -r, O, R"), and the continuity of translation in L2(-r, 0; R").
To prove (2.15)one uses (1.5), (2.14), the fact that a continuous right derivative
implies the existence of a continuous two sided derivative, and the fundamental
theorem of calculus.

Proof o]’ Theorem 2.1. Since D(A) is dense in X,[T(t)lLip<--e vt, and I(I--
tNAN)tt/tMILip<-e tvN, it suffices to show (2.8)for {b, hie D(A). Let {b, hie D(A), >=0,
and rn [t/tN]. From (1.4)we have

(2.18) IIe,,T(t){4, h}- PNT(mttq ){rk, hill <- ttee ’llA{rk, h }l I.
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From (2.12) and (2.17) we have for k 1,..., m

][PuAT((k- 1)tu){&, hI-APuT((k- 1)tu){&, h}l]2

o

I_ 12(4, h)((k- 1)tr +0)12 dO

(2.19)

+5 i(4, h)((k-1)t+O)-x(4,h) (k-1)tu+O+ dO

+ ]F(r, r(k- )tu){4, h})-F,,(r,P,r((k )m){4’, h})].
The right side of (2.19) can be made arbitrarily small for all sufficiently large N by
Lemma 2.4 and (2.6) (where we use the fact that (2.6) holds uniformly on compact sets
in X). Then (2.8) follows from Lemmas 2.1, 2.4, and

[IPNT(mtN){&, h}- (I tuAu)mPu{, h

(2.20)

l]k= (I-- tNAN)’-PNT(trq){dp, h}

--(I-- tNAN)m-+’PNT(tN)-a{dP, h}ll
--< Z (1 +t/)’-ll(I-tsAr)PrqT((k- 1)ts){4,, h}-PNT(ktN){4, h}[I

k=l

<-e’"* E (llPuT(ktu){6, h}-PNT((k- 1)tN){, h}
k=l

+ tNPNAT((k- 1)tu){b, h}l[
+ tuHPuA T((k 1)tN){4,, h}- AuPNT((k 1)tN){4,, h

Proof of Theorem 2.2. The proof is the same as the proof of Theorem 2.1 except
that we use Lemma 2.2 to obtain

IIPT(mt){4, h}-(I + tNAN)-’PN{d, h}ll

2 (I+tNAN)-(-PNT(tN){, h}
k=l

+ tNAN)-(m-k+I)PNT(tN)k-I{, h}l]
(2.21) II

N E (1 tuyN)-(-]PNT(ktN){, h}
k=l

-(I + tNAN)-’PNT((k- 1)tN){&, h}

N(1- tNTN) ]PNT((k- 1)tN){, h}-(I + tNAN)PNT(ktN){4, h}].
k=l

The remainder of the proof is just as in the proof of Theorem 2.1.
Remark 2.1. Let F be continuously Fr6chet differentiable from L2(-r, 0; R") to

R ". Let {, h}D(A), let "6L(-r, 0; R"), let ’(0)= F(&), and let

IF(r, T(t){4,, h})--FN(rr,PNT(t){ck, h})[ O(1/4N)

uniformly on bounded t-intervals. From formulas (2.16) and (2.17) we have that
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2(4, h)(t) is ditterentiable from [-r, oo) to R and

" for a.e. e [- r, 0],
(qb, h)(t)

F’(xt(, h))vrlaT(t){q5, hi for t>0.

Using (1.4) we see that for 0 N s N

IAT(t, hI-AT(sN, h}2

o

[ I(,AT(0{, hI)(O)-(Ar(s4, h})(0)l dO

+I  AT(OI , hI-Ar(s){, h}l
o

12(, h)(t+O)-i(, h)(s +0)12 dO

+ lf( r(t){, h})-f( r(s){, h})[a

const. I- si +-slaea"ln{, h}ll-Then, from (2.18), (2.19), and (2.20)one may verify that

](-tA)’/’e{4, h}-Pr(o{4, h}l[ O(/g),
and, similarly, one may verify that

II( + tA)’/’P{6, h}-Pr(t){4, h}[l= O(1/).
Remark 2.2. Since AN is a Lipschitz continuous operator in XN we have that for

t0 and {6, h}eXn,

(2.22) TN(t){6, h} lim I---A {6, h}= lim I A {, h}
m m m

exists and defines a nonlinear semigroup Tn(t), 0 in Xn. By virtue of Lemma 2.1 or
2.2

Moreover, we can show that for t0, {, h}X,

(223) lim lT.(t)P.(6, h}-P.T(t)(6, h}=0.
N

To see this claim let 0, {, h} X, e 0, and choose an increasing sequence of
positive integers {mn}l such that t/ms r/N and

](I-(t/mn)An)"tn{, h}- Tn(t)Pn{&, h}]< e.

Set tn t/ms and appeal to Theorem 2.1 to choose an integer N1 suciently large
such that if N N1, then

Then, (2.23)follows immediately.
Remark 2.3. For computations there is a considerable advantage to the explicit

approximation result of Theorem 2.1 as opposed to the implicit approximation result
of Theorem 2.2. This advantage is illustrated in Example 2.1, where for
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{x,l h,x, ho} given in Xv,

(2.24) 2 k,xN, ko (I-tNAN) h,xN, ho
i=

is equivalent to the explicit system of N + 1 equations in N + 1 unknowns ko, , kN,

o ho + f(h
i=1(.5

k (1 (tg/r))h, + (tNN/r)h_, 1 <- <= N,
and

(2.26) k,x, ko d=f (I + tNA)-’ , h,xN, ho
i= i=’1

is equivalent to the implicit system of N + 1 equations in N + 1 unknowns ko, , k,

ho ko tNgr,r 2 f ki
i=1(2.27)

h, (1 +(t,N/r))k,-(t,N/r)k,_,, N.

There is an advantage of the implicit scheme of Theorem 2.2 in that {tN}= need not
decrease to 0 as fast as {r/N}=, so that [t/tN] might be smaller than [tN/r] in (2.9).
Note that in case t r/N, (2.25) becomes simply

o= ho+ t I(h)

ki hi-, N N N.

Thus our explicit method may be viewed as an adaptation of Eulers one step method.
The linear equations in (2.27) may be solved explicitly in terms of ko. Then one finds

ko + 2 (1 +) h_+, tN/r.(2.28) k 1 + i=

Substituting these formulas into the first equation in (2.27), our implicit method then
may be seen to require the solution of one nonlinear equation in one unknown,
namely ko, at each step and can be computed by the method of successive substitu-
tions for t suciently small. Formula (2.28)should not be computed as given.
Suppose 1 and let c /(1 +)= .5. Define o ko and define c(_ +h),

1, , N. Then (2.27) may be written as

Thus using this recursion to produce {k} from ko and {h}, only N multiplications are
required.

3. The diseonlinuous ease. In this case we study (FDE) with F having the special
form

(3.1) D(F)= C(-r, O; R").
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In (3.1) we require that g" R" - R is Lipschitz continuous with Lipschitz constant
and r/" [- r, 0] Lip(R", R n) is of bounded variation from [- r, 0] to Lip(R n, R ") [that
is, there exists a number K such that if {0i}=o is a, subdivision of [-r, 0], then
Y’.=x IIn(O,)-n(Oi-1)llLip <=g, and the total variation of rt between -r and 0, denoted
by Ildl, is the least such number K]. For b C(-r, 0; R"), the Stieltjes integral
[. drt(O)4,(O) exists in the sense that -there exists x R" such that if e > 0 there exists a
subdivision {i}i=o of [- r, O] such that if {0}=o is a refinement of {}o, 0_ _-< 0i _-< 0,
then I=(rl(O,)-’o(O_l))4,(O[)-xl<e. That rd,o(O),b(O) exists for
C(- r, O; R ") is proved using the following: if {0}=o is a subdivision of [- r, 0], {8}o
is a refinement of {0}=o with ,= 0, ko= O<.k <-..<kn M, then

N M

Y.
i=1

N k

E E ((n(8/)-n(,/-))4,(o)-(n(,5/)-n(,/-))6(,))
i= j=ki-l+l

N k

i= j=ki-+l
0

sup sup J_
l<=iN ki-i+ljki

[The Cauchy convergence condition thus holds and this implies the existence of the
integral (see [16, 10.1, p. 49]).] Further, b --> jrdq(O)qb(O)is Lipschitz continuous form
C(-r, 0; R’) to R , since

2 (n(o,)-n(o,-1))4,(o:)-2
i=1 i=1

N

<- E
i=1

N

i=1

N
_<- sup
-rOO i=1

0

sup 16(0)-0(0)1_ Idwl.
-rOO

def

We also require that (0)=0 and lim0_(0)0, where z(O) d (the total
variation of between -r and 0). As a mapping from L(-r, 0; R) to R such an F
may be only densely defined and discontinuous, but this class of F includes equations
of delay type not included in the class of F considered in 2.

Again we associate with the solutions of (FDE) a semioup of nonlinear opera-
tors [15, Props. 4.1, 4.2]. In this case the semigroup T(t), 0, is defined in the space

clef 2 clef

X, = (-r, 0;R )xR, d(O) r(O)dO, with norm and innerproduct

(3.2)

o

I1{ , h}ll -- I_ dO /lhl
o

({tk, h}, {q, k}), I_ (th(0), g/(O))z(O)dO+(h, k)
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and T(t), >=0, satisfies (1.1)-(1.5)with y= r(O)(1 +fl2)/2. If we do not introduce the
weighted norm in (3.2), then the semigroup .T(t), >=0, associated with (FDE)will
satisfy, in general, the condition that the Lipschitz constant of T(t) is <-Me", with
M> 1. In both the linear and nonlinear case it is very advantageous to have this
constant M equal to 1, especially for approximation theory.

In order to show the stability of an approximating scheme for a noncontraction
type semigroup in the linear case, one is required to. show that the approximating
semigroups Tn satisfy a condition of the form ITn(t)l<=Me" uniformly in N [11, p,
502]. In the nonlinear case there is at present no approximation theory available for
noncontraction type semigroups comparable to that for contraction type semigroups
(general treatments of approximation theory for contraction type semigroups may be
found in [4] and [9]). As in 2 we identify the solutions of (FDE) with T(t), => 0, by
means of the formulas (2.2). But for F as in (3.1)we know only that x(ck, h )(t) satisfies
(FDE) provided {ck, h}6D(A) [15, Prop. 5.8]. In general we must think of the
function x(d, h)(t) defined in (2.2) as a solution of (FDE) in a generalized sense [15,
Prop. 5.12 and Cor. 5.13]. The generator of T(t), t>=O, is A: X, X,, where

(3.3)
D(A) {{b, h}: 4) is absolutely continuous, 4)’ L2( -r, 0; R";/x), b(0)= h},

A{b, h} {- b’, F(4)}.

In 2 the approximations to the solutions of (FDE) were defined in a subspace of
X. In this section the approximations will be defined in a space XN equipped with a
norm different from the norm of X,. The norm of XN will arise from a discretized
version of the measure/x in the norm of X,, and this "weighting" of the norm of Xu
will yield the stability of our approximating schemes in an easy and natural way. For
each positive integer N define -- -(-rj/N), j- O, 1,..., N and define the Hilbert
space Xu by

(3.4)

X= {b,h}’b= E h,x,h,,...,hNeR",
i=1

r
Y, lh, /lhl=,11{6, h}][=
i=

r
(h,, k,)z_ +(h, k).({b, h}, {q, k})N= i=1

Define Pu as in (2.4) except that now Pu maps X, into Xn. Since for {4, h}e Xu

I]PN{b, h }[lv ,=,
Nf

-’(’->/l’r
2ok(O) dO 77_

F ,-ri/N

14,(o)! = dO)7"-i /lhl

< -(o) I--limo_.,-r’r(O) dO + Ihl,
the PN’s are uniformly bounded in N as operators from X, to X.

For each N let gN bea Lipschitz continuous operator from R" to R" with
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Lipschitz constant fin such that

(3.5) sup/3N < oo

(3.6) lim gN(h) g(h) for all h 6 R".
Noo

We note that (3.6) holds uniformly on compact subsets of R" by virtue of (3.5). Let
7r be the projection on XN defined by 7rr{b, h}= 4 and let FN" 7rXr o R" be
defined by

F( f hix) g( f (q(-r(i-1)) -rt(----))-ri hi)
i=1 i=1 N

for E,N=, hixiN rXrq.
Example 3.1. Let f, a, b Lip (R, R) and let 0 -< r2 < r r. Consider the second-

order scalar delay equation

)(t) f(a(y(t- ra))+ b@(t- r2))),

Y0=4, y(0)=h, 3)o=, 3)(0) =/,
t__>0

dp,)eL2(-r,O;R), h, CneR.

Define r/" [-r, 0]oLip (R2, R 2) by n(O)(h,,t)=(O, 0) if 0 -rl, (0, a(h)) if -r

O<-_-r2, (O,a(h)+b())if r2<0<0, and (.,a(h)+b(l))if 0=0. If
C(-r, 0; R22), then [rdrt(O)(ck(O), (0))=((0), a(4)(-ra))+b(R!-r2))). Define
g. R 2 o R by g(h,/)= (h, f(/)) and define F: C(- r, 0; R2)o by F(b, )=
g(jOr dq(O)(ck(O), (0))) ((0), f(a(ck(- rl))+ b((- r2)))). Our second-order scalar
delay equation may now be formulated as the first-order equation in R 2

2(0= F(x,), Xo (4, ), x(0) (h,/),
def

where x(t)" [-r, oo)o R and (y(t), 3)(t)) x(t). If we let 7r(h,/)= h, (h,/)=/,
fN of in Lip (R, R) and define gN(h,/) (h, fN(/)), then

F(,=af (hi,/i)X) (r ,--a
f (a(- r(i-1))N -(- ri/N))(h,, i),

fN( "" ,fa (r( r(/ 1))_ r(i))(h,, ,)))

=(1 fN(" f ((-r(i- -ri

i=a N 1)) rt(-----) ) (hi’/’)))"
We need the following facts about the operators FN"
LEMMA 3.1. For each N, Fn is continuous (but not uniformly in N). If {49, h}

D(A), then

(3.7) lim FN(rPNT(t){ck, hi) F(rl T(t){4, hi)
N--oo



1164 G.w. REDDIEN AND G. F. WEBB

uniformly in bounded intervals.
Proof. If ’-, hix, ,1 k,XY rXN, then the first claim follows from

(3.8)

(3.8a)

Lip

N

i=1

def
If {4, h} D(A) and 4’ rl T(t){4, h}, then the second claim follows from (1.3), (3.5),
(3.6), and the estimates

and

gr( (r( -r‘i- 1)) -ri N
,=1 N r

i= d--ri/N d--ri/N

N(O sup 0(o)-
1NiNN -ri/N

1NiNN,-ri/NNON--r(i- 1)IN

( )-1/2()1/2( )1/2

Igor( (/(-r,i-l>) ,/(__)) -ri ,0>)
i=1 N I//(T))

ri
d’l ,0>/(----)) gN( i= f,$ --rlji; )/N

dn(O)d/(O))

i= d--ri/N
Idn I_r,/,V _O<---r(i-1 )IN

tiNT(O)( 2im_r 7"(0) /2( 1/2( I($)127($)d$
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For each N we define a discrete operator An approximating A by An: Xr Xv,

D(A)=X and for {,h}= Y h,x/,ho
i=’1

(3.9)
AN{t, h}={ f(hi-l-hi)x,

i=1

THEOREM 3.1. If {6}=1 is a decreasing sequence of positive numbers such that
tN <-_ r/N, {rk, h X, and >-_ 0, then

(3.10) lim [l(I- tNAN)[t/tNIPN{Ch, h}- PrvT(t){ch, h}[[ 0.
Noo

THEOREM 3.2. If {tv}v= is a decreasing sequence of positive numbers converging
to O, {, h} X, and t >-_ O, then

(3.11) lim [1(I + tcAN )-[t/t’lPN{th, h}- PrvT(t){, h}ll O.
N

Before proving Theorems 3.1 and 3.2 we establish the stability of the approxi-
mating schemes in the following lemmas.

LEMMA 3.2. For each N let ),rv=r(0)(l+/3v)/2. If O<A<-_r/N and {b,h},
{, k} X, then

(3.12) 11(I-AA){b, h}-(I-AAN){, kill-<(1

Proof. Let {4’, h}= {Y=I hoN, ho}, {g, k}= {=1 kx, ko}, and u, h- k,, i=
0, 1,. ., N. As in the proof of Lemma 2.1 the left side of (3.12) is =<

1-A II{b, h}-{6, k}ll+ , u,-1xT, Uo N (F(b)-F(ff))

_r _r A(1- A(--) ) {4), h { gJ, k + ( A---Nr ) (l -Ar,r) {ck h } (I -Observe that by the Cauchy-Schwarz inequality

(3.13)
E (TT-1 "/’7)1/’/il E (7"7-1 "/’7)1/’/il2 Ti-- T
i=1 i=1 i=1

N

i=1

Then, (3.12) follows using (3.8a), (3.13), and

_r _r A!1(I Ar){4,h} (I N){0, k}l[2

,E +IUoI= (uo,

r v 2r
--N--,El.= lUi-ll:z’rN-’ + lul= luol , ,=,E

-1-()2( (’/’/N-1 --7"7)1Uil)
2
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r N

-,>Z, lu,-,l=C-, /luol= +r (l uol(o)/=)=-N.= N

+ r(O)’/2.= (N--I--/N)IU’
N r

r N

(rN---rN)Iuil+ fl’(0) Y’. (rN_l+ =

((--)’Ytv) r
lui]2 N r

1/ ]uol2/-ff r,_,--ff]u,
i=1

i=1

2r "Yrv) r _.1 N

/ luo12/.= [uil2i-,

Ti-1
i=1

( rTN)
2

12--< 1+ II{b, h}-{gJ, kII

LEMMA 3.3. For each N/et TN r(0)(1 + f12N)/2. Then AN + 3,NI is accretive in Xrv.
Consequently, for 0 < X < 1/3’n, (I + AAN)-1 exists, is everywhere defined on Xlv, and
satisfies

(3.14) [(I + AAN)--’ILp =< (1 +//N)-1

Proof. Let {b, h }, {4’, k XN, 4’ Y’.5, hixN, h ho, 4’ iN--1 k,x, k ko, and

ui hi- ki, 0, 1, , N. Using (3.8a) we obtain

{AN{dA h}-AN{, k}, {, h}-{, k}}N

=r N
(ui-1 ui, ui)gT-1- (FN(b)-Fzv(), Uo)

Ni= r

N N

2 --(Ui-l--Ui, Ui)TT-1--N 2 (7"7-1-rl)luil luol
i=1 i=1

N N

2 2 -(Uk-,- U, uk)(rW-, r/N) 1 (r-i rW)lui lUol
i=1 k=l i=1

i=1
( k=l --(lgk-l--Uk’ Uk)--INIUil lU0]) (T/N-1 --T/N)

( i:e
,= k--1 1/2(lu-’l-lul)=+1/21ui

+ (/2)IuoI=-- Iu, luoI ((I + 2N)/2)IUoI2)(r N-1 r.N,
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We now use the fact that for all x, y->0, 1/2X 2 +(/3/2)y2--/3Nxy _-->0 to conclude that
(3.15)->-((1+/3)/2)[u012’(0). This proves the accretiveness of AN+yfl. The
second statement of the lemma follows from the accretiveness of AN + yNI and the
continuity of AN (see [14]).

LEMMA 3.4. If {ok, h}6D(A) and t>-_O, then

[]PNA T(t){4), h}- ANPNT(t){ch, h}ll2u

<
lim0,_,r(0)’(0) (f_0,/,l(r(mT(t){ck, h})(O)12r(O) dO

1( ’(0) ))(3.16) + \limo-,-r’(0
(TrAr(t){qb, h})(0)

+ IF(r r(t){4, h})-F(r(t){4, h})l.
Pro@ The proof is very similar to the proof of Lemma 2.3.
LEMMA 3.5. I {, h} e D(A), then

(3.17) tAT(t, h} is continuousrom [0, ) to X;

fort >-0,

IlT(t + u){b, h}- T(t){4, h}+ txAT(t){ck, h}l],

max

(3.19) AT(t){, h} {(x,(4, h))’, 2(4, h)(t)};

(3.20) 2(49, h)(t)=f)’(t) for a.e. t[-r, 0] and F(xt(b, h)) for t>=O.

Proof. (3.19) and (3.20) follow from (1.3), (2.2), (3.3) and Proposition 5.8 of [15].
Then, (3.17)is established just as in the proof of (2.14)except that we use the fact that
F is continuous from C(-r, 0; R n) to R n. Statement (3.18)is proved exactly as (2.15)
in Lemma 2.4.

Theorems 3.1 and 3.2 are now proved just as Theorems 2.1 and 2.2 were proved
except that we use Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5.

Remark 3.1. Let F be continuously Fr6chet differentiable from C(-r, 0; R") to
R n. Let {4, h}D(A), let 4)"L(-r, 0; R), let b’(0)= F(b), and let

IF(rra T(t){b, h})-Fu(rrTPuT(t){d, h})[ O(1//N)

uniformly on bounded t-intervals. Using formulas (3.19) and (3.20) we can establish
that the convergence in (3.10) and (3.11) is O(1/x/--N) just as in (2.20) and (2.21)
of Remark 2.1.

Remark 3.2. The comments made in Remark 2.2 for the continuous case apply
also to the discontinuous case. That is, (2.23) holds for the discontinuous case, where
TN(t), >= O, is defined as in (2.22). The comments made in Remark 2.3 concerning the
relative merits of the explicit and implicit schemes also apply for the discontinuous
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case. For Example 3.1, if {Ev= l(h,, ac,)X, (ho, fo)} is in Xv, then

(3.21)
{ (ki, ff,i)xiN (ko, o)} de__f (I--tNAN){ (hi, i)X, (ho,/o)}
i=l i=1

{’ i1(( 1- t---Nr)) (/’’ li)+tNN(hi-l’r cai-l’) Xrf’ (ho, Cno)

is equivalent to the explicit system of 2(N + 1) equations in 2(N + 1) unknowns,
ko,/o,"’", kv,/N, given by

ko ho + tNl,

/o =/o+tvf(r (rl(-r(i-1))-rl(S-)(hi, Cni))
i=1 N

(3.22)
k,=(1-t(N/r))h,+(tN/r)h,_l, i= 1,... ,N,

/, (1 t(N/r)) +(tN/r)f,_l, 1,..., N.

Note that with tNN/r 1, we have simply k h-l, i= 1,..-, N and i =/i-1, i=
1,..., N. Hence apart from shifting indices, (3.22) represents two equations. The
equation

N def

(3.23) , (ki, l?c,)xL (ko, l?Co) (I + tA)- (hi, ac,)XL (ho,/o)
i=’1 i=

is equivalent to the implicit system of 2(N + 1) equations in 2(N + 1) unknowns
ko, o,""", ku,/v, given by

ho ko- tNl,l,

Io Co tNfr (l(-r(i- (
(3.24)

hi (l + t(N/r))ki-(tN/r)ki_l, 1,..., N,

nri (1 + trq(N/r))ci-(tNN/r)fci-1, 1,..., N.

As before, the last two sets of equations in (3.24)may be explicitly solved for k and/
in terms of {hi} and ko and {nci} and /o respectively. Thus we have that (3.24)
represents two implicit equations in the two unknowns ko and/o. Once ko and/o are
determined, then ki,/ follow directly from the simple recursion formulas in (3.24).

4. Examples. We applied both the implicit and the explicit methods numerically
to the problem

(4.1) 2(0 cos (x(s)) ds, t0,
t--1

with

{Xo, x(0)} {1, 1},

i.e. x(s)= 1 on [- 1, 0]. This problem satisfies the hypotheses for our continuous case.
In the notation of Example 2.1,/(x)= cos (x) and g L Since cos x can be easily
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evaluated, we choose fr=f and gN=I for all N. Then Ft(ilhix)
(r/N),u= cos (hi). With t r/N, the explicit method becomes, from (2 25),

N

ko ho + t2 cos (hi),
i=1

(4.2)
k h_ 1, 1 N.

From (2.27), the implicit method becomes for t r/N

(4.3a) ko ho +t 2 cos 5ko + .5h_+
s=l

(4.3b) ki =. 5iko + 5hi-+, i= 1,..., N.
s=l

Thus once (4.3a) is solved for ko, (4.3b) explicitly gives the remaining k. One can
always simply choose g =g and [ =[ for all N if and g are easily computable
functions. Note that if tm < 1, then (4.3a) is solvable by the method of successive
substitutions. Applying the two methods, we obtained the numerical results for
the values of N indicated in Table 1. Note that the error of the implicit method for this
example is smaller than that of the explicit method, which somewhat compensates for
the additional computations required. For the values of N given, at each step ho was
used as an initial guess in (4.3a) for k0. Only one iteration was required then to
achieve six significant digits of k0. The solution has value approximately equal to
1.6007 at 2 (as is seen by taking N very large).

TABLE

10
20
40.

Abs. Error for

Exp. Meth.
at t=l

.0208

.0108

.0056

Abs. Error for

Imp. Meth.
at t=l

.0145

.0076

.0038

Abs. Error for

Exp. Meth.
at t=2

.0333

.0155

.0072

Abs. Error for

Imp. Meth.
at t=2

.0025

.0017

.0007

We reran this same example, but made the initial function x(t)= 0, -1 t=<0.
The solution reached approximately 1.528 at t= 2. For N=40, the error for the
explicit method at 2 was .013; the error for the implicit method was .001.

Although in the above examples the implicit method is more accurate, the extra
computing it requires does not in general justify its choice over the explicit scheme.
However, in some important cases, the implicit method would be preferred. In order
for the explicit method to converge, the stability condition tu <= r/N must be met. This
condition is necessary as we have seen in some other numerical examples. On the
other hand, the implicit scheme is unconditionally stable. Thus if a problem has a very
small delay, r, or if N must be taken very large so that Pn{b, h} is an accurate
approximation of {4, h}, or if information about the solution for large t is required, the
implicit method may then be preferred. We reran the first example with N 50 but
with tn 1/10, i.e. tN 5. r/N. The explicit method had an error at 2 of .0094. The
solution to the first example approaches 7r/2 as t becomes large. For these last
computations with the implicit method (N =.50, tn 1!10), the difference between
the computed solution and 7r/2 for 10 was .45 10-5.
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The implicit scheme repeatedly smooths the approximate solution through, for
example, (4.3b). This averaging can increase the error as compared to the explicit
scheme, particularly for highly oscillatory initial data. We reran the first example but
with the initial data x(t)= 1 on [-1, -.8)1.3[-.6, -.4]L1[-.2,0] and x(t)=-1
elsewhere on [-1, 0]. We point out here that for this special initial data (piecewise
constant) pN{th, h} {b, h} and so no error is introduced initially. Our explicit method
for this example can then be viewed as a variant of Euler’s method and O(1/N)
convergence can be established. Table 2 contains the results we obtained for this
problem for several values of N. Note that the convergence of the explicit scheme in
this case appe__ars to be O(1/N) and the convergence of the implicit scheme appears
to be O(/1/x/N).

TABLE 2

10
20
40
80

Abs. Error of

Exp. Meth.
at t=2

.0333

.0156
0071
.0036

Abs. Error of

Imp. Meth.
at t=2

.0733

.0485

.0341

.0248

Indeed, the implicit method actually changes the initial data during the first N steps if

t r/N, which of course introduces error. Thus it would seem computationally
advantageous, particularly with an oscillatory initial function, to not use (4.3b) for the
first N steps with the implicit method but to retain (4.3a) to define k0. We did this on
the previous example and for N--40 obtained an error at t-2 of .0059. We made
similar runs on other equations and observe essentially the same numerical results.

Acknowledgment. The authors gratefully acknowledge the helpful suggestions of
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MONOTONIC PROPERTIES OF ANALYTIC FUNCTIONS*

A. D. RAWLINSf AND J. D. MORGANt

Abstraeto A theorem is proved which enables one to obtain monotonic properties of the real part,
imaginary part, modulus and phase of an arbitrary analytic function in the complex plane. The monotonic
properties are established from the behavior of the analytic function and its derivative on the boundary of
the domain in which the monotonic properties are required. As an application some monotonic results are
derived for the Bessel functions J,,(z) and H(2 (z), where z is complex and u is real and positive. The
theorem and a corollary can be used to obtain monotonic properties of many other special functions of
mathematical physics.

1. Introduction. In the present work a technique is derived enabling one to
obtain monotonic properties of the real and imaginary part, (or modulus and phase) of
an arbitrary analytic function in the complex plane. The technique requires only a
knowledge of the behavior of the derivative (or logarithmic derivative) of the analytic
function on the boundary of the domain over which the monotonic properties are
required. The method for obtaining these monotonic properties comes from the main
theorem (Theorem 1) given below. The proof of Theorem 1 uses the derivative (or
logarithmic derivative) of a regular analytic function, the Cauchy-Riemann equations,
and the maximum modulus theorem. The crux of the proof relies on the well-known
fact that the real and imaginary parts of a function that is regular and analytic in a
closed domain, take their extreme values on the boundary of the domain. It will be
seen that this theorem offers a powerful tool for determining monotonic properties of
a complex function.

As an application of Theorem 1 some monotonic results for the Bessel functions
J,,(z) and H<ff (z) are obtained. These monotonic properties yield new Bessel function
inequalities, particularly lower bound inequalities.

Throughout the paper we shall assume z x(, r/)+ iy(, r/), where x, y,
are real. The transformation between x, y and the general coordinates :, r/is assumed
to exist and be one to one. A sufficient condition for this is that the Jacobian does not
vanish, i.e. 0(sc, l)/(x, y) : 0. For a complex function F(z) we note that

F(z) IF(z)[ exp [i Arg F(z)] Re F(z) + Im F(z)

where Arg z denotes the principal value of the argument of F(z), given by
Arg z -<

In the application to the Bessel functions, g,,(z) will denote the ratio J’,,(z)/J,(z)
and h,,(z) the ratio H<)’(z)/H)(z). The order u is assumed to be real and greater
than or equal to zero. Where a branch cut exists in the z-plane it is assumed to be
the principal cut along the negative real axis. It should be noticed that although J,(z)
has a branch point at the origin for noninteger u, the function g,(z) has no branch
points. Furthermore g,,(z) is an odd function of z. Finally we note that similar
monotonic properties, for H2) (z) follow from the monotonic properties for H1) (z)
via the relationship H(,,2) (z)= H( ().

2. Monotonic properties of F(z). In this section we shall prove a general
theorem which gives monotonic properties of a regular analytic function. We will

* Received by the editors February 19, 1976, and in revised form May 9, 1977.

" Department of Mathematics, The University, Dundee, Scotland. The work of this author was
supported in part by an S.R.C. Fellowship.

Royal Aircraft Establishment, Aero Department, Farnborough, Hants.
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require the following Lemma 1 which shows how to construct in certain circum-
stances, a regular analytic function from a given function that is not regular and
analytic.

LEMMA 1. Let us suppose that a simply connected complex domain D with
boundary OD is such that if z D U OD the complex function G(z) u(x, y) + iv(x, y) is
not a regular analytic function, but that IG(z)l 0 and Arg G(z) is harmonic. Then the
composite complex function P(x, y)G(z), (where P(x, y) is a real function of x and y) is
a regular analytic function when z D t_J OD if

P(x, y)-
iG(z)l exp -{Arg G(z)} dy

(1

--iG(z)l exp { y{Arg G(z)}

Proof. We may write P(x, y)G(z) in the form

(2) P(x, y)a(z)= P(x, y)la(z)l exp [i Arg G(z)],

and since P(x, y)G(z) is an analytic function of z, so also is

(3) Ln [P(x, y)G(z)] Ln [P(x, y la(z l]+ Arg G(z)

where we have assumed without loss of generality that P(x, y)> O.
An application of the Cauchy-Riemann equations to (3) gives

(4)
0
(Ln[PlG[])

0

O- y Arg G

__._0 (Ln [PIGI]) O
Arg G.(5)

0y

Provided the consistency relationship 72 Arg G(z)= 0 holds equations (4) and (5) can
be integrated to give

(6) P(x, y)la(z)l exp yy Arg G dx exp xx Arg G dy

We are now ready to prove:
THEOREM 1. Let us suppose that a simply connected complex domain D with

boundary OD is such that if z D (A OD the transformation z x(sc, r/) + iy(:, r/) satisfies
the conditions

(7) Or/ 0 Or/ 0sc O(, r/) 0 Or/ 0 Or/
t- O, J(z) 0;

Ox Ox 0y Oy O(x,y) Ox Oy Oy Ox

(8) VZ{Arg G(z)} 0 where G(z) O+ so
Ox Oy

If, also, F(z) is a regular analytic function of z for z D U OD then:
(i) Re F(z) is a monotonic function of, and Im F(z) is a monotonic function of r

in DUOD if
(9) Re {F’(z)e(x, y)G(z)} O, z 60D;
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(ii) Re F(z) is a monotonic function of q and Im F(z) is a monotonic function of
in D U OD if
(10) Im {F’(z)P(x, y) G(z)} #- 0, z OD,

where in (9) and (10) P(x, y) is given by

(xx +(yy)}- exp{-I 0- tan \O/ox/dY}"(11) V(x, y) { 0 2 0 2 1/2 Y 0 --1 (O/O.Y

Pro@ Since F(z) is a regular analytic function of z in D UOD the Cauchy-
Riemann equations give

d Re F(z)= + ImF(z).

Written in terms of the general coordinates and these equations become

(12) F’(z) G(z)+H(z) Re F(z),

{ o,
(13) iG(z)=+iH(z)= ImF(z),

where

Or/H(z) t.
Ox Oy

Using Lemma 1 we see from the condition (8) that we can construct the regular
analytic function P(x, y)(O/Ox + iO/Oy), where P(x, y) is given by (11). Multiplying
both sides of equation (12) and (13) by this analytic function and using the first
condition of (7), we obtain

(14) F’(z)P(x, y)G(z)= P(x, y){ IG(z)12 0 - }-0-- iJ(z) Re F(z),

(15) P(x, y){J(z)-+ i[G(z),2
0 ] Im F(z).

It can be seen from (14) and (15) that:
(i) If

(16) Re{F’(z)G(z)P(x, y)} # 0, z 6DJOD,

then Re F(z) is a monotonic function of , and Im F(z) is a monotonic function of
(ii) If

(17) Im{F’(z)G(z)P(x, y)} # 0, z DOD,

then Re F(z) is a monotonic function of , and Im F(z) is a monotonic function of s.
From Lemma 1 and the fact that F’(z) is a regular analytic function, the expression in
braces in (16) and (17) is also a regular analytic function when z D OD. Since the
real and imaginary parts of a regular analytic function are harmonic they cannot attain
a maximum or minimum in the domain of analyticity, Titchmarsh [1, p. 167]. It follows
therefore that if the expressions (16) and (17) do not vanish on the contour OD they
cannot vanish in D. Hence the conditions (7) to (11) are sufficient to establish the
monotonic properties of Re F(z) and Im F(z) given in Theorem 1.
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COROLLARY TO THEOREM 1. If W(z) is a regular analytic function when z
D U OD and W(z) does not vanish in this region, then Ln W(z) is also regular and
analytic in D UOD. Letting F(z)=Ln W(z), we see that Re F(z)-tnlW(z)l,
Im F(z)= Arg W(z) and

0
Re F(z)=

1 0
Re F(z)=

1
W<z)l-o lw<z)l, W(z)l w(z)l

Therefore in D U OD, Re F(z ) will be a monotonicfunction of or n gand only g lW(z)l,is
a monotonic function ofor . Hence in Theorem 1 gwe assume the same transformation
between x, y and , n, and also the conditions (7) and (8) hold, and W(z) is regular,
analytic and nonzero in D OD, then:

(i) W(z)[ is a monotonicfunction of, and Arg W(z is a monotonic function of n in
DODg

(9a) Re W()) G(z)P(x, y) # O, z OD.

(ii) W(z)l is a monotonic function of n, and Arg W(z is a monotonic function of in
D OD if

(10a) Im
W(z)

where in (a) and (10a) P(x, y) is given by (11).

3. Monotonic properties of Jr(z). We now use Theorem 1 to prove the following
theorem about Jv (z).

THEOREM 2. For complex z and u >= O, IJv(z)l is a monotonic increasing function of
lyl, and Arg J(z) is a monotonic increasing (decreasing) function of x for y > O(y < 0).

Proof. In the Corollary to Theorem 1 we let W(z)= J(z), and choose sc and rt to
correspond to the Cartesian coordinates x, r/= y. The conditions (7) and (8) are
satisfied and (11) gives P(x, y)= 1. {J(z)}- and consequently g(z) are regular
analytic functions on and inside the contours OD shown in Fig. 1. From the Corollary
to Theorem 1 (compare (ii), (10a)) it can be seen that Theorem 2 is proved provided
we can show that Im (g(z))< 0 on OD +, and Im (g(z))> 0 on OD-.

On the large semi-circles OD(Izl-oo) the asymptotic expression for J(z) as
Izloo, see Watson [2, p. 199], gives

(18) Im (gv(z)) -shy ch y cos z
2 >0, y OD.

We now determine the sign of Im (g(z)) on the straight lines OD given by z
x + ie,-co < x < oo, e > 0. Putting g(z) in the alternative form, Watson [2, p. 498],

, J,+l(z) , . 1
g(z) =-+2z ,/.. ),z L(z) z (z 2

g,’(x)we find by direct differentiation that < 0 for -oo< x< oo, v>O. Thus on the
Dstraight parts of the contours 0 we have, for e small,

gv(x + ie)= g(x)+ ieg’(x)+ O(e2), e < 6(x),

where 8(x) is the radius of convergence of the power series, and equals the distance
from x to the nearest pole of g,(z). This means that points x not near the real zeros of
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OD

OD- 3

hTI z

OD

Re z

FIG.

J(z) will satisfy the inequality 3(x)> e. To deal with the situation where x is near a
Dzero of J(z) and consequently 6(x)<-e, we indent the contour 0 away from these

zeros. Then near a zero z j,,, we have

g,,(Z) (Z --j,,.)-l{1 +(z-j,,.)J",. (j,,.)/(2J’,,(j,,.))+ O((z-j,,.)2)},

so that
-1Im g,(z)--p sin 4)" {1 + O(p2)},

where z -j.,, p e i+.
Hence provided we let e and O tend to zero together, with p always greater than

e say, the equations above show that

<0, yOD+,(19)
Im(g(z))

>0, yeOD-2.

Hence inequalities (18) and (19) show that Im (g) <0 for y >0 and Im (g,(z)) >0
for y < 0. Therefore the proof of Theorem 2 is complete.

We note that for , n, where n is an integer, the restriction that n be positive can
be dropped. This follows from the relation J_,(z)= (-1)"J,(z).
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COROLLARY.

(2o)

in particular

IJ(x +/- iyl)] <-- IJ(x +/- iy2)l, 0 < Yl -< Y2,

4. Monotonic properties ofH (z). In this section we prove two theorems which
give monotonic properties of H( (z). Theorem 3 is similar to Theorem 2, with
appropriate changes for H( (z). Theorem 4 is slightly different in that the cylindrical
polar coordinates are used to establish monotonicity with respect to the radial and
angular coordinates.

THEOREM 3. ..,Ihr(1) (Z)[ is a monotonic decreasing function of y, and Arg H() (z) is
a monotonic increasing function of x, for y >-_ 0 and v >- O.

Proof. In the Corollary to Theorem 1 we let W(z)= H( (z), and choose : x, rt
y, so that the conditions (7) and (8) are satisfied and (11) gives P(x, y)= 1. Since
H(/) (z) has no zeros or branch points in y > 0, v _-> 0 the function h(z) is regular and
analytic in this domain. It follows from the corollary to Theorem 1 ((ii) expression
(10a)) that Theorem 3 follows if and only if Im (h(z))>0 on OD where OD is the
contour shown in Fig. 2.

On the semi-circle 0D(Izl--,oo, 0<Arg z < r), h(z)---i. On the small semi-
circle OO(Izl=e>O,O<Argz<Tr),h(z)---v/z if v>0 and ho(z)---(z Lnz)-.
Finally on cgDl(e -<-Izl < oo, Arg z 0) and OD2(e --<lzl < oo, Arg z 7r), we have

(21)

Im (h(z))

2{rrlxl IH’2’ (Ixl)la}-’.

The relationship H( (xei=)=-ei=H(2 (x) is used in deriving (21) on OD2. Thus as
the contour expands to infinity we see that Im (h(z)) > 0 for Im (z) _-> 0, z 0. Hence
Theorem 3 is proved.

COROLLARY.

IH’ (x + iy2)l <-[H() (x + iy,)[, O--<y--< y2, v=>O,

IH2 (z)l =IHg’ Im (z)-- 0, v=>O.

THEOREM 4. For complex z( r e i)and u >- O, IH7 (z) is a monotonic decreasing
function of r, and ArgH (z is a monotonic decreasingfunction of O, ]:or 0 <- 0 <-_ 7r, 0 <
r <oo.

Proof. In the Corollary to Theorem 1 we let W(z)= H9 (z) and choose sc and r/
to correspond to the cylindrical polar coordinates r, r/= 0, where x r cos 0,
y r sin 0, z re i. It is not difficult to show that the conditions (7) and (8) are
satisfied and that (11) gives P(x, y)=(x2+y2)a/2= r. Using these results and the
Corollary to Theorem 1, (i) expression (9a), and also the fact that h(z) is regular and
analytic in Im (z) => 0, z 0, we see that Theorem 4 is proved provided we can show that
Re (zh(z))< 0 on OD. (See Fig. 2.)

On the semi-circle ODR(r cx3, 0 < 0 < 7r), we have h(z) so that

(22) Re {zh(z)} -r sin 0 < 0, z OD.
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lmz

. Rez
FIG. 2

On the small semi-circle, ODe(r= e >0, 0- 0- rr), we have h(z)--- ,/z if v>0
and h0(z) (z Ln z)- , so that

Re{zh(z)}---v<O,
(23)

Re {zho(z)} (Ln e)- < O, z ODe.
On the lines OD(e _-< r < oo, 0 0) and OD2(e _-< r < co, 0 7r) we have

r(J’. (r)J(r) + Y’ (r) Y(r))
Re {zh(z)} J (r) + Y (r)

(24)
r_ _d IH) (r)12/iH(1) (r)12, z OD, O OD:.
2 dr

Now from Watson I-2, p. 444] we have

(25) [H(2 (r)l 2 Ko(2r sh t) ch 2vt dt > O, 0 < r < oo,

and

(26)

From (25) and (26) we see that

(27) Re (zh(z)) < O, z E OD1 [..J OD2.
Thus the relations (22), (23) and (27) show that Re (zh(z))< 0 on OD. Theorem 4 is
therefore proved on letting the contour OD expand to infinity.

Acknowledgment. We would like to thank the referees for helpful comments on
the presentation of this paper.
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A FREE BOUNDARY OPTIMIZATION PROBLEM*

ANDREW ACKERt

Abstract. Given a convex set O c R (bounded by a simple closed curve) and a constant A > 0, we
determine the doubly-connected region 1 encircling (but not intersecting) O, with area I1-< A, which has
the least capacitance.

1. Notation. f is a doubly-connected region in R e with simple, closed curves F*
and F as (respectively) inner and outer boundary components. (See Fig. 1.) S* F*
and S F are the finite and infinite components of R e\f. The capacitance K of D is
defined by K [,, I’u(p)[. Idpl, where the electrostatic potential U(p)is the unique
continuous function on R 2 which is harmonic in f and satisfies" U 1 in S*, U 0 in
S, and where /cD is an equipotential curve of U. The notation F Uc(p),
S-, *,/i, refers to other regions fc, fi, fii," with (unless otherwise stated) the
same properties as f.

2. Introduction and main results. We will investigate the following free boundary
optimization problem.

Problem 1. (See Fig. 1.) Given a compact set 0 R e (whose boundary O0 is a
simple, closed curve) and a constant A > O, we seek the region lq which minimizes K
subject to the constraints that S* O and <- A (where refers to area).

FIG. 1. What doubly-connected region f o] area A encircling O has the least capacitance ?

If O={pER2: [pl<=r0}, r0>0, then the solution of Problem 1 at area A=
7r(r2 -r0Z)> 0 is the annulus f= {p R e. ro<lpl<rl}, as follows from the well known
isoperimetric inequality of T. Carleman [10].

We will solve Problem 1 when O is convex. In this case, the solutions over all
A > 0 are given by the monotone family of regions {D,c: c > 0} defined in the following
theorem due to D. E. Tepper [18], [19].

* Received by the editors June 29, 1976, and in final revised form January 30, 1978. Presented at the
conference on partial differential equations, Oberwolfach, February, 1977. An abstract appeared in Notices
of the American Mathematical Society, 23 (1976), p. A-645.

" Mathematisches Institut I, Universitit Karlsruhe (TH), 75 Karlsruhe 1, Englerstrasse 2, Postfach
6380, Federal Republic of Germany.
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FC

THEOREM 1. [f Q is starlike relative to po Q, then:
(a) For any c > O, there exists a region f such that S*c Q and IVU (p)l c on

(b) fc’ c fc whenever c’ >- c > O.
(C) Uc>0Fc R 2\O.
(d) Q U D,c is starlike relative to po for each c > 0. Moreover, if Q is convex, then

Q U fc is convex ]:or each c > O.
Here, for any p e Fc we define IV Uc (p)l := limq_,p IV Uc (q)l (q O,c) if the limit

exists. IV Uc (p)l represents the surface charge density induced by the potential Uc (p) at

peFc.
Our main result is the following theorem"
THEOREM 2. Let Q be starlike, and for each A > O, let c > 0 be the unique value

such that Ifc A. We consider two cases:
Case 1: If Q is convex, then

(1) K>Kc
]’or any region f # fc such that S* D Q and Ifl <- A. Thus fc uniquely solves Problem
1.

Case 2. If Q is not convex, but OQ has bounded curvature, then fc does not solve
Problem 1 ifA > 0 is sufficiently small.

The following is an equivalent alternative formulation of Theorem 2 in the
context of analytic function theory. (We set z x + iy (x, y)= p.)

THEOREM 3. Let Q be starlike, and ]’or any c > 0 let {{I}c be the class of all regions
f which are conformally equivalent to fc and satisfy S* Q. If Q is convex, then fc is

uniquely area minimizing in {D,}c for any c > O, i.e.

]’or any region f fc belonging to {f}o If Q is not convex, but OQ has bounded
curvature, then tic is not area minimizing in {D,}c for c > 0 sufficiently large.

Remark 1. Since Kc and Icl can (in principle) be determined for any c > 0, (1)
and (2) are isoperimetric inequalities.

Remark 2. A variation of Problem 1 consists of minimizing the capacitance in the
class {’-}A of regions satisfying S* Q and ID,[ _<-A (i.e. separation of f away from
the geometric constraint Q is prohibited). In [1], the author showed that the region fc
satisfying ]D, A is uniquely capacitance minimizing in {f}A whenever Q is starlike.

Remark 3. For any Q, a necessary condition for a sufficiently regular region to
solve Problem 1 can be obtained using the following variational formula due to H.
Poincar6. (See [16].) For a small, smooth perturbation of a sufficiently regular region, the variation in capacitance is given to first order by

(3) 3K I IVU(p)[2an(p)
*UF

where 6n (p) is the shift in the boundary of f in the direction of the interior normal at

p e F*U F. Since the variation in is given to first order by 6112[ --r*ur 6n(p). Idp[,
it follows that D, (sufficiently regular) can solve Problem 1 only if 1121 A and

(4) [VU(p)l=c on(F*UF)\Q and IVU(p)l>-c on r*rqoO

for some c > 0. If Q is convex and OQ has bounded curvature, then the region
solves (4) for each c >0. Apparently the free boundary problem (4) has not been
investigated in the general case.
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The proof of Theorem 2, Case 2 is in the following section. The proof in 5 of
case 1 is based on a particular, nearly continuous, area preserving deformation of
into any region D, satisfying [1 [D, l. We show, essentially by applying (3), that
capacitance is nondecreasing throughout the deformation.

3. Further properties of the free boundary solutions. The following lemma is
closely related to Lindel6f’s principle and Montel’s principle. (See [11, Chap. 1].)

LEMMA 4. Let f and be regions such that S* c * and $ S-. Then"
(a) Ifp Ff-1 ’, then [VU(p)[ _-< l7Cr(p)[ if both derivatives exist.
(b) Ifp F* r’l ’*, then [U(p)[ _-> IV (p)[ if both derivatives exist.

Proof. The maximum principle for harmonic functions implies that 0 =< O(q)_-< 1,
q R 2, where := R2\(S* LJ ). Further application of the maximum principle leads
to the inequalities: U(q)<= Or(q)<_ O(q), q R 2. If W(q)= O(q)- U(q), then W(p)=
0 if p F I"1 ff or p F* r’l ’*. The results follow from this.

LEMMA 5. Let 0 be starlike. If {f" c > 0} are the regions defined in Theorem 1,
then"

(a) For each c > O, F is an analytic curve.
(b) If 0 is convex, then 0 U fc(A, 1) is convex for all c > 0 and 0 < , < 1, where

f(A, 1)= {p fc" A < U(p)< 1}.
(c) If Q is convex, then IV U(p)] is strictly monotone increasing with increasing

Uc (p along all curves of steepest ascent (of Uc (p )). Thus IVU (p)] > c in f.
(d) If Q is convex, and the curvature of OQ is bounded by a constant B < oo, then

the curvature of Fc has the same bound B, c > O.
(e) Assume OQ has bounded curvature, and let 0 be the arc length of OQ. If the

values A > 0 and c > 0 are related by A [f 1, then there exist constants Ao > O, Co <
andM < oo such that the following inequalities ((5)-(10)) hold whenever 0<A <=Ao, or

CCo.

(5) ]_d(p, Q)-(1/c)I <- (M/c 2)

for all p Fc, where _d(p, Q)= inf {IP -q)l" q 6 Q}.

(6)

for all p OQ.

(7)

(8)

(9)

(lO)

IA -(O/c)l <-(M/c2),

Ig-c.OlM,

IKc-(O2/A)I<-_M.

Proof. (Part (a).) For c fixed, one can define the harmonic conjugate V(p) of
U(p) on f\y (where y is a Jordan slit connecting OO and F) in such a way that
F(z)= U + iV maps fc\y conformally onto (0, 1)x (0, Kc). If G =F-1, then G(z) has
a Kc-periodic analytic extension to (0, 1) x R. The condition that IVU (p)l c on F
implies that a continuous extension of IG’(z)[ to [0, 1)x R exists and satisfies IG’(z)l
(l/c) on {0} x R. Therefore log (c. IG’(z)l) has an antisymmetric harmonic continua-
tion to (-1, 1)x R. Thus G(z) can be analytically continued to (-1, 1)x R, and F (the
image of {0} x [0, 1] under G) is an analytic curve.

In general, we define f(a,/)= {p e 11: a< U(p)</} for any 0=< a</?-< 1.
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Parts (b) and (c). If the word "strong" is dropped in (c), then both results follow
using Tepper’s proof (in [18]) that Q U [Ic is convex. The general case of (c) follows by
applying the strong maximum principle to Dx log (IG’(x + iy)l) on (A 1, A2) R,
A2<1.

Part (d). Define W(x, y)= Dy arg (G’(x + iy)). The bound on the curvature of OQ
is equivalent to the condition" ]W(1, y)[ _-<B. IG’(1 + iy)[ for all y R. Part (c)implies
that IG’(1 +iy)l<-IG’(O+iy)[=(1/c), so that [W(1, y)l<=(B/c)for all y. Since W(x, y)
is harmonic and DxW(O, y)-0, y R, the maximum principle implies that IW(0,
(B/c) B. G’(O + iy)l for all y, from which the bound on the curvature of Fc follows.

Part (e). Let r-(l/B) be the minimum radius of curvature of OQ. For a fixed
point po 0Q, let/7 Q and/ R2\Q be the centers of the circles of radius r tangent to
0Q at po. If f) {pR2" r<lp-Pl<} is defined such that IVO(p)l c on r’, then
elementary calculations show that c <_-[VO(p)l_-<c +B in c and (c +B)-1 <_- -r_-<
-1c for each c >0. For each c >e.B (where e =exp (1)), a unique region
{pR2" <lp-/l<r} exists such that (r/e)<Y <r and IvO(p)l c on *. Again,
elementary calculations show that c -l<r-yc <(c-e.B)-I and that c.(1-
B.(c-e.B)-t)<-[Vr(p)[<-c in . Since F+OQ uniformly as c++c, there is a
constant Cl < c such that if c > c, then _d(p, Q)< (1 e-l) r for all p F. For c > Cl,

Lemma 4 shows that * c Sc c q, from which it follows that (c +B)-1-< _d(p, Q)<-
(c -e. B)-I where p is the intersection of F with the perpendicular to 0Q through po
Since poQ is arbitrary, we obtain I_d(p, Q)-c-Xl<=2(l+e)’(B/c 2) for c>c0
max{cl, 2e.B} for all pF. Now Lemma 4 implies that c.(1-B.(c-e.B)-l)<=
[V (Po)l-<-IVU (po)[--< [V t2 (P0)l--< c + B, from which it follows that IVU(p)l- c <-

3B for all p OQ and c > Co. This completes the proof of (5) and (6). (7) is easily
derived from (5), and (8) follows from (7). Further, (6) implies (9) and (8) and (9)
imply (10).

Proof of Theorem 2, Case 2. Let 0 : Q be the convex hull of Q, and be the
length of the boundary of (. We will show that/ < Kc for A > 0 sufficiently small,
where 13, is defined such that * 0, 11 A, and IV r(p)] is a constant on 1. Applying
(10) to 13,, we obtain

(11) I (2/A)I ----< M (A > 0 small).

Since 0<<0, it follows from (10) and (11) that/ <K when A >0 is sufficiently
small.

Remark 4. In [1], the region f was interpreted as an optimally shaped insulation
layer about a starlike interior Q. In this context, (5) shows that if OO has bounded
curvature, then the optimal insulation layer of sufficiently small area is essentially
uniformly thick.

4. A special monotone sequence of regions. The purpose of this section is to
define a special sequence of regions and to derive properties of these regions sufficient
to form the basis for the proof of Theorem 2, Case 2 in the following section. The
following notation involving distances will be used: d_(p,F)=inf{lp-ql"qF},
J(p, F)=sup{Ip-q[" q F}, _d(F*, F)=inf {[p-ql" pF*, q F}, and a(r*,r)=
sup {_d (p, F*): p 6 r}. Notice that a(F*, F) a(F, F*).

LEMMA 6. Let 0 be convex, and let fe and f be regions such that S’ O,
[x7U(p)l- e on r, S*=O, and Ao := Is\sl-lS*\QI. Then for any 6>0 and nN
satisfying n 6 Ao, there exists a sequence of regions (, O, , n, with the follow-
ing properties"

(a) rio
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(b) * c *+a and , i+1, =0,..., n -1.
(c) /* and [ [_J Oi are convex sets for each i.
(d) For each i, there is a constant ci > 0 such that IV (p)l ci on ’.
(e) I(+l\i )f’]S$l=l(i\i+l)\Sl=, i=0,...,n-1. Thus [(*\Q)CIS*[=

[(S\)\S] 6 ?’or each i.

Proof. (See Fig. 2.) We define the fi inductively, fi0 is defined by (a). Assume now
for O<-<_m <n =(Ao/6) that Oi, i=O,...,m, have been defined and satisfy (a)-(e).
Since [,\SI [S\SI-I(Se\,,)\S[ ao- m. 6 >= 6, there is by Theorem 1 a unique
smallest region ,, =ft,, such that *,, *,*,, IV O,,(p)I is constant on ’,,, and
](,,\,,)\S[=6. Moreover m*,, is convex. Now S*CI,,c,,\S, and in fact
IS*f3,,l<l,,\sl=ao-(m+ 1). 6. Therefore I,,CIS*I=IS*\QI-I,,f3S*I
I(S*\Q)f3 bS*l > &Thus there is a unique largest 0< A < 1 such that I,, (A, 1)M S*I 8.
We define ,,,+1 ,,, (0, A). Then "*S,,+, is convex by Lemma 5(8) and IV O,,,+l(p)l
(l/A). IV O,,(p)l is constant on lm+l m-Thus, the appropriate (m + a)st region has
been defined. (Remark: The words "smallest" and "largest" can be omitted except
when m n- 1.)

(s\,)\s

The portions of F*
and F which differ
.from O0 and Fe

FIG. 2. The definition of h1. First define 11 =f such that ’ O, I(S\I)\Sl , and ]WOI(p)] is

constant on ’1. Then define ’1 ’1(0, h ), where 0 < h < is chosen such that IS* f3 X(h, 1)[ . One defines
i+1 from i, 1,. , n 1, in the same way.

LEMMA 7. Let fe and fl have the properties assumed in Lemma 6. If oO has
bounded curvature, then the regions , i= 0,..., n, defined in Lemma 6 have the
following properties.

(a) There exist constants _C > 0, d < of, and d_ > 0 such that ]’or any > 0 and n N
satisfying n. 6 A0, we have:

(12)

(13)

(14)

fori=O,. ,n.

]v O, (p)l --> _c on
(’.*, ’,) <-_ , and

4 (t’*, ’, ) >-

_
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(b) For any a [0, A0), there exist constants (a)<oo, M(a)<oo, and 6(or)>0
such that for any 6 (0, 6(a)] we have"

(15)

(16)

(17)

(18)

(19)

IVgri(p)l<=(a) in Oi if i.6<=a,

Ci+l-Ci <-M(a)" 6 if (i + l). 6 <=a,

a(’*,’*+l)-<M(c).6 if (i+1).6<_-c,

d([’i,[’i+l)<-_M(a).6 if (i+1).6<-_a, and

IV(p)l-lVt)(q)l I<=m(a)’lp-ql forallp, q Oi(O, 1/2) if i’6<-_a.

Proof. For the proof of Part (a), let to be a region such that s c Se, s* O, s* is
convex, IVu(p)[=c on 3", l(s*\O)NS*l=l(s.\s)\Sl, 3"*NS* (g, and y N (D,U F)
(All conditions are satisfied when w i for some i.) We assume throughout that 0
(the origin)is located in the interior of Q. To prove (12), let O<r_=_d(O, OQ)<r=
_d(0, 3,)-< = d(0, F). If (= {p R2"_r < IPl < r}, then IVO(p)I (r. log (r/r_))- <=
(. log (U_r))-1 for all p [’. Further, if p [" 71% then c IVu (p)l--IV O(p)l by Lemma
4. Thus, in (12) it suffices to set _C (?. log (U_r))-1.

For the proof of (13), let be the curve of steepest ascent of u(q) beginning at
p3". Since (by Lemma 5(c))IVu(q)l>c in w, we have c.L(1)<llVu(q)l.ldql 1,
where L(. denotes arc length. Thus d_(p, 3"*) <- L(l) <-_ (1/c). Since p 3" is arbitrary,
we have if(3"*, 3,)<-_(1/c)<-(1/C_), proving (13).

For the proof of (14), let e _d(y*, y)>0. There existpoints p 3’ and q 3"* such
that Ip-q]=e. If 3,0* ={A .q" 1-(r/[q[)-<A <=1} and to ={pR2: 0<_d(p, 3,)<s},
then p3,f’13, and c=lVu(p)[->[Vu(p)[ by Lemma 4. On the other hand,
inf{[Vu(p)]’pe3,}--)+oe as s--)0+. Thus, a uniform lower bound for d_(3,*,3,)
follows if a uniform upper bound for c is established. Since c < (1/(3,*, 3,)), it suffices
to find a positive lower bound for (3,*, 3,). To this end, we note that there exists a
constant rt > 0 such that the area of the portion of on either side of any straight line
intersecting S* is at least r/. The convexity of s* implies that [(w
(w LI s)l + r/. Since Is\SI ao-[(Se\s)\SI ao-l(s*\O)f) S*I IS* f) (w t3 s)l, we have
Iw\S[ >-q. If /x is the length of the boundary of the convex hull of S*tJ f, then
L(3,*\S) <- Ix and L(3,\S)<-Ix. In fact [to\Sl<-lz .if(3,*, 3,). It follows that (3,*, 3,)_<-
(rt//x), proving (14).

Part (b). For the proof of (15), let i sup {IVD(p)I" p e ’*}, 0,. , n. 0 is
finite due to the bounded curvature of ’o*=00. For fixed i, V(p):= IvO,(p)[ is a
subharmonic function in i whose continuous extension to the boundary satisfies
V(p)<= ’ on F* and V(p)<=ci <= on [’, where ff is the bound for the constants c
established in the proof of (14). Therefore

in i. Now [’/*+l--{pR 2" (]i(p)=l-e}, where 0<e<l is appropriately chosen.
Thus, the above inequality implies that

’,+ _-< , + ((1- e)-l- 1).

Now choose p/* and q’/*+l such that P-ql=_d(’/*,’/*+l). Then e<-_

’ [vO(p’)l. Idp’[ <= g’. d_(t’*,, t’*+l), where is the straight line joining p and q. Further,
for any a [0, Ao), there is a constant N(a)> 0 with the property that for any region to

S*\Q of area tol >=Ao-a, whose boundary is rectifiable, the length of the boundary
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of to relative to S* exceeds N(a). If (i+1). 6<-a, then N(a). _d(-/*, -/*+1)--< 8. Thus

(20) e <- (C,IN(o)). 6,

and

,+- , <- ((1-(6IN(a)). ,)-’ 1)

for (i/l).8_-<a. Since this difference inequality corresponds to the differential
inequality

D,(x)<=(/N(a)).(x), O<=x<=a,

it is clear that the constants Ci, i. 8 <-a, are uniformly bounded over all sufficiently
small 8 > 0.

For the proof of (16), we have Ci+l <=(ci/(1-e)), =0,.’., n- 1, where Oi(p)
1-e on [’/*+1. Thus for 8 >0 sufficiently small and for i. 8 =<a, it follows using (15) and
(20) that

Ci+l-ci <- 2ci e -< 2(2(a). e <=2(((a))Z/N(a)). 8.

To prove (17), we note that (as in the proof of (13)) ([’*, [’/*+l)=<(e/_C), i=
0,..., n-l, where Oi(p)= 1-e on ’*+1. By applying (15) and (20), we obtain
(f’*i ’:+l)<-((a)/C_ ’N(a))’8, (i + 1).8

Proofof (18). Given a [0, Ao), there is a bound R.(a)<oe such that if i.8<-a
and 8 >0 is sufficiently small, then sup {IPI" P [’i}< R(a). In fact using (13) and (17),
we obtain

d(oQ, "i d(", "i + 2 d("l "+1) d -+- (o. ((o)/C" N(a)),

where the sum is over ] 0, , 1. For a fixed (satisfying (i + 1). 8 a), we have
IVtQ(p)l on li [’+1. If fi=tz "fi and I)=r/.1), where 1 </x < r/ are extremal
constants (/x maximum, r/ minimum) such that cJicg (and where
/x.D,:={/x.p’pD,}), then Lemma 4 implies that
(cdrl), where pe[’(3[’+l. Similarly, using per’f3[’+, one can show using (15)
and the maximum principle that =lVO(p)l>-IVO(p)l.inf{t)(q):qeP*}>=
(1 -R(a). (a). (Ix 1)). (cdlx). By combining inequalities, we obtain

(21) t _-./x. (1 -R(a). (a ). (l 1))-a.
One can show using the convexity of $* hi that aT(’, ’)_-< (rt- 1). R (a) and that
_d (f’, P) >-_ ( l) _r (where _r= .d(0,0Q)). Therefore, if the definition of N(ce)>0
(relative to S*U )) is analogous to the definition of N(a) in the proof of (15), then
/., 1 _-< (_d(lt’i, P)/_/’).< (_d(’i, "i+1)/_/’) - (8/_/". Nx(a)). Therefore, if 8 > 0 is sufficiently
small, then (21)simplifies to rl<-lx.(l+2R(a)’C(a)’(I.,-1)), and we obtain:
d("i, ’i+1) d(["i,) (’r 1). R (ce) < (/ 1). (1 + 2R (a). (a)). R(a)<= (1 + 2R (a).

’())" (R (o)/_r. NI(e)). 8 for (i + 1). 8 =< a.

Proof of (19). For fixed (i. 8 a), let the periodic analytic function G" (0, 1)x
R-i be defined as in the proof of Lemma 5(a). Then log(c. [G’(z)[) has an
antisymmetric harmonic continuation to (-1, 1)x R. Since [gr r(G (z ))[ 1/IG’(z)[ on
(0, 1)xR, (12) and (15)imply (for 8>0 sufficiently small)that [log(ci. IG’(z)l)[ <-

log ((a)/C_) on (-1, 1)x R. Thus -log ((’(c))2/_C)-< log (IG’(z)l)<=log (.(a)/C_)
on (-1, 1)x R. Uniform bounds for all derivatives of log (IG’(z)[) on (-1/2, 1/2)x R follow
from derivatives of the Poisson integral formula for harmonic solutions of the Dirichlet
problem in the circle. (19) follows from this.
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5. The proof of Theorem 2, Case 1. The main ideas of the proof are sketched in
Figs. 3, 4, and 5. Since Kc is a continuous, monotone increasing function of c on (0, c)
(whereas ID, is continuous and monotone decreasing in c), it is sufficient to consider the
case where li)[=A=]l-ll, i.e. [S*\QI+[S\SI=[S\SI. For any c’e(0, c], we have
[S\S[ [&,\S[+[(Sc\S,)\SI. Therefore, there is.a constant e (0, c] such that
ISe\SI and [S\S[=I(S\Se)\SI. (See Fig. 3.) if =R2\(QUSSe), then
[fI+I(Sc\S)\SI-[S\S[ A. Therefore, if l, D,,then/ >K by [1, Thm. 12].

To prove (1), it would now suffice to show that K > whenever D, 1. We will first
prove, under the additional assumption that 1* (-0Q) has bounded curvature, that
K ->/. Indeed, it suffices to show for each sufficiently small e > 0 that

(22) R2 >-- R
(since R2-+ K as e-+ 0+), where is defined such that * and are the closed
e-neighborhoods of S* and S.

S\&

(&\S)\S

&\S

FIG. 3.8 (0, c] is chosen such that [(S\Se)\S[ [S\SI and Se\S[ [S*\Q[.

To prove (22) (for a fixed, sufficiently small e >0), choose a [0, A0) (where
ao IS*\QI ISe\S[)such that the area of the portion of D, on either side of any straight
line intersecting l), is at least (Ao-a). Let the regions l’),i, 0,..., n, be defined
(relative to the present regions f),e and D,) as in Lemma 6, where 6 > 0 and n N are
chosen such that (a) n.6=ao, (b) 6<-_(ao-a)/4, (c) 6-<8(fl), and (d) M(fl).(l+
’(fl)). 8 _-<e, and where/3 =(a +ao)/2. (t(/3)and M(/3)were defined in Lemma 7.)
For 6 > 0 fixed, we define a sequence of regions i, 0, , n, such that S U q
and g* g* $*. Here q* and q are closed sets chosen such that (i) & c c $2 and
S* g*c S’, (ii) the sets *, i= 0,..., n, contain no isolated points, and (iii) the
boundaries * and of * and are smooth simple closed curves which intersect each
of the curves ’’ and ’, --0,...,n, at at most a finite number of points.

Although in general i, 0,. , n, is not doubly connected, the potential Oi(p)
continues to exist under assumptions (i), (ii), and (iii), and one can define the capaci-
tance of 1, by/ .D,(p). Idpl, where 3’ is a finite disjoint union of positively-
oriented, smooth simple closed curves such that the collective winding number is 1
about each point in * and 0 about each point in ,. Here, the normal derivative
Dni(p) at p 3/is directed into the region bounded by 1* and y.
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"N

The portions 4 F*
and F which differ
from 0 and Fc

An arc 3’i of [’i

FIG. 4. Although the proofo]’Theorem 2, Case involvesfurther details not shown here, the above diagrams
show essentially the stages by which lIc can be de[ormed into I) such that the area remains ]ixed, but the
capacitance increases at every step. In the last diagram, the arc segments of [’.*, and [’i move to the right as
increases until the region 1 coincides with [l.
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toi (between
and ,+

FIG. 5. Heuristic demonstration that Ii+1 1i" Since V Oi (P)I ci on ’i, Lemma 5(c)implies V’i(p
on ’.*,. Then Lemma 4 implies Ivt?i(p)l<-c, on ,, and Ivt(p)l>c, on v*,. Since

one concludes using the Poincarg variation formula (3) that 1+1

Now 0" g* O O and 0 Se U S . It follows that 13,o c fi and /o >=/.
Further, the above choice of a implies (due to the convexity of * U 0,i) that i c for
a -< i. 8 -< A0. Therefore i i I,.J g c 2 for a <- i. 6 <- A0. Since g/* c ’ for all i, we
obtain 2 i and/2 ->/ for a -<j. 6 <-A0. Combining inequalities yields

(23) /2 -/ >=Ki-Ko, a <=i.6 <-Ao.
It will be shown that a constant B (/3) exists such that

(24) A :’-- gi+l-- gi >-B(). t2

for (i + 1). 3 _-</3, and therefore

(25) I Io >- B (13 6

for a _-< i. 6 -/3. (An such that a -<_i. 6 <=/3 exists is due to condition (b) on 3.) (22)
follows from (23) and (25), since 6 > 0 can be chosen arbitrarily small.

We now prove (24). We have A =I(Dl,i; VI,), where V,(p) is the harmonic
function in f,i := f) ’i+1 satisfying the boundary conditions V,i tQi+ on 1-’l,i ]i,
Va, 1- IQi on FI*, 1*+1. Here I(f,; V,)refers to the electric field flux from $1", to
Sl,i through D,,i due to the potential V,i(p), i.e. /(1,i; Wl,i)=vDnWl,i(P)’ldPl,
where y and the sense of D, VI,i(p), p y, are fixed as in the definition of i given
earlier. Define yi ’\g and y* ’* *. y and y* are finite unions of arc segments of

’ and * for each i, due to property (iii)of and *. For i=0,..., n-1 and
2, 3m, 4, let the harmonic functions V.,(p) be defined respectively on the regions

-2,i ’l,i, ’-3,i R 2\(//*+1 I,_J i), and "4,i i ("] ’ti+l by the following boundary condi-
tions. V., (Qi+I on y, V., 1 on y*+l, and V-, 0 on the remaining boundary on
D,.,i. We will show that

(26) mi-"I(’x,i; Wl,i)I(’4,i; W4,i) i=0,...,n-1.

Our argument is based on the fact that I(f; V)->0 for any V(p) (harmonic in D,,
continuous in Closure (f)) satisfying V(p) >- V(q) for all p F*, q F. It follows from
the maximum principle that Vl,(p) b 1 O(p)-> 1 ffYi(p)>= 1 (p) Vz,(p) on
y/*+ (where -i R2\(/* g’i)), whereas V,i(p) < V2,(p) on y by a similar argument.
Therefore I(D,,; Vx,i) >= I(f2,i; V2,). Furthermore, V2,i V3,i on I/*+1 and V2,i <= V3,i
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on li, implying that I(fl2,i; V2,i) -> I(f2,i; V3,i) [(3,i; W3,i). Finally, V3,i >= V4.i on
*+1 and V3,i Vn,i on [’i, implying that I(fl3,i; V3,i)>=I(fl3,i; V4,i) =/(fin,g;

By applying Green’s second identity to the functions i(p) and W(p) := Vn,i(p) in
’li(0, h ), 0<h < I (where fii fl4,i i i+1), we obtain

I(fi; w,)-- f O,,W(p).ldpl

i=0,..., n, where r/*(X)= {p ’l,; (p) X}. Lemma 5(c) shows that
in fii, whereas for (i + 1).8 <-/3, (15) and (17)imply that (1- 2(fl).M(fl).,). IV O;(p)l_-
[D(p)l.(inf{fY(q):q’*i/l})<=[fY(p)]=c for all pcti=i. This reduces to
Ir2(p)l<-(+2d().M().,).c (when 2(fl).M(fl).8<e<1/2), so that for (i+
1). 8 <-/3, (27) implies

(28) I(fii; Wi)(Ci/t’)" ( f’v *a, Wi(p). [del-(1,/ 2().M(), 8). It., Wi(p)" ldpl).
By combining (26) and (28), taking the limit as h --> 1-, and substituting the boundary
conditions for W/(p)= Vn,i(p), we obtain

(29) Ai >Ci (I,,+ (1- i(p))’ldpl-(1 +2;(fl)’M()" 8)" I ’i+l(P)’ldPl)
We will show for (i + 1). 8 <-/3 that

and

(31) Ji := []]i+ p dp <- C + "8,

where C+l=SUp{lVf_fi+l(p)l’pcO,i+lf-li}. For each i, we have J/*>-_
ci [.,;+1 d_ (p, ’). Idpl, since 1- i(p) IV t)i(q)l" Idq[ >-_ c L(1)>-_ c d_ (p, [’/*)for each
p c 3’/*+1. (Here, is the curve of steepest ascent of t)i(q) from p to [’/*.) If o-/* is the set

swept out by the lines of shortest distance from points pc y*+l to [-’*, then
_d(p, Idpl-> l, due to the convexity of *. One concludes from a([’*, [’/*+1) <-

M(fl) 8 < e (due to (17) and the condition (d)on 6) and * c * that (/*+1\/*) S* c
o’/*, or Io’/* >_-i(*+1 \/*) S*[ 8. Therefore J/* _>-ci" 8. For the proof of (31), we define
l(p), for any p c yi, to be the intersection with Closure (i\i+l) of the perpendicular to

"i through p. Also, let ff=l(p)l’l["i+l, p cyi, and cri=l,_Jpe.v,l(p). Now Ji<=
c’i+l [.,, Ip-Pl" ldP[, since i+l(p)<- Jl(p) lVfYi+l(q)l" ldq[ <--Cl+l IP--PI for any pc-yi.

Moreover, [.v, IP-PI" Idpl <-Icril, due to the convexity of /* LI (li. One concludes from
([’i,’i+l)<-_M(B).8<e and g=g that o’ic(i\i+l)\S, and therefore that Io-il-<
I(i\i+)\SI . Therefore Ji -<-c’i+ .

By combining (29), (30), and (31), we obtain (for (i + 1). 8 <-/3):

(32) (fl). M(fl). 82Ai > Ci (Ci--Ci+l )" 8 --2Ci Ci+l
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=- <(2(/3), andIt follows from (15), (16), (18), and (19) that 0<ci<C(/3), 0---Ci/l=
--(ci-Ci+l)+(Ci+l-Ci+l)>-M([3)’(1 +M(/)). 8 for (i+ 1).8 <ft. Now (24)Ci C i+1

follows by substituting these inequalities into (32); in fact we obtain B(/3)=

-’(/3). M(/3). (1 +M(/3) + 2 t22(/3)). This completes the proof that g ->/ when OQ has
bounded curvature.

To prove that K ---/ in the general case (where Q is convex and OQ is a simple
closed curve), let {Q,} be an increasing sequence of convex sets such that U,N Q, Q
and OQ has bounded curvature for each n. For each n, define FL, such that S* Q,
[VU(p)l is constant on F,,, and IS,\SI IS*\Q,I. We have K _->/ for each n, where
n R2\ Qn I,.J S [.J Sn). Thus K => lim_oo/ =/.

Since/ > Kc when # lic, it follows from K _->/ that K _-> Kc, where equality can
occur at most in the case where S c & (=5 t? c and fi D.c). In order to complete the
proof of (1), we will now show that K > Kc whenever D. D.c and S c &. By Lemma
5(c), there is an e > 0 such that IV U(p)l > c + 2e in D.c (1/4, 1). Therefore, one can choose
b < c so close to c that IV Ub (p)l > C + e in rib (21-, 1) and 1/2 </x < 1, where/x is defined by
Is* a(, 1)[=l(&\&)\sl. For O_-<A

R2\((S* Sb*a)U Sb U S), where fb, fb(0, a). [1, Thm. 8] implies that

(33) Ig2b,1 >--_ Kc c 2" I(& \Sb)\S[.
Furthermore, for any /x <a < 1 and p F* -*b,A rb,x, we have using Lemma 4 that
IX7 tTa (P)I--> IX7 ga (P)I (IVU(p)I/A)>-c + e. Therefore, [1, Thm. 11 can be applied to
show that

)2 S*(34) R,,,>-R,l+(C+e .[
It follows from (33) and (34) that

Rb,,.-Kc >=2c e

Therefore K > Kc, since for S c Sc the proof that K >- Kb,g is essentially identical to the
proof already given that K =>/.

Remark 5. On the basis of Theorem 2, the following conjecture appears reason-
able. Let a continuously-differentiable function 0< r(p) <- 1 represent the electrical
resistivity in R2\Q, where Q is convex. Define the current leakage from Q in the
presence of the function r(p) by I /(D,U(p)/r(p)). It/p], where the potential U(p) in
R2\Q solves the boundary value problem" V. (VU(p )/r(p )) 0 in R2\Q, U(p)= 1 on
OQ, and limlpl_, U(p)= 0. (Here, 3’ is a smooth simple closed curve encircling Q and
the normal derivative is inwardly directed.) Then I => Kc, where c > 0 is chosen such that
Iflcl JR2\O r(p) dx dy.

Note added in pro@ The procedure used in this paper can be extended to prove a
generalization of Theorem 2 to be discussed in detail in [8]. In order to state this result,
we define Ilnll Jlaa2(p)dx dy, where a(p)>0 is a continuous function on R 2.

THEOREM. Assume that a(p) is subharmonic in R2\Q, that OQ has bounded
curvature, and that there is a point po Q such that Q is starlike relative to po and
A’a(po+A’(p-po)) is weakly increasing in A [1, oo)for each p oQ. Then"

(a) /f fl is defined such that S* Q and Iv g(p)l- c. a(p) on Fc for each
c R+ (0, c), then there exists a constant 0<-_ Co<-m such that ]VU(p)l>=c.a(p)on
O0 only for those c R+ satisfying c <= Co.

(b) If c [0, Co] R+, then

(35) K _->K

for any f satisfying S* Q and
(c) If Co < c < o, then (35) does not hold for all admissible f.
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